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Abstract. Supersonic plasma flow around an object large compared with the Debye
distance is treated using an isothermal gas dynamics model. The case of (initially)
subsonic flow has been studied previously using this model, the motivation then being
the use of Langmuir probes. In supersonic plasma flow Mach cones describing weak
discontinuities rather than shock waves are predicted. A comparison has been made
with particle-in-cell simulations carried out by Willis et al. (Willis, C. T. N., Allen,
J. E., Coppins, M. and Bacharis, M. 2011 Phys. Rev. E, 84, 046410), where such
Mach cones are observed. Other features cannot be explained by the isothermal gas
dynamics model, these include the appearance, at high supersonic velocities, of an
ion-free region downstream.

1. Introduction
A review is given of an isothermal gas dynamic theory
which was previously employed to identify the plasma
boundary as a Mach surface (Stangeby and Allen 1970).
It was then used to study subsonic flow toward an
obstacle (Stangeby and Allen 1971). In that case the flow
became transonic in order that the normal component
of the ion velocity reached the ion acoustic velocity
at the plasma boundary (Bohm 1949). In the present
paper the case of supersonic flow is considered and
Mach cones are predicted which are not shock waves
but weak discontinuities.

A comparison is then made with particle-in-cell (PIC)
simulations carried out by Willis et al. (2011), using
the code SCEPTIC developed by Hutchinson (2002,
2003). The gas dynamic model is based on a zero ion
temperature and a vanishingly small Debye distance, so
that a complete agreement is not expected. The object
of the paper is to gain some insight into the nature of
the interesting wake effects found in the simulations.

The present work is part of a programme on dust in
plasmas, with particular reference to dust in tokamaks or
other fusion machines. Dust particles in a fusion reactor
could have serious effects on its performance, partly due
to bremsstrahlung radiation following evaporation of
the dust. In addition, there could be serious health and
safety questions concerning the retention of tritium by
metallic particles. Other applications of this work, how-
ever, will be to dust in astrophysics, and in space and at-
mospheric physics. The charging of spacecraft and other
bodies in space represents another field of application.

2. Isothermal gas dynamic theory
It is necessary to define what is meant by a ‘quasi-neutral’
plasma, since this concept is still imperfectly understood.

Some writers believe that one of the properties of a
plasma is that it shields out DC electric fields. That
is not the case. Poisson’s equation for space charge
is

∇2V = −ni − ne

ε0
e,

which can be normalized to read(
λD

L

)2

∇2η = nen − nin, (1)

where λD is the electron Debye distance, η = eV/kTe

and L is the characteristic length of the problem in
question. The Debye distance,

λD =

√
ε0kTe

n0e2
(2)

is defined in terms of n0, the electron density in the
undisturbed plasma. When (λD/L)2�1, ni ≈ ne and we
have a plasma. This does not mean that the electric field
has been screened out; very small differences between
the electron and ion densities can produce weak electric
fields extending over considerable distances. A very
useful model is obtained by letting (λD/L)2 → 0; we
then have a two-scale model comprising the plasma and
sheath regions.

Consider now a collision-free plasma with cold ions
(Ti = 0) and Boltzmann electrons in a steady state. The
momentum equation for the ions can be written,

niM(v · ∇)v = nieE. (3)

The electron thermal velocity greatly exceeds the ve-
locity of sound, which means that the electrons closely
approach the equilibrium state. As a result, the electron
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Figure 1. (a) Streamlines for transonic flow around a cylinder, the ion-acoustic Mach number is 0.3 (Stangeby and Allen 1971).
(b) Schematic diagram of the predicted truncated Mach cone in supersonic flow around a sphere. A rarefaction wave, rather
than a shock wave, begins at the Mach cone.

density is given by the Boltzmann relation,{
ne = n0 exp(eV/kTe)

∇pe = −neeE
. (4)

The space charge equation can be written in the form,

∇ · E =
ni − ne

ε0
e. (5)

Using (3)–(5), the following equation can be obtained,

niM(v · ∇)v + ∇pe − ε0(∇ · E)E = 0. (6)

