
Immunity to bovine herpesvirus 1: II. Adaptive
immunity and vaccinology

Randall L. Levings1* and James A. Roth2

1Emergency Management and Diagnostics, Veterinary Services, Animal and Plant Health Inspection

Service, 1800 Dayton Avenue, Ames, IA 50010, USA and
2Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State

University, Ames, IA 50011, USA

Received 3 January 2013; Accepted 30 May 2013

Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases.

Although similar in many respects to the human immune response to human herpesvirus 1,

the differences in the bovine virus proteins, immune system components and strategies,

physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate

immune system initially responds to infection, and primes a balanced adaptive immune

response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells,

is critical to recovery from infection. Humoral immunity, including neutralizing antibody

and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of

(re-)infection. BHV-1 immune evasion strategies include suppression of major histocompat-

ibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune

suppression caused by the virus potentiates secondary infections and contributes to the costly

bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many

vaccines reported include replicating and non-replicating, conventional and genetically

engineered, as well as marker and non-marker preparations. Current development focuses on

delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while

excluding serologic markers and virulence or other undesirable factors. In North America,

vaccines are used to prevent or reduce clinical signs, whereas in some European Union

countries marker vaccines have been employed in the eradication of BHV-1 disease.
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1. Introduction

Bovine herpesvirus 1 (BHV-1) causes important diseases

of cattle globally (Gibbs and Rweyemamu, 1977; Beer,

2012). Infection and the resultant immunosuppression

contribute to the bovine respiratory disease complex

(BRDC), which has a large economic impact on the cattle

industry in USA (Jones and Chowdhury, 2007; Anon,

2011a).

The bovine immune response to infection is robust,

broad-based, and long-lasting, perhaps due to persistent

infection (Babiuk et al., 1996; Engels and Ackermann,

1996; Kaashoek et al., 1996a). The response begins with

internal and external signaling by infected cells, and pro-

ceeds through stimulation of innate and adaptive immune

cells, resulting in cytotoxic T lymphocyte (CTL) and virus

neutralizing (VN) antibody (Ab) to clear the infection and

prevent re-infection.

BHV-1 infection is commonly diagnosed serologically.

Serosurveys have been conducted in Africa (Straub, 1990;

El Hussein et al., 2005), South Asia (Nandi et al., 2009),

East Asia (Kampa et al., 2004; Yan et al., 2008), Australia

(St. George et al., 1967; Smith et al., 1995), North America

(Kahrs et al., 1964; Elazhary et al., 1984), South America

(Straub, 1990), and Europe (Wuyckhuise et al., 1994).*Corresponding author. E-mail: Randall.L.Levings@aphis.usda.gov
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Serological testing and removal of infected animals have

been successfully used to eliminate BHV-1 from Denmark,

Switzerland, and Austria (Ackermann and Engels, 2006).

BHV-1 disease is widely vaccinated against, on multiple

continents. A variety of vaccines have been employed,

such as replicating and non-replicating or conventional

and genetically engineered (Turin et al., 1999). Many of

the vaccines have had problems or issues in application,

including virulence, immunosuppression, recrudescence,

or failure to protect. In North America, the aim is disease

suppression, whereas in many EU countries vaccination is

used in eradication campaigns (van Drunen Littel-van den

Hurk, 2006). BHV-1’s large genome size has resulted in

investigation of its use as a viral vector for vaccination

against other cattle diseases (Kit et al., 1991; Schrijver

et al., 1997; Kweon et al., 1999).

The molecular characterization of BHV-1 and its

infection, and useful extrapolations from human alpha-

herpesvirus (aHV) infections, have led to the use of BHV-

1, as a model for vaccine and other technologies. The cost

and pervasiveness of BHV-1 disease and the mixed record

of vaccination success mean the knowledge gained

and tools developed from research and development are

likely to find practical and impactful application. For

these reasons, examination of the bovine immune re-

sponse to infection with and vaccination against BHV-1 is

important and relevant.

2. The bovine adaptive immune response to BHV-1

2.1 The mammalian and bovine immune response
to alphaherpesvirus infection

The bovine immune system is of interest because of the

economic importance of cattle to pastoral communities

and commercial enterprises globally. Its similarities to and

differences from the better-studied mouse and human

immune systems are only beginning to be understood.

Some features appear to be fundamental and are

conserved (Hirano et al., 2011), allowing useful general-

izations or extrapolations. However, there are also

differences in strategies [e.g., for generation of diversity

of lymphocyte (LC) antigen (Ag) receptors and immuno-

globulins (Igs)] between mammalian orders, families,

genera, and species. It has been noted that ‘cattle- specific

evolutionary breakpoint regions have a higher density of

species-specific variations in genes having to do with

lactation and immune responsiveness’ (The Bovine

Genome Sequencing and Analysis Consortium et al.,

2009). The interactions of stress, nutrition, and fertility

with the innate and adaptive immune systems are

important for cattle (Salak-Johnson and McGlone, 2007;

Lippolis, 2008).

Most of what is known about mammalian immunity to

aHV was first elucidated in the human herspesvirus 1

(HHV-1)-mouse system, and then confirmed or expanded

in HHV-1/2-human and other systems, e.g., suid herpes-

virus 1 (SHV1)-mouse or -swine. The bovine immune

response to BHV-1 has been well reviewed at intervals

(Rouse and Babiuk, 1978; Wyler et al., 1989; Tikoo et al.,

1995a; Babiuk et al., 1996; Engels and Ackermann, 1996;

Muylkens et al., 2007).

The response begins with internal and external

(cytokine) signaling by infected cells. Innate immune

cells including macrophages (Mf), polymorphonuclear

neutrophils (PMN), plasmacytoid dendritic cells (pDC),

and natural killer (NK) cells are recruited to the site

and activated. These immune cells secrete more cyto-

kines, kill virus-infected cells, and bridge to the adaptive

response, including by presenting Ag to LCs. It has been

noted that innate and adaptive immune cells have a

complex interaction in aHV infections (Schuster et al.,

2011).

Starting at day 5, and peaking days 7–10, helper T cells

activate Mf and NK cells, and promote the proliferation of

specific CTLs. Finally, beginning at day 10 and peaking

after the infection is largely resolved, VN and other Abs

are detectable. They likely help with clearing extracellular

virus and with cellular cytotoxicity. Ab can then protect

the host from reinfection (by recrudescence or another

exposure), and can protect the neonate via colostrum.

The main adaptive immune response to the virus and

virus-infected cells is to the viral envelope GPs: gB, gC,

and gD.

The bovine adaptive immune response to BHV-1 and

vaccination to prevent the diseases it causes are the foci of

this review. The BHV-1 life cycle and bovine innate

immune response to the virus are the subject of another

review (Levings and Roth, 2013).

2.2 Adaptive immune system components and
activities

The adaptive immune response is characterized by: (1) the

specificity of T- and B-LC receptors due to gene segment

rearrangement and assembly, mutation, and clonal

selection; and (2) the memory of the response (Bonilla

and Oettgen, 2010). B cells recognize surface epitopes

with the immunoglobulin B-cell receptor (BCR). T cells,

by means of the T-cell receptor (TCR), recognize peptides

that are the products of protein breakdown in another cell

and displayed on that cell’s surface in a complex with

a major histocompatibility complex (MHC) molecule

(Murphy et al., 2008). The adaptive response is commonly

described as having two ‘arms’, cell-mediated and

humoral, enabled by T-helper 1 and 2 responses, respec-

tively. The involvement of T cells in both ‘arms’ means

that, unlike the innate response, the adaptive response is

‘MHC-restricted.’

MHC restriction describes the phenomena of T cells

only being stimulated by peptides bound to ‘self’ MHC.

They only kill infected cells with the same MHC type I or
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proliferate when presented with Ag by cells of the same

MHC type II. This has been demonstrated in cattle using

multiple viral systems, including studies of genetic vari-

ation in strength and character of immune response to

pathogens, and determination of key amino acid (aa)

residues in MHC- binding pockets for vaccine design

(Collen and Morrison, 2000; Glass, 2004; Baxter et al.,

2009; Gerner et al., 2009; Glass et al., 2012).

