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The spectrum of turbulence kinetic energy for homogeneous turbulence is generally
computed using the Fourier transform of the velocity field from physical three-
dimensional space to wavenumber k. This analysis works well for single-phase
homogeneous turbulent flows. In the case of multiphase turbulent flows, instead,
the velocity field is non-smooth at the interface between the carrier fluid and the
dispersed phase; thus, the energy spectra computed via Fourier transform exhibit
spurious oscillations at high wavenumbers. An alternative definition of the spectrum
uses the wavelet transform, which can handle discontinuities locally without affecting
the entire spectrum while additionally preserving spatial information about the field.
In this work, we propose using the wavelet energy spectrum to study multiphase
turbulent flows. Also, we propose a new decomposition of the wavelet energy
spectrum into three contributions corresponding to the carrier phase, droplets and
interaction between the two. Lastly, we apply the new wavelet-decomposition
tools in analysing the direct numerical simulation data of droplet-laden decaying
isotropic turbulence (in absence of gravity) of Dodd & Ferrante (J. Fluid Mech.,
vol. 806, 2016, pp. 356–412). Our results show that, in comparison to the spectrum
of the single-phase case, the droplets (i) do not affect the carrier-phase energy
spectrum at high wavenumbers (km/kmin > 128), (ii) increase the energy spectrum at
high wavenumbers (km/kmin > 256) by increasing the interaction energy spectrum at
these wavenumbers and (iii) decrease the energy at low wavenumbers (km/kmin 6 16)
by increasing the dissipation rate at these wavenumbers.

Key words: multiphase flow, isotropic turbulence, drops

1. Introduction
1.1. Background

Direct numerical simulation (DNS) of particle-, bubble- and droplet-laden turbulent
flows has been used to explain physical mechanisms occurring in such flows, and
spectral analysis has been an important tool in understanding the physics of such flows
(Elghobashi 2019). For example, Elghobashi & Truesdell (1993) simulated decaying
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homogeneous isotropic turbulence interacting with dispersed solid particles of diameter
less than the Kolmogorov length scale. They found that the particles caused an
increase in spectral turbulence kinetic energy (TKE) at high wavenumbers. Ferrante
& Elghobashi (2003) extended this analysis to find that the energy spectrum is affected
by a spectral two-way coupling function due to fluid–particle drag interaction, which
results in an increase of energy at high wavenumbers for a range of sub-Kolmogorov
particles with Stokes number between 0.1 and 5.

Because the particles of these simulations were smaller than the Kolmogorov length
scale of turbulence and represented by infinitesimal points rather than finite volumes,
the authors computed the energy spectra in the traditional way, that is, using the
Fourier transform across the entire domain. Spectral analysis becomes more difficult
for particles of Taylor length-scale size as studied by Lucci, Ferrante & Elghobashi
(2010). These larger particles have a finite volume in the computational domain, so
the velocity field becomes discontinuous at the particle–fluid interfaces, and these
discontinuities manifest themselves as oscillations in the energy spectra (Lucci et al.
2010, figure 35). These oscillations appear because the energy spectrum is defined
using the Fourier transform, which uses infinite sinusoidal waves to represent functions
in the frequency domain. Such basis functions cannot easily capture discontinuities.
Lucci et al. (2010) therefore use an alternative definition of the energy spectrum.
Instead of computing the spectrum using the Eulerian velocity field, they track a
large number of fluid points and use their velocity to compute a Lagrangian TKE
spectrum. While this approach is definitely valuable, it adds the computational costs
of computing, writing and storing the fluid points’ velocity during the simulations.

A related area of research is that of experimental ‘pseudoturbulence’ generated by
rising bubbles (Risso 2018). Hot-wire anemometers also produce discontinuous data
due to the popping of bubbles by the probe. A variety of methods has been used
to overcome the artefacts introduced by the discontinuities when producing energy
spectra such as interpolation, selective sampling in the Fourier transform and fitting
of Gaussian curves. However, these techniques were derived for the one-dimensional
velocity time series produced by the anemometer, so they would not be easily
applicable to our three-dimensional velocity fields. Most importantly, these techniques
involve modifications of the velocity field, while we propose a way to generate TKE
spectra without artificially modifying the velocity field at all.

