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Decomposition of the temporal growth rate in
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Mario Weder1,2,†, Michael Gloor1 and Leonhard Kleiser1

1Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich, Switzerland
2Institute of Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland

(Received 7 January 2015; revised 15 May 2015; accepted 26 June 2015;
first published online 31 July 2015)

We present a decomposition of the temporal growth rate ωi which characterises
the evolution of wave-like disturbances in linear stability theory for compressible
flows. The decomposition is based on the disturbance energy balance by Chu
(Acta Mech., vol. 1 (3), 1965, pp. 215–234) and provides terms for production,
dissipation and flux of energy as components of ωi. The inclusion of flux terms
makes our formulation applicable to unconfined flows and flows with permeable or
vibrating boundaries. The decomposition sheds light on the fundamental mechanisms
determining temporal growth or decay of disturbances. The additional insights gained
by the proposed approach are demonstrated by an investigation of two model flows,
namely compressible Couette flow and a plane compressible jet.
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1. Introduction
Linear stability theory predicts the evolution of small disturbances superposed

on a laminar base flow. For many flow scenarios, the underlying linear growth
mechanism determines the initial path in the complex transition process from laminar
to turbulent flow and has therefore been the subject of interest over a long period
(Schmid & Henningson 2001; Criminale, Jackson & Joslin 2003). Even though the
linear approach ceases to be applicable in the later nonlinear stages of the transition
process, for many flows the initial linear mechanism orchestrates the subsequent
cascade that creates harmonics and subharmonics of some fundamental disturbance
and eventually leads to a fully turbulent state. Traditionally, the linearised disturbance
equations, derived from the governing Navier–Stokes equations, are transformed by
introducing a normal mode ansatz, i.e. assuming wave-like disturbances of the form
exp[i(αx − ωt)], which reduces the initial-value problem to an eigenvalue problem.
For incompressible viscous flow and the assumption of a stationary parallel base
flow, this eigenvalue problem is governed by the famous Orr–Sommerfeld equation
(see e.g. Schmid & Henningson 2001; Drazin & Reid 2004). The analogue of
the Orr–Sommerfeld equation for compressible flow is given by Malik (1990) and
Criminale et al. (2003) as a coupled set of ordinary differential equations. Together
with proper boundary conditions, one can pose the temporal stability problem, where
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Decomposition of the temporal growth rate 121

a real wavenumber αr is given and one solves for the complex angular frequency
ω=ωr+ iωi. Here, ωr denotes the real angular frequency which is related to the phase
speed by c = ωr/αr, and ωi is the temporal disturbance growth rate that determines
disturbance growth (ωi > 0) or decay (ωi < 0).

Solving the linear eigenvalue problem directly yields the eigenvalues ω, however
without revealing additional information on the underlying principles that lead to a
specific solution. In particular, for the temporal growth rate ωi an understanding of
the mechanisms that induce temporal growth or decay is of great interest because
it would clarify which factors determine the linear stability of a given flow. For
incompressible viscous flow the individual components that, when summed up, yield
the temporal growth rate can be derived from the well-known Reynolds–Orr equation
by introducing the normal mode ansatz and solving for ωi (Schmid & Henningson
2001).

More recently, Malik, Alam & Dey (2006), Malik, Dey & Alam (2008) presented a
study of the transient energy growth in the context of linear stability theory for plane
compressible Couette flow. They decomposed the time evolution of the perturbation
energy into four contributions, namely the energy transfer rate from the base flow, the
viscous dissipation rate, the thermal diffusion rate and the shear-work rate. However,
their formulation is only applicable to confined flows without energy flux across a
domain boundary. We have removed this restriction by including the flux terms at the
domain boundaries. Additionally, Malik et al. (2006, 2008) do not provide a direct
relation between ωi and the components that determine the temporal energy evolution.
Tritarelli (2011) has derived a detailed formulation for the energy evolution in a spatial
linear stability framework and applied it to hypersonic boundary layers.

The temporal growth or decay characteristics of a disturbance contained in an
arbitrary volume are obviously dependent on the details of the balance between
production, dissipation and the flux of disturbance energy across the boundaries
of the considered volume. In this paper, we present a novel decomposition of the
temporal growth rate for bounded as well as unbounded compressible viscous flow.
Our analysis is based on the disturbance energy balance by Chu (1965), the analogue
of the Reynolds–Orr equation for compressible flow, and offers a decomposition of
ωi into production, dissipation, and flux terms (§ 2). This allows us to identify the
major contributing terms and to uncover their corresponding growth mechanisms. A
detailed classification of the individual contributions helps to analyse the change of
instability properties for varying flow conditions, as we will show in § 3 for two
well-studied base flows, namely plane Couette flow and plane jet flow. The example
of supersonic jet flow highlights the importance of including the flux terms in the
growth-rate decomposition.