However, for LCs to proliferate, become effector cells,

and generate memory cells, a ‘second signal’ beyond Ag

recognition by BCR or TCR is needed, such as binding by

a co-receptor and stimulation by cytokine. A third signal is

also proposed for efficient stimulation (Curtsinger et al.,

1999; Ruprecht and Lanzavecchia, 2006).

The bovine response to BHV-1 is balanced, including

generation of CTL and VN Ab. CTLs are considered im-

portant for virus clearing and recovery from an infection,

and Abs in the prevention of BHV-1 (re-)infection

(Babiuk et al., 1996).

2.2.1. Antigen presenting cells
Dendritic cells (DCs), Mfs, and B cells can serve as

antigen presenting cells (APC), because in addition to

presenting Ag peptides on MHC I or II, when activated

during an infection they express the co-stimulatory mol-

ecules needed to activate T cells (Renjifo et al., 1999;

Murphy et al., 2008). They migrate to the local draining

lymph node to do so. DCs have the unique ability to

sensitize (prime) naïve T cells. Mfs and B cells present

engulfed and soluble Ag, respectively, to primed effector

T cells (Murphy et al., 2008).

Conventional DCs (cDCs) are so named to differentiate

them from pDC, which have a different origin and dis-

tribution in tissues. cDCs, also known as myeloid DCs,

include migratory cells and lymphoid-resident cells (Freer

and Matteucci, 2009). cDC: (1) have specialized mech-

anisms for Ag capture and processing; (2) migrate to

defined sites in lymphoid organs to initiate immunity;

and (3) rapidly mature in response to a variety of

microbial and other stimuli (e.g., cytokines produced by

innate immune cells) (Steinman and Hemmi, 2006). After

activation, cDC produce interleukin (IL)-12 and IL-15

that stimulate interferon (IFN)-g secretion by NK cells,

and promote differentiation of CD4+ and CD8+ T cells

(Lambotin et al., 2010). So, they serve as a major link

between innate and adaptive immunity. cDCs are con-

tinuously produced and positioned at the skin, mucosal

surfaces, and in the blood, so they are likely to rapidly

encounter and be activated by invading pathogens

(Murphy et al., 2008). cDCs can be infected by viruses

themselves, can phagocytize infected cells, or can micro-

pinocytose Ag. Migrating cDC may also transfer Ag to

lymph node resident DC (Murphy et al., 2008; Singh and

Cresswell, 2010).

cDCs are equipped with a set of varied pathogen

recognition receptors (PRR), such as toll-like receptors

(TLR) in the endosome and retinoic acid-inducible gene I

(RIG-I)-like receptors (RLR) in the cytosol. Damage-

associated molecular patterns (DAMP) may also activate

immature DC (Nace et al., 2012). Stimulation changes the

chemokine receptors on the cDC, which in turn results in

their ability to migrate to the peripheral lymphoid tissue

to activate naïve T cells (Murphy et al., 2008). Activated

DCs also present many peptide-MHC complexes and

co-stimulatory molecules, such as B7.1 (CD80) or B7.2

(CD86), for which T-cells express complementary CDs

(e.g., CD28) (Murphy et al., 2008).

cDCs comprise two main subsets: CD8�, which

are efficient at presenting exogenous Ag on MHC II to

CD4+ T cells; and CD8+, which present Ag on MHC I

to CD8+ T cells (Reizis et al., 2011). Presentation to naïve

CD8+ T cells is known as cross-priming, and presentation

to stimulated ones is known as cross-presentation (Singh

and Cresswell, 2010). Cross-presentation is important

for the response to viruses that do not infect APCs

directly. The dominant mechanism for cross-presentation

is translocation of Ags to the cytosol, where proteasomal

degradation generates peptides, which are then trans-

ported via the transporter associated with antigen

processing (TAP) and bind to newly synthesized MHC I

(Singh and Cresswell, 2010). DC can also regulate T cell

differentiation with IL (Freer and Matteucci, 2009). cDCs

produce IL-6, IL-8, IL-12, and tumor necrosis factor (TNF)-

a (Murphy et al., 2008). DCs performed better than

monocytes as APCs for BHV-1 (measured by stimulation

of T-cell proliferation in vitro). The DCs were not BHV-1-

infected (Renjifo et al., 1999).

Mfs from BHV-1-infected cattle were shown to express

increased levels of MHC II (Tikoo et al., 1995a), and Ag

presentation by bovine alveolar Mfs was shown to

stimulate proliferation of T cells in vitro. Bovine alveolar

Mf and monocytes are permissive to BHV-1 infection

(Renjifo et al., 1999), resulting in the impairments de-

scribed in another review focused on the innate immune

system (Levings and Roth, 2013).

B cells can internalize Ag bound to the BCR, and

process it in the endosome (triggering TL7 and TLR9, a

third signal for the B cells), leading to presentation of Ag

on MHC II (Lanzavecchia and Sallusto, 2007).

2.2.2. Lymphocytes
LCs are the effector cells of the adaptive immune system.

Study of leukocyte differentiation molecules has shown

that many of those identified in human beings and mice

(e.g., CD-2, �3, �4, �8) are highly conserved in structure

and function across mammalian species (Davis and

Hamilton, 1998).

2.2.3. T lymphocytes
T-cell receptors are constituted of two chains, each of

which is coded by recombined gene segments (resulting

in high diversity). The gene segments are variable (V),

junction (J), diversity (D), and constant (C). The proteins

are made by recombination of VJC (a and g chains) and
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VDJC (b and d chains) genes (Murphy et al., 2008).

Nucleotide deletion and substitution at the V(D)J junction

by exonuclease and terminal deoxynucleotide transferase

activity increases the diversity achieved during recombi-

nation. Consequentially much of the variability is focused

in the complementarity determining region (CDR) 3,

encoded by the V(D)J junction (Connelley et al., 2008).

The CDR3s of both chains are central in the binding site

and key to Ag recognition (Murphy et al., 2008).

Human and murine TCRs are predominantly a�b .

There are 40–70 variable a or b gene segments, many J

segments, and the D gene for the b chain is frequently

read in three frames. The pairing, recombination, and

junctional diversity together lead to a diversity of 1018

(Murphy et al., 2008). The contribution of g d TCR to TCR

diversity in humans is minimal.

For cattle it was assumed that the high levels of g d
diversity observed meant ab diversity was likely to be

low, but this appears not to be the case. Over 400 genes

have been observed in the a�d locus (Reinink and Van

Rhijn, 2009) and 48 functional Vb genes of 17 subfamilies

were identified. Clonal expansions were distributed over

a large number of Vb subfamilies, although a limited num-

ber of clonotypes dominated the response (Connelley

et al., 2008).

2.2.4. Bovine gd T cells
Unlike in human beings and mice, g d T cells are a major

population of T cells in cattle, particularly in calves,

where they account for 60% of peripheral blood

leucocytes (PBLs) (Chen et al., 2009). There is more gene

diversity (VDJC g ; VJC d ) in ruminants and some other

species than in mice and humans (Reinink and Van Rhijn,

2009), and multiple g genes are used (Guzman et al.,

2012). g dTCRs interact with non-classical MHCs in mice

and humans; it is believed unlikely that g dTCR interact

with classical MHC in cattle (Reinick and Van Rhijn, 2009).

Two populations of g d T cells have been found

(MacHugh et al., 1997): WC1+, CD2�, CD4�, CD8�; and

WC1�, CD2+, CD8+/�. WC1+, CD2�, CD4�, CD8� cells are

present in peripheral blood, marginal zones of the spleen,

dermal, and epidermal layers of the skin and lamina

propria of the gut. The majority of WC1�, CD2+ CD8+/�

cells is localized in the red pulp of the spleen. The two

populations use different families of TCR genes

(MacHugh et al., 1997; Blumerman et al., 2006). Up to

90% of g d T cells in PBL are WC1+ (Baldwin et al., 2000).

