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ABSTRACT

We consider the optimal dividend control problem to find an optimal strategy
under the constraint that dividend rates is restricted such that the expected total
discounted dividends are maximized for an insurance company. The evolution
of the reserve is modeled by a diffusion process with drift and volatility coef-
ficients modulated by an observable Markov chain. We consider the regime-
switching threshold strategy which pays out dividends at the maximal possible
ratewhen the current reserve is above some critical level dependent on the regime
of theMarkov chain at the time, and pays nothing when the reserve is below that
level. We give sufficient conditions under which such type of strategy is optimal
for the regime-switching model.
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1. INTRODUCTION

The optimal dividend problem has attracted extensive attention with most
works focusing onmodels with constant parameters, for example, constant drift
and volatility in the diffusion setting or constant claim arrival intensity and
claim size mean in the Cramér–Lundberg setting. However, empirical studies
have shown that a company’s earnings and decisions are affected by the (macroe-
conomic) environment where the company is operating (see Sotomayor and
Cadenillas, 2011 and the references therein for details). The environment itself
evolves dynamically over time and hence it is more appropriate to assume that
the parameters evolve according to a stochastic process in continuous time and
that at each time the values of themodel parameters depend on the state (regime)
of the environment at the time. Econometric literature has supported the use
of a finite state Markov process to model the macroeconomic environment.
A model with such characteristics is called Markov regime-switching model.

Astin Bulletin 44(2), 459-494. doi: 10.1017/asb.2014.2 C© 2014 by Astin Bulletin. All rights reserved.

https://doi.org/10.1017/asb.2014.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.2


460 J. ZHU

Regime-switching models have been used in the contexts of option pricing, op-
timal consumptions, portfolio optimization, risk theory, dividend optimization
(see, for example, Meng and Siu, 2011; Wei et al., 2012; Zhu and Chen, 2013;
Zhu, 2013) and so on.

A special type of dividend strategy – the threshold strategy, under which the
company should pay out dividends at the maximal admissible rate when the
reserve exceeds a certain threshold and pay nothing otherwise, is of particular
interest in the literature. Such type of strategy has been proved to be optimal for
the dividend optimization problem with restricted dividend rates in the Brow-
nian motion model (Asmussen and Taksar, 1997) and in the compound Pois-
son model with an exponential claim size distribution (Gerber and Shiu, 2006).
When a risk model has several regimes, a regime-switching threshold strategy
can be defined similarly by letting the threshold levels change with the regimes.
It was shown in Sotomayor and Cadenillas (2011) that the optimal strategy for
a two-regime-switching Brownian motion model with restricted dividend rates
is of the regime-switching threshold form. As commented in Gerber and Shiu
(2006), threshold strategies are of interest even in cases where the optimal strat-
egy is not of threshold form. Riskmodels applying threshold dividend strategies
have been studied extensively in the area of risk theory (see, for instance, Lin
and Pavlova, 2006; Cheung et al., 2008; Zhu and Yang, 2009 and the references
therein).

In this paper, we will examine the optimality of the regime-switching thresh-
old strategy when the risk process is a diffusion process with drift and volatility
coefficients and some other model parameters modulated by the Markov envi-
ronment process (a regime-switching diffusion process), and the dividend rates
are restricted. We find sufficient conditions under which such a strategy is opti-
mal for the regime-switching diffusion model. The optimality of such strategy
has been shown in Sotomayor and Cadenillas (2011) for the regime-switching
model with only two regimes. When there are only two regimes involved, the
traditional approach that first finds the explicit forms of the solutions to a set
of two Hamilton–Jacobi–Bellman (HJB) equations with boundary conditions
and then verifies that these solutions are the desired functions associated with
the optimal strategy is applicable. However, when the number of regimes in-
creases, it is impossible to find explicit expressions for the solutions of the set
of HJB equations, and therefore the traditional approach no longer works. The
optimality of such strategy for a regime-switching compound Poisson model
has been proven by Wei et al. (2011) to be true under some conditions and the
assumption that there exists a set of thresholds at which the corresponding value
function is smooth enough. However, to verify whether the above assumption
holds or not itself poses big theoretical challenges. In this paper, we address the
optimal dividend problem with restricted dividend rates for a regime-switching
diffusionmodel with a large number of regimes.We provide sufficient conditions
under which the regime-switching threshold strategy is optimal. The sufficient
conditions that we present are very easy to verify, which can be done by a few
simple arithmetic calculations.
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The paper is organized as follows. In Section 2, we state the problem
and introduce a modified optimization problem. We study the modified
optimization problem and obtain optimality results for this problem in
Section 3. In Section 4, we present the main results, which give sufficient
conditions under which the regime-switching strategy is optimal. Concluding
remarks are provided in Section 5.

2. PROBLEM FORMULATION

Consider a complete filtered probability space (�,F, {Ft}t≥0,P), where {Ft}t≥0
is a right-continuous filtration. Let Jt denote the external environment state at
time t. The process J = {Jt; t ≥ 0} is an {Ft}t≥0-Markov chain with the state
space E = {1, 2, . . . ,m} and the transition intensity matrix Q = (qi j )m×m. For
notational convenience, we write qi = −qii = ∑

j �=i qi j for i ∈ E. The cash
reservoir (surplus) in the absence of dividend payments evolves according to
a diffusion process with the drift and volatility parameters dependent on the
external environment state:

dRt = μ(Jt)dt + σ(Jt)dWt, (2.1)

where {Wt; t ≥ 0} is a standard Brownian motion relative to {Ft}t≥0 and is in-
dependent of the process J, μ(i) ≥ 0 and σ(i) > 0. We write μi = μ(i) and
σi = σ(i) for i ∈ E.

The company controls dynamically the dividend rate over time and the div-
idend rate at time t is denoted by lt. We call L = {lt; t ≥ 0} a dividend payment
strategy. Let RL

t denote the cash reservoir at time t under the dividend strategy
L. Then it follows the following dynamics:

dRL
t = (μ(Jt) − lt)dt + σ(Jt)dWt. (2.2)

For convenience, we use R, RL, J, (RL, J) to represent the stochastic pro-
cesses {Rt; t ≥ 0}, {RL

t ; t ≥ 0}, {Jt; t ≥ 0} and {(RL
t , Jt); t ≥ 0} respectively.

For any dividend strategy L, the time of ruin of the company is defined to
be the time when the controlled surplus first reaches zero,

TL = inf
{
t ≥ 0 : RL

t ≤ 0
}
.

Now assume that the dividend rate lt cannot exceed dJt with 0 ≤ di ≤ μi for
all i ∈ E. Here the constraint di ≤ μi means that the dividend rate cannot exceed
the premium rate. A strategy is said to be admissible if the dividend strategy
process L is {Ft}-adapted, the dividend rate at any time t is non-negative and
bounded by dJt and no dividends will be paid out on or after ruin. We use � to
denote the set of admissible strategies. In other words,

� = {L = {lt; t ≥ 0} : L is {Ft; t ≥ 0}-adapted, lt ∈ [0, dJt ] for all t ≥ 0, and

lt = 0 for t ≥ TL}. (2.3)
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For any x ∈ R and i ∈ E, define

P(x,i)(·) = P(·|R0 = x, J0 = i), (2.4)

E(x,i)[·] = E[·|R0 = x, J0 = i ]. (2.5)

Suppose the force of discount depends on the environment state at the time.
Let δJs denote the force of discount at time s and define �t = ∫ t

0 δJsds. Then
e−�t is the present value at time 0 of 1 unit at time t.

We measure the performance of an admissible strategy L by

P(L)(x, i) = E(x,i)

[∫ TL

0
lte−�tdt

]
, (2.6)

which is the expected present value of all the dividends up to the time of ruin.
The function P(L)(x, i) is called the objective function, and we define the max-
imal objective function as:

V(x, i) = sup
L∈�

P(L)(x, i). (2.7)

Our objective is to find the optimal admissible strategy with the best perfor-
mance. That is a strategy L ∈ � such that V(x, i) = P(L)(x, i).

It can be seen that the process without control (dividend payments),
{(Rt, Jt); t ≥ 0}, is the Markov process. By applying the standard method in the
stochastic control theory for the Markov process we can obtain the following
dynamic programming principle: for any stopping time τ ,

V(x, i) = sup
L∈�

E(x,i)

[∫ TL∧τ

0
lte−�tdt + e−�TL∧τV

(
RL
TL∧τ , JTL∧τ

)]
. (2.8)

Inspired by an early draft of Jiang and Pistorius (2012) we study a modified
optimization problem first instead of directly addressing the original optimiza-
tion problem. For any g : R × E → R

+ and any i ∈ E, define a modified
performance functional Pg,i :

Pg,i (L)(x) = E(x,i)

[∫ TL∧τ1

0
lte−�tdt + I{τ1 < TL}e−�τ1 g

(
RL

τ1
, Jτ1

)]
, (2.9)

where τ1 denotes the time when the first transition of the Markov chain {Jt; t ≥
0} occurs, i.e.,

τ1 = inf{t > 0 : Jt �= J0}.
Define an operator M by

M(g)(x, i) = sup
L∈�

Pg,i (L)(x). (2.10)
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We can see that for any fixed g and i , the function M(g)(x, i) is the maximal
objective function corresponding to the new performance functional Pg,i .

In the following, we will first solve the new optimization problem to find a
strategy that maximizes Pg,i (L)(x). By applying a standard method in stochas-
tic control we know that for any g and i , the following dynamic programming
principle holds:

M(g)(x, i)

= sup
L∈�

E(x,i)

[∫ TL∧τ1∧τ

0
lte−�tdt + e−�TL∧τ1∧τM(g)

(
RL
TL∧τ1∧τ , JTL∧τ1∧τ

)]

for any stopping time τ ,

and that the HJB equation associated with the modified optimization problem
is

σ 2
i

2
f ′′(x) + μi f ′(x) − (δi + qi ) f (x) +

∑
j �=i

qi j g(x, j)

+ max
l∈[0,di ]

(l(1 − f ′(x)) = 0. (2.11)

3. OPTIMALITY RESULTS FOR THE MODIFIED OPTIMIZATION PROBLEM

In this sectionwe study themodified optimization problem.As this optimization
problem is to maximize the total dividends up to the ruin time, or the exponen-
tial random time, τ1, independent of the reserve process, whichever is earlier, all
the dividends concerned are payable prior to the first regime switch andwhatever
happens afterwards will not affect the performance of a strategy. Therefore, we
can consider this problem as an optimization problem with no regime switches.
As it has already been shown that the optimal strategy subject to a restricted
dividend rate to maximize the total dividends up to ruin for the diffusion model
without regime switching is a strategy of threshold type, for our problemwe also
start with studying such type of strategy.