2. Method
2.1. Governing equations

Two-dimensional compressible gas flow is governed by the Navier–Stokes equations,
i.e. the conservation equations of mass, momentum, and energy

Dt%+ %(∂xu+ ∂yv) = 0, (2.1a)
%Dtu+ ∂xp− ∂xτxx − ∂yτxy = 0, (2.1b)
%Dtv + ∂yp− ∂xτxy − ∂yτyy = 0, (2.1c)

%cv DtT + p(∂xu+ ∂yv)+ ∂xqx + ∂yqy −Φ = 0, (2.1d)
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122 M. Weder, M. Gloor and L. Kleiser

with the material derivative operator Dt ≡ ∂t + u ∂x + v ∂y. We use non-dimensional
variables where the spatial coordinates (x, y) are normalised by some characteristic
reference length L◦, the velocity components (u, v) by some reference velocity ū◦0,
the time t by the characteristic time L◦/ū◦0 and the thermodynamic pressure p by
the dynamic pressure %̄◦0ū◦20 . Here, (·)◦ denotes a dimensional quantity and (·̄)◦0 the
dimensional base-flow value at a reference point (x◦0, y◦0). Mass density % and absolute
temperature T are normalised by their base-flow value (·̄)◦0. All dimensional reference
quantities are combined into the dimensionless groups

Re= %̄◦0ū◦0L◦/µ̄◦0, Ma= ū◦0/ā
◦
0, Pr= µ̄◦0c◦p/k̄

◦
0, (2.2a−c)

known as the Reynolds number, Mach number, and Prandtl number, respectively. In
the definition of the Mach number, the speed of sound at the reference point is given
as ā◦0 =

√
γR◦T̄◦0 with R◦ being the specific gas constant.

We consider a calorically perfect gas with constant specific heats for constant
pressure cp= [(γ − 1)Ma2]−1 and constant volume cv = [γ (γ − 1)Ma2]−1, respectively,
that obeys the equation of state

p= %T/(γMa2). (2.3)

The ratio of specific heats is defined as γ = c◦p/c
◦
v. We assume a Newtonian fluid,

i.e. a linear deformation law for the shear stress components

τxx = (2µ+ λ)/Re ∂xu+ λ/Re ∂yv, (2.4a)
τxy =µ/Re (∂yu+ ∂xv), (2.4b)

τyy = (2µ+ λ)/Re ∂yv + λ/Re ∂xu. (2.4c)

The first and second coefficients of viscosity µ(T) and λ(T) are assumed to be
functions of temperature only. Further, we consider Fourier’s law for heat transfer by
conduction so that the heat-flux components are given by

qx =−k/[(γ − 1)Re Pr Ma2] ∂xT, qy =−k/[(γ − 1)Re Pr Ma2] ∂yT, (2.5a,b)

where k(T) indicates the temperature-dependent coefficient of thermal conductivity.
Finally, the dissipation function in the equation of energy is defined as

Φ = τxx ∂xu+ τxy(∂yu+ ∂xv)+ τyy ∂yv. (2.6)

Together with appropriate boundary conditions, (2.1)–(2.6) describe the motion of
fluid flow under the stated assumptions. If (2.3) is substituted into (2.1), the pressure
variable p can be eliminated so that the unknowns are reduced to the primitive
variables q = q(x, y, t) = (%, u, v, T)T and the Navier–Stokes equations (2.1) can be
abbreviated in symbolic form as

NS{q} = 0. (2.7)

Here, NS{·} is the nonlinear Navier–Stokes operator that operates on the primitive-
variable vector q. This notation is used in the following derivations to avoid writing
out the lengthy full equations.
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Decomposition of the temporal growth rate 123

2.2. Linear disturbance equations
We assume a stationary parallel base flow, indicated by (·̄), that depends on the
y-coordinate only, i.e. q̄ = q̄(y) with ū = ū(y) and v̄ = 0, satisfying NS{q̄} = 0.
The perturbed base flow is expanded as q(x, y, t) = q̄(y) + εq̃(x, y, t) + O(ε2) with
(·̃) denoting first-order disturbance variables. We focus on small disturbances and
therefore linearise the governing equations (2.7) around the base-flow solution q̄(y)
by ÑS(q̄) q̃ = [∂εNS{q̄ + εq̃ + O(ε2)}]ε=0. Here, ÑS(·) is the linear disturbance
operator that depends on the base flow q̄ and operates on first-order disturbances q̃.
The evolution equations for small disturbances q̃ are then given as

ÑS(q̄)q̃ = 0, (2.8)

with the elements of the disturbance operator ÑS(q̄) provided in the Appendix.