WC1+ g d T cells are believed to be inflammatory, and

WC1� g d T cells regulatory (Meissner et al., 2003; Chen

et al., 2009).

WC1 is a transmembrane glycoprotein encoded by a

large, multi-gene family, part of the group B scavenger

receptor cysteine-rich (SRCR) superfamily (Herzig and

Baldwin, 2009; Herzig et al., 2010). Its function is un-

known but may serve as a functional homolog of CD4 and

CD8 on ab T cells, regulating g d T-cell response or

affecting signaling from outside the cell (Chen et al.,

2009). Isoforms WC1.1 and WC1.2 have been identified.

The largely non-overlapping populations of g d T cells

bearing them decrease with age differently and appear to

have distinct immunological roles (Rogers et al., 2005).

Pathogen-associated molecular patterns (PAMPs) prime

bovine g d T cells, as observed by an increase in receptors

in the absence of IFN-g secretion (Jutila et al., 2008). A

population of WC1+ g d T cells increased expression of

MHC II, processed Ag, and demonstrated NK cell-like

killing in response to infection with foot-and-mouth

disease virus (FMDV) (Toka et al., 2011). A large popu-

lation of CD8+ T cells in cattle is g d T cells (MacHugh

et al., 1997), and a subset of CD8+ g dT cells home to

mucosal tissues due to selective expression of adhesion

molecules and chemokine receptors (Wilson et al., 2002).

A population of peripheral blood g d T cells increased

rapidly upon inoculation with or exposure to BHV-1

(Amadori et al., 1995). Vaccination with one dose of

modified live BHV-1 generated g d T cells in the peri-

pheral blood of cattle that became activated in response

to live BHV-1 in culture (using CD25 as a marker)

(Endsley et al., 2002). Of two populations of bovine g d T

cells studied (CD2� and CD2+), one (CD2�/D62L+) was

reduced after vaccination with product containing inacti-

vated BHV-1 and other viruses (Vesosky et al., 2003).

2.2.5. CD8, CD4 and T-cell types
Double-positive thymocytes that have been positively

selected develop into either CD4+ or CD8+ T cells, as

determined by the MHC-restriction specificity of their TCR

(Singer et al., 2008). CD8+ cells become CTLs. CD4+ cells

can differentiate into T-helper 1 (Th1), T-helper 2 (Th2),

T-helper 17 (Th17) or T regulatory (Treg) cells (Murphy

et al., 2008). IL-12, IL-18, TNF-a and IFN-a are associated

with skewing naïve T cells to Th1. Th2 cells are produced

in the absence of such cytokines and in the presence

of IL-19. Transforming growth factor (TGF)-b promotes

the generation of Treg cells, whereas IL-6 inhibits

the generation of Treg and induces Th17 cells (Freer and

Matteucci, 2009). Th1 cells activate Mfs, including

increasing their ability to kill intracellular pathogens

(such as BHV-1). Th2 cells provide help in B-cell acti-

vation and class switching. Th17 cells enhance neutrophil

response, and Treg cells suppress the T cell response

(Murphy et al., 2008).

IFN-g is produced by Th1 CD4+ and CD8+ CTL

effector T cells as part of the adaptive immune response

(Schoenborn and Wilson, 2007). IL-12 produced by APC

stimulates T cells to produce IFN-g (Jaime-Ramirez et al.,

2011). It is ‘a predominant response after BHV-1 infection’

(Campos et al., 1989) and is necessary for the activation of

non-MHC restricted cytotoxic activities mediated by Mf.
Bovine CTLs (Hogg et al., 2011), Th1s, and Th2s have

been characterized. Although a strict Th1/Th2 dichotomy

was not observed, a biased immune response was indi-

cated when the cytokines expressed by cloned Th cells

with different Ag specificities were compared
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(Brown et al., 1998). There is evidence for bovine Treg

activity in populations of CD4+, CD25+ and of WC1+,

CD4+, CD25+ g d T cells (Coussens et al., 2012).

2.2.6. CD8 T cells
CD8+ T cells predominantly recognize peptide–MHC I

complexes (because CD8 binds best to MHC I), and kill

the cells that bear them. The peptides are bound primarily

at the ends of the MHC binding groove. MHC I is present

on all cells and are normally loaded with self-peptide frag-

ments generated by proteasomes via TAP (Murphy et al.,

2008). Typically, viral proteins are processed into pep-

tides in the cytoplasm by proteasomes. They bind to the

TAP1-TAP2 heterodimer, and after the dimer undergoes

conformational changes, are transported into the endo-

plasmic reticulum lumen where they are loaded onto

MHC I molecules (Neefjes et al., 1993; Knittler et al.,

1999). The MHC I–peptide complexes are presented on

infected cell or APC surfaces. IL-12 and IFN-I have been

proposed as the third signal for human CD8 (Curtsinger

et al., 1999; Curtsinger and Mescher, 2010).

CTLs kill by releasing perforin, which helps deliver

granzymes into the target cell, granzymes, which are pro-

proteases that are activated intracellularly to trigger apo-

ptosis in the target cell, and granulysin (in human beings).

CTLs also carry the membrane-bound effector molecule

Fas ligand (CD178), which binds to Fas (CD95) on a target

cell to activate apoptosis in the Fas-bearing cell. This latter

mechanism may be less important for virus-infected

cell killing than for killing LC after the response is over

(Murphy et al., 2008).

Granzymes trigger apoptosis by activating caspases. For

example, granzyme B cleaves and activates caspase 3,

which triggers a cascade ending in DNAse. The DNAse

degrades both cellular and viral DNA. Granzyme B also

triggers apoptosis through actions that result in the release

of apoptosis-inducing molecules, including cytochrome c

(Murphy et al., 2008). Bovine CD8+ T cells express per-

forin (increasing with age) (Hogg et al., 2011) and have

demonstrated MHC I-restricted killing in vitro (Guzman

et al., 2008).

BHV-1-encoded proteins appear on the cell surface to

serve as targets within 3–4 h after infection (Babiuk et al.,

1975, 1996). gC and gD were demonstrated targets for

CD8+ CTL (Denis et al., 1993), although when cells were

infected with vaccinia expressing BHV-1 gB, gC, or gD,

memory T-cell populations did not react with them (Hart

et al., 2011). Bovine CTL killing was MHC I-restricted

and BHV-1-specific (Splitter et al., 1988; Hart et al.,

2011). Cell-mediated immunity (CMI) responses peaked

7–10 days after infection and correlated with recovery

(Babiuk et al., 1996). CTLs likely play a role in control

of recrudescence from latency in aHVs (Jones and

Chowdhury, 2007).

Herpesviruses (HV) have multiple mechanisms to

evade CTL killing (Ploegh, 1998), and in some cases

even closely related viruses such as aHV use different

molecules for the same mechanism, or different mechan-

isms for the same molecule (Koppers-Lalic et al., 2008;

Deruelle and Favoreel, 2011). It should be noted that

although in BHV-1 infection CD4+ T cells are killed pref-

erentially, CD8+ numbers decreased in PBMC in infection,

resulting in decreased CMI (Winkler et al., 1999).

The BHV-1 gN homolog encoded by UL49.5 (Liang

et al., 1993) interferes with peptide transport for MHC

loading (Hinkley et al., 1998). It binds to TAP, inhibits

its peptide transport, and results in TAP degradation

(Koppers-Lalic et al., 2005; Lipińska et al., 2006). The

BHV-1 UL49.5 protein is predicted to be composed of an

N-terminal 22 aa signal sequence, a luminal 32 aa domain,

a 25 aa transmembrane domain, and a 17 aa cytoplasmic

tail (Liang et al., 1993; Lipińska et al., 2006). UL49.5 binds

TAP via its transmembrane domain and inhibits TAP

conformational transitions (Loch et al., 2008; Verweij

et al., 2008). Deletion of the entire cytoplasmic tail or the

terminal two aa of UL49.5 eliminates TAP degradation

(Loch et al., 2008), and it was determined that a 3-aa

luminal sequence signals the aa in the cytoplasmic tail

to initiate both inhibition and degradation of TAP (Wei

et al., 2011). Infection with BHV-1 with deletions in both

luminal and terminal sequences induced more rapid

onset (but similar peak levels) of VN Ab and CMI in calves

than infections with wild-type BHV-1 (Wei et al., 2012).