For any b ≥ 0, let Lb denote the strategy that at any time t before τ1 ei-
ther pays no dividends when the current surplus is below b or pays dividends
continuously at the maximal rate dJt when the surplus is at or above b.

Then the controlled process {RLb
t ; t ≥ 0} follows the following dynamics:

dRLb
t = (

μJt − dJt I
{
RLb
t ≥ b

})
dt + σJtdWt. (3.12)

Let D denote the class of functions g : R × E → R
+ such that g(0, ·) = 0,

g is non-decreasing and continuous with respect to the first argument, and that
g(x, j) ≤ maxi∈E di

mini∈E δi
for all x ≥ 0 and j ∈ E. Write g(+∞, j) = limx→+∞ g(x, j).
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Lemma 3.1. For any i ∈ E, g ∈ D and b ∈ [0, +∞], there is a unique solution
that is continuously differentiable on (0, +∞) to the following equations

σ 2
i

2
f ′′(x) + μi f ′(x) − (δi + qi ) f (x)

+
∑
j �=i

qi j g(x, j) = 0, 0 ≤ x < b, (3.13)

σ 2
i

2
f ′′(x) + (μi − di ) f ′(x) − (δi + qi ) f (x)

+
∑
j �=i

qi j g(x, j) + di = 0, x > b, (3.14)

f (0) = 0, (3.15)

lim
x→+∞ f (x) < +∞. (3.16)

Let Sg,i,b(x) denote the above-mentioned solution. Then, for 0 ≤ b ≤ +∞,

Sg,i,b(x) =
{
C1i (eθ1i x − e−θ2i x) − I1i (x)eθ1i x + I2i (x)e−θ2i x 0 ≤ x < b
Ī3i (x)eθ3i x + C4i e−θ4i x + I4i (x)e−θ4i x x ≥ b

, (3.17)

where Ili (x), l = 1, 2, 3, 4, and Ī3i (x) are defined in (3.20)–(3.23) and (3.28), and
C1i and C4i satisfy (3.29) and (3.30). The function Sg,i,b(x) is twice continuously
differentiable for x ∈ (0, b) ∪ (b, +∞).

Furthermore, if 0 ≤ b < +∞,

Sg,i,b(x) = Pg,i (Lb)(x) (3.18)

and

lim
x→+∞Pg,i (Lb)(x) =

∑
j �=i qi j g(+∞, j) + di

δi + qi
. (3.19)

Proof. For any i ∈ E, let θ1i and −θ2i denote respectively the positive and
negative roots to the equation

σ 2
i

2
x2 + μi x− (δi + qi ) = 0,

and θ3i and −θ4i denote respectively the positive and negative roots to the equa-
tion

σ 2
i

2
x2 + (μi − di )x− (δi + qi ) = 0.

Then eθ1i x and e−θ2i x are a fundamental set of solutions to the homoge-
neous equation corresponding to (3.13) and the associated Wronskian is
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−(θ1i + θ2i )e(θ1i−θ2i )x. Similarly, eθ3i x and e−θ4i x are a fundamental set of solu-
tions to the homogeneous equation corresponding to (3.14) and the associated
Wronskian is −(θ3i + θ4i )e(θ3i−θ4i )x.

Define

I1i (x) = 2

σ 2
i

∫ x

0

e−θ1i s
∑

j �=i qi j g(s, j)

θ1i + θ2i
ds, (3.20)

I2i (x) = 2

σ 2
i

∫ x

0

eθ2i s
∑

j �=i qi j g(s, j)

θ1i + θ2i
ds, (3.21)

I3i (x) = 2

σ 2
i

∫ x

0

e−θ3i s
(∑

j �=i qi j g(s, j) + di
)

θ3i + θ4i
ds, (3.22)

and

I4i (x) = 2

σ 2
i

∫ x

0

eθ4i s
(∑

j �=i qi j g(s, j) + di
)

θ3i + θ4i
ds. (3.23)

Let f1i (x) denote a solution to (3.13) and (3.15), and f2i (x) a solution to (3.14)
and (3.16). Then by using the Variation of Parameters method we know that
they have the following general forms:

f1i (x) = C1i eθ1i x + C2i e−θ2i x − I1i (x)eθ1i x + I2i (x)e−θ2i x,

and

f2i (x) = C3i eθ3i x + C4i e−θ4i x − I3i (x)eθ3i x + I4i (x)e−θ4i x,

where Cji , i ∈ E, j = 1, 2, 3, 4, are constants.

Suppose 0 < b < +∞. Note that I1i (0) = I2i (0) = 0. Then f1i (0) = 0
implies

C2i = −C1i . (3.24)

As g is positive and bounded and θ4i > 0, by L’Hospital’s rule we can see that

lim
x→+∞ I4i (x)e−θ4i x = 2

σ 2
i

∑
j �=i qi j g(+∞, j) + di

θ4i (θ3i + θ4i )
< +∞. (3.25)

Note that

lim
x→+∞ I3i (x)eθ3i x ≥ 2

σ 2
i

lim
x→+∞ eθ3i x

∫ x

0

e−θ3i sdi
θ3i + θ4i

ds = +∞. (3.26)
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As limx→+∞ f2i (x) < +∞, we can obtain

C3i = I3i (+∞). (3.27)

Define

Ī3i (x) = 2

σ 2
i

∫ +∞

x

e−θ3i s
(∑

j �=i qi j g(s, j) + di
)

θ3i + θ4i
ds. (3.28)

It follows from (3.24), (3.27) and (3.28) that

f1i (x) =C1i (eθ1i x − e−θ2i x) − I1i (x)eθ1i x + I2i (x)e−θ2i x,

f2i (x) = Ī3i (x)eθ3i x + C4i e−θ4i x + I4i (x)e−θ4i x.

We can choose the constants to make f1i (b) = f2i (b) and f ′
1i (b) = f ′

2i (b) hold,
which can be done by letting C1i and C4i satisfy the following linear equations:

C1i (eθ1i b − e−θ2i b) − I1i (b)eθ1i b + I2i (b)e−θ2i b

= Ī3i (b)eθ3i b + C4i e−θ4i b + I4i (b)e−θ4i b, (3.29)

C1i (θ1i eθ1i b + θ2i e−θ2i b) − θ1i I1i (b)eθ1i b − θ2i I2i (b)e−θ2i b

= θ3i Ī3i (b)eθ3i b − C4iθ4i e−θ4i b − θ4i I4i (b)e−θ4i b. (3.30)

Define

hi (x) =
{
C1i (eθ1i x − e−θ2i x) − I1i (x)eθ1i x + I2i (x)e−θ2i x 0 ≤ x < b
Ī3i (x)eθ3i x + C4i e−θ4i x + I4i (x)e−θ4i x x ≥ b

with C1i and C4i satisfying (3.29) and (3.30). Note that such C1i and C4i are
uniquely determined. Then hi (x) is a unique solution that is continuously dif-
ferentiable on (0, +∞) to the equations (3.13), (3.14), (3.15) and (3.16).

Suppose b = 0. Then f2i (x) with C4i chosen such that f2i (0) = 0 will be the
unique solution to (3.13)–(3.16). That is, C4i = − Ī3i (0), which coincides with
the solution of (3.29) and (3.30) with b = 0.

For the case b = +∞, the function f1i (x) with C1i chosen such that

lim
x→+∞ f1i (x) < +∞,

will be the unique solution. That is, C1i = I1i (+∞), which is the same as the
constant determined by (3.29) and (3.30) with b = +∞.

In conclusion, for 0 ≤ b ≤ +∞,

Sg,i,b(x) =
{
C1i (eθ1i x − e−θ2i x) − I1i (x)eθ1i x + I2i (x)e−θ2i x 0 ≤ x < b
Ī3i (x)eθ3i x + C4i e−θ4i x + I4i (x)e−θ4i x x ≥ b

, (3.31)

where C1i and C4i satisfy (3.29) and (3.30).
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The second-order continuous differentiability of Sg,i,b(x) on (0, b) ∪ (b, ∞)

follows immediately.
Now we proceed to show Pg,i (Lb)(x) = Sg,i,b(x) for 0 ≤ b < +∞. We

assume 0 ≤ b < +∞ in the rest part of the proof. Define for any i, j ∈ E,

wi (x, j) =
{
Sg,i,b(x) j = i
g(x, j) j �= i

. (3.32)

We use w′
i (x, j) and w′′

i (x, j) to denote the first and second order deriva-
tives with respect to the first argument. By applying the Itô’s lemma for semi-
martingales and using (3.12), we can obtain that for any t > 0,

e
−�

TL
b ∧τ1∧twJ0

(
RLb

TLb∧τ1∧t, JTLb∧τ1∧t
) − wJ0

(
RLb
0 , J0

)

=
∫ TLb∧τ1∧t

0
e−�s G

(
RLb
s−, Js−

)
ds +

∫ TLb∧τ1∧t

0
e−�sσJs−w′

J0

(
RLb
s−, Js−

)
dWs

+
∫ TLb∧τ1∧t

0
e−�s

⎛
⎝qJs−wJ0

(
RLb
s−, Js−

) −
∑
j �=Js−

qJs−, jwJ0

(
RLb
s−, j

)⎞⎠ ds

−
∫ TLb∧τ1∧t

0
e−�s dJ0 I

{
RLb
s− ≥ b

}
ds, (3.33)

where

G(x, i) = σ 2
i

2
w′′
i (x, i) + (μi − di I{x ≥ b})w′

i (x, i) − (qi + δi )wi (x, i)

+
∑
j �=i

qi j g(x, j) + di I{x ≥ b},

and the last equality in (3.33) follows by noting Js− = J0 for s ≤ τ1 and using
(3.32). As wi (x, i) = Sg,i,b(x) and Sg,i,b(x) satisfies both (3.13) and (3.14), we
have

G(x, i) = 0 for x > 0. (3.34)

For any fixed i ∈ E, it is not hard to verify that Sg,i,b(x) and S ′
g,i,b(x) are

bounded functions. By rearranging the differential equations (3.13) and (3.14)
to express S ′′

g,i,b(x) in terms of Sg,i,b(x) and S ′
g,i,b(x), we can see that S ′′

g,i,b(x)
is also bounded. Note that Js− = J0 for all s ≤ τ1, and hence wJ0(·, Js−) =
Sg,J0,b(·) for s ≤ τ1. Therefore, wJ0(·, Js−) is bounded and has bounded first-
and second-order derivatives. As a result, both

∫ TLb∧τ1∧t

0
e−�sσJs−w′′

J0

(
RLb
s−, Js−

)
dWs
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and ∫ TLb∧τ1∧t

0
e−�s

⎛
⎝qJ0w f

J0

(
RLb
s−, Js

) −
∑
j �=J0

qJ0 jw
f
J0

(
RLb
s−, Js−

)⎞⎠ ds

are P(x,i)-martingales, which implies

E(x,i)

[∫ TLb∧τ1∧t

0
e−�sσJs−w′′

J0

(
RLb
s−, Js−

)
dWs

]
= 0, (3.35)

and

E(x,i)

⎡
⎣∫ TLb∧τ1∧t

0
e−�s

⎛
⎝qJ0wJ0

(
RLb
s−, Js

) −
∑
j �=J0

qJ0 jwJ0

(
RLb
s−, Js−

)⎞⎠ ds

⎤
⎦ = 0.

