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This note studies the implications of the price reset hazard function for the monetary
transmission mechanism of sticky price models. I first document some general analytical
results that highlight the central role of the price (accumulative) distribution in linking the
hazard function and the impulse response function. I find that nominal rigidity underlying
increasing hazard functions is more successful than real rigidity in replicating realistic
macro persistence. In addition, numerical simulations show that the interaction between
the increasing hazard function and the real rigidity provides a powerful propagation
mechanism for monetary shocks.
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1. INTRODUCTION

The purpose of this note is to investigate how the shape of the price reset hazard
function affects the monetary transmission mechanism of sticky price models.
This is interesting because of advances in both empirical and theoretical research
on sticky prices. On one hand, recent empirical studies based on micro-level price
data widely conclude that the probability of price adjustments depends on the
duration of prices.1 This evidence raises serious doubts about the predictions of the
popular New Keynesian models based on the Calvo sticky price assumption [Calvo
(1983)]. On the other hand, recent research on micro-founded pricing models
[e.g., Costain and Nakov (2011)] shows that a realistic sticky price model should
feature a smoothly rising hazard function, which is closer to the Calvo model
than the fixed menu cost model. However, because of technical challenges post by

I am grateful to Michael Burda, Carlos Carvalho, Christian Merkl, Alexander Meyer-Gohde, Kevin Sheedy, Lutz
Weinke, Alexander Wolman, and other seminar participants at the Deutsche Bundesbank and in Berlin for helpful
comments. I acknowledge the support of the Reserve Bank of New Zealand and the University of Erlangen-Nuremberg.
All errors are my sole responsibility. Address correspondence to: Fang Yao, P.O. Box 2498, Wellington 6140, New
Zealand; e-mail: fang.yao@rbnz.govt.nz.

c© 2014 Cambridge University Press 1365-1005/14 446

https://doi.org/10.1017/S1365100514000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000376


HAZARD FUNCTIONS AND MONEY POLICY 447

state-dependent pricing models, implications of nonconstant hazard functions for
macro dynamics have not been fully explored in the literature.

To fill this gap, this note applies a tractable generalized time-dependent pricing
model, set forth by Wolman (1999), in which the probability of price adjustments
is allowed to vary with respect to the time elapsed since the last price revision. As
a first pass, I solve a simplified version of the model analytically and document
some general results regarding the role of the price (accumulative) distribution
in bridging the price reset hazard function at the micro level and equilibrium
dynamics at the macro level. Next, I solve the full model numerically and in-
vestigate how increasing hazard functions interact with other important features
of modern monetary models, such as strategic complementarity in price setting,
nonzero steady-state inflation, and two kinds of monetary policy rules.

The main analytical results show that, after a money level shock, both the
impulse responses of the output and the aggregate price are determined by the
accumulative distribution of price durations, whereas the inflation response is
driven by the distribution of price durations. Consequently, changing the shape
of the hazard function generates different macro dynamics through its effects
on the price distributions. To illustrate this result, I compare three models based
on increasing, constant, and decreasing hazard functions. The increasing-hazard
model predicts more persistent responses in inflation and output than the other two
models. Similarly, after a persistent money growth shock, the increasing-hazard
model predicts a hump-shaped response of inflation, but a less persistent output
response than the constant-hazard model.

Next, I extend my analysis to a more realistic setting. To this end, I solve the
model combining nominal rigidity underlying increasing hazard functions with
“real rigidity” [Ball and Romer (1990)] and positive steady-state inflation. I also
test the robustness of my quantitative results under two kinds of monetary policy
rules, namely a money growth rule and an interest rate rule [Taylor (1993)]. The
numerical results show that the effects of the increasing hazard function, real
rigidity, and nonzero steady-state inflation can reinforce each other, and thus the
interaction between them gives rise to a powerful propagation mechanism for
monetary shocks. The economic intuition behind this insight is that, on one hand,
the increasing hazard function postpones the timing of price adjustments; on the
other hand, strategic complementarity in price setting makes adjusting firms opt
for optimal prices that are close to the average level of prices in the economy. As
a result, strategic complementarity amplifies the delayed effect of the increasing
hazard function. The presence of positive inflation accelerates relative price dis-
persion, which in turn enhances the interaction between strategic complementarity
and the increasing hazard function further. All quantitative results hold under both
monetary policy rules.