The suppression of MHC I Ag presentation results in BHV-

1 immune evasion in the initial stages of infection

(Koppers-Lalic et al., 2001, 2005, 2008; Gopinath et al.,

2002), which is consistent with the previously observed

transient suppression of CMI early in infection (Ohmann

and Babiuk, 1985; Tikoo et al., 1995a). It is of interest that

the gN homologs of various varicelloviruses employ di-

verse mechanisms to interfere with TAP activity (Koppers-

Lalic, 2007; Deruelle and Favoreel, 2011).

Other BHV-1 factors inhibit CTL killing. BHV-1 gG is a

chemokine-binding protein that prevents homing of LCs

to sites of infection (Jones and Chowdhury, 2007). BHV-1

viral host shutoff (VHS) protein shuts down synthesis of

MHC I (and MHC II), reducing Ag presentation (Koppers-

Lalic et al., 2001; Gopinath et al., 2002; Muylkens et al.,

2007). The latency-related (LR) alternate transcript binds

BH3-interacting domain death agonist (Bid), which is

specifically cleaved by granzyme B. In this way LR pro-

teins impair the CTL-induced death of infected neurons

(Jones and Chowdhury, 2007).

Other aHV immune evasion activities may be assumed

for BHV-1, but have not yet been demonstrated. Despite

low aa sequence similarity, the US3 homologs show

‘substantial functional conservation’ (Deruelle and Favor-

eel, 2011). HHV-1 US3 has multiple immune evasion

activities, and many of these have also been observed

in SHV1. US3 interferes with: (1) fas-mediated apoptosis;

(2) MHC I presentation of Ag, as do the homologs HHV3

open reading frame (ORF) 66 and SHV1 US3; and

(3) endocytosis of gB in HHV-1, which has not been

shown for BHV-1 (Deruelle and Favoreel, 2011).
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The HHV3 US3 homolog ORF66 retains mature MHC I

complexes in the cis/medial Golgi (Griffin et al., 2010).

HHV-1 gD also blocks apoptosis (Roizman and Taddeo,

2007).

In other cases, aHV anti-CTL or anti-apoptosis factors

have no homolog in BHV-1. HHV-1 gJ blocks CTL

(Roizman and Taddeo, 2007), but has no homolog in

BHV-1 (Schwyzer and Ackermann, 1996; Schmitt and

Keil, 1998). HHV-1 infected cell protein (ICP) 47 (IE12)

inhibits MHC I expression (Bauer and Tampé, 2002), but

has no homolog in BHV-1 (Ambagala et al., 2004). Finally,

HHV-1 US11-encoded proteins including ICP 34.5 interact

with protein kinase R (PKR) and Beclin 1, both inhibiting

autophagy and presentation of GPs on the cell surface

(Shah et al., 2009; Cavignac and Esclatine, 2010; Taylor

et al., 2011), but there are no homologs in BHV-1

(Schwyzer and Ackermann, 1996; Schmitt and Keil, 1998;

Henderson et al., 2005).

BHV-1 infection leads to programmed cell death, with

p53 and caspases activated (Devireddy and Jones, 1999).

Penetration of the cell is not needed (Hanon et al., 1999).

The induction or blocking of apoptosis is a matter of

timing for the host and aHV (Srikumaran et al., 2007).

Early in the cell infection, apoptosis destroys viral com-

ponents (including progeny DNA), obviating their assem-

bly and release. Thus, when danger signals and immune

cells induce apoptosis, there is an advantage to the host.

After assembly, however, apoptosis may be advantageous

to release of the virus (Nguyen and Blaho, 2009). The

balance may also be cell type dependent.

2.2.7. CD4+ T cells
CD4+ T cells predominantly recognize peptide–MHC II

complexes (because CD4 binds best to MHC II) and are

activated by or activate the cells that bear them. MHC II are

borne primarily by APC, and bind proteasome-degraded

peptides along their length (Murphy et al., 2008). IL-1

has been proposed as the third signal for human CD4

(Curtsinger et al., 1999; Curtsinger and Mescher, 2010).

CD4+ Th1 can bear Fas ligand, which triggers death of

the Fas-bearing cell (Murphy et al., 2008).

During BHV-1 infection, CD4+ T cells are considered to

be essential for virus clearance in vivo. CD4 T cells, but

not g d T cells or CD8+ T cells, were identified as the

limiting cell type in Ag-induced proliferation in BHV-1

infection (Denis et al., 1994). They are required for the

generation of Ab-producing cells, MHC II-restricted CD4+

CTL (Wang and Splitter, 1998), and other cytotoxicity

activity (Renjifo et al., 1999). Th1s secrete IL-2, IL-12, IFN-

g and Th2s secrete IL-4, IL-5, IL-6 and IL-10 to drive the

Ab response (Campos et al., 1994). CD4+ T cells were

cytotoxic against Mfs pulsed with BHV-1 peptides, acting

through Fas and in an MHC II-restricted fashion (Wang

and Splitter, 1998). The association of BHV-1 Ab response

and MHC II genotype has been studied (Juliarena et al.,

2009).

BHV-1 gB, gC, gD, and viral protein (VP) 8 are

recognized by CD4 T helper cells from immune cattle

(Hutchings et al., 1990; Leary and Splitter, 1990). gE, gI,

and gG were shown not to be significant for lymphopro-

liferative responses (Denis et al., 1996). T-cell hetero-

hybridomas specific for gB, gC, and gD have been

generated (Nataraj and Srikumaran, 1994), and T-cell

epitopes have been mapped on BHV-1 gB (Gao et al.,

1999) and gD (Tikoo et al., 1995b).

BHV-1 infects and results in apoptosis of CD4+ T cells,

including activated ones (Griebel et al., 1990; Eskra and

Splitter, 1997; Winkler et al., 1999). CD4+ but not CD8+

T cells were shown to be infected, and gD (g 1, leaky-late)

but not gC (g 2, late) transcripts were detected, indicating

a non-productive infection (Winkler et al., 1999). UV-

irradiated BHV-1 suppressed IL-2 and (heterologous) Ag-

induced proliferative responses (Hutchings et al., 1990).

Anti-gB or gD Ab was able to block this effect. BHV-1 has

other mechanisms of reducing CD4+ T-cell responses.

BHV-1 VHS (UL41) causes a decrease of MHC II (and

MHC I) presentation (Muylkens et al., 2007). Light (L)-

particles (Dargan et al., 1995) have been observed in

BHV-1 infected MDBK cells and are believed to be

involved in immune evasion (Meckes and Raab-Traub,

2011). They do this by shuttling HLA-DR (MHC II) to the

exosomal secretion pathway instead of the cell surface.

2.2.8. B lymphocytes
Naive B-cell activation is dependent on three signals:

(1) BCR binding by Ag, followed by (2) cognate inter-

action with helper T cells through an immunological

synapse, and (3) TLR stimulation (Ruprecht and

Lanzavecchia, 2006; Lanzavecchia and Sallusto, 2007;

Murphy et al., 2008). The B-cell ‘co-receptor complex’

includes CD21 [C receptor 2 (CR2)], CD19, and CD81. If

the cleaved C fragment C3d is bound to Ag, the com-

plement can bind CR2, the Ag can bind BCR, and the

complex of the two can result in augmented signal

(Murphy et al., 2008). Some repeating Ags (T-cell

independent Ag) and anti-idiotypic Ab are able to provide

multiple signals by cross-linking BCR.