(3.36)

By taking expectation E(x,i) on (3.33) and using (3.34), (3.35) and (3.36) we can
derive that

E(x,i)

[
e
−�

TL
b ∧τ1∧twJ0

(
RLb

TLb∧τ1∧t, JTLb∧τ1∧t
)] − wi (x, i)

= −E(x,i)

[∫ TLb∧τ1∧t

0
e−�s di I

{
RLb
s− ≥ b

}
ds

]
. (3.37)

It follows from (3.32) and (3.37) that

Sg,i,b(x) =E(x,i)

[∫ TLb∧τ1∧t

0
e−�s di I

{
RLb
s− ≥ b

}
ds

]

+E(x,i)

[
e
−�

TL
b ∧τ1∧twJ0

(
RLb

TLb∧τ1∧t, JTLb∧τ1∧t
)]

. (3.38)

For any i, j ∈ E, note that wi (0, j) = 0 and that wi (·, j) is bounded. By the
dominated convergence we obtain

lim
t→+∞E(x,i)

[
e
−�

TL
b ∧τ1∧twJ0

(
RLb

TLb∧τ1∧t), JTLb∧τ1∧t
)]

= E(x,i)

[
e
−�

TL
b ∧τ1wJ0

(
RLb

TLb∧τ1
, JTLb∧τ1

)]
= E(x,i)

[
e−�τ1wJ0

(
RLb

τ1
, Jτ1

)
I{τ1 < TLb}

+ e−�
TL

b wJ0

(
RLb

TLb , JTLb

)
I{τ1 ≥ TLb}

]
= E(x,i)

[
e−�τ1 g

(
RLb

τ1
, Jτ1

)
I{τ1 < TLb}

]
, (3.39)
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where the last equability follows fromnoticingwJ0

(
RLb

TLb
, JTLb

) = wJ0(0, JTLb ) =
0 and using (3.32). It follows by the monotone convergence that

lim
t→+∞E(x,i)

[∫ TLb∧τ1∧t

0
e−�s di I

{
RLb
s− ≥ b

}
ds

]

= E(x,i)

[∫ TLb∧τ1

0
e−�s di I

{
RLb
s− ≥ b

}
ds

]
. (3.40)

Note that

Pg,i (Lb)(x)

= E(x,i)

[∫ TLb∧τ1

0
e−�t di I

{
RLb
s− ≥ b

}
dt + I{τ1 < TLb}e−�τ1 g

(
RLb

τ1
, Jτ1

)]
.

(3.41)

By letting t → +∞ on both sides of (3.38) and then using (3.39), (3.40) and
(3.41), we conclude that Sg,i,b(x) = Pg,i (Lb)(x).

Since by using L’Hospital’s rule we have

lim
x→+∞ Ī3i (x)eθ3i x = 2

σ 2
i

∑
j �=i qi j g(+∞, j) + di

θ3i (θ3i + θ4i )
, (3.42)

it follows from (3.31) and (3.25) that

lim
x→+∞ Sg,i,b(x) = 2

σ 2
i

∑
j �=i qi j g(+∞, j) + di

θ3iθ4i
=

∑
j �=i qi j g(+∞, j) + di

δi + qi
,

which implies that (3.19) holds. �

Lemma 3.2. For any g ∈ D and i ∈ E, both Pg,i (L)(x) and M(g)(x, i) are
non-negative and non-decreasing with respect to x.

Proof. The non-negativity is obvious according to the definitions of the func-
tions.

Let L be an admissible strategy for the process R starting with R0 = x.
Then the same strategy L is also admissible if R0 = y (y > x). Note that τ1 is
independent of R0 and {Wt; t ≥ 0}. So the value of τ1 will be the same for the
cases with R0 = x and R0 = y. As y > x, it is obvious that the ruin time TL in
the case R0 = x is smaller than in the case R0 = y, and the value of Rt in the
case R0 = x is also smaller than in the case R0 = y for any t ≤ τ1. Note that g
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is non-decreasing with respect to the first argument. Hence, for y > x ≥ 0,

Pg,i (L)(x) =E(x,i)

[∫ TL∧τ1

0
lte−�tdt + I{τ1 < TL}e−�τ1 g

(
RL

τ1
, Jτ1

)]

≤ E(y,i)

[∫ TL∧τ1

0
lte−�tdt + I{τ1 < TL}e−�τ1 g

(
RL

τ1
, Jτ1

)]

=Pg,i (L)(y).

Therefore, Pg,i (L)(x) is a non-decreasing function, and hence the function

M(g)(x, i) = sup
x∈�

Pg,i (L)(x)

is also non-decreasing with respect to x. �

Lemma 3.3. Suppose 0 ≤ b < +∞. For any fixed i ∈ E, define the stochastic
process Y(i) = {Y(i)

t ; t ≥ 0} by Y(i)
t = R0 + (μi − di )t + σiWt, and define, for any

y ≥ 0, τY
(i)

y to be the first time that the process Y(i) hits y.

(i) E(x,i)[
∫ τY

(i)
b ∧τ1

0 e−δi sdids] is twice continuously differentiable with respect to x
for x ∈ (b, +∞), and

lim sup
x↓b

d2

dx2
E(x,i)

[∫ τY
(i)

b ∧τ1

0
e−δi sdids

]
≤ 0. (3.43)

(ii) E(x,i)[e−δi τ
Y(i)
b I{τY(i)

b < τ1}] is twice continuously differentiable with respect to
x for x ∈ (b, +∞), and

lim sup
x↓b

d2

dx2
E(x,i)

[
e−δi τ

Y(i)
b I

{
τY

(i)

b < τ1
}] ≤ 0. (3.44)

(iii) For any g ∈ D, E(x,i)[e−δi τ1g(Y(i)
τ1

, Jτ1); τY
(i)

b ≥ τ1] is twice continuously dif-
ferentiable with respect to x for x ∈ (b, +∞), and

lim sup
x↓b

d2

dx2
E(x,i)

[
e−δi τ1g(Y(i)

τ1
, Jτ1); τY

(i)

b ≥ τ1

]
≤ 0. (3.45)

Proof.DefineWα,σ
t = αt+σWt, and let τW

α,σ

y denote the time that the Brownian
motionWα,σ hits y for the first time.
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By using the reflection principle, we can derive (see, for example (Douady,
1998 (3.7))

P(x,i)(τ
Y(i)

b ∈ dt) = P
(
τW

(μi−di ),σi
b−x ∈ dt

)
= x− b√

2πσ 2
i t3

e
− (b−x−(μi−di )t)2

2σ2i t dt for x > b. (3.46)

Note that {Wt; t ≥ 0} and R0 are independent of the environment process
{Jt; t ≥ 0}, and that τ1 is the first transition time of the Markov process J.
Hence, the process Y(i) is independent of τ1. Note that given J0 = i , τ1 is
exponentially distributed with mean 1

qi
.

(i) We can have

E(x,i)

[∫ τY
(i)

b ∧τ1

0
e−δi sdids

]
= di

∫ +∞

0
qi e−qi t

∫ +∞

0

×1 − e−δi (s∧t)

δi

x− b√
2πσ 2

i s3
e
− (b−x−(μi−di )s)2

2σ2i s dsdt for x > b. (3.47)

It is not hard to verify that E(x,i)[
∫ τY

(i)
b ∧τ1

0 e−δi sdids] is twice continuously differ-
entiable with respect to x for x > b and that, for x > b,

∂2

∂x2
E(x,i)

[∫ τY
(i)

b ∧τ1

0
e−δi sdids

]

= di

∫ +∞

0
qi e−qi t

∫ +∞

0

1 − e−δi (s∧t)

δi

∂2

∂x2

⎛
⎝ x− b√

2πσ 2
i s3

e
− (b−x−(μi−di )s)2

2σ2i s

⎞
⎠ dsdt.

(3.48)

Note that for x > b,

∂2

∂x2

(
x− b√
2πσ 2

i s3
e
− (b−x−(μi−di )s)2

2σ2i s

)

= 1√
2πσ 2

i s3

(
(b − x− (μi − di )s)2(x− b)

σ 4
i s2

− (x− b)

σ 2
i s

+ 2(b − x− (μi − di )s)

σ 2
i s

)
e
− (b−x−(μi−di )s)2

2σ2i s (3.49)
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<
1√

2πσ 2
i s3

(b − x− (μi − di )s)2(x− b)

σ 4
i s2

e
− (b−x−(μi−di )s)2

2σ2i s

≤ 1√
2πσ 2

i s3

(1 + |μi − di |s)2
σ 4
i s2

e
− (μi−di )2s−2|μi−di |

2σ2i for x ∈ [b, b + 1]. (3.50)

By using (3.48), (3.50) and the Fatou’s lemma, we arrive at

lim sup
x↓b

d2

dx2
E(x,i)

[∫ τY
(i)

b ∧τ1

0
e−δi sdids

]
= di

∫ +∞

0
qi e−qi t

∫ +∞

0

1 − e−δi (s∧t)

δi

× lim sup
x↓b

∂2

∂x2

⎛
⎝ x− b√

2πσ 2
i s3

e
− (b−x−(μi−di )s)2

2σ2i s

⎞
⎠ dsdt. (3.51)

Note from (3.49),

lim sup
x↓b

∂2

∂x2

⎛
⎝ x− b√

2πσ 2
i s3

e
− (b−x−(μi−di )s)2

2σ2i s

⎞
⎠

= 1√
2πσ 2

i s3

(
−2(μi − di )

σ 2
i

)
e
− ((μi−di )s)2

2σ2i s ≤ 0. (3.52)

Inequality (3.43) follows immediately from (3.51) and (3.52).