In the literature, the implications of nonconstant hazard functions have been
studied in a number of papers. Wolman (1999) raises the issue that inflation
dynamics should be sensitive to hazard functions underlying different pricing rules.
He demonstrates this result in a simple partial equilibrium analysis. Kiley (2002)
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compares the Calvo and Taylor staggered price setting in a general equilibrium
setup and shows that the output dynamics resulting from monetary shocks is both
quantitatively and qualitatively quite different across the two pricing specifications
unless one assumes a substantial level of real rigidity in the economy. Mash (2004)
also studies a sticky price model with the general hazard function. He derives
the generalized New Keynesian Phillips curve log-linearized around a constant-
inflation steady state and shows numerically that this model can reconcile the
tension between evidence on aggregate inertia at the macro level and frequent
price setting at the micro level. Whelan (2007) and Sheedy (2010) focus on the
implication of the shape of hazard functions for generating intrinsic inflation
persistence. They show that the shape of the hazard function affects the signs and
magnitudes of the coefficients on lagged inflation in the theoretical Phillips curve.
This note makes a theoretical contribution that extends the analysis of nonconstant
hazard functions in a broad class of general equilibrium New Keynesian models.

The remainder of the note is organized as follows: in Section 2, I present
the firms’ pricing problem with the generalized time-dependent pricing scheme;
Section 3 shows results regarding insights gained from relaxing the constant hazard
function underlying the Calvo assumption; Section 4 contains some concluding
remarks.

2. THE FIRMS’ PRICING PROBLEM

The model that I use in my analysis is a standard New Keynesian model except
for a more general setting for sticky prices. Following Wolman (1999), I set up the
staggered price adjustment process, which is characterized by a price reset hazard
function. In contrast to the Calvo sticky price model, the probability of adjusting
a price is allowed to vary across price durations, so that it nests the Calvo price
setting as a special case. In the following, I outline the firm’s pricing behavior
under the general hazard function.2

There is a continuum of monopolistically competitive firms, indexed on the unit
interval by j . Firms adjust their prices according to a stochastic timing scheme. At
each period, firms draw from a price-resetting lottery, whose winning probabilities
depend on the ages of their prices. This price adjustment scheme is summarized
in term of a price reset hazard function, defined as

hi = P(adjust at i | survival to i − 1). (1)

The hazard function gives the probability of price adjustments i periods since
the last revision conditional on the price having been fixed for i − 1 periods,
for i = 0, . . . , I , where I is the maximum price duration. In addition, I assume
0 � hi � 1, for all i.

Given the hazard function, the survival function is defined as

Si = i

�
n=0

(1 − hn) , ∀i = 0, 1, . . . I − 1. (2)
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The survival function gives the probability of a price being fixed at least for i

periods.
Note that the dynamics of this stochastic price adjustment process can be mod-

eled as a Markov chain with the price durations as its states and hazard rates
defining its transition matrix. We can derive the invariant distribution of the states
by calculating the eigenvector associated with the unit eigenvalue:

θi = Si

I−1
�
n=0

Sn

, ∀i = 0, 1, · · · I − 1. (3)

According to equation (3), this Markov chain eventually converges to the stationary
price-duration distribution and, once the invariant distribution is reached, there is
no need to track the dynamics of price distribution any more. In the rest of the
note, I assume that the price vintage distribution has converged to the invariant
distribution and thus I will use equation (3) to calculate the aggregate price index.3

In a given period, the optimal price chosen should reflect the possibility that
it will not be revised in the near future. Consequently, adjusting firms choose an
optimal price that maximizes the discounted sum of profits in the time horizon
over which the new price is expected to be fixed. Based on the generalized sticky
price assumption discussed earlier, the maximization problem for a price setter
can be expressed as

max
Pj,t

�t = Et

∑I−1

i=0
SiQt,t+i (Pj,t − MCj,t+i )Yj,t+i|t , (4)

where Qt,t+i is the stochastic discount factor appropriate for discounting profits
from t to t +i. MCj,t denotes the nominal marginal costs of the firm. The adjusting
firm maximizes discounted profits subject to demand for intermediate goods in
period t +i given that the firm resets the price in period t. The first-order necessary
condition for the optimal price is

P ∗
j,t = η

η − 1

Et

∑I−1
i=0 Si[Qt,t+iYt+iP

η
t+iMCj,t+i]

Et

∑I−1
i=0 Si[Qt,t+iYt+iP

η
t+i]

. (5)

Intuitively, the optimal price is equal to the markup multiplied by a weighted sum
of all future marginal costs, where weights depend on the survival probabilities,
the discount factor, and future market conditions. In the Calvo case, where Si =
(1 − h)i , this equation reduces to the Calvo optimal pricing condition.