BCR binding up-regulates TLRs (Ruprecht and Lanza-

vecchia, 2006) and MHC II (Ratcliffe and Mitchison, 1984),

which are keys to subsequent signals. Specific activation

of the B cell by its cognate T cell (a helper T cell primed

by the ‘same’ Ag) consists of ILs and ligand (T-cell CD40L

to bind B-cell CD40) (Murphy et al., 2008). The T cells

must recognize Ag on the B cell in association with

MHC (Ratcliffe and Mitchison, 1984). The T-cell – B-cell

immunological synapse is enriched in the center for TCR–

MHC–peptide and CD40-CD40L, and ‘sealed’ at the

periphery by interaction of T-cell LFA-1 and B-cell

ICAM-1 (Murphy et al., 2008). The T and B cells polarize

their secretory and endocytic/exocytic machinery, respec-

tively, toward the synapse (Duchez et al., 2011). Th2s

provide help in B-cell activation and secrete the B-cell

growth factors IL-4, IL-5, IL-9, and IL-13. In cattle, IL-2 was
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observed to drive the Ab response, but other factors may

drive it to one class or another (e.g., IgG1 with IL-4 or

IgG2 with IFN-g ) (Estes and Brown, 2002; Estes, 2010).

The roles of cytokines in the mouse were not found to

extrapolate well to cattle.

2.2.9. Immunoglobulins
Ig generation, classes and subclasses, and strategies

for their use may vary between mammalian species. For

example, the ileal Peyer’s patch is a likely bursa equi-

valent in cattle (Meyer et al., 1997). The concentration of

different Ig classes in milk and colostrum varies consider-

ably according to species, breed, age, stage of lactation,

and health status. In many species, absorption of Igs is

selective and receptor mediated. In ruminants, absorption

is non-selective during the first 12–36 h after parturition

(Marnila and Korhonen, 2011). Ig subclasses do not match

between species because the species diverged before the

classes or subclasses subdivided (Butler, 1995). IgG1 is

the primary secretory Ig in cattle.

Diversity of Ag specificity is generated by five main

mechanisms: (1) combinations of different variable-light

(VL) and -heavy (VH) domains; (2) combinations of differ-

ent V, diversity (D), and J genes; (3) addition and deletion

of nucleotides at junctions of V, (D), and J genes during

recombination; (4) somatic hypermutation; and (5) gene

conversion. Different species have been found to

use different strategies to generate diversity (reviewed

in Butler, 1997). Primates and rodents express a large

number of V, D, and J genes and emphasize com-

binatorial mechanisms as well as templated (Ag-driven)

somatic hypermutation (mutations in ‘hotspots’ while

the B-lymphocyte is in the germinal center) (Teng and

Papavasiliou, 2007). Artiodactyls, lagomorphs, and

chickens, conversely, express few V, D, and J genes and

emphasize untemplated somatic mutation and gene

conversion.

Bovine Ig genes (C, then V, then J and D) were located

on chromosomes (Zimin et al., 2009), using homology to

mouse and human genes and the identification of flank-

ing, conserved recombination signal sequences (RSS)

(reviewed in Butler, 1995, 1997). It was determined that

cattle express one VH family (Saini et al., 1997; Niku et al.,

2012). Bovine light (L) chains are predominantly lambda

type, with only a few sub-families of genes, and only a

few sub-sub-families are used (Sinclair et al., 1995). One

J gene is predominantly expressed in each of H (Saini

et al., 1997; Zhao et al., 2003) and L (Pasman et al., 2010)

chains. Three D genes have been identified, with varying

lengths that contribute to varying length H chain CDR3,

including the extremely long ones found in IgM only

(Shojaei et al., 2003).

Ig effector function is in the crystallizable fragment (Fc),

or C domains. Key Ig effector functions in the immune

response to BHV-1 include VN, C fixation, and Ab-

dependent cell-mediated cytotoxicity (ADCC). These

functions are important late in the immune response,

and protect the host from further primary or later re-

infection. They are effective against virions and infected

cells.

2.2.10. Virus neutralization by Ab
Ab neutralization of animal virus infectivity can occur by

multiple mechanisms (Klasse and Sattentau, 2002; Read-

ing and Dimmock, 2007). Extracellular Ab may (1)

aggregate virions and reduce the number of infectious

centers, (2) mimic a cell receptor to bind virions and lead

to premature virion steps (e.g., release of the genome),

(3) inhibit virion attachment by blocking receptor en-

gagement, (4) inhibit fusion, either at the cell membrane

or in an endocytotic vesicle, or (5) bind to a cell-surface

protein and result in the transduction of a signal into the

cell that aborts the infection. Post-entry neutralization

can occur by transmission of a signal via the virus surface

protein to the virion core. Transcytosing IgA may

neutralize virus when their respective vesicles fuse. Ab

may bind nascent virions and block their budding or

release from the cell surface (Reading and Dimmock,

2007).

In the bovine immune response to BHV-1, Ab is the key

to binding GPs and preventing attachment. This can occur

to prevent extracellular virus from infecting host cells late

in primary infection, during re-activation, and upon

secondary exposure. Ab can coat the virus as it is being

shed (Pastoret et al., 1979).

In the primary response, gB, gC, and gD are the

primary inducers and targets of neutralizing Ab (Turin

et al., 1999). The response is expanded in recrudescence

or secondary exposure – it is elevated against the major

GPs, and responses to minor GPs like gE ‘become detec-

table.’ Dubuisson et al. (1992) examined the neutraliza-

tion mechanisms of monoclonal Ab (MAb) to gB, gC, and

gD. The majority of MAbs did not prevent attachment.

Few MAbs to gB were effective. Anti-gD MAb worked as

well after attachment as before, which was likely due to

gD’s role in penetration. C enhanced the activity of almost

all of the gB and gC MAb, but not the gD MAb. The

conformational change of HHV-1 gD when it binds

receptor provides a new neutralization site (Lazear

et al., 2012).

Passive immunity Ab protected against fatal multi-

systemic BHV-1 disease in newborn calves (Turin et al.,

1999), but did not prevent initial viral replication, result-

ing in latency. This results in seronegative latent carrier

(SNLC) animals after the maternal Ab declines (Lemaire

et al., 2000a; Nandi et al., 2009). Experimental passive

transfer of Ab did not protect completely, although

it prevented death from challenge (Marshall and

Letchworth, 1988).

aHV evade neutralizing Ab using three mechanisms

(Favoreel et al., 2006): (1) Fc receptor Ab binding (by

gE/gI, which is not apparent for BHV-1) (Whitbeck et al.,

1996); (2) endocytosis of GPs, or Ag-Ab complex inter-

nalization by same mechanism; and (3) hiding from Abs
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through intracellular retention of viral proteins and

directed egress to intimate cell–cell contacts. The synapse

can be seen as an example of the latter (Favoreel et al.,

2006). In HHV-1, cell-to-cell transmission depends on

gE–gI, which binds to components of cell junctions (while

gD localizes to apical surface) (Dingwell and Johnson,

1998). BHV-1 gC includes Ig-related domains. The low

gC reactivity of bovine antisera may be explained by

molecular mimicry (Fitzpatrick et al., 1989, 1990). Finally,

syncytial strains of HHV-1 avoid neutralization by not

using extracellular virus to infect neighboring cells. This

was stated to not occur with wild-type viruses, however

(Roizman et al., 2007).

2.2.11. Ab-dependent cell-mediated cytotoxicity
Ab binding to determinants on virus-infected cells may

lead to those cells being killed in a non-MHC restricted

manner. PMNs are the most effective mediators of ADCC.

Mfs also contribute, and LCs do not (Rouse et al., 1976;

Grewal et al., 1977). IFN and C enhance the activity

(Rouse and Babiuk, 1977). IgM is inactive in ADCC alone,

but can enable ADCC-C-mediated lysis, which may be

important early in the humoral response. BHV-1 infection

of Mfs limits their ability to perform ADCC (Ohmann and

Babiuk, 1986). The Fcg R of HHV-1 blocked ADCC

(Lubinski et al., 2011).