(ii) Recall that given J0 = i , τ1 is independent ofY(i) and follows an exponential
distribution with mean 1

qi
. By (3.46) we have, for x > b,

E(x,i)

[
e−δi τ

Y(i)
b I

{
τY

(i)

b < τ1
}]

=
∫ +∞

0
qi e−qi s

∫ s

0
e−δi t x− b√

2πσ 2
i t3

e
− (b−x−(μi−di )t)2

2σ2i t dtds

=
∫ +∞

0
qi e−qi s

∫ s

0
e−δi t x− b√

2πσ 2
i t3

e
− (b−x−(μi−di )t)2

2σ2i t dtds

=
∫ +∞

0

x− b√
2πσ 2

i t3
e
− (b−x−(μi−di )t)2

2σ2i t
−(δi+qi )t

dt. (3.53)
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It is not hard to see from (3.53) that Ex[e−δi τ
Y(i)
b I{τY(i)

b < τ1}] is twice continu-
ously differentiable with respect to x for x > b. Moreover, it follows that for
x > b,

d2

dx2
E(x,i)

[
e−δi τ

Y(i)
b I{τY(i)

b < τ1}
]

=
∫ +∞

0

∂2

∂x2

⎛
⎝ x− b√

2πσ 2
i t3

e
− (b−x−(μi−di )t)2

2σ2i t
−(δi+qi )t

⎞
⎠ dt. (3.54)

Note

∂2

∂x2

⎛
⎝ x− b√

2πσ 2
i t3

e
− (b−x−(μi−di )t)2

2σ2i t
−(δi+qi )t

⎞
⎠

= 1√
2πσ 2

i t3

(
2(b − x− (μi − di )t)

σ 2
i t

+ (x− b)
(b − x− (μi − di )t)2

σ 4
i t2

− x− b

σ 2
i t

)
e
− (b−x−(μi−di )t)2

2σ2i t
−(δi+qi )t

(3.55)

≤ 1√
2πσ 2

i t3

(−2(μi − di )t

σ 2
i t

+ (1 + |μi − di |t)2
σ 4
i t2

)
e
− (μi−di )2t−2|μi−di |

2σ2i
−(δi+qi )t

for x ∈ [b, b + 1]. (3.56)

Then it follows from (3.55), (3.56) and the Fatou’s lemma that

lim sup
x↓b

d2

dx2
E(x,i)

[
e−δi τ

Y(i)
b I

{
τY

(i)

b < τ1
}]

≤
∫ +∞

0

1√
2πσ 2

i t3
lim sup

x↓b

[(
2(b − x− (μi − di )t)

σ 2
i t

+ (x− b)
(b − x− (μi − di )t)2

σ 4
i t2

− x− b

σ 2
i t

)
e
− (b−x−(μi−di )t)2

2σ2i t
−(δi+qi )t

dt
]

= −
∫ +∞

0

2(μi − di )

σ 2
i

√
2πσ 2

i t3
e
− ((μi−di )t)2

2σ2i t
−(δi+qi )t

dt < 0.
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(iii) By using the fact that, given J0 = i , τ1 is independent of Y(i) and follows an
exponential distribution with mean 1

qi
again, we can obtain

E(x,i)

[
e−δi τ1g

(
Y(i)

τ1
, Jτ1

); τY
(i)

b ≥ τ1

]

=
∫ +∞

0
e−(qi+δi )t

∑
j �=i

qi jE(x,i)

[
g
(
Y(i)
t , j

); τY
(i)

b ≥ t
]
dt. (3.57)

Recall thatWα,σ
t = αt+σWt,. We further defineMα,σ

t = maxs∈[0,t] Wα,σ
s and

mα,σ
t = mins∈[0,t] Wα,σ

s . Using the reflection principle we can have the following
joint distribution (Harrison 1990, p. 11):

P
(
Wα,σ
t ∈ dx,Mα,σ

t ≤ y
) = fα,σ (x, y)dx, x ≤ y, y ≥ 0,

where

fα,σ (x, y) = 1√
2πσ 2t

e− α2t
2σ2

+ αx
σ2

(
e− x2

2σ2t − e− (x−2y)2

2σ2t

)
. (3.58)

Note thatWα,σ
t = −W−α,−σ

t and mα,σ
t = −M−α,−σ

t . Hence,

P
(
Wα,σ
t ≤ x,mα,σ

t ≥ y
) = P

(
W−α,−σ
t ≥ −x,M−α,−σ

t ≤ −y
)

=
∫ +∞

−x
f−α,−σ (u, −y)du , x ≥ y, y ≥ 0.

As a result,

P
(
Wα,σ
t ∈ dx,mα,σ

t ≥ y
) = f−α,−σ (−x, −y), x ≥ y, y ≤ 0. (3.59)

Note that given R0 = x and J0 = i ,Y(i) has the same distribution as x+Wμi−di ,σi
t ,

and hence for x ≥ b,

E(x,i)

[
g(Y(i)

t , j); τY
(i)

b ≥ t
]
=E

[
g(x+ Wμi−di ,σi

t , j); mμi−di ,σi
t ≥ b − x

]

=
∫ +∞

b−x
g(x+ u, j) fdi−μi ,−σi (−u, x− b)du. (3.60)

As g is a bounded function and the function fdi−μi ,−σi (x, y) is infinitely
differentiable with respect to both arguments, it is not hard to see that
E(x,i)[g(Y

(i)
t , j); τY

(i)

b ≥ t] is infinitely differentiable with respect to x for x > b.
Hence, by (3.57) we can conclude that E(x,i)[e−δi τ1g(Y(i)

τ1
, Jτ1); τY

(i)

b ≥ τ1] is also
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infinitely differentiable with respect to x for x > b. We can also see that

d2

dx2
E(x,i)

[
g
(
Y(i)
t , j

); τY
(i)

b ≥ t
]

=
∫ +∞

b
g(u, j)

∂2

∂x2
fdi−μi ,−σi (x− u, x− b)du. (3.61)

Note

∂2

∂x2
fdi−μi ,−σi (x− u, x− b)

= 1√
2πσ 2

i t
e
− (μi−di )2t

2σ2i
+ (μi−di )(x−u)

σ2i

( [
1

σ 2
i t

−
(

μi − di
σ 2
i

+ x+ u − 2b

σ 2
i t

)2
]

× e
− (x+u−2b)2

2σ2i t −
[

1

σ 2
i t

−
(

μi − di
σ 2
i

+ x− u

σ 2
i t

)2
]
e
− (x−u)2

2σ2i t

)
(3.62)

≤ 1√
2πσ 2

i t
e
− (μi−di )2t

2σ2i
+ (μi−di )max{b−u,b+1−u}

σ2i

(
1

σ 2
i t
e
− (u−b)2

2σ2i t

+max

{(
μi − di

σ 2
i

+ b + 1 − u

σ 2
i t

)2

,

(
μi − di

σ 2
i

+ b − u

σ 2
i t

)2
}

× e
−min{(b+1−u)2,(b−u)2}

2σ2i t

)
, for x ∈ [b, b + 1]. (3.63)

Letting x ↓ b in (3.62) yields

lim
x↓b

d2

dx2
fdi−μi ,−σi (x− u, x− b)

= −4(μi − di )(u − b)

σ 5
i t

√
2πt

e
− (μi−di )2t

2σ2i
+ (μi−di )(b−u)

σ2i
− (u−b)2

2σ2i t ≤ 0. (3.64)

It follows from (3.61), (3.63), (3.64) and the dominated convergence that

lim sup
x↓b

d2

dx2
E(x,i)

[
g
(
Y(i)
t , j

); τY
(i)

b ≥ t
]

=
∫ +∞

b
g(u, j)

∂2

∂x2
lim
x↓b

d2

dx2
fdi−μi ,−σi (x− u, x− b)du ≤ 0. (3.65)

Combining (3.57) and (3.65) concludes the proof. �
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Corollary 3.4. For any fixed i ∈ E, any g ∈ D and any b ∈ [0, +∞), let Sg,i,b(x)
be the solution defined in Lemma 3.1. The function Sg,i,b(x) is twice continuously
differentiable on (0, b) ∪ (b, +∞), and limx↓b S′′

g,i,b(x) ≤ 0 if 0 ≤ b < +∞.

Proof. Suppose 0 ≤ b < +∞. Let τ L
b

b denote the time that the process RLb hits
b for the first time. Then given R0 = x > b, τ L

b

b > TLb . From the structure of
Lb we can see that the controlled process RLb is still the Markov process. Hence,
we have for x > b,

Pg,i (Lb)(x) =E(x,i)

[ ∫ τ L
b

b ∧τ1

0
dJ0e

−�tdt + I
{
τ L

b

b < τ1
}
e
−�

τL
b

b Pg,J0(L
b)(b)

]

+I
{
τ1 ≤ τ L

b

b

}
e−�τ1 g

(
RLb

τ1
, Jτ1

)]
.

Note that given (R0, J0) = (x, i)with x > b, the path of RLb

τ L
b

b

before time τ1∧τ L
b

b

is the same as the process Y(i) defined in Lemma 3.3. Same as in Lemma 3.3,
we use τY

(i)

b to denote the time that the process Y(i) reaches b for the first time.
Then for x > b,

Pg,i (Lb)(x) =E(x,i)

[∫ τY
(i)

b ∧τ1

0
e−δi sdids

]
+ Pg,i (Lb)(b)

×E(x,i)

[
e−δi τ

Y(i)
b I

{
τY

(i)

b <τ1
}] +E(x,i)

[
e−δi τ1g

(
Y(i)

τ1
, Jτ1

); τY
(i)

b ≥ τ1

]
.

Then it follows immediately from Lemma 3.3 that limx↓b d2

dx2Pg,i (Lb)(x) ≤ 0.
We conclude the proof by noticing that Sg,i,b(x) = Pg,i (Lb)(x) if 0 ≤ b < +∞
(see (3.18)). �

Let Sg,i,b(x), θli , I1i (x) and Īli (x) for l = 1, 2, 3, 4 and i ∈ E be defined in
the same way as in Lemma 3.1. It follows from (3.17) that

S′
g,i,b(b) =C1i (θ1i eθ1i b + θ2i e−θ2i b) − θ1i I1i (b)eθ1i b

− θ2i I2i (b)e−θ2i b for 0 < b < +∞,

where C1i satisfying (3.29) and (3.30). Solving (3.29) and (3.30) gives

C1i = (θ1i + θ4i )I1i (b)eθ1i b + (θ2i − θ4i )I2i (b)e−θ2i b + (θ3i + θ4i ) Ī3i (b)eθ3i b

(θ1i + θ4i )eθ1i b + (θ2i − θ4i )e−θ2i b
.
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Hence, for 0 < b < +∞,

S ′
g,i,b(b) − 1

= (θ3i + θ4i ) Ī3i (b)eθ3i b

(θ1i + θ4i )eθ1i b + (θ2i − θ4i )e−θ2i b
(θ1i eθ1i b + θ2i e−θ2i b) − 1

= (θ3i + θ4i ) Ī3i (b)eθ3i b(θ1i eθ1i b + θ2i e−θ2i b) − (θ1i + θ4i )eθ1i b − (θ2i − θ4i )e−θ2i b

(θ1i + θ4i )eθ1i b + (θ2i − θ4i )e−θ2i b
.