2.3. Disturbance energy balance
In order to derive a balance equation for the disturbance energy we follow Chu
(1965) and multiply the continuity equation (2.8)1 by ā2%̃/(γ %̄) with ā2= T̄/Ma2, the
momentum equation in the x-direction (2.8)2 by ũ, the momentum equation in the
y-direction (2.8)3 by ṽ, and the energy equation (2.8)4 by T̃/T̄ and integrate their
sum over an arbitrary, but time-independent, domain Ω ⊂R×R. The resulting scalar
equation can symbolically be written as∫

Ω

[
p̃T ÑS(q̄) q̃

]
dV = 0, (2.9)

where the multiplication factors are collected in the vector p̃= (ā2%̃/(γ %̄), ũ, ṽ, T̃/T̄)T
and dV = dx dy denotes an infinitesimal area element. According to Chu (1965)
all terms in (2.9) with time derivatives are collected and the disturbance energy is
consequently defined as

Ẽ=
∫
Ω

[
1
2
%̄
(
ũ2 + ṽ2

)+ 1
2

ā2%̃2

γ %̄
+ 1

2
%̄cvT̃2

T̄

]
dV. (2.10)

By considering (2.10) and with the aid of Gauss’ divergence theorem (integration by
parts in space) we can rearrange (2.9) into the balance equation for the disturbance
energy

dẼ
dt
=−

∫
Ω

%̄ũṽ
dū
dy

dV −
∫
Ω

%̄ṽs̃
dT̄
dy

dV +
∫
Ω

T̃
T̄

Q̃ dV (2.11a−c)

−
∫
Ω

[
τ̃xx ∂xũ+ τ̃xy(∂yũ+ ∂xṽ)+ τ̃yy ∂yṽ

]
dV +

∫
Ω

[q̃x ∂x + q̃y ∂y] T̃T̄ dV (2.11d,e)

−
∫
∂Ω

p̃[ũnx + ṽny] dS+
∫
∂Ω

[
τ̃xxũnx + τ̃xy(ũny + ṽnx)+ τ̃yyṽny

]
dS (2.11f ,g)

−
∫
∂Ω

T̃
T̄
[q̃xnx + q̃yny] dS (2.11h)
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124 M. Weder, M. Gloor and L. Kleiser

+ 1
Re

∫
Ω

∂y

[
ũT̃

dµ̄
dT̄

dū
dy

]
dV + 1

Re

∫
Ω

∂x

[
ṽT̃

dµ̄
dT̄

dū
dy

]
dV (2.11i,j)

−
∫
Ω

∂x

[
1
2

ūp̄
%̃2

%̄2
+ 1

2
ūp̄
γ − 1

T̃2

T̄2
+ 1

2
ū%̄(ũ2 + ṽ2)

]
dV. (2.11k)

Unlike Chu (1965) we take non-vanishing disturbances at the domain boundary ∂Ω
into account which yields the additional terms (2.11f –h). The outward unit vector
to ∂Ω is denoted as (nx, ny)

T and the infinitesimal line element on ∂Ω as dS. The
disturbance shear stress components are defined as

τ̃xx = 2µ̄+ λ̄
Re

∂xũ+ λ̄Re
∂yṽ, τ̃xy = µ̄

Re
(∂yũ+ ∂xṽ), τ̃yy = 2µ̄+ λ̄

Re
∂yṽ + λ̄Re

∂xũ,

(2.12a−c)

the disturbance heat-flux components as

q̃x =− k̄
(γ − 1)Re Pr Ma2

∂xT̃, q̃y =− k̄
(γ − 1)Re Pr Ma2

∂yT̃ (2.13a,b)

and the specific disturbance heat source as

Q̃ = 1
Re

(
2µ̄− dµ̄

dT̄
T̄
)

dū
dy

(
∂ ũ
∂y
+ ∂ṽ
∂x

)
+ 1
(γ − 1)Re Pr Ma2

k̄
T̄

dT̄
dy
∂T̃
∂y

+ 1
Re

T̃
dµ̄
dT̄

(
dū
dy

)2

+ 1
(γ − 1)Re Pr Ma2

∂

∂y

(
T̃

dk̄
dT̄

dT̄
dy

)
. (2.14)