Finally, given the invariant price distribution θi , the aggregate price index can
be rewritten as a distributed sum of past reset prices. Let P ∗

t−i be the aggregate
optimal price set i periods ago. The aggregate price index is obtained as

Pt =
(∑I−1

i=0
θiP

∗1−η
t−i

) 1
1−η

. (6)
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3. ANALYSIS

In the analysis, I derive some analytical and numerical results to study how
the shape of the price reset hazard function affects the monetary transmission
mechanism of sticky price models.

3.1. A Simple Model

To deliver some economic intuitions, I first use a simple version of the model,
which is a system of three equations,

p̂∗
t = Et

[
I−1∑
i=0

θi (ŷt+i + p̂t+i )

]
, (7)

p̂t =
I−1∑
i=0

θip̂
∗
t−i , (8)

m̂t − p̂t = ŷt , (9)

where all variables are expressed as percentage deviations from the deterministic
steady state without inflation. Equation (7) is the log-linearized optimal price given
by (5), equation (8) represents the log-linearized aggregate price, and equation (9)
corresponds to a log-linearized aggregate demand condition.

In addition, I consider two different monetary regimes. First, I assume that m̂t

follows a first-order autoregressive process:

m̂t = ρm̂t−1 + εt . (10)

Second, I consider a first-order autoregressive money growth rule,

μ̂t = ρμ̂t−1 + εt , (11)

where μ̂t = m̂t −m̂t−1. In both stochastic processes, innovations εt � i.i.d.(0, σ 2
m)

and ρ is the persistence parameter, which lies between zero and one. In this model,
the only structural parameters are the distribution of price durations θi and the
persistence parameter of monetary shock processes ρ. In the following, I will
derive how aggregate dynamics of prices and the output gap depend on these
parameters.

Effects of the level shock.

PROPOSITION 1. Assume that the log deviations of nominal money supply
follow an AR(1) process specified in (10). Under the sticky price model summa-
rized by equations (7), (8), and (9), impulse response functions to a money level
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shock are given by

IR
(
p̂∗

t+n

) = F̄ ρn, (12)

IR(p̂t+n) = F̄

n∑
i=0

θiρ
n−i , (13)

IR (ŷt+n) = ρn

(
1 − F̄

n∑
i=0

θi

ρi

)
, (14)

where
F̄ =

I−1∑
i=0

θiρ
i . (15)

Proof. See Appendix A.

Several interesting insights stand out from this proposition. First, the impulse
response function of the optimal price equation (12)] is affected not only by the
rate (ρ) at which the monetary disturbance decays over time, but also by a scaling
factor F̄ , which captures the firm’s forward-looking pricing behavior. As seen in
equation (15), F̄ is smaller than one when ρ < 1. The optimal price adjustment is
scaled down, because firms expect that the money level shock will dissipate over
time at the rate of ρ. When ρ = 1, implying a permanent rise in the money shock,
the scaling factor is equal to one, and the optimal price will jump immediately to
the new level that is one-to-one to the size of the money level shock.