(3.66)

By (3.17) again we have Sg,i,0(x) = Ī3i (x)eθ3i x− Ī3i (0)e−θ4i x+ I4i (x)e−θ4i x. There-
fore,

lim
x↓0

S ′
g,i,0(x) − 1 = (θ3i + θ4i ) Ī3i (0) − 1.

Define

ξ
g
i (b) = (θ1i eθ1i b + θ2i e−θ2i b)

∫ +∞

b
e−θ3i (s−b)

⎛
⎝∑

j �=i
qi j g(s, j) + di

⎞
⎠ ds

−(θ1i + θ4i )eθ1i b − (θ2i − θ4i )e−θ2i b. (3.67)

Note that limx↓0 S ′
g,i,0(x) − 1 = ξ

g
i (0)

θ1i+θ2i
. Write S ′

g,i,0(0) = limx↓0 S ′
g,i,0(x). Then

for any 0 ≤ b < +∞, equations ξ
g
i (b) > 0, ξ

g
i (b) = 0 and ξ

g
i (b) < 0 are

equivalent to S ′
g,i,b(b) > 1, S ′

g,i,b(b) = 1 and S ′
g,i,b(b) < 1 respectively.

Define

bgi = inf{b ∈ [0, +∞) : ξ
g
i (b) ≤ 0}, (3.68)

and bgi = +∞ if ξ
g
i (b) > 0 for all 0 ≤ b < +∞.

Recall that the class of functionsD is defined right above Lemma 3.1. Define
another class of functions

C = {g ∈ D :
∂2g(x, i)

∂x2
exists and is non-positive for all x ≥ 0 and all i ∈ E}.

(3.69)

We can see that C is a complete space.

Theorem 3.5. For any fixed i ∈ E and g ∈ D,
(i) if 0 < bgi < +∞, S ′

g,i,bgi
(bgi ) = 1;

(ii) the function Sg,i,bgi (x) is twice continuously differentiable on (0, +∞);
(iii) for any g ∈ C, the function Sg,i,bgi (x) is concave on (0, +∞).

Proof. (i) This is obvious according to the definition of bgi .
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(ii) By Lemma 3.1 we know that Sg,i,bgi (x) is continuously differentiable on
(0, +∞), twice continuously differentiable on (0, +∞) if bgi = +∞ or 0, and
twice continuously differentiable on (0, bgi ) ∪ (bgi , +∞) if bgi < +∞. So it is
sufficient to show that, if 0 < bgi < +∞,

lim
x↑bgi

S ′′
g,i,bgi

(x) = lim
x↓bgi

S ′′
g,i,bgi

(x). (3.70)

Now suppose 0 < bgi < +∞. Then

S ′
g,i,bgi

(bgi ) = 1. (3.71)

Then it follows from Lemma 3.1 that for 0 < x < bgi ,

S ′′
g,i,bgi

(x) =
(δi + qi )Sg,i,bgi (x) − μi S ′

g,i,bgi
(x) − ∑

j �=i qi j g(x, j)

σ 2
i
2

, (3.72)

and that for x > bgi

S ′′
g,i,bgi

(x) =
(δi + qi )Sg,i,bgi (x) − (μi − di )S ′

g,i,bgi
(x) − ∑

j �=i qi j g(x, j) − di
σ 2
i
2

.

(3.73)

By letting x ↑ bgi and x ↓ bgi on (3.72) and (3.73) respectively, and then using
(3.71) we can see that (3.70) holds.
(iii) Note that Sg,i,bgi (x) and g(x, j) are continuously differentiable with respect
to x and Sg,i,bgi (0) = g(0, j) = 0. Letting x ↓ 0 in (3.72) and then using (3.18)
and Lemma 3.2 gives

lim
x↓0

S ′′
g,i,bgi

(x) =
−μi limx↓0 S ′

g,i,bgi
(x)

σ 2
i
2

≤ 0 if bgi < +∞. (3.74)

Also note by (ii) and Corollary 3.4 that if bgi < +∞,

S ′′
g,i,bgi

(bgi ) ≤ 0. (3.75)

Definewi (x) = S ′′
g,i,bgi

(x) and use g′′(x, j) to denote the second-order derivative
of g(x, j) with respect to the first argument. Then it follows from Lemma 3.1
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that

σ 2
i

2
w′′
i (x) + μiw

′
i (x) − (δi + qi )wi (x) +

∑
j �=i

qi j g′′(x, j) = 0, 0 < x < bgi ,

(3.76)

σ 2
i

2
w′′
i (x) + (μi − di )w′

i (x) − (δi + qi )wi (x) +
∑
j �=i

qi j g′′(x, j) = 0, x > bgi .

(3.77)

Consider the stochastic process {Xi
t; t ≥ 0} defined by

Xi
t = R0 + (

μi − di I
{
Xi
t ≥ bgi

})
t + σiWt.

For any y ≥ 0, define the stopping time

τ iy = inf{t ≥ 0 : Xi
t = y}.

For any s > 0, by applying Itô’s formula to

e
−(qi+δi )

(
τ i0∧τ i

bgi
∧s

)
wi (Xi

τ i0∧τ i
bgi

∧s) +
∑
j �=i

qi j

∫ τ i0∧τ i
bgi

∧s

0
e−(qi+δi )g′′(Xi

t , j
)
dt,

we get

e
−(qi+δi )(τ

i
0∧τ i

bgi
∧s)

wi (Xi
τ i0∧τ i

bgi
∧s) +

∑
j �=i

qi j

∫ τ i0∧τ i
bgi

∧s

0
e−(qi+δi )tg′′(Xi

t , j)dt

= wi (R0) +
∫ τ i0∧τ i

bgi
∧s

0
e−(qi+δi )tσiw

′
i (X

i
t)dWt

+
∫ τ i0∧τ i

bgi
∧s

0
e−(qi+δi )t

∑
j �=i

qi j g′′(Xi
t , j)dt +

∫ τ i0∧τ i
bgi

∧s

0
e−(qi+δi )t

×
(
1
2
σ 2
i w′′

i (X
i
t) + (μi − di I{Xi

t ≥ bgi })w′
i (X

i
t) − (qi + δi )wi (Xi

t)

)
dt.

Then it follows from (3.76) and (3.77) that

e
−(qi+δi )(τ

i
0∧τ i

bgi
∧s)

wi
(
Xi

τ i0∧τ i
bgi

∧s
) +

∑
j �=i

qi j

∫ τ i0∧τ i
bgi

∧s

0
e−(qi+δi )tg′′(Xi

t , j
)
dt

= wi (R0) +
∫ τ i0∧τ i

bgi
∧s

0
e−(qi+δi )tσiw

′
i

(
Xi
t

)
dWt. (3.78)
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Note that from Lemmas 3.1 and 3.2 we know that for any fixed i ∈ E, the func-
tion Sg,i,bgi (x) is positive, non-decreasing and bounded. As a result, S ′

g,i,bgi
(x) is

non-negative and bounded. As g(·, i) is non-decreasing, concave and bounded
with respect to x, we can see that g′(x, i) is bounded. Hence, it follows from
(3.73) that S ′′

g,i,bgi
(x) is bounded. Note that by Lemma 3.1 we have

σ 2
i

2
S(3)
g,i,bgi

(x) + (μi − di )S ′′
g,i,bgi

(x) − (δi + qi )S ′
g,i,bgi

(x)

+
∑
j �=i

qi j g′(x, j) = 0, x > bgi .

Then w′
i (x) = S(3)

g,i,bgi
(x) is bounded. Therefore,

E(x,i)

[∫ τ i0∧τ i
bgi

∧s

0

(
e−(qi+δi )tσiw

′
i

(
Xi
t

))2
dt

]
< +∞,

which implies that the last term in (3.78) is a martingale. Then by taking expec-
tations on (3.78), we can obtain

wi (x) =Ex

[
e
−(qi+δi )(τ

i
0∧τ i

bgi
∧s)

wi (Xi
τ i0∧τ i

bgi
∧s)

+
∑
j �=i

qi j

∫ τ i0∧τ i
bgi

∧s

0
e−(qi+δi )tg′′(Xi

t , j)dt

⎤
⎦ . (3.79)

Note that the concavity of g implies

g′′(Xi
t , j

) ≤ 0. (3.80)

Then letting s → +∞ in (3.79), it follows from the dominated convergence and
the monotone convergence that

wi (x) = Ex

⎡
⎣e−(qi+δi )(τ

i
0∧τ i

bgi
)
wi (Xi

τ i0∧τ i
bgi

) +
∑
j �=i

qi j

∫ τ i0∧τ i
bgi

0
e−(qi+δi )tg′′(Xi

t , j)dt

⎤
⎦.

(3.81)

If bgi < +∞, noting that Xi
τ i0∧τ i

bgi

is either 0 or bgi , it follows from (3.74), (3.75),

(3.80) and (3.81) that wi (x) ≤ 0.
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If bgi = +∞, then τ i0 ∧ τ i
bgi

= τ i0 almost surely, and hence

wi (x) = Ex

⎡
⎣∑

j �=i
qi j

∫ τ i0

0
e−(qi+δi )tg′′(Xi

t , j)dt

⎤
⎦ ≤ 0.

Hence, we can conclude that the function Sg,i,bgi (x) is concave on (0, +∞). �
Recall that, for any b ≥ 0, the dividend strategy Lb is defined so that, at

any time t before τ1, the company either pays no dividends when the current
surplus is below b or pays dividends continuously at the maximal rate dJt when
the surplus is above b.

Theorem 3.6. For any fixed i ∈ E and any g ∈ C, if bgi < +∞, then the strategy
Lb

g
i is optimal with respect to the performance functional Pg,i , i.e.