The specific disturbance entropy introduced in (2.11b) is given as s̃=[(γ − 1)−1T̃/T̄−
%̃/%̄]/(γMa2), where the relation s − s0 = cv ln(T/T0) + R ln(%0/%) for a calorically
perfect gas with the specific gas constant R= 1/(γMa2) was used (Moran & Shapiro
2000).

2.4. Decomposition of temporal growth rate ωi

We are interested in the temporal evolution of the disturbance energy for normal
modes, i.e. disturbances with wave-like shape. Thus, we introduce the normal mode
ansatz

q̃(x, y, t)=Re
[
q̂(αr, y, ω) ei(αrx−ωt)

]
, q ∈ {%, u, v, T, s}, (2.15)

where q̂(αr, y, ω) denotes the complex first-order disturbance amplitude, αr ∈ R the
streamwise wavenumber and ω = (ωr + iωi) ∈ C the complex angular frequency. The
wave-like disturbances are spatially periodic in the x-direction and restricted to a finite
domain in the y-direction, y− 6 y 6 y+. Hence it is sufficient to consider the fluid
domain Ω t = [0, 2π/αr)× [y−, y+], where 2π/αr denotes the disturbance wavelength.

We evaluate the integrals in (2.10) and (2.11) over the domain Ω t for normal modes
and use the relation ∫ 2π/αr

0
f̃ g̃ dx= π

αr
e2ωit〈f̂ , ĝ〉 (2.16)
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Decomposition of the temporal growth rate 125

for products of disturbance quantities, e.g. f̃ g̃ ∈ R with f̃ , g̃ ∈ {%̃, ũ, ṽ, T̃, s̃}. The
inner product is given by 〈f̂ , ĝ〉 ≡ (f̂ ∗ĝ + f̂ ĝ∗)/2 where (·)∗ stands for the complex
conjugate. Terms (2.11j,k) as well as the boundary integrals

∫
∂Ω t(·) nx dS in (2.11f –h)

vanish because of disturbance periodicity in the x-direction, and from (2.16) it follows
that dẼ/dt= 2ωiẼ. We can therefore rewrite equation (2.11) for normal modes in the
domain Ω t as the decomposition

ωi =
3∑

i=1

P̂i

2Ê
+

2∑
j=1

D̂j

2Ê
+

4∑
k=1

F̂k

2Ê
, (2.17)

where

Ê= 1
2

∫ y+

y−

[
%̄(〈û, û〉 + 〈v̂, v̂〉)+ ā2〈%̂, %̂〉

γ %̄
+ %̄cv〈T̂, T̂〉

T̄

]
dy (2.18)

denotes the disturbance energy amplitude and

P̂1 =
∫ y+

y−
−%̄〈û, v̂〉 dū

dy
dy, P̂2 =

∫ y+

y−
−%̄〈v̂, ŝ〉 dT̄

dy
dy, P̂3 =

∫ y+

y−

〈T̂, Q̂〉
T̄

dy,

(2.19a−c)

D̂1 =
∫ y+

y−
−[〈τ̂xx, iαrû〉 + 〈τ̂xy,Dyû〉 + 〈τ̂xy, iαrv̂〉 + 〈τ̂yy,Dyv̂〉

]
dy, (2.19d)

D̂2 =
∫ y+

y−

〈q̂x, iαrT̂〉 + 〈q̂y,DyT̂〉
T̄

dy, (2.19e)

F̂1 =−〈p̂, v̂〉
∣∣y+

y−, F̂2 = 〈τ̂xy, û〉∣∣y+y− + 〈τ̂yy, v̂〉
∣∣y+

y−, (2.19f ,g)

F̂3 = −〈T̂, q̂y〉
T̄

∣∣∣∣∣
y+

y−
, F̂4 = 1

Re

[
〈û, T̂〉dµ̄

dT̄
dū
dy

]y+

y−
(2.19h,i)

define amplitudes of production P̂i, of dissipation D̂j, and of flux F̂k, respectively, with
Dy ≡ d/dy.