In the plasma region the third term is much smaller
than the second term, the ratio being (ni −ne)/ne, so that
we can write

niM(v · ∇)v + ∇pe = 0, (7)

where we have put ni = ne = n and ∇pe = kTe∇n.
We can note in passing that the neglected term is the
divergence of the Maxwell stress tensor. The equation
of continuity is

∇ · (nv) = 0. (8)

If we assume an axially symmetric flow, or an ir-
rotational flow at infinity, a velocity potential φ can be
introduced,

v = ∇φ. (9)

Comparison with gas dynamics gives (7) for momen-
tum and (8) for continuity and (4) replaces the energy
equation. Elimination, together with the introduction of
the velocity potential yields the following,

∇2φ =
1

2c2
s

∇φ · ∇(∇φ · ∇φ), (10)

where cs = (kTe/M)1/2 and is constant.
This is the basic equation for compressible, irrota-

tional inviscid flow, with cs interpreted as the sound
speed. The case of (initially) subsonic flows can be
found in the literature (Stangeby and Allen 1970; 1971),
the motivation then being the use of Langmuir probes,
although reference was made to dust particles in gas

discharges. Figure 1(a) is an example of transonic plasma
flow around a cylinder.

3. Supersonic flow
An interesting difference between the present case and
the familiar case of supersonic flow (see Fig. 2) is that
there is no bow shock; this is because the plasma flow
does not have to be diverted around the obstacle, part
of the flow reaches it without disturbance and is thereby
collected. Recombination of ions and electrons takes
place on the surface, with subsequent re-emission as
neutral atoms or molecules; the collision-free case is
considered here so that the neutrals play no further
rôle (in this model). In this way the obstacle is an
effective sink for plasma reaching the plasma boundary.
When the sheath is very thin, the boundary condition
is essentially the result obtained by Bohm in 1949, i.e.
the ion velocity must be greater than or equal to the ion
acoustic velocity,

v �

(
kTe

M

)1/2

. (11)

When the ions arrive at the boundary at an angle, the
normal component of velocity is to be taken (Stangeby
and Allen 1970). In the vast majority of cases the
Bohm criterion with the equality sign is applicable, see
the review article (Allen 2009), but the present case is
an exception, another example being that of a rapidly
growing sheath (Allen and Andrews 1970).

The application of the inequality form of the Bohm
criterion, to the case of a spherical object, leads to the
conclusion that a truncated Mach cone should appear,
starting on the surface where the normal component of
the ion velocity has fallen to the ion acoustic speed. This
is shown in Fig. 1(b) for comparison with the (initially)
subsonic case, and in Fig. 2(b) for comparison with the
bow shock found in the usual supersonic gas dynamic
case. The truncated Mach cone predicted in the present
case is not a shock wave, but a weak discontinuity
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Figure 2. (Colour online) Schematic representation of the flow pattern in (a) the conventional case of an object in supersonic
flow, and (b) an absorbing dust grain in supersonic flow (Willis et al. 2011).

(Landau and Lifshitz 1953) where the velocity and
density do not suddenly change, but the subsequent
flow is completely changed. The first spatial derivatives
are discontinuous.

4. Simulation
A comparison has been made with PIC simulations car-
ried out by Willis et al. (2011) using the code SCEPTIC
developed by Hutchinson (2002, 2003). The collision-free
positive ions are moved individually in the electrostatic
field, the number involved being 32 × 106, and the
potential distribution is given by Poisson’s equation. The
electrons are assumed to obey the Boltzmann relation, an
assumption based on the fact that the electron thermal
velocity is large compared with macroscopic plasma
velocities. Another essential point is that the plasma
is taken to be large compared with the radius of the
sphere; as a consequence, the electron gas represents
a large store of energy. Magnetic fields are not con-
sidered in the present paper, the Boltzmann relation
would no longer be valid in the presence of a magnetic
field. Cylindrical coordinates are employed with the z-
direction being in the direction of flow. Further details of
the SCEPTIC code can be found in Hutchinson (2002,
2003). The simulations discussed in the present paper
are those for large values of ρ = (a/λD), and for a
range of values of β = (Ti/Te); a is the radius of the
sphere. A truncated Mach cone, as predicted, is shown in
Fig. 3. This cone does not represent a shock wave;
plots of velocity and ion density show that there are no
jumps in velocity or ion density. The cone is akin to the
weak discontinuity predicted by the gas dynamic theory
(Landau and Lifshitz 1953). At low ion temperatures
(β < 0.5) a second (inner) cone can be seen, which
had not been predicted, and which again represents
a weak discontinuity rather than a shock wave. This
inner cone is formed by a converging flow which has
undergone acceleration and then deceleration, the cone
is well defined for small values of β. The second cone is
no longer to be seen at higher values of β (see Fig. 4).
Experimental work by Merlino and D’Angelo (1987) has
shown a rarefaction wave in the wake of a negatively