Pg,i (Lb
g
i )(x) = M(g)(x, i). (3.82)

Proof. Since Lb
g
i is an admissible strategy, it follows immediately that

M(g)(x, i) = sup
L∈�

Pg,i (L)(x) ≥ Pg,i (Lb
g
i )(x).

It is sufficient to show that Pg,i (Lb
g
i )(x) ≥ M(g)(x, i). For any i ∈ E, define

a function for x ≥ 0,

hi (x, j) =
{
Pg,i (Lb

g
i )(x) j = i

g(x, j) j �= i
. (3.83)

Use h′
i (x, i) and h′′

i (x, i) to denote the first- and second-order derivatives of
h(x, i) with respect to the first argument. Then it follows from Lemma 3.1 that
for any i ∈ E,

σ 2
i

2
h′′
i (x, i) + μi h′

i (x, i) − (δi + qi )hi (x, i)

+
∑
j �=i

qi j g(x, j) = 0 for 0 < x < bgi , (3.84)

σ 2
i

2
h′′
i (x, i) + (μi − di )h′

i (x, i) − (δi + qi )hi (x, i)

+
∑
j �=i

qi j g(x, j) + di = 0, for x > bgi . (3.85)
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For any s > 0 and any admissible strategy L, by applying Itô’s formula we
obtain

e−δi (TL∧τ1∧s)hi
(
RL
TL∧τ1∧s, JTL∧τ1∧s

)
= hi

(
RL
0 , J0

) +
∫ TL∧τ1∧s

0
e−δi tσJt−h

′
i

(
RL
t−, Jt−

)
dWt

+
∫ TL∧τ1∧s

0
e−δi t

(1
2
σ 2
Jt−h

′′
i

(
RL
t−, Jt−

) + (μJt− − lt−)h′
i

(
RL
t−, Jt−

)
−δJt−hi

(
RL
t−, Jt−

))
dt. (3.86)

Using (3.84) and (3.85) we can derive that given J0 = i , for any t ≤ τ1,

1
2
σ 2
Jt−h

′′
i

(
RL
t−, Jt−

) + (μJt− − lt−)h′
i

(
RL
t−, Jt−

) − δJt−hi
(
RL
t−, Jt−

)
= 1

2
σ 2
i h

′′
i

(
RL
t−, i

) + (μi − lt−)h′
i

(
RL
t−, i

) − δi hi
(
RL
t−, i

)
= (di I

{
RL
t− ≥ bgi

} − lt−)h′
i

(
RL
t−, i

) + qihi
(
RL
t−, i

)
−

∑
j �=i

qi j g
(
RL
t−, j

) − di I
{
RL
t− ≥ bgi

}

= (di − lt−)h′
i

(
RL
t−, i

)
I
{
RL
t− ≥ bgi

} − lt−h′
i

(
RL
t−, i

)
I
{
RL
t− < bgi

}
+ qJt−hi

(
RL
t−, Jt−

) −
∑
j �=Jt−

qJt−, j g
(
RL
t−, j

) − di I
{
RL
t− ≥ bgi

}
. (3.87)

Write h′
i (0, i) = limx↓0 h′(x, i). By (3.83), (3.18) and Theorem 3.5 we know

that hi (x, i) = Pg,i (Lb
g
i )(x) = Sg,i,bgi (x) is concave with respect to x, and that if

0 < bgi < +∞, h′
i (b

g
i , i) = S ′

g,i,bgi
(bgi ) = 1. Hence, if 0 < bgi < +∞,

h′
i (x, i)

{
≥ 1 0 ≤ x < bgi
≤ 1 x ≥ bgi

. (3.88)

If bgi = 0, it follows by the definition of bgi in (3.68) that

lim
x↓bgi

h′
i (x, i) = lim

x↓0
S ′
g,i,0(x) ≤ 1.

Therefore, by the concavity of hi , we get h′
i (x, i) ≤ 1 for all x ≥ 0. Thus, (3.88)

holds in the case bgi = 0 as well.
Further note that for any admissible strategy L, lt ≤ dJt for all t ≥ 0, and

hence lt ≤ di for t < τ1, given J0 = i . Then it follows by (3.87) and (3.88) that,

https://doi.org/10.1017/asb.2014.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.2


OPTIMAL DIVIDENDS FOR A REGIME-SWITCHING DIFFUSION 483

given J0 = i , for t ≤ τ1,

1
2
σ 2
Jt−h

′′
i

(
RL
t−, Jt−

) + (μJt− − lt−)h′
i

(
RL
t−, Jt−

) − δJt−hi
(
RL
t−, Jt−

)
≤ (di − lt−)I

{
RL
t− ≥ bgi

} − lt− I
{
RL
t− < bgi

} + qJt−hi
(
RL
t−, Jt−

)
−

∑
j �=Jt−

qJt− j g
(
RL
t−, j

) − di I
{
RL
t− ≥ bgi

}

= −lt− + qJt−hi
(
RL
t−, Jt−

) −
∑
j �=Jt−

qJt−, j g
(
RL
t−, j

)
. (3.89)

Note that

∫ TL∧τ1∧s

0
e−δi t

⎛
⎝qJt−hi(RL

t−, Jt−
) −

∑
j �=Jt−

qJt−, j g
(
RL
t−, j

)⎞⎠ dt

=
∫ TL∧τ1∧s

0
e−δi t

⎛
⎝qJt−hi(RL

t−, Jt−
) −

∑
j �=Jt−

qJt−, j hi
(
RL
t−, j

)⎞⎠ dt,

which is a martingale. Then it follows by (3.89) that

E(x,i)

[ ∫ TL∧τ1∧s

0
e−δi t

(1
2
σ 2
Jt−h

′′
i

(
RL
t−, Jt−

) + (μJt− − lt−)h′
i

(
RL
t−, Jt−

)

−δJt−hi
(
RL
t−, Jt−

))
dt

]
≤ −E(x,i)

[ ∫ TL∧τ1∧s

0
e−δi tlt−dt

]
. (3.90)

Note from Lemmas 3.1 and 3.2 that for any fixed i ∈ E, the function hi (x, i) =
Sg,i,bgi (x) is positive, non-decreasing and bounded. As a result, S ′

g,i,bgi
(x) is non-

negative and bounded. Therefore,

E(x,i)

[ ∫ TL∧τ1∧s

0

(
e−δi tσJt−h

′
i

(
RL
t−, i

))2
dt

]
< +∞,

which implies that
∫ TL∧τ1∧s
0 e−δi tσJt−h

′
i

(
RL
t−, i

)
dWt is a zero mean martingale.

Then by taking expectations on (3.86) and using (3.90), we can obtain

hi (x, i) ≥ E(x,i)

[ ∫ TL∧τ1∧s

0
e−δi tlt−dt

]

+E(x,i)

[
e−δi (TL∧τ1∧s)hi

(
RL
TL∧τ1∧s, JTL∧τ1∧s

)]
.
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As lt is non-negative and hi is bounded, it follows by letting t → +∞ and using
the monotone convergence and dominated convergence that

hi (x, i) ≥ E(x,i)

[ ∫ TL∧τ1

0
e−δi tlt−dt

]
+ E(x,i)

[
e−δi (TL∧τ1)hi

(
RL
TL∧τ1

, JTL∧τ1

)]

=E(x,i)

[ ∫ TL∧τ1

0
e−δi tlt−dt

]
+ E(x,i)

[
e−δi τ1g

(
RL

τ1
, Jτ1

)
I{τ1 < TL}

]
,

(3.91)

where the last equality follows by noting that if τ1 ≥ TL, hi (RL
TL, JTL) =

hi (0, JTL) = 0, and that if τ1 < TL, hi (RL
τ1
, Jτ1) = g(RL

τ1
, Jτ1), given J0 = i .

Since (3.91) holds for arbitrary L ∈ �, we can conclude that

Pg,i (Lb
g
i )(x) = hi (x) ≥ M(g)(x, i).

�
Recall that the class of functions C is defined in (3.69).

Theorem 3.7. For any g ∈ C, if bgi < +∞ for all i ∈ E,M(g) ∈ C.
Proof. Consider any fixed i ∈ E. Since bgi < +∞, by Theorem 3.6 we have
M(g)(x, i) = Pg,i (Lb

g
i )(x). Therefore, by (3.18) and Theorem 3.5 we can con-

clude that M(g)(x, i) is twice continuously differentiable and concave with re-
spect to x. It is obvious that the functionM(g)(x, i) is non-negative.

It remains to show M(g)(x, i) ∈ D. From Lemma 3.2 we know that
M(g)(x, i) is non-decreasing.

It follows by the non-decreasing property of Pg,i (L)(x) that for any i ∈ E

and x ≥ 0,

M(g)(x, i) = sup
L∈�

Pg,i (L)(x) ≤ sup
L∈�

lim
x→+∞Pg,i (L)(x)

=
∑

j �=i qi j g(+∞, j) + di
δi + qi

≤
∑

j �=i qi j
maxl∈E dl
minl∈Eδl

+ di

δi + qi

=
qi

maxl∈E dl
minl∈Eδl

+ di

δi + qi

≤ maxl∈E dl
minl∈Eδl

,

where the first inequality follows by (3.19). �
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4. MAIN RESULTS

In this section we will find sufficient conditions under which the regime-
switching threshold strategy is optimal.We start with defining a conditionwhich
will be shown to be a sufficient condition for the threshold strategy to be the
optimal one later on.

Condition 1: infb≥0{(qi maxl∈E dl
minl∈E δl

+ di )
θ1i eθ1i b+θ2i e−θ2i b

θ3i
− (θ1i + θ4i )eθ1i b −(θ2i −

θ4i )e−θ2i b} < 0, where θ1i denote the positive root to the equation σ 2
i
2 x

2 + μi x−
(δi + qi ) = 0, and θ3i and −θ4i the positive and negative roots to the equation
σ 2
i
2 x

2 + (μi − di )x− (δi + qi ) = 0.

Remark 4.1. For any g ∈ D, it follows from (3.67) that

ξ
g
i (b) ≤ (θ1i eθ1i b + θ2i e−θ2i b)

∫ +∞

b
e−θ3i (s−b)

⎛
⎝∑

j �=i
qi j

maxl∈E dl
minl∈E δl

+ di

⎞
⎠ ds

−(θ1i + θ4i )eθ1i b − (θ2i − θ4i )e−θ2i b

=
(
qi
maxi∈E di
mini∈E δi

+ di

)
θ1i eθ1i b + θ2i e−θ2i b

θ3i
− (θ1i + θ4i )eθ1i b

− (θ2i − θ4i )e−θ2i b.