Second, the impulse response of the aggregate price is affected by the accumu-
lative distribution of price durations. This is intuitive, because the accumulative
distribution of price durations represents the fraction of firms that are allowed to
react to the shock over time. Together with the size of the response, they determine
the response of the aggregate price to a money level shock. An instructive case
emerges when the shock is permanent (ρ = 1). In this case, the shape of the
aggregate price response is determined solely by the accumulative distribution of
price durations,

IR (p̂t+n) =
n∑

i=0

θi . (16)

Furthermore, one can show that the impulse response of inflation to a permanent
money level shock is equal to the distribution of price durations:

IR(π̂t+n) = IR (p̂t+n) − IR (p̂t+n−1)

=
[

n∑
i=0

θi −
n−1∑
i=0

θi

]

= θn. (17)

Third, the real effect of the money level shock is just the flip side of its nominal
effect. Again, the shape of the accumulative price distribution plays a central role
in determining the output response to a money level shock. Using the example of
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FIGURE 1. Effects of a permanent money level shock (ρ = 1).

a permanent shock again, the real effect of a money level shock can be expressed
as

IR (ŷt+n) = 1 −
n∑

i=0

θi . (18)

The analytical results shed light on the central role played by the price dis-
tributions in linking the shape of the price reset hazard function and impulse
responses of aggregate variables. To illustrate this mechanism, in Figure 1, I plot
price distributions and impulse response functions to a permanent money level
shock as the result of three different hazard functions. The first hazard function is
constant at a level of 25%, implying that the average price duration is four quarters
(solid line). The second hazard function is linearly increasing in the time since
last adjustment (dashed line), and the third hazard function is linearly decreasing
in the time since last adjustment (starred line).4

The top left figure depicts the distribution of price durations implied by different
hazard functions. With the constant hazard function, the probability mass falls
geometrically as the price duration gets longer. In contrast, the price distribution
of the increasing hazard function drops more slowly at the shorter durations, but
faster at the longer durations, whereas the price distribution of the decreasing
hazard function follows the opposite pattern. According to equation (17), the
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shape of the price distribution determines the inflation response to the money
level shock. In the top right panel, we see that responses of the aggregate price
converge to the new level fastest in the increasing-hazard model, and slowest in
the decreasing-hazard model. Because the output response is also determined by
the accumulative distribution, as seen in the bottom right panel, the decreasing-
hazard model predicts a more persistent response of output to a permanent money
level shock than the other two models. The bottom left panel illustrates how the
change in the slope of hazard functions affects the inflation dynamics through
its effects on the accumulative distribution of price durations. The increasing-
hazard model predicts a more persistent inflation response than the constant- and
decreasing-hazard models.

Effects of the growth shock.

PROPOSITION 2. Assume that nominal money supply growth rates follow an
AR(1) process as specified in (11). Under the sticky price model summarized by
equations (7), (8), and (9), the impulse response function of inflation to a money
growth disturbance is given by

IR(πt+n) =
I−1∑
k=0

θk

I−1∑
i=0

θiρ
n+i−k, ∀n + i − k ≥ 0. (19)

Proof. See Appendix B.

This proposition is intended to show how the price distribution affects inflation
dynamics after a money growth shock. Again, it is instructive to study a permanent
money growth shock first. In this case, the impulse response of inflation is equal
to a complex summation of the price distribution. However, in the Calvo model,
when θi = (1 − τ)τ i , where 0 < τ < 1 denotes the nonadjustment rate, the
impulse response function of inflation becomes

IR(πt+n) = (1 − τ)2
∞∑

k=0

τ k

∞∑
i=0

τ i = 1. (20)

This implies that inflation reacts immediately to the permanent money growth
shock and the size of the response is equal to the size of the money growth shock.

Figure 2 illustrates the transitional dynamics of disinflationary scenarios pre-
dicted by the increasing- and constant-hazard models. In this simulation, I assume
that, before t = 1, output is at its steady state level, whereas inflation is equal to
2.5% per quarter. At t = 1, the central bank changes the growth rate of nominal
money stock from 2.5% per quarter to zero and keep it constant permanently. In the
left panel, the constant-hazard model predicts a costless disinflation; i.e., inflation
drops immediately to the new level, whereas real output is not affected at all. This
result recapitulates the famous criticism of the Calvo sticky price model [e.g., Ball
(1994) and Mankiw (2001)]. In contrast, the increasing-hazard model predicts a
recession lasting up to eight periods during the slow disinflationary process.