The production term P̂1 describes the interaction of Reynolds stress −%̄〈û, v̂〉 with
the base-flow velocity gradient dū/dy and is the key component for inviscid flow.
Interaction between entropy flux density −%̄〈v̂, ŝ〉 and base-flow temperature gradient
dT̄/dy characterises the production term P̂2. The third term P̂3 includes production of
disturbance energy due to change of transport properties µ and k with temperature.
Production terms P̂i can be positive and negative and therefore enhance disturbance
growth or decay. Pure dissipative effects are incorporated in the dissipation terms
D̂1 and D̂2, which describe viscous and thermal dissipation, respectively. Disturbance
energy convected across the domain boundary ∂Ω is represented by the flux terms F̂k.
Terms F̂1 and F̂2 describe the net flux of mechanical energy and F̂3 the net flux of
thermal disturbance energy across the domain boundary. The last flux term F̂4 arises
due to the temperature-dependence of the viscosity.
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FIGURE 1. Disturbance amplitudes of mode-II instability for plane compressible Couette
flow at Re = 2.5 × 105, Ma = 5, αr = 2.4. (a,d) x-component of disturbance velocity û,
(b,e) y-component of disturbance velocity v̂, (c, f ) temperature disturbance T̂ . (a–c)
Magnified sections of (d–f ) near the top boundary layer at y+= 1. Magnitude (solid lines),
real part (dashed lines), imaginary part (dash-dotted lines).

3. Results

In the following, we briefly present the application of the theory using two
examples, namely compressible Couette flow and plane jet flow. We would like to
stress that the goal of this section is not a comprehensive study of the linear stability
of these flows, since this has been carried out before (see e.g. Duck, Erlebacher
& Hussaini 1994; Hu & Zhong 1998 and Parras & Le Dizès 2010), but rather to
exemplify the more profound physical understanding of instability mechanisms that
can be gained from the proposed decomposition of the temporal growth rate ωi.

The spectra of both examples are obtained from a linear stability solver, where the
disturbance equations for the temporal problem were discretised using the Chebyshev
collocation method (Malik 1990; Peyret 2002) and the resulting generalised eigenvalue
problem was solved by the QZ algorithm. The integrals in (2.18) and (2.19) are
evaluated numerically by applying the Chebyshev–Gauss quadrature of the second
kind on the computed discrete eigenfunctions (Abramowitz & Stegun 1972).

3.1. Plane Couette flow
Compressible plane Couette flow is the solution of (2.1) subject to the boundary
conditions u(y−) = 0, u(y+) = 1, T(y−) = Tw, T(y+) = 1 with the fluid domain
[y−, y+] = [0, 1] and the recovery temperature Tw = 1 + (γ − 1)PrMa2/2. The linear
stability of this flow was extensively studied by Duck et al. (1994) and Hu & Zhong
(1998). Here, we provide further insight into the growth mechanisms of compressible
Couette flow by exemplarily applying the decomposition proposed in § 2 to the
so-called mode-II instability (Hu & Zhong 1998). Disturbance amplitudes for mode II
at Re= 2.5× 105, Ma= 5, αr = 2.4 are plotted in figure 1. The x-component of the
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FIGURE 2. Decomposition of temporal growth rate ωi according to (2.17) of mode-II
instability (Hu & Zhong 1998) for plane compressible Couette flow as a function of Re;
Ma= 5, αr = 2.4.

disturbance velocity and the temperature disturbance show large gradients near the
top boundary which obeys the Dirichlet boundary condition.

The temporal growth rate ωi and its decomposition into production and dissipation
terms for Ma= 5, αr = 2.4 as a function of Re are shown in figure 2. The flux terms
are all zero because of the vanishing velocity, temperature and heat-flux fluctuations at
the boundary. The production terms P̂2/2Ê and P̂3/2Ê and the dissipation term D̂1/2Ê
are small and roughly cancel each other. Therefore, the production term P̂1/2Ê and
the dissipation term D̂2/2Ê are the major components of ωi. In the low-Re regime
(Re<105), the growth rate is dominated by the strongly negative dissipation term
D̂2/2Ê, which is related to thermal dissipation, whereas viscous dissipation plays a
minor role. With rising Re, the influence of the thermal dissipation is reduced while
the production term P̂1/2Ê rises to its maximum resulting in a positive temporal
growth rate ωi. For even higher Re, the production term P̂1/2Ê, which quantifies the
interaction between Reynolds stress and base-flow velocity gradient, decreases and
hence the growth rate also becomes smaller.