1.2. Motivation
We are interested in the analysis of energy spectra for homogeneous isotropic
turbulence laden with droplets of Taylor length-scale size. These finite-sized
droplets present similar issues as the particles of Lucci et al. (2010). Figure 1
shows the Fourier energy spectra of droplet-laden turbulence studied via DNS by
Dodd & Ferrante (2016). In that figure, note the general differences between the
droplet-free and droplet-laden cases: introduction of the droplets causes energy at low
wavenumbers to decrease, energy at high wavenumbers to increase and the spectra
to oscillate slightly at high wavenumbers. The last feature is a result of the Fourier
transform’s inability to handle sharp changes at droplet interfaces.

Figure 2 shows an example of how the droplets exhibit sharp changes in velocity
around their interfaces with the carrier fluid. Though we are dealing with deformable
droplets and not particles, even if the shear is continuous at the interface, the velocity
gradient at the interface is still discontinuous (Dodd & Ferrante 2016, figure 30); thus,
high-frequency modes are enhanced when taking the Fourier transform. This has led
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FIGURE 1. (Colour online) Fourier spectra of TKE for the DNS cases of Dodd & Ferrante
(2016). Dashed lines represent droplet-free cases and solid lines droplet-laden cases.
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FIGURE 2. (Colour online) Velocity profiles along a line in the domain show sharp jumps
at the interfaces for droplet-laden case C.

us to question whether the introduction of droplets actually causes the carrier fluid
to contain more energy at high wavenumbers. Also, Maxey (2017) suggests providing
a closer analysis of the energy spectrum in his review of Dodd & Ferrante (2016).
Furthermore, our interest in the droplets’ effect on the energy spectrum is to help
improve subgrid-scale models for large-eddy simulation (LES) of multiphase turbulent
flows.
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1.3. Our approach
Instead of using the Fourier transform to compute the energy spectrum, we use
the wavelet-transform approach as described by Meneveau (1991). We extend his
wavelet formulation to multiphase incompressible turbulence. A wavelet is typically
an oscillating function with compact support. The wavelet transform is used to
represent a function in a basis of wavelets. The primary advantage of the wavelet
transform for this application is that it preserves spatial information, making it a
natural choice for a two-fluid flow. Besides restricting effects of non-smoothness
locally, the spatial information allows us to decompose the spectrum as explained
in § 2.5.

As the computation of non-homogeneous and multiphase turbulent flows becomes
increasingly tractable, wavelet and wavelet-like approaches have been applied in a
few recent studies. For example, wavelets have been used to analyse particle-laden
flows (Bassenne, Moin & Urzay 2018) and turbulent combustion (Kim et al. 2018).
A similar approach was used to compute spectra on non-periodic domains by using
spatial filtering with a customized non-wavelet basis (Sadek & Aluie 2018).

1.4. Flow description
Dodd & Ferrante (2016) performed DNS of 3130 finite-size, non-evaporating
droplets of diameter approximately equal to the Taylor length scale and with 5 %
droplet volume fraction in incompressible decaying isotropic turbulence at initial
Taylor-scale Reynolds number Reλ= 83 and zero gravity. They numerically solved the
incompressible Navier–Stokes equations for two immiscible fluids (Dodd & Ferrante
2014). Following their nomenclature, also adopted herein, u(x, t) is the velocity field,
p(x, t) is the pressure, ρ(x, t) is the density, µ(x, t) is the dynamic viscosity, Re is the
Reynolds number, We is the Weber number and f σ (x, t) is the force due to surface
tension; ρ and µ are constant in each phase, taking values ρc and µc in the carrier
fluid and ρd and µd in the droplets. The physical flow and droplet parameters of the
DNS cases are given in tables 1 and 2, respectively, of Dodd & Ferrante (2016). In
particular, the initial droplet diameter D satisfies D/1x = 32, where 1x is the grid
size, and D/η= 20, where η is the Kolmogorov length scale at the time the droplets
are released (t = 1). Case A is the reference droplet-free case. In the droplet-laden
cases (B–H), they varied one of the following three parameters: the droplet Weber
number based on the root mean square velocity of turbulence (0.1 6 Werms 6 5) in
cases B, C and D; the droplet to carrier-fluid density ratio (16 ρd/ρc 6 100) in cases
E, C and F; or the droplet to carrier-fluid viscosity ratio (1 6 µd/µc 6 100) in cases
G, C and H. In § 3, we present the wavelet-spectral analysis of all cases A–H at
non-dimensional time t= 3.5.