Figure 3 further compares the effects of the constant- and increasing-hazard
functions after a persistent money growth shock (ρ = 0.5). The left figure
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FIGURE 3. Effects of a persistent money growth shock (ρ = 0.5).

illustrates the impulse responses of inflation. Whereas the Calvo model predicts
a monotonically declining response to the money growth shock (the dashed line),
the increasing-hazard model generates a hump-shaped response of inflation (the
solid line). Even though this hump is not very eminent, peaking only in the second
period after the impact of the shock, it represents a qualitative improvement toward
the empirically plausible shape of inflation response to a monetary shock. In the
following sections, I will show that adding other features to the model will help
enhance the delayed effect of the increasing hazard function. The right figure
depicts the impulse response function of the output gap to a money growth shock.
The Calvo model predicts a more persistent real effect of money growth shocks
than the increasing-hazard model.
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To sum up the analytical results, I find that there is a close correspondence
between the impulse responses of output and aggregate price, because both of
them are mainly determined by the accumulative distribution of price durations.
In contrast, there is a trade-off between persistent responses of output and inflation
as the slope of the hazard function changes. Increasing-hazard functions enhance
inflation inertia, but they weaken the persistent response of output.

3.2. Robustness Checks

To check the robustness of the analytical results, I solve the whole log-linearized
model numerically. Specifically, I conduct robustness checks to study the interac-
tions between the generalized nominal rigidity and (1) the strategic complemen-
tarity in price setting; (2) nonzero steady-state inflation; and (3) the Taylor-style
interest rate rules. The main findings are summarized as follows.5

First, regarding to the interaction between the shape of the hazard function and
the real rigidity, I find that, in separation, the nominal rigidity underlying increasing
hazard functions provides a more powerful propagation mechanism in generating
macro persistence than the real rigidity. When they are used used together, however,
strategic complementarity amplifies the delayed effect of the increasing hazard
function, leading to a more salient hump-shaped impulse response of inflation to
a monetary shock.

Second, I study the effects of nonzero steady-state inflation in the increasing-
hazard model. Even without strategic complementarity in price setting, positive
steady-state inflation enhances the ability of the increasing-hazard model to gener-
ate persistent macro dynamics. Combining all three features, the increasing hazard
function, a modest level of real rigidity, and 2% trend inflation, accounts for the
realistic level of persistence in both inflation and output. The intuition for this
result is that the presence of positive inflation accelerates relative price dispersion,
which in turn enhances the interaction between strategic complementarity and the
increasing hazard function.

Third, given the ubiquitous Taylor rule in the modern monetary policy research,
I check the robustness of my quantitative results under a simple Taylor rule.
The simulation results show that increasing hazard functions enhance the persis-
tence of macro dynamics under the Taylor rule. The Calvo model with a Taylor
rule has very weak inner propagation for persistence. By comparison, the sticky
price model with features discussed in the preceding replicates the hump-shaped
impulse response of inflation and predicts important real effects of money under
the Taylor rule.

4. CONCLUSION

The central purpose of this note is to evaluate effects of the price reset hazard
function on the monetary transmission mechanism of the sticky price model.
I present new analytical and numerical results, regarding mechanisms through
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which the hazard function affects aggregate dynamics and interacts with other im-
portant features in the sticky price model. First, I show that the shape of the price
distribution greatly affects the persistence of output and inflation. The distribution
of price durations lies in the center of the propagation mechanism. Second, I show
that nominal rigidity underlying the increasing hazard function is more success-
ful than real rigidity in generating persistence of inflation and the output gap.
Furthermore, the interaction between the increasing hazard function and strategic
complementarity in price setting provides a powerful propagation mechanism for
monetary shocks.

Admittedly, the model I use has weaknesses. Above all, the timing decision is
not endogenous, so that important dynamics resulting from the extensive margin
of price adjustments is completely missing in my analysis. To study this effect, one
would need to work with a micro-founded state-dependent pricing model [e.g.,
Golosov and Lucas (2007)]. Although the state-dependent pricing models are
superior in principle, because of their tractability challenges, one can only solve
them at the expense of realism on other aspects of the economy. I view my current
modeling choice as a reasonable compromise and reserve more micro-founded
analysis for future research.

NOTES

1. See, e.g., Alvarez (2007), Klenow and Kryvtsov (2008), and Nakamura and Steinsson (2008).
2. The derivation of the whole model is available in an Online Appendix at https://sites.google

.com/site/yao0fang/.
3. This feature of the time-dependent pricing model gives rise to the high tractability, but at the

same time it suffers the deficiency of ignoring the extensive margin dynamics.
4. Here, I parameterize the hazard function in a parsimonious way. In particular, the functional

form I apply is the hazard function of the distribution, which has two parameters:

h(j) = τ

λ

(
j

λ

)τ−1

.