If Condition 1 holds, then there exists a real number b ∈ [0, +∞) such that ξ gi (b) <

0, and hence by (3.68), bgi ∈ [0, +∞).

Theorem 4.1. If Condition 1 holds for all i ∈ E, then V ∈ C, and for any i ∈ E,
bVi < +∞ and PV,i (Lb

V
i )(x) = V(x, i).

Proof. By Remark 4.1 we know bgi < +∞ for all i ∈ E, and hence M(g) ∈ C
for any g ∈ C by Theorem 3.7. We first show that M is a contraction on C.

Define the norm ||g|| = supx≥0 maxi∈E g(x, i). Consider any two functions
g1, g2 ∈ C.

|M(g1)(x, i) − M(g2)(x, i)|

=
∣∣∣∣sup
L∈�

Pg1,i (L)(x) − sup
L∈�

Pg2,i (L)(x)

∣∣∣∣
≤ sup

L∈�

|Pg1,i (L)(x) − Pg2,i (L)(x)|

= ∣∣E(x,i)
[
I{τ1 < TL}e−�τ1

(
g1

(
RL

τ1
, Jτ1

) − g2
(
RL

τ1
, Jτ1

))]∣∣
≤ E(x,i)

[
e−�τ1

∣∣g1(RL
τ1
, Jτ1

) − g2
(
RL

τ1
, Jτ1

)∣∣ ]
,

≤ E(x,i)
[
e−�τ1

] ||g1 − g2||.
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Note that E(x,i)[e−�τ1 ] = ∫ +∞
0 qi e−qi te−δi tdt = qi

δi+qi . Hence,

||M(g1) − M(g2)|| ≤ max
i∈E

qi
δi + qi

||g1 − g2||. (4.92)

Since maxi∈E

qi
δi+qi < 1, we can conclude thatM is a contraction with respect to

the norm || · || on C.
Consider two controlled stochastic processes {YL

t ; t ≥ 0} and {ZL
t ; t ≥ 0}

defined by

YL
t = Y0 + max

j∈E
μ j t + min

j∈E
σ 2
j Wt −

∫ t

0
lsds, (4.93)

and

ZL
t = Y0 + min

j∈E
μ j t + max

j∈E
σ 2
j Wt −

∫ t

0
lsds. (4.94)

Define the time of ruin of these processes by TL
1 = inf{t ≥ 0 : YL

t ≤ 0} and
TL
2 = inf{t ≥ 0 : ZL

t ≤ 0} and define the sets of admissible strategies �1 and
�2 by

�1 = {L = {lt; t ≥ 0} : L is adapted, 0 ≤ lt ≤ d̄ for t ≥ 0,

and lt = 0 for t ≥ TL
1 },

�2 = {L = {lt; t ≥ 0} : L is adapted, 0 ≤ lt ≤ d for t ≥ 0,

and lt = 0 for t ≥ TL
2 },

where d̄ = max j∈E d j and d = min j∈E d j .
Define

V1(x) = sup
L∈�1

E

[∫ TL
1

0
e−min j∈E δ j tltdt

∣∣∣∣∣Y0 = x

]
,

V2(x) = sup
L∈�2

E

[∫ TL
2

0
e−max j∈E δ j tltdt

∣∣∣∣∣ Z0 = x

]
.

The function V1(x) can be interpreted as the value function of the dividend opti-
mization problem of the controlled diffusion process (4.93) with restricted divi-
dend rates and the discount rate min j∈E δ j . Similarly, V2(x) is the value function
of the dividend optimization problem of the controlled diffusion process (4.94)
with restricted dividend rates and the discount rate max j∈E δ j .

It has been shown in Asmussen and Taksar (1997) that the functions V1 and
V2 are non-negative, increasing, twice continuously differentiable and concave
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on [0, ∞), and that there exist b, b ≥ 0 such that

1
2
min
j∈E

σ 2
j V

′′
1 (x) +

(
max
j∈E

μ j − d̄ I{x ≥ b}
)
V′
1(x) − min

j∈E
δ j V1(x)

+ d̄ I{x ≥ b} = 0 for x > 0, (4.95)

V′
1(x) ≥ 1for 0 < x ≤ b̄, V′

1(x) ≤ 1for x ≥ b̄, (4.96)

V1(0) = 0, V1(x) ≤ d̄
min j∈E δ j

, (4.97)

1
2
max
j∈E

σ 2
j V

′′
2 (x) +

(
min
j∈E

μ j − d I{x ≥ b}
)
V′
2(x) − max

j∈E
δ j V2(x)

+ d I{x ≥ b} = 0 for x > 0, (4.98)

V′
2(x) ≥ 1 for 0 < x ≤ b, V′

2(x) ≤ 1 for x ≥ b, (4.99)

V2(0) = 0, V2(x) ≤ d
max j∈E δ j

. (4.100)

We now proceed to show that

V2(x) ≤ V(x, i) ≤ V1(x) for x ≥ 0 and i ∈ E. (4.101)

For any L ∈ �, by applying Itô’s formula to e−�t∧TL
V1(RL

t∧TL), we obtain

e−�t∧TLV1
(
RL
t∧TL

) − V1
(
RL
0

)
=

∫ t∧TL

0
e−�s

[
1
2
σ 2
Js V

′′
1

(
RL
s

) + (μJs − ls)V′
1

(
RL
s

) − δJs V1
(
RL
s

)]
ds

+
∫ t∧TL

0
e−�sσJs V

′
1

(
RL
s

)
dWs . (4.102)

By noticing that V1 is increasing, non-negative and concave, we have for any
L ∈ �,

1
2
σ 2
Js V

′′
1

(
RL
s

) + (μJs − ls)V′
1

(
RL
s

) − δJs V1
(
RL
s

)
≤ 1

2
min
j∈E

σ 2
j V

′′
1

(
RL
s

) + max
j∈E

μ j V′
1

(
RL
s

) − min
j∈E

δ j V1
(
RL
s

) − lsV′
1

(
RL
s

)
= d̄ I

{
RL
s ≥ b

}
(V′

1

(
RL
s

) − 1) − lsV′
1

(
RL
s

)
= (d̄ − ls)V′

1

(
RL
s

)
I
{
RL
s ≥ b

} − d̄ I
{
RL
s ≥ b

} − lsV′
1

(
RL
s

)
I{RL

s < b}
≤ (d̄ − ls)I

{
RL
s ≥ b

} − d̄ I
{
RL
s ≥ b

} − ls I{RL
s < b} = −ls, (4.103)
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where the first equality is due to (4.95) and the last inequality follows by noticing
ls ≤ d̄ and (4.96).

It is not hard to see that V′
1 is bounded on (0, +∞), and hence

Ex

[∫ t∧TL

0
e−�sσJs V

′
1

(
RL
s

)
dWs

]
= 0. (4.104)

It follows from (4.102), (4.103) and (4.104) that

E(x,i)

[
e−�t∧TLV1

(
RL

(t∧TL)

) − V1
(
RL
0

)] ≤ −E(x,i)

[∫ t∧TL

0
e−�s lsds

]
. (4.105)

By letting t → +∞ in (4.105) and using the dominated convergence, the mono-
tone convergence and (4.97), we can obtain

V1(x) ≥ E(x,i)

[∫ TL

0
e−�s lsds

]
.

Consequently,

V1(x) ≥ sup
L∈�

E(x,i)

[∫ TL

0
e−�s lsds

]
= V(x, i).

Let L̂ denote the strategy that pays dividends at rate d when the surplus is
above b and nothing otherwise until the time of ruin. Note that d ≤ d j for any
j ∈ E, and hence L̂ ∈ �. The controlled process RL̂ has the following dynamics:

dRL̂
t = (

μJt − d I
{
RL̂
t ≥ b

})
dt + σJtdWt.

Applying Itô’s formula to e−�
t∧TL̂ V2

(
RL̂
t∧TL̂

)
yields

e−�
t∧TL̂ V2

(
RL̂
t∧TL̂

) − V2
(
RL̂
0

)
=

∫ t∧TL̂

0
e−�s

[
1
2
σ 2
Js V

′′
2

(
RL̂
s

) + (μJs − d I
{
RL̂
s ≥ b

}
)V′

2

(
RL̂
s

) − δJs V2
(
RL̂
s

)]
ds

+
∫ t∧TL̂

0
e−�sσJs V

′
2

(
RL̂
s

)
dWs . (4.106)
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It follows by noticing that V2 is increasing, non-negative and concave, and that

1
2
σ 2
Js V

′′
2

(
RL̂
s

) + (μJs − d I
{
RL̂
s ≥ b

}
)V′

2

(
RL̂
s

) − δJs V2
(
RL̂
s

)
≥ 1

2
max
j∈E

σ 2
j V

′′
2

(
RL̂
s

) + (min
j∈E

μ j − d I{RL̂
s ≥ b})V′

2

(
RL̂
s

) − max
j∈E

δ j V2
(
RL̂
s

)
= −d I{RL̂

s ≥ b
}
, (4.107)

where the last equality follows from (4.98). Note thatV′
2 is bounded on (0, +∞),

and hence

E(x,i)

[∫ t∧TL̂

0
e−�sσJs V

′
2

(
RL̂
s

)
dWs

]
= 0. (4.108)

It follows from (4.106), (4.107) and (4.108) that

E(x,i)

[
e−�

t∧TL̂ V2
(
RL̂
t∧TL̂

) − V2
(
RL̂
0

)]

≥ −E(x,i)

[∫ t∧TL̂

0
e−�s d I

{
RL̂
s ≥ b

}
ds

]
. (4.109)

By letting t → +∞ in (4.109) and using the dominated convergence, the mono-
tone convergence and (4.100), we can obtain

V2(x) ≤E(x,i)

[∫ TL̂

0
e−�s d I

{
RL̂
s ≥ b

}
ds

]

≤ sup
L∈�

E(x,i)

[∫ TL

0
e−�s lsds

]
= V(x, i).

Define M1(g) = M(g) and Mn(g) = Mn−1(g) for n ≥ 2. Since V1,V2 ∈ C,
it follows from Theorem 3.7 and Remark 4.1 that Mn(V1),Mn(V2) ∈ C for
n ≥ 1.