2. Mathematical description
2.1. Discrete wavelet transform

The basic idea behind the discrete wavelet transform (DWT) is to represent a function
using self-similar basis functions, which are dilated and translated in the space of the
data set. These basis functions are made orthonormal by using a logarithmic spacing
of scales. In the following, we use a notation similar to that of Meneveau (1991).

If g[n] is our ‘mother’ wavelet, where g is a discrete function sampled at xn= n1x
with an integer n and the grid spacing 1x, the basis functions take the form

g(m)[n− 2ml] =
1

2m/2
g
[

n− 2ml
2m

]
, (2.1)
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where m is the wavelet-scale index, which determines the amount of dilation, and l
determines the translation away from the initial position. Associated with the wavelet
functions is also a smoothing function h[n] that is dilated and translated in the
same way. In three dimensions, we must use products of g(m) and h(m) in order to
represent our data with dilations in every possible combination of directions. In total,
there are seven possible combinations: one volumetric dilation, i.e. one in all three
directions at once; three planar dilations, i.e. one for each plane (x–y, y–z and x–z);
and three linear dilations, i.e. one in each direction (x, y and z). Using the index q
to distinguish between these seven combinations, we thus define a three-dimensional
basis function g(m,q)[n− 2ml] (Meneveau 1991, equation (30)), where n and l are the
three-dimensional counterparts to the indices n and l.

With our basis functions defined, we may represent each component of velocity as

ui[n] =
M∑

m=1

7∑
q=1

∑
l∈D(m)

w(m,q)
i [l]g(m,q)[n− 2ml], i= 1, 2, 3, (2.2)

where the wavelet coefficients are given by

w(m,q)
i [l] =

∑
n∈D

ui[n]g(m,q)[n− 2ml]. (2.3)

Here D = {1, . . . , N}3 is the set of indices on which the velocity field is defined
(in our case N = 1024) and D(m)

= {1, . . . ,N/2m
}

3 is the set of indices on which the
scale-m wavelet coefficients are defined. M = log2 N is the number of scales that we
can use (so in our case M = 10). The DWT conserves energy because

3∑
i=1

∑
n∈D

ui[n]2 =
3∑

i=1

M∑
m=1

7∑
q=1

∑
l∈D(m)

w(m,q)
i [l]2. (2.4)

2.2. Wavelet spectrum
The wavenumber km is related to the wavelet scale m by

km =
2π

2m1x
, (2.5)

where 1x=L/N is the size of the spatial discretization of our DNS data with L the
non-dimensional side length of the cubical domain and N the number of grid points
per domain (here 1x = 1/1024). The largest scale corresponds to m = M, so using
(2.5), the minimum wavelet wavenumber is kmin = kM = 2π.

The wavelet spectrum is then given by

Ẽ(km)=Cm

3∑
i=1

〈
1
2

7∑
q=1

w(m,q)
i [l]2

〉
l∈D(m)

, (2.6)

where 〈·〉l∈D(m) denotes the average over l ∈ D(m), and Cm = 1x/[2π(log 2)22m
] is

included to scale the spectrum so that Ẽ(km) represents the energy spectrum per unit
wavenumber.
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FIGURE 3. Comparison of the Haar wavelet and the sym4 wavelet used in this study.