λ is the scale parameter, which controls the average duration of the price adjustment, whereas τ is the
shape parameter, which determines the monotonic property of the hazard function. I choose λ so that
it implies an average price duration of four quarters. The shape parameter is set at values in {1, 2, 0.5}
to represent constant, increasing, and decreasing hazard functions.

5. More detailed discussion of my calibration exercise and the numerical results is available in an
Online Appendix at https://sites.google.com/site/yao0fang/.
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APPENDIX

A.1. PROOF OF PROPOSITION 1

First, based on the assumption that the nominal money supply follows an AR(1) process,

m̂t = ρm̂t−1 + εt , where εt � i.i.d.(0, σ 2
m). (A.1)

The impulse response function of the nominal money supply to an innovation εt is

IR (m̂t+n) = ρn. (A.2)

Using the definition of impulse response function, I derive the impulse response function
of the optimal price to a monetary level shock as

IR
(
p̂∗

t+n

)
εt = Et(p̂

∗
t+n) − Et−1(p̂

∗
t+n) (A.3)

=
I−1∑
i=0

θi [Et (m̂t+n+i ) − Et−1 (m̂t+n+i )]

=
I−1∑
i=0

θiIR (m̂t+n+i ) εt ,

IR
(
p̂∗

t+n

) = ρn

I−1∑
i=0

θiρ
i .
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Following the aggregate price equation (8), I derive the impulse response function of the
aggregate price as follows:

IR (p̂t+n) εt = Et(p̂t+n) − Et−1(p̂t+n) (A.4)

=
n∑

i=0

θiEt (p̂
∗
t+n−i ) −

n∑
i=0

θiEt−1(p̂
∗
t+n−i )

=
n∑

i=0

θi

[
Et

(
p̂∗

t+n−i

) − Et−1(p̂
∗
t+n−i )

]

=
n∑

i=0

θiIR
(
p̂∗

t+n−i

)
εt ,

IR (p̂t+n) =
n∑

i=0

θiIR
(
p̂∗

t+n−i

)
.

Plugging (A.3) into (A.4) yields

IR (p̂t+n) =
n∑

i=0

θi

[
ρn−i

I−1∑
i=0

θiρ
i

]
(A.5)

=
I−1∑
i=0

θiρ
i

︸ ︷︷ ︸
F̄

n∑
i=0

θiρ
n−i

= F̄

n∑
i=0

θiρ
n−i .

Finally, using equation (9), I derive the impulse response function of real output as
follows:

IR (ŷt+n) = IR (m̂t+n) − IR (p̂t+n) (A.6)

= ρn − F̄

n∑
i=0

θiρ
n−i

= ρn

(
1 − F̄

n∑
i=0

θi

ρi

)
.

�
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B.1. PROOF OF PROPOSITION 2

First, inflation, defined as π̂t = p̂t − p̂t−1, can be expressed as

π̂t = p̂t − p̂t−1 (B.1)

=
I−1∑
k=0

θk

(
p̂∗

t−k − p̂∗
t−k−1

)
Then, substituting equation (7) for p̂∗

t , I obtain

π̂t =
I−1∑
k=0

θk

(
p̂∗

t−k − p̂∗
t−k−1

)
(B.2)

=
I−1∑
k=0

θk

I−1∑
i=0

θiEt (m̂t+i−k − m̂t+i−k−1)

=
I−1∑
k=0

θk

I−1∑
i=0

θiEt [�m̂t+i−k] .

Based on the assumption that nominal money growth rate follows an AR(1) process,

�m̂t = ρ�m̂t−1 + εt , where εt � i.i.d.(0, σ 2
m),

we can derive the impulse response function of money growth shock to an innovation εt as

IR (�m̂t+n) = ρn. (B.3)

It follows that

IR (π̂t+n) =
I−1∑
k=0

θk

I−1∑
i=0

θiIR (�m̂t+n+i−k) (B.4)

=
I−1∑
k=0

θk

I−1∑
i=0

θiρ
n+i−k, ∀n + i − k ≥ 0.

�
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