Figure 3. (Colour online) Potential distribution V (units of
kTe/e) illustrating a truncated Mach cone together with an
inner cone for β = 0.2, ρ = 80, u = 2.5cs (Willis et al. 2011).

charged object, but the authors assumed that the ion
deflection was due to the electric field in the sheath
region, rather than an electric field in the quasi-neutral
plasma. Plots of the average ion velocity in the axial
direction, together with the ion density, are shown in
Fig. 5, these refer to a chosen plane downstream (at z =
2a). Figure 6 shows the position of the stagnation point,
the downstream sheath boundary, and the ion density
at the stagnation point. The unit of flow velocity is the
Bohm velocity or ion acoustic velocity (this expression
refers historically to the case of zero temperature ions).
The term ‘stagnation point’ might be a misnomer, but
it is used to indicate the point at which the average ion
velocity is zero. It is noteworthy that a shock wave is
not developed before the stagnation point, as would be
predicted by the gas dynamic theory. It is seen in Fig. 6
that the sheath edge moves toward the sphere and
then moves away from it as the flow velocity is further
increased. At high velocities an ‘ion-free’ region develops
behind the sphere where a negative space charge sheath
borders part of the surface. We can note that a vacuum
region cannot be developed in the case of isothermal
gas dynamics (Shu 1992).
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Figure 4. (Colour online) Potential plots showing the disappearance of the second (inner) Mach cone as β increases for
u = 1.75cs. From left to right β = 0.2, 0.3, 0.4, and 0.5.

Figure 5. (Colour online) The axial component of velocity vz
(solid, green), and the ion density (dashed, red) at a distance
z = 2a, β = 0.3, u = 3.0cs, ρ = 40 (Willis et al. 2011).

Figure 6. (Colour online) Position of the downstream sheath
boundary (�, gold), position of the stagnation point (+, blue),
and the ion density at the stagnation point (×, red), β = 0.2
and ρ = 80 (Willis et al. 2011).

Wake structures and cones have previously been ob-
served by Hutchinson (2002), but not explored in any
detail. Mach cones have also been reported by Miloch
(2010), who similarly employed a PIC code, but the
inherent analogy with gas dynamics was not discussed.

5. Interpretation
We can make a comparison between the ‘cold ion’ gas
dynamic model and the results of the PIC simulation.
A theory, including a finite ion temperature, has not
yet been developed; it would require a solution of
the Vlasov equation for collision-free ions, and the
Boltzmann equation for electrons. Another point is that
a quasi-neutral plasma has been considered in the gas

dynamic theory, which corresponds to a vanishingly
small Debye distance compared with the radius of the
spherical object (probe or dust particle). Thus, we cannot
expect perfect agreement between the theory and the
PIC simulation, but the theory might give us some
insight into the observed phenomena.

In a region of supersonic flow, a Mach surface is
defined such that the fluid velocity component per-
pendicular to the surface is equal to the sound speed.
Stangeby and Allen (1970) established that the plasma
boundary was a Mach surface, but their analysis referred
to (initially) subsonic flows. It corresponded to the
marginal version of the Bohm criterion, i.e., when the
equality sign is valid, and the plasma boundary was
found to be a closed Mach surface. A primary Mach
cone has been found in simulations, as predicted. It is
a truncated cone starting at a circle on the spherical
surface, the position depending on the flow velocity.
The conical surface can be described as akin to the
weak discontinuity of Fluid Mechanics (Landau and
Lifshitz 1953); it is certainly not a shock wave. Near the
beginning of the truncated cone the ions are deflected
and accelerated in a presheath region in order to satisfy
the Bohm criterion at the plasma boundary. Further
along the cone the plasma is deflected and accelerated
as it enters the wake region, and is then decelerated
as it approaches the inner cone. The secondary (inner)
cone had not been predicted when the simulations were
carried out.