2.3. Choice of wavelet
A comparison of energy spectra produced with various wavelets is given by Perrier,
Philipovitch & Basevant (1995). The choice of wavelet is also discussed by Meneveau
(1991, § 5.3). We have used both the Haar and sym4 wavelets to analyse our data.
Both are common options and their definitions can be found in the PyWavelets DWT
package (Lee et al. 2019; PyWavelets 2018). The Haar wavelet has the advantage of
being simple and easy to compute. Because it requires fewer points to calculate than
other wavelet basis functions (figure 3), it also allows for more spatial resolution,
which would be desirable when we decompose the spectrum. However, since it uses
fewer points than other functions, a single basis function encodes less information.
As a result, more small-scale wavelet coefficients are needed to represent the flow
field in the wavelet basis, so the Haar wavelet produces relatively flat spectra. On
the other hand, the sym4 wavelet produces wavelet spectra more closely resembling
the respective Fourier spectra (in that they decay at the high wavenumbers) because
its basis function oscillates more in space than the Haar wavelet, more closely
resembling a truncated sine function of the Fourier transform. This property is
important in analysing the wavelet spectra in comparison to the Fourier spectra, and
so sym4 is the wavelet we adopted in this study.

2.4. Evolution of wavelet spectrum
The DWT of the momentum equation (2.1b) of Dodd & Ferrante (2016) gives

∂

∂t
w(m,q)

i [l] = −
{

uj
∂ui

∂xj
+

1
ρ

∂p
∂xi

}(m,q)
[l]

+

{
1
ρRe

∂

∂xj

(
µ

(
∂ui

∂xj
+
∂uj

∂xi

))}(m,q)
[l] +

{
1
ρWe

( fσ )i

}(m,q)
[l]. (2.7)

We use the convention {·}(m,q)[l] to denote the DWT, and we are able to apply the
DWT term-by-term since it is a linear operator. Then, by multiplying each term of
(2.7) by w(m,q)

i [l] and by applying the chain rule in reverse to the left-hand side of
the resulting equation,

w(m,q)
i [l]

∂

∂t
w(m,q)

i [l] =
∂

∂t

(
1
2

w(m,q)
i [l]2

)
, (2.8)
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we get

∂

∂t

(
1
2

w(m,q)
i [l]2

)
=−w(m,q)

i [l]
{

uj
∂ui

∂xj
+

1
ρ

∂p
∂xi

}(m,q)
[l]

+w(m,q)
i [l]

{
1
ρRe

∂

∂xj

(
µ

(
∂ui

∂xj
+
∂uj

∂xi

))}(m,q)
[l] +w(m,q)

i [l]
{

1
ρWe

( fσ )i

}(m,q)
[l].

(2.9)

Summing each term of (2.9) over q and i and averaging the resulting equation over
all scale-m wavelet coefficients gives us

∂

∂t
Ẽ(km)= T̃(km)− Ṽ(km)+ S̃(km). (2.10)

Here, Ẽ(km) is the wavelet energy spectrum defined in (2.6), and the terms on the
right-hand side of (2.10) are defined by

T̃(km)=−Cm

3∑
i=1

〈
7∑

q=1

w(m,q)
i [l]

{
uj
∂ui

∂xj
+

1
ρ

∂p
∂xi

}(m,q)
[l]

〉
l∈D(m)

, (2.11)

Ṽ(km)=−Cm

3∑
i=1

〈
7∑

q=1

w(m,q)
i [l]

{
1
ρRe

∂

∂xj

(
µ

(
∂ui

∂xj
+
∂uj

∂xi

))}(m,q)
[l]

〉
l∈D(m)

, (2.12)

S̃(km)=Cm

3∑
i=1

〈
7∑

q=1

w(m,q)
i [l]

{
1
ρWe

( fσ )i

}(m,q)
[l]

〉
l∈D(m)

, (2.13)

where T̃(km) is the energy-transfer rate due to advection and pressure, Ṽ(km) is the
viscous-dissipation rate and S̃(km) is the surface-tension source/sink rate of energy at
wavenumber km.

2.5. Decomposition of wavelet spectrum

To decompose Ẽ into carrier phase and droplet parts, we selectively average over the
computational domain. We define ẼC(km) to average only over spatial indices l where
the scale-m wavelet at l is entirely contained in the carrier fluid. Similarly, ẼD(km) is
the average over l where the wavelet is entirely in a droplet. The ‘interaction’ part
ẼI(km) is the average over l where the wavelet is partially contained in both carrier
and droplet fluids. We define three new physical-space sets D(m)

C , D(m)
D and D(m)

I such
that D(m)

= D(m)
C ∪ D(m)

D ∪ D(m)
I . These sets are defined such that, for our choice of

wavelet, D(m)
C is all points l∈D(m) such that the level-m wavelet centred at l does not

intersect any droplets, D(m)
D is all points l∈D(m) such that the level-m wavelet centred

at l does not intersect any carrier fluid, and D(m)
I =D(m)

− (D(m)
C ∪D

(m)
D ).