2.2.12. Other Ab activities
Ab label Ag on virions and virus-infected cells for activity

by C, phagocytes, and NK cells (Favoreel et al., 2006). Ab

to viral Ag can trigger the classic pathway of C activation

on virions and infected cells. It is not believed this is

important early in infection because high amounts of each

were needed for activity in vitro (Babiuk et al., 1975;

Rouse and Babiuk, 1977). Cattle have differences from

humans and mice in their FcR (particularly Fcg 2R),

possibly because of the different role of IgG re: mucosal

surfaces (Kacskovics, 2004). NK and other immune cells

bear FcR. Ab can also neutralize the immunosuppressive

effects induced by BHV-1 against T cells (Hutchings et al.,

1990).

The BHV-1 evasion methods for these activities would

be the same or similar to those cited for neutralization or

innate C activation (Muylkens et al., 2007), including viral

FcR and C3bR. Fc receptors, when present on aHV, can

serve to shield the Ag with normal Ig, or result in Ig

bridging (Ag–Ab–Fc) to prevent C activation. SHV1-

infected cells can shed or internalize Ab–Ag–C complexes

(Favoreel et al., 2003).

2.3. Other immune response considerations

2.3.1. Immune response in latency and reactivation
The role of the immune system in preventing reactivation

from latency is controversial. There is a chronic inflam-

matory (immune) response in latently infected TGs, with

elevated CD8+ and cytokine/chemokine expression. This

was interpreted as maintaining viral latency and suppres-

sing reactivation of HHV-1 (Theil et al., 2003). This role in

control of reactivation from latency in aHVs was noted

and believed potentially due to viral protein expression in

rare cells in the TG (Jones and Chowdhury, 2007). This

has been called ‘spontaneous molecular reactivation’.

IFN-g was also believed to play a role (Jones, 2003).

However, it has been reported that the latency associated

transcript (LAT) of HHV-1 is responsible for CD8+ CTL

functional exhaustion in TGs (Chentoufi et al., 2011).

Also, CD8+ T cells surround only a small proportion of

LAT+ neurons, but micro RNA (miRNA) are present in all

of the LAT+ cells (Held et al., 2011).

2.3.2. Mucosal immunity
The selective localization of mucosal LC to specific tissues

is due to their expression of chemokine receptors and the

differential expression of cognate chemokines and tissue-

specific addressins by epithelial cells (Czerkinsky and

Holmgren, 2012). T cells (CD4+ and CD8+) primed by DCs

in the local LN are influenced to home, based on re-

ceptors (Ciabattini et al., 2011). The chemokine/chemo-

kine receptor pairs CCL25/CCR9 and CCL28/CCR10 have

been shown to be important to trafficking of Ab-secreting

cells to mucosal tissues. The expression of these mol-

ecules is different in cattle than in humans and mice,

suggesting different mechanisms for accumulation in

specific mucosal tissues (Distelhorst et al., 2010).

2.3.3. Consequences of BHV-1 immunosuppression
The impact of BHV-1-encoded immunosuppression

factors on the outcome of the virus infection is clear, but

there may also be impacts on other infections. The con-

tribution of BHV-1 infection to ‘shipping fever’ (and

BRDC), indicated in the field by co-infections (Martin

et al., 1980) and demonstrated experimentally (Jericho

and Langford, 1978), is complex, but is believed to

include the immune and inflammatory response to BHV-1

(Hodgins et al., 2002; Ellis, 2009) as well as immunosup-

pressive effects previously cited in this review and

elsewhere (Levings and Roth, 2013) for multiple aspects

of the bovine immune response to BHV-1. Reduced

immune functions associated with anti-bacterial activities

were described in BHV-1 infection. They include im-

paired function of alveolar Mf (Fc and C receptor activity,

phagocytosis, PMN chemotaxis and respiratory burst),

and LC (proliferation, cytotoxicity), with reduction of IL-2

levels (Forman et al., 1982; Filion et al., 1983; McGuire

and Babiuk, 1984; Ohmann and Babiuk, 1985; Tikoo

et al., 1995a; Roth and Perino, 1998).

Some experiments have measured specific immuno-

suppressive effects relative to secondary bacteria. BHV-1

infection depressed LC blastogenic responses to

Mannheimia haemolytica and Pasteurella multocida and

delayed the anti-M. haemolytica Ab response. The PMN

infiltration of P. multocida-infected lungs was reduced,
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although the antibacterial activity of PMNs was not

significantly affected (Filion et al., 1983; McGuire and

Babiuk, 1984). It could be expected that any of the

non-agent-specific immunosuppressive effects of BHV-1

infection described would facilitate secondary infection,

including: inhibition of IFN signaling; chemokine or

C3b (or Ab) binding; and infection, function depression,

and/or killing of Mfs, PMNs, APCs, and T cells.

3. Vaccination

3.1. General BHV-1 vaccinology

Nucleosidic antiviral drugs have been used to treat human

herpesviral infections since the 1970s, and have been

tested and applied for limited applications in veterinary

species, including for HV infections (Rollinson et al.,

1988; Wilkins et al., 2003; van der Meulen et al., 2006;

Henninger et al., 2007). However, widespread clinical use

of antiviral drugs is not common in veterinary medicine

(Kahn et al., 2005). Administration of IFN (Cummins et al.,

1993) or IFN inducers (Theil et al., 1971) to reduce the

clinical signs of BHV-1 infection has been limited to

experimental trials. Anti-herpesviral immunomodulators

such as host defense proteins (Jenssen, 2009), double-

negative ‘intracellular immunization’ (Mühlbach et al.,

2009), and gene therapy (Chase et al., 1990; Bunnell and

Morgan, 1998) are not currently used in food animal medi-

cine. Rather, biosecurity and vaccination are the primary

control measures for the diseases caused by BHV-1.

BHV-1 is a good candidate for conventional and

new vaccines (van Drunen Littel-van den Hurk, 2006).

Although there are subtypes of BHV-1 (Metzler et al.,

1985), the subtypes are broadly immunologically cross-

reactive and there is limited antigenic variation within a

geographic region. Also, BHV-1 is a stable virus, has a

limited host range, and has a viremic phase (van Drunen

Littel-van den Hurk, 2006). In natural infection there is a

strong, long-lasting and well-balanced Th1/Th2 immune

response to protective Ags, possibly due to persistent

infection (Kaashoek et al., 1996a). There is also a sig-

nificant response to other viral proteins that can serve as

markers. BHV-1 is easily grown (rapidly, to high titers) in

cell cultures, facilitating production of many types of

BHV-1 vaccines.

Conventional modified live virus (MLV) and killed virus

(KV) BHV-1 vaccines have been used for many years

(Kendrick et al., 1957; Kolar et al., 1972). However,

problems due to the nature of the virus (e.g., MLV im-

munosuppression), vaccine technologies (KV efficacy), or

control program needs (vaccine markers) encouraged the

use of new technologies to develop ‘second generation

veterinary viral vaccines’ (reviewed in Meeusen et al.,

2007; Zhao and Xi, 2011). The emphasis has been on

delivery of major GPs, and on use of major or minor GPs

as negative markers (Babiuk et al., 1996; Baranowski

et al., 1996; Turin et al., 1999). The goal of vaccination is a

well-balanced immune response, similar to that of

protection due to natural infection.

There is such a wide variety of BHV-1 vaccines

(in practice and particularly in the literature), that it can

be helpful to describe them as belonging to categories.

The most common divisions are: conventional and

molecular; replicating and non-replicating; and marker

and non-marker. Vaccines can also be categorized by

route (intranasal [IN], intramuscular [IM], etc.) or admin-

istration technique (e.g., aerosol, injection, ‘gene gun’).

The divisions are not absolute; e.g., some molecular vec-

tors (e.g., canarypox in mammals or alphavirus replicons)

do not replicate in the host but non-productively infect

cells and express Ag on the cell surface similar to live

vaccines (Taylor et al., 1995; Vander Veen et al., 2012).

Further, in some cases vaccines may be best used in

combination regimens, called ‘prime-boost,’ e.g., MLV

and KV gene-deleted vaccines (Muylkens et al., 2007), or

DNA and subunit vaccines (van Drunen Littel-van den

Hurk et al., 2008).