By the definition ofM in (2.10), we can see thatM is an increasing operator
and that

M(V)(x, i) = sup
L∈�

E(x,i)

[∫ TL∧τ1

0
lte−�tdt + I{τ1 < TL}e−�τ1V

(
RL

τ1
, Jτ1

)]

= V(x, i), (4.110)

where the last equality follows from the dynamic programming principle (2.8).
Therefore, it follows from (4.101) that M(V2) ≤ M(V) ≤ M(V1), and hence
M(V2) ≤ V ≤ M(V1). Therefore, by applying the operator M repeatedly we
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can obtainMn(V2) ≤ V ≤ Mn(V1) for n ≥ 1. SinceM is a contraction on C and
C is a complete space, using the fixed point theory we have limn→+∞ Mn(V1) =
limn→+∞ Mn(V2). Consequently, V = limn→+∞ Mn(V1), and hence V is the
fixed point on C, which implies V ∈ C.

The inequality bVi < +∞ follows immediately by Remark 4.1. It follows
from Theorem 3.6 and (4.110) that PV,i (Lb

V
i )(x) = M(V)(x, i) = V(x, i). �

Define b∗
i = bVi and define the regime-switching threshold strategy L∗ =

{l∗t ; t ≥ 0}, under which, at any time t before the time of ruin, the company pays
dividends at rate dJt if the current surplus is at or above bJt and pays nothing if
the current surplus is below bJt , that is, l

∗
t = dJt I{RL∗

t ≥ bJt }.
Let (RL∗

, J) : (R × E)R+ → (R × E)R+ be the canonical process, and let F
denote the right-continuous canonical filtration induced by (RL∗

, J). Define the
shift operators θt : (R × E)R+ → (R × E)R+ for t ≥ 0 by

(θtω)s = ws+t, s, t ∈ R+, w ∈ (R × E)R+ .

For any two random variables X and Y, we use X ◦Y to denote the composition
as long as it is well defined. It is clear that θt is measurable with respect to F ,
and θt(RL∗

, J) = (RL∗
, J) ◦ θt. Let τ0 = 0 and τ1 be defined in the same way

as before (right above (2.10)). We can further define recursively the transition
times of the Markov process J,

τn+1 = τn + τ1 ◦ θτn , n = 1, 2, . . . . (4.111)

The optional time τn is the time when the nth transition of the state of process
J occurs.

Theorem 4.2. If Condition 1 holds for all i ∈ E, then the regime-switching
threshold strategy L∗ is an optimal strategy.

Proof. It is not hard to verify that L∗ ∈ �.
Note that given the initial state J0 = i , the strategy Lb

V
i is the same as the

strategy L∗ before the first regime switch, which occurs at time τ1. Hence, by
Theorem 4.1 and the definition for the operator PV, j we can see

V(RL∗
τn

, Jτn ) = PV,Jτn (L
bVi )

(
RL∗

τn

) = PV,Jτn (L
∗)

(
RL∗

τn

)
. (4.112)

We can see that given the history of the process (RL∗
, J) up to and including

time t, the conditional probability distribution of L∗ at any future time depends
only on the current time t and the current value (RL∗

t , Jt). Note that the pro-
cess (R, J) without dividend payments is the Markov process. Therefore, the
controlled process (RL∗

, J) is the Markov process. By noting V(RL∗
TL∗ , JTL∗ ) = 0
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and using (2.9) we can derive that for any x ∈ R and i ∈ E

PV,Jτn (L
∗)

(
RL∗

τn

)
= E(RL∗

τn ,Jτn )

[∫ τ1

τ0

e−�t l∗t dt + e−�τ1V
(
RL∗

τ1
, Jτ1

); τ1 < TL∗
]

+E(RL∗
τn ,Jτn )

[∫ TL∗

τ0

e−�t l∗t dt; τ1 ≥ TL∗
]

= E

[∫ τ1◦θτn

τ0◦θτn

e−�t l∗t dt; τ1 ◦ θτn < TL∗ ◦ θτn

∣∣∣∣∣Fτn

]

+E
[
e−�τ1◦θτn V

(
RL∗

τ1
◦ θτn , Jτ1 ◦ θτn

); τ1 ◦ θτn < TL∗ ◦ θτn

∣∣Fτn

]
+E

[∫ TL∗ ◦θτn

τ0◦θτn

e−�t l∗t dt; τ1 ◦ θτn ≥ TL∗ ◦ θτn

∣∣∣∣∣Fτn

]
P(x,i) − a.s., (4.113)

where the last equality follows from the strong Markov property of L∗ and
(RL∗

, J).
Note that τn + τ1 ◦ θτn = τn+1 and

{τ1 ◦ θτn < TL∗ ◦ θτn } ∩ {τn < TL∗ }
= {

RL∗
t > 0 for all t ∈ [τn, τn+1]

} ∩ {
RL∗
t > 0 for all t ∈ [0, τn]

}
= {τn+1 < TL∗ }. (4.114)

Therefore,

E

[∫ τ1◦θτn

τ0◦θτn

e−�t l∗t dt; τ1 ◦ θτn < TL∗ ◦ θτn

∣∣∣∣∣Fτn

]
I{τn < TL∗ }

= E

[∫ τ1◦θτn

τ0◦θτn

e−�t l∗t dt; τ1 ◦ θτn < TL∗ ◦ θτn , τn < TL∗
∣∣∣∣∣Fτn

]

= E
[
e�τn

∫ τn+1

τn

e−�t l∗t dt; τn+1 < TL∗
∣∣∣∣Fτn

]
. (4.115)

Further, noting �τn + �τ1◦θτn
= �τn+1 , we have

E
[
e−�τ1◦θτn V

(
RL∗

τ1
◦ θτn , Jτ1 ◦ θτn

); τ1 ◦ θτn < TL∗ ◦ θτn

∣∣Fτn

]
I{τn < TL∗ }

= E
[
e�τn e−�τn+1V

(
RL∗

τ1
◦ θτn , Jτ1 ◦ θτn

); τ1 ◦ θτn < TL∗ ◦ θτn , τn < TL∗∣∣Fτn

]
= e�τnE

[
e−�τn+1V

(
RL∗

τn+1
, Jτn+1

); τn+1 < TL∗∣∣Fτn

]
. (4.116)
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It can also be seen that τn + TL∗ ◦ θτn = TL∗
on {τn < TL∗ } and that

{τ1 ◦ θτn ≥ TL∗ ◦ θτn } ∩ {τn < TL∗ }
= {

RL∗
t ≤ 0 for some t ∈ [τn, τn+1]

} ∩ {τn < TL∗ }
= {τn < TL∗ ≤ τn+1}. (4.117)

Thus, we have

E

[∫ TL∗ ◦θτn

τ0◦θτn

e−�t l∗t dt; τ1 ◦ θτn ≥ TL∗ ◦ θτn

∣∣∣∣∣Fτn

]
I{τn < TL∗ }

= E

[
e�τn

∫ TL∗

τn

e−�t l∗t dt; τn < TL∗ ≤ τn+1

∣∣∣∣∣Fτn

]
. (4.118)

It follows from (4.112), (4.113), (4.115) (4.116) and (4.118) that for any x ∈ R

and i ∈ E,

e−�τn V
(
RL∗

τn
, Jτn

)
I{τn < TL∗ }

= E
[∫ τn+1

τn

e−�t l∗t dt; τn+1 < TL∗
∣∣∣∣Fτn

]

+E
[
e−�τn+1V

(
RL∗

τn+1
, Jτn+1

); τn+1 < TL∗∣∣Fτn

]
+E

[∫ TL∗

τn

e−�t l∗t dt; τn < TL∗ ≤ τn+1

∣∣∣∣∣Fτn

]

= E

[
I{τn < TL∗ }

∫ τn+1∧TL∗

τn

e−�t l∗t dt

∣∣∣∣∣Fτn

]

+E
[
e−�τn+1V

(
RL∗

τn+1
, Jτn+1

)
I{τn+1 < TL∗ }∣∣Fτn

]
, P(x,i) − a.s.. (4.119)

Now we proceed to show that for i ∈ E,

V(x, i) = E(x,i)

[∫ TL∗∧τk

0
e−�t l∗t dt + e−�τk V

(
RL∗

τk
, Jτk

)
I{τk < TL∗ }

]
(4.120)

using proof by induction. Using the same argument as in the proof of (4.112),
we have

V(x, i) =PV,i (L∗)(x)

=E(x,i)

[∫ TL∗∧τ1

0
e−�t l∗t dt + e−�τ1V

(
RL∗

τ1
, Jτ1

)
I{τ1 < TL∗ }

]
, (4.121)
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where the last inequality follows from the definition of P in (2.9). Therefore,
(4.120) holds for k = 1.

Now suppose (4.120) holds for k = n. Then

V(x, i) =E(x,i)

[∫ TL∗∧τn

0
e−�t l∗t dt + e−�τn V

(
RL∗

τn
, Jτn

)
I{τn < TL∗ }

]

=E(x,i)

[∫ TL∗∧τn

0
e−�t l∗t dt

]

+E(x,i)

[
E

[
I{τn < TL∗ }

∫ τn+1∧TL∗

τn

e−�t l∗t dt

∣∣∣∣∣Fτn

]]

+E(x,i)
[
E

[
e−�τn+1V

(
RL∗

τn+1
, Jτn+1

)
I{τn+1 < TL∗ }∣∣Fτn

]]
, (4.122)

where the last equality follows from (4.119). Consequently, by the double expec-
tation formula it follows that

V(x, i)

= E(x,i)

[∫ TL∗∧τn+1

0
e−�t l∗t dt + e−�τn+1V

(
RL∗

τn+1
, Jτn+1

)
I{τn+1 < TL∗ }

]
. (4.123)

Note that l∗t ≥ 0 for t ≥ 0, V is bounded and limk→+∞ τk = +∞ a.s.. Then it fol-
lows by letting n → +∞ on (4.123) and then using the monotone convergence
and the dominated convergence that

V(x, i) = E(x,i)

[∫ TL∗

0
e−�t l∗t dt

]
,

which implies that L∗ is an optimal strategy. �

5. CONCLUDING REMARKS

We studied the optimal dividend problem for the Markovian regime-switching
diffusion model with restricted dividend rates. We considered the regime-
switching threshold strategy, which is a threshold dividend strategy with thresh-
old levels modulated by the same Makov chain for the model. We found suffi-
cient conditions under which the above-mentioned strategy is the optimal one,
which maximizes the expected total discounted dividends until the time of ruin.
The results we obtained will be extremely useful when there are multiple number
of regimes, e.g. three or more regimes, as the traditional approach to distinguish
different cases, solve the HJB equations explicitly in each case and then try to
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verify whether the solution in each case is or is not the optimal one, is inappli-
cable with multiple number of regimes. Whether the sufficient conditions pre-
sented here hold or not for a specific case can be verified simply by plugging the
values of the model parameters and then performing simple arithmetic calcula-
tions.
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