Then, according to these definitions, Ẽ is decomposed as

Ẽ(km)=
|D(m)

C |ẼC(km)+ |D(m)
D |ẼD(km)+ |D(m)

I |ẼI(km)

|D(m)|
, (2.14)
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FIGURE 4. (Colour online) Example of decomposition D(m)
=D(m)

C ∪D
(m)
D ∪D

(m)
I for case C

with km/kmin = 256 and 512 (m= 2 and 1) in a subregion of the x–y plane for z= 0.5.

where | · | denotes the number of points in the set and, omitting the dependence on
km,

ẼC =Cm

3∑
i=1

〈
1
2

7∑
q=1

w(m,q)
i [l]2

〉
l∈D(m)

C

,
∂

∂t
ẼC = T̃C − ṼC, (2.15a,b)

ẼD =Cm

3∑
i=1

〈
1
2

7∑
q=1

w(m,q)
i [l]2

〉
l∈D(m)

D

,
∂

∂t
ẼD = T̃D − ṼD, (2.16a,b)

ẼI =Cm

3∑
i=1

〈
1
2

7∑
q=1

w(m,q)
i [l]2

〉
l∈D(m)

I

,
∂

∂t
ẼI = T̃I − ṼI + S̃. (2.17a,b)

Also, we use the same technique to decompose the terms of the evolution equation
(2.10), as shown in the equations on the right of (2.15)–(2.17), in which S̃C = S̃D = 0
and S̃ = S̃I because f σ = 0 everywhere in the field except at the interface. Thus, the
direct effect of the surface-tension force contributes directly only to the evolution of
ẼI(km).

Figure 4 shows an example of the domain decomposition in a plane for case C with
the two highest wavenumbers. Note that, when increasing the wavenumber km/kmin
from 256 to 512, the details of the flow in the vicinity of the droplet interface are
represented in more detail since the size of the wavelet basis function used for the
analysis becomes smaller. At the largest wavenumber, km/kmin = 512 (for m= 1), the
sym4 wavelet extends eight points in each spatial direction. Because the carrier part of
our decomposition cannot contain points at which the wavelet intersects a droplet, D(1)

C
can only include points farther than 81x from the droplet interfaces. This distance is
equivalent to D/4 or 5η. A wavelet centred at any point closer than that to a droplet
will always cross its interface. As the wavenumber halves, the size of the wavelet
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FIGURE 5. (Colour online) (a) Total wavelet spectra Ẽ(km) (2.6). (b) Carrier-phase wavelet
spectra ẼC(km) (2.15). (c) Interaction wavelet spectra ẼI(km) (2.17).

doubles, so for km/kmin = 256 (for m = 2), D(2)
C can only include points farther than

D/2 or 10η from the droplet interfaces. And for km/kmin = 128 (for m= 3), D(3)
C can

only include points farther than D or 20η from the droplets. For the cases studied
here, our decomposition cannot represent any wavenumbers smaller than km/kmin= 128
(m= 3) for D(m)

C because for m= 4 the wavelets become large enough that they cross
the droplet interface.

3. Results

Figure 5 shows the total wavelet spectra Ẽ(km), the carrier wavelet spectra ẼC(km)

and the interaction wavelet spectra ẼI(km) for all cases A–H. Note that ẼC(km)= Ẽ(km)

for case A and that we plot Ẽ(km) of case A for reference in the ẼI(km) plot. When
comparing the spectra of the droplet-laden cases B–H to the droplet-free case A, we
notice: (i) ẼC(km) is nearly unchanged at km/kmin > 128, (ii) Ẽ(km) is increased at
km/kmin = 256 and 512 and (iii) Ẽ(km) is reduced at km/kmin 6 16.