The ‘differentiating infected from vaccinated animals’

(DIVA) strategy (van Oirschot, 1999) usually employs a

vaccine that is missing an antigenic marker, or a positive

marker can also be added (Chowdhury, 1996), combined

with a complementary diagnostic assay for that marker. A

diagnostic assay for protective vaccine Ag that is present

in both the vaccine and field virus is also employed.

Marker vaccines can range from a live virus with a mu-

tation or deletion in a single gene to single glycoprotein

subunit vaccines. A desirable negative marker protein is

one that is not needed for in vitro production, not critical

for protection, present in all wild-type viruses, and that

induces a rapid, strong, long-lasting response in both

naïve and vaccinated animals (Kaashoek et al., 1996b; van

Drunen Littel-van den Hurk, 2006). Also, the companion

diagnostic should be sensitive and specific. Widely em-

ployed BHV-1 marker companion diagnostics have

occasionally demonstrated problems with each of these

characteristics (van Oirschot et al., 1999; Muylkens et al.,

2007).

The extensive research on BHV-1 and the bovine

immune response to it has resulted in reports on a wide

variety of experimental vaccines in the literature. Many of

them are briefly described below. However, the currently

licensed vaccines in the US and EU include only MLV and

KV vaccines of cell culture passaged virus, gE-deleted

virus, or temperature sensitive (ts) mutant virus, adminis-

tered IM, subcutaneously, or IN.

3.2. Non-replicating vaccines

3.2.1. Killed virus
Conventional KV vaccines have been used for decades

(Kolar et al., 1972). They have the advantage of safety,

including in pregnant cattle. However, typically two
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immunizations are needed, the immune response is

primarily humoral, and the duration of immunity is

shorter than for MLV vaccines (Tikoo et al., 1995a; van

Drunen Littel-van den Hurk, 2007). The adjuvants

commonly added to increase immunogenicity can intro-

duce problems of their own (Spickler and Roth, 2003).

The conventional KV BHV-1 vaccine is produced

through physicochemical inactivation of infected cell

culture fluids. Agents used have included formalin, beta-

propiolactone, binary ethylene amine, ethanol, UV

irradiation, and heat (Haralambiev, 1976; Levings et al.,

1984; van Drunen Littel-van den Hurk, 2006). The vaccine

includes all components of the virus (and cell culture),

but there is the concern that inactivation could damage

key epitopes (Jones and Chowdhury, 2007). A marker

vaccine can be produced using the same inactivation

methods when the production virus is gene-deleted (e.g.,

gE-) (Kaashoek et al., 1995; Strube et al., 1996).

3.2.2. Subunit
Subunit vaccines containing the major GPs (gB, gC, gD)

have proven effective. These included detergent extracts

of virus preparations to solubilize envelope GPs (Lupton

and Reed, 1980), including incorporation of the extracts

into immune stimulating complexes (ISCOMs) (Trudel

et al., 1988). Individual GPs have also been purified from

such extracts for vaccine use using affinity chromato-

graphy (Babiuk et al., 1987). gB, gC, and gD subunit

vaccines were each protective, with gD eliciting the

highest Ab titers and best protection (Babiuk et al., 1987).

The GPs for subunit vaccine use have also been pro-

duced using various expression systems. Vaccinia and

adenovirus systems in mammalian cells, and baculovirus

systems in insect cells yielded protective GPs due to their

glycosylation. Escherichia coli systems produced partial

protection (van Drunen Littel-van den Hurk et al., 1993).

A truncated, secreted version of gD was produced in a

bovine cell line (Kowalski et al., 1993) and shown

protective (van Drunen Littel-van den Hurk et al., 1994).

When the adjuvant CpG was incorporated into the vac-

cine, no virus was shed after challenge (Ioannou et al.,

2002).

3.2.3. Anti-idiotype
Anti-idiotype (anti-Id or Ab2) immunizations for HV

(Kennedy et al., 1984; Gurish et al., 1988; Tsuda et al.,

1992; Zhou and Afshar, 1995), and BHV-1 in particular

have been reported. Srikumaran et al. (1990), Hariharan

et al. (1991), and Orten et al. (1991) used neutralizing

murine MAb as Ab1 to generate bovine polyclonal Ab

(PAb), bovine MAb, or rabbit PAb Ab2 respectively,

which in turn were used to elicit neutralizing Ab3 in mice.

Orten et al. (1993) immunized calves with an Ab2 (rabbit

PAb anti-Id to murine anti-gB and gD MAb), resulting in a

slight reduction of clinical signs and one calf producing

BHV-1-neutralizing antibodies.

3.3. Replicating vaccines

3.3.1. Modified live (attenuated) virus
MLV vaccines have been used for BHV-1 disease since

1956 (Kendrick et al., 1957). MLV in general are generated

by passage in cell culture, sometimes in heterologous cell

culture (Quinlivan et al., 2011). This allows for mutations

or deletions in genes important to viral fitness, but that are

not essential to in vitro replication. The main advantage

of MLV is that they replicate in the host’s target cells, so Ag

is presented on MHC I (eliciting CTLs), as well as on MHC

II (eliciting humoral immunity) (van Drunen Littel-

van den Hurk, 2007). After one dose of MLV, when PBLs

were exposed to live BHV-1, CD25 was increased in

CD4+, CD8+, and g d T cells (Endsley et al., 2002). BHV-1

MLVs also typically elicit substantial duration of immunity

(van Drunen Littel-van den Hurk, 2007).

BHV-1 conventional MLV problems have included

those specific to BHV-1 disease. These include virulence

(e.g., in small calves or pregnant animals) (Whetstone

et al., 1986; Bryan et al., 1994; Jones and Chowdhury,

2007; O’Toole et al., 2012), latency (Pastoret et al., 1980;

Whetstone et al., 1986), and immunosuppression, includ-

ing a reduction in the response to another vaccine ad-

ministered simultaneously (Harland et al., 1992). Other

problems common to all MLVs can also occur. These

include reversion to virulence (Belknap et al., 1999), lack

of efficacy due to overattenuation, and adventitious

agents. The latter is particularly likely if the vaccine is

produced in host cells or with host ingredients (Wessman

and Levings, 1999; Falcone et al., 2003), but can occur

even if the vaccine is produced with non-host cells or

ingredients (Wilbur et al., 1994). A ts MLV was generated

using chemical mutagenesis (Tikoo et al., 1995a), which

was safe for pregnant animals.

3.3.2. Gene deleted
Although gene mutations and deletions may occur using

conventional attenuation (Kaashoek et al., 1994), their

design can be more controlled with genetic engineering.

There are typically two goals in constructing gene-deleted

live vaccines: (1) remove/reduce virulence or another

undesirable disease trait; and/or (2) remove (or add) a

marker detected by a companion diagnostic, usually a

serologic marker, which can also be detected on a viral

isolate. In the case of BHV-1, deletions in the thymidine

kinase, gC, gE, gG, gI, Us9, LR, and UL49.5 genes have

been made to reduce virulence (Kit et al., 1985;

Chowdhury, 1996; Kaashoek et al., 1998), recrudescence

(Kaashoek et al., 1998; Inman et al., 2001), and/or im-

munosuppression (Wei et al., 2012). Viral envelope GPs

have been targeted for serologic markers, including gC

and gE due to the host’s strong serologic responses to

these non-essential proteins.

Disadvantages of gene-deleted live vaccines are under-

or over-attenuation (Kaashoek et al., 1998), depending on
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the genes chosen. Since virulent isolates are usually the

starting material for deletion work, recombination can

also be an issue (reviewed in Thiry et al., 2005). BHV-1

recombination in vivo between two gene-deleted strains

was demonstrated, which led to wild-type virus (Schynts

et al., 2003). In addition, recombination leading to a

virulent marker (gE�) BHV-1 virus was shown (Muylkens

et al., 2006a, b), a situation that could confuse eradication

campaigns. Such recombination of gene-deleted vaccines

has been demonstrated for other aHVs (Henderson et al.,

1991; Lee et al., 2012).