For a deeper level of understanding we further analyse the major terms of the
decomposition for the given flow, namely production P̂1 (2.19a) and dissipation D̂2
(2.19e). Both terms are defined as integrals over the domain [y−, y+]. The respective
integrands are plotted in figure 3 for the same flow parameters as in figure 1.
The integrand of production P̂1, which measures the interaction of Reynolds stress
with base-flow velocity gradient, is nearly constant except for the spike at the top
boundary y+ and the gradual decrease at the bottom boundary y−. On the other hand,
the integrand of the thermal dissipation D̂2 is zero except in the very thin boundary
layer near y+= 1, where the integrand sharply drops to a negative value due to large
fluctuations in the heat-flux component q̂y. This analysis of the integrands reveals
that the disturbance production is nearly homogeneously distributed over the domain
[y−, y+], whereas the major thermal dissipation is limited to a small region near the
top boundary.
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FIGURE 3. Integrands of (a,c) production term P̂1 and (b,d) dissipation term D̂2 for mode-
II instability of plane compressible Couette flow at Re= 2.5× 105, Ma= 5, αr= 2.4. (a,b)
Magnified sections of (c,d) near the top boundary layer at y+ = 1.

3.2. Plane jet flow
The local temporal linear stability of supersonic round jet flow has been studied
recently by Parras & Le Dizès (2010). In the following, we consider a plane
supersonic jet. We will show that under certain conditions the flux terms can be
used to quantify a stabilising mechanism due to radiation which is observed for
certain supersonic jet instability modes.

As base-flow velocity we choose the profile proposed by Michalke (1984)

ū(y)= 1
2

[
1+ tanh

(
1

4θ

(
1
|y| − |y|

))]
, (3.1)

where we set the momentum thickness θ = 0.1. According to this definition,
the velocity shear layers are located at y = ±1. The temperature profile T̄(y) is
computed according to the Crocco–Busemann relation (Busemann 1935), which for
a temperature ratio T̄(∞)/T̄(0) = 1 and a vanishing ambient velocity ū(∞) = 0
simplifies to

T̄(y)= 1+Ma2(γ − 1)
(
ū(y)− ū2(y)

)
. (3.2)

We set the physical domain to [y−, y+] = [−20, +20] and apply the coordinate
mapping proposed by Bayliss & Turkel (1992) to accumulate the collocation points
near the shear layers. At the domain boundaries y±, we use the far-field boundary
condition given by Thompson (1987).

Figure 4 shows different types of temporally unstable modes for the given base
flow at Ma= 2.5 and Re= 106. Here, these modes are called modes I to III and they
exhibit partially overlapping ranges of unstable streamwise wavenumbers. Mode II
reaches maximum temporal growth for α ≈ 0.55. In the following, we demonstrate
the importance of flux terms by comparing results of mode I and mode II. The
decomposition of the temporal growth rates and representative eigenfunctions û(z)
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FIGURE 4. Temporally unstable modes for plane jet flow at Ma= 2.5 and Re= 106. The
base flow is chosen according to (3.1) and (3.2).
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FIGURE 5. (a,b) Decomposition of temporal growth rate ωi according to (2.17) of (a)
mode-I and (b) mode-II instability for plane jet flow at various α. (c,d) Streamwise
velocity component û of (c) mode I and (d) mode II for α = 0.5. Magnitude |û| (solid
lines), real part Re û (dashed lines), imaginary part Im û (dash-dotted lines).

of both modes are shown in figure 5. Mode II is of classical Kelvin–Helmholtz
type, which is characterised by large disturbance amplitudes in the base-flow shear
layer and small amplitudes elsewhere (figure 5d). Its decomposition (figure 5b)
reveals only contributions of P̂1/2Ê (interaction of Reynolds stress with base-flow
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velocity gradient) and P̂2/2Ê (interaction of entropy flux density with base-flow
temperature gradient). The remaining components of (2.17) are negligibly small due
to the large Reynolds number and the vanishing disturbance amplitudes in the far
field. Compared to mode II, we recognise the additional negative flux term F̂1/2Ê
in the decomposition of mode I (figure 5a). This flux term quantifies the net flux
of mechanical disturbance energy across the domain boundary and is caused by the
radiating Mach-wave character of mode I (Tam & Hu 1989). This mode features
non-vanishing eigenfunctions in the far field (figure 5c) and therefore exhibits an
additional stabilising mechanism due to sound radiation.