(i) ẼC(km) is nearly the same in all cases for km/kmin > 128. According to (2.15),
ẼC(km) depends on D(m)

C , which in turn depends on the scale m. Because D(m)
C can

only contain points at which wavelets at scale m will not extend into any droplets,
the closest distance any point in D(m)

C can be to a droplet is D= 20η, D/2= 10η and
D/4 = 5η for km/kmin = 128, 256 and 512, respectively. Therefore, since ẼC(km) is
nearly the same in all cases, this means that the presence of droplets does not affect
the wavelet energy at large wavenumbers km/kmin > 128 (i.e. the turbulence scales
6 5η) in the flow regions at distances greater than D = 20η from the droplets. For
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FIGURE 6. (Colour online) Comparison of local wavelet energy at km/kmin= 512 and local
kinetic energy for cases A and C in a subregion of the x–y plane at z= 0.5.

a qualitative display of this phenomenon, figure 6 shows the local wavelet energy
at km/kmin = 512 for a subregion of the x–y plane for the droplet-free case A and
droplet-laden case C. The flow regions away from the droplets have nearly the same
wavelet-energy magnitude. To explain why the carrier energy at these wavenumbers is
unaffected, we analyse the terms of the evolution equation of ẼC(km) (2.15), namely
T̃C(km) and ṼC(km). Figure 8 shows the carrier-phase energy-transfer rate T̃C(km),
and figure 9 shows the carrier-phase viscous-dissipation rate ṼC(km). As for ẼC(km),
T̃C(km) and ṼC(km) are nearly the same in all cases at km/kmin > 128. (Note that, for
case F, there is a larger number of smaller droplets due to droplet breakup than in
the other cases; consequently, D(m)

C for km/kmin = 128 has only 164 points and the
statistics for this case are thus unreliable and not reported.) Thus, ẼC(km) evolves
nearly at the same rate with and without droplets according to (2.15) because ṼC(km)

and T̃C(km) are nearly unaffected by the droplets at high wavenumbers. This means
that the droplets are not affecting the energy-transfer rate or viscous-dissipation
rate at high wavenumbers km/kmin > 128 at distances > 20η from their surface, and
thus, according to (2.15), they are not affecting the energy ẼC(km) either. To see
what is happening in physical space locally as a function of the distance r from
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FIGURE 7. (Colour online) Viscous-dissipation rate ε̄(r) averaged over points at distance
r from the nearest droplet interface, normalized by the dissipation rate ε1 at t = 1. The
dashed line represents the normalized dissipation rate ε/ε1 at t= 3.5 for the droplet-free
case.

the droplet interface close to the droplet (for r 6 D/4), in figure 7, we plot the
viscous-dissipation rate ε̄(r)= 2µsijsij/Re, where sij=

1
2((∂ui/∂xj)+ (∂uj/∂xi)) and the

overbar denotes the average over the points at distance r from the droplet interface,
normalized by the dissipation rate ε1 at t= 1. Droplets increase ε̄(r) near the interface
(r6D/4= 5η) due to the increased velocity gradients near the interface relative to the
droplet-free case, and away from the droplet interface (r > D/4= 5η) the dissipation
settles to a uniform value slightly lower than that of single-phase flow due to the
overall reduction of TKE. This confirms that away from the droplet interface the
region of greatest change here appears to be within approximately D/4 = 5η of the
droplet (or 4η if we use the Kolmogorov length scale at the time our statistics are
computed). Therefore, we conclude that the thickness of the dissipation layer around
the droplets is indeed D/4 as we have seen through our wavelet analysis for the
highest wavenumber km/kmin = 512 (besides case F, whose increased density ratio
increases the width of the dissipation layer). This result is also confirmed by the
physical-space statistics of the topological study of the same data set of Dodd &
Jofre (2018).

(ii) Ẽ(km) is higher for the droplet-laden cases than in case A at km/kmin > 256
(figure 5a). According to (2.14), Ẽ(km) is a weighted average of ẼC(km), ẼD(km) and
ẼI(km). The value of ẼC(km) is nearly the same for all cases (figure 5b), so it does not
contribute to the observed increase at high wavenumbers of Ẽ(km); ẼD(km) does not
contribute much to Ẽ(km) because D(m)

D is always less than 2 % of the domain; ẼI(km),
instead, is also increased at high wavenumbers by the droplets (figure