It is of interest to note that at high flow velocities
an ion-free region appeared downstream adjacent to
the spherical surface, a negative space charge sheath
had replaced the usual positive space charge sheath.
Clearly, the plasma boundary is not always a closed
Mach surface of the kind studied in Stangeby and Allen
(1970).

A major difficulty must now be discussed. In a
collision-free plasma, which satisfies the Vlasov equation,
it is not the case that (p/ργ) = C , i.e., one cannot
employ simple polytropic gas laws. The concept of a
simple ‘velocity of sound’, as employed in the first part
of this paper, is only valid for cold ions; in general, ion
acoustic waves experience Landau damping (Clemmow
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Figure 7. (Colour online) Flow velocity at which the width of
the upstream presheath decreases to zero. The fits are plots of√

1 + γβ with γ = 1 (dot-dashed line, red), γ = 5/3 (solid line,
yellow), and γ = 3 (dashed line, green) (Willis et al. 2011).

and Dougherty 1969). The well-known Bohm criterion
has been generalized by Harrison and Thompson (1959)
to take account of a distribution of ion velocities at the
sheath edge; it takes the form∫ ∞

0

f(v) dv

v2
�

M

kTe

. (12)

It has been shown by Allen (1976) that this generalized
form corresponds to ‘sonic flow’ once again at the
plasma boundary, i.e., an ion acoustic wave is unable
to travel back into the plasma. Figure 7 shows data
from the simulations showing the flow velocities at
which the presheath width goes to zero, i.e. the velocity
at which ions approaching from directly upstream are
unperturbed right up to the sheath edge. The Bohm
velocity, or velocity of sound, is shown to be well
represented in this case by the following expression,

c∗
s = (1+3β)1/2cs, where β =

Ti

Te

and cs =
√
kTe/M.

(13)
It should be emphasized here that the factor of gamma
(γ = 3) has not been deduced from an adiabatic gas
law, but is a purely empirical quantity. An alternative
method is to determine an effective sound velocity c∗

s to
measure the half-angle of the Mach cone, and employ
the relation sin α = (c∗

s /v). The two methods were found
to be in good agreement. It is clearly the case, how-
ever, that the generalized (kinetic) Bohm criterion is
a subject requiring further investigation and relevant
work is being carried out at present (Thomas et al.
2012). The disappearance of the inner cone at higher
ion temperatures (Fig. 4) is to be expected since ion-
acoustic waves undergo severe Landau damping unless
(Ti/Te) is small, i.e., β < 0.25 (Clemmow and Dougherty
1969). The process is one of ‘phase-mixing’.

6. Conclusions
The PIC simulations reported by Willis et al. (2011)
are for finite (small) values of (Ti/Te) and for finite
(large) values of (a/λD). As a result, the gas dynamic
theory, with cold ions and a thin space charge sheath,
cannot be expected to predict all the detailed results

obtained from the simulations. Nevertheless the general
feature of a truncated Mach cone was observed, the cone
representing a weak discontinuity rather than a shock
wave. We can note that the very concept of a Mach
cone is inherently associated with a ‘velocity of sound’,
whereas a collision-free plasma, which does not obey the
usual gas dynamic laws, has no such simple property.
Unlike ordinary sound waves in a gas, ion-acoustic
waves are severely damped, unless the ion temperature
is small, i.e., (Ti/Te) < 0.25.

An ion-free region was observed at high flow velo-
cities, this would not be in accord with an isothermal
gas dynamics model. Such a situation is a rare case in
which the Bohm criterion is irrelevant, since the positive
ions do not cross the plasma boundary in that region.
The effective Bohm velocity has been described by a
numerical fitting procedure. It is evident, however, that
the kinetic Bohm criterion, involving the distribution of
ion velocities, needs further elucidation in the case of
flowing plasmas.
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