4. Discussion

In this paper, a detailed formulation for the decomposition of the temporal
growth rate of linear instability modes has been derived for two-dimensional
parallel compressible viscous gas flow. The contributing terms can be classified as
production, dissipation and flux terms. The analysis identifies the relevant underlying
mechanisms that determine the linear stability of a given flow and quantifies the
relative influence of different base-flow properties such as velocity shear, temperature
gradients, compressibility or viscous effects, to name but a few.

The usefulness of this formulation in gaining a deeper understanding of linear
instability in compressible flows and the capability to quantify the sensitivity of
eigenmodes with respect to changes in the parameter space have been demonstrated
for plane Couette flow (figure 2) and plane jet flow (figure 5) at supersonic
Mach numbers. These examples highlight the distinct physical mechanisms that
are responsible for disturbance growth under certain flow conditions. Furthermore,
inclusion of flux terms allows the quantification of damping effects which can be
present in unconfined flows, e.g. due to Mach-wave radiation in supersonic open
shear flows.

Appendix A. Linear disturbance equations

The linear disturbance equations for plane compressible flow were derived in § 2.2
under the assumption of a calorically perfect gas and a stationary parallel base flow
(q̄ = q̄(y), v̄ = 0). Here we provide the full disturbance equations by listing the non-
zero elements of the linear disturbance operator ÑS(q̄), i.e.

ÑS(q̄) q̃ =


ÑS11 ÑS12 ÑS13 0

ÑS21 ÑS22 ÑS23 ÑS24

ÑS31 ÑS32 ÑS33 ÑS34

0 ÑS42 ÑS43 ÑS44


%̃ũṽ

T̃

= 0, (A 1)

with the coefficients for the equation of continuity

ÑS11 = ∂t + ū ∂x

ÑS12 = %̄ ∂x

ÑS13 = d%̄
dy
+ %̄ ∂y,

 (A 2a)
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the coefficients for the equation of momentum in the x-direction

ÑS21 = T̄
Ma2γ

∂x

ÑS22 = %̄ ∂t + ū%̄ ∂x − 1
Re

(
(λ̄+ 2µ̄) ∂2

x +
dµ̄
dT̄

dT̄
dy
∂y + µ̄ ∂2

y

)
ÑS23 = %̄dū

dy
− 1

Re

(
dµ̄
dT̄

dT̄
dy
∂x + (λ̄+ µ̄) ∂x∂y

)
ÑS24 = %̄

Ma2γ
∂x − 1

Re

(
dµ̄
dT̄

d2ū
dy2
+ d2µ̄

dT̄2

dū
dy

dT̄
dy
+ dµ̄

dT̄
dū
dy
∂y

)
,


(A 2b)

the coefficients for the equation of momentum in the y-direction

ÑS31 = 1
Ma2γ

(
dT̄
dy
+ T̄ ∂y

)
ÑS32 =− 1

Re

(
dλ̄
dT̄

dT̄
dy
∂x + (λ̄+ µ̄) ∂x∂y

)
ÑS33 = %̄ ∂t + ū%̄ ∂x − 1

Re

[
µ̄ ∂2

x +
(

dλ̄
dT̄
+ 2

dµ̄
dT̄

)
dT̄
dy
∂y + (λ̄+ 2µ̄) ∂2

y

]
ÑS34 = 1

Ma2γ

(
d%̄
dy
+ %̄ ∂y

)
− 1

Re
dµ̄
dT̄

dū
dy
∂x,


(A 2c)

and the coefficients for the equation of energy

ÑS42 = %̄T̄
Ma2γ

∂x − 2µ̄
Re

dū
dy
∂y

ÑS43 = %̄

Ma2γ

(
1

γ − 1
dT̄
dy
+ T̄ ∂y

)
− 2µ̄

Re
dū
dy
∂x

ÑS44 = 1
Ma2(γ − 1)

{
%̄

γ
(∂t + ū∂x)− 1

RePr

[
dk̄
dT̄

d2T̄
dy2
+ d2k̄

dT̄2

(
dT̄
dy

)2

+ 2
dk̄
dT̄

dT̄
dy
∂y + k̄(∂2

x + ∂2
y )

]}
− 1

Re
dµ̄
dT̄

dū
dy

2

.


(A 2d)
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