3.3.3. Live virus vectored
Vaccination using live vectors for BHV-1 GPs has elicited

VN Ab, CMI responses, and/or partial protection.

These have included vaccinia-vectored gB and gC (VN,

van Drunen Littel-van den Hurk et al., 1989), bovine

adenovirus 3 expressing gD (VN and CMI, Zakhartchouk

et al., 1999), human adenovirus 3 or 5 expressing gC or

gD (VN, Gupta et al., 2001), and Newcastle disease virus-

vectored gD (partial protection, Khattar et al., 2010).

Although an aHV chimeric veterinary vaccine has been

developed (Cochran et al., 2000, 2001), no chimeric BHV-

1 vaccine has been reported.

3.3.4. DNA vaccines
DNA vaccines for BHV-1 have also been used in trials.

DNA vaccines provide certain advantages over con-

ventional MLV, including safety, stability, and efficacy in

the presence of maternal antibodies (Donnelly et al.,

1997). They result in Ag presentation by both MHC I and

II, similar to live vaccines (Gurunathan et al., 2000),

although they typically elicit a Th1 response. Although

replicating, they can be made specific to one or a few Ag.

A disadvantage at this time is their mode of delivery, e.g.,

veterinary use of the gene gun is not currently practical

(Loehr et al., 2001). In most reported trials, complete

protection was not achieved.

BHV-1 GP (gB, gC, and gD) DNA has been adminis-

tered by a variety of routes. Trials include gB, gC, and gD

individually (Cox et al., 1993), gD (van Drunen Littel-

van den Hurk et al., 1998), gC with ubiquitin (Gupta

et al., 2001), secreted gD (Castrucci et al., 2004), a com-

bined, secreted gB–gD, (Caselli et al., 2005), gB (Huang

et al., 2005), and gD with CpG (van Drunen Littel-van den

Hurk et al., 2008).

3.3.5. BHV-1 as a vector
The use of BHV-1 as a vector of other proteins has a

variety of advantages, including knowledge of the

molecular biology of BHV-1, existing systems for vaccine

production, and the already-widespread use of BHV-1

vaccines (so there are few or no new safety or

serosurveillance concerns) (Jones and Chowdhury,

2007). The virus has been used to express IL-1b (Raggo

et al., 1996), IL-2, IL-4 (Kühnle et al., 1996), IFN-g (Raggo

et al., 2000), and to display IFN-a (Keil et al., 2010).

Expression of cytokines could provide an adjuvant effect

for BHV-1 vaccination. Protective immunogens of other

bovine viruses have been expressed in BHV-1. An FMDV

VP1 epitope was inserted as the N-terminal sequence of a

BHV-1 gC fusion protein, was expressed on the surface of

virions and infected cells, and elicited protective levels of

Ab to FMD, while protecting against BHV-1 (Kit et al.,

1991). The G protein of bovine respiratory syncytial virus

(BRSV) was expressed in BHV-1 and the vaccine provided

the same degree of protection to BHV-1 and BRSV in

calves as a multivalent vaccine (Schrijver et al., 1997).

Bovine viral diarrhea (BVD) virus E2 protein was

expressed in BHV-1 (Cochran, 1998) and the vaccine

virus elicited VN Ab to BVD (Kweon et al., 1999).

Parainfluenza 3 fusion (F) and hemagglutinin (HN) genes

were inserted into BHV-1 (Haanes and Wardley, 1997;

Cochran, 1998). In addition, insertion of an influenza

hemagglutinin 1 (HA1) sequence resulted in HA1 being

expressed with gG as a fusion protein on the outside of

virions and infected cells (Keil et al., 2010). aHV have

also been proposed for use with other viruses as chimeric

vectors (Epstein and Manservigi, 2004) and as episomal

systems for gene therapy (Macnab et al., 2008).

3.4. Routes

BHV-1 infects via mucosal epithelium, so stimulating im-

munity for those surfaces would be desirable. However,

most of the conventional vaccines are parenterally ad-

ministered and may result in systemic rather than mucosal

immunity. In contrast, mucosal immunization is said

to induce mucosal as well as systemic immunity (Loehr

et al., 2000). Immunization of mucosal surfaces results in

good Ag detection, and B and T cells stimulated in the

mucosa home to mucosa in general and to the immunized

mucosal tissue specifically (Neutra and Kozlowski, 2006).

A variety of mucosal routes have been employed or

suggested for viral vaccines (including aHV), such as oral,

nasal, vaginal, ocular, sublingual, and anorectal (Shiau

et al., 2001; Czerkinsky and Holmgren, 2012; Pavot et al.,

2012).

A ts BHV-1 vaccine administered IN was shown to

induce secretory IgA and a CMI response (Frerichs et al.,

1982). Israel et al. (1992) demonstrated mucosal immunity

to BHV-1 subunit vaccine using cholera B subunit as an

adjuvant and the IN route. A regime using a conventional

BHV-1 IN vaccine was shown to confer rapid protection

(Roth and Carter, 2000; Endsley et al., 2002). Intravaginal

vaccination with gD DNA (Loehr et al., 2000, 2001)

protected against IN BHV-1 challenge. Oral vaccination

with BHV-1 in utero stimulated mucosal immunity

(Gerdts et al., 2002). A gD DNA vaccine was administered

IN with reduction in challenge virus shedding (Castrucci

et al., 2004), and a gB DNA vaccine administered vulvo-

vaginally elicited partial protection from genital lesions

(Huang et al., 2005).
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3.5. Application

The ultimate goal of BHV-1 vaccination would be to

prevent infections, which can in turn lead to latency/

recrudescence and spread. Although this may occasion-

ally be achieved (Israel et al., 1992), it is not routinely

practical.

A challenge for vaccination in cattle is immunizing

stressed animals, because vaccines are often administered

in association with movement and other treatments. Such

stressors impact immune function (Kelley, 1980) and have

been demonstrated to be associated with increased blood

cortisol levels. High cortisol levels can impair phagocytic

cell function, decrease CMI, and decrease Ab response to

primary vaccination (Roth and Perino, 1998). Vaccinating

young animals includes the difficulty of vaccinating in the

face of passive immunity (Menanteau-Horta et al., 1985),

and young animals may mount poor Th1 responses (van

Drunen Littel-van den Hurk, 2006). Use of CpG adjuvants

or DNA vaccines may help with the younger animal

immunization.

In the United States, BHV-1 vaccines are currently used

as an aid in the prevention of disease. Between 150 and

200 million doses are produced annually (Anon, 2011b;

personal communication), all of the conventional types

(MLV and KV). In some countries of the EU, (gE�) marker

vaccines (live and KV) are used in eradication programs

(van Oirschot et al., 1996; Kahrs, 2001; Ackermann and

Engels, 2006; van Drunen Littel-van den Hurk, 2006). As

vaccines cannot prevent infection, vaccination must be

frequent to keep recrudescence low, and culling based on

DIVA serology employed. A significant issue for control

and eradication is SNLC cattle that can re-excrete after a

stress (Hage et al., 1998). It has been shown that young

animals can remain seronegative when infected while pro-

tected from disease by passive immunity, and that these

infections can recrudesce at a later time, resulting in SNLC

animals (Lemaire et al., 1995, 2000a, b).

4. Summary/conclusions

In summary, there is a delicate balance between viral

infection, host response, and viral evasive measures in

BHV-1 infection and immunity in cattle. BHV-1 has a

rapid life cycle and robust systems for entry, transcription,

assembly and egress. The host responds with multiple

tools, from infected-cell IFN to Ab-assisted infected cell

killing. Like all aHV, BHV-1 has multiple evasion stra-

tegies to blunt or delay the host response, including in

some cases multiple measures for the same host effector

mechanism. The timing of response vs. viral replication

(and spread in the animal and between animals) is there-

fore critical for disease outcomes. Maternal Ab provides

humoral tools from the dam’s immune response, and

vaccination ensures the response to infection will be a

rapid, strong secondary immune response that can pro-

vide the host with the advantage needed to prevent

severe disease on primary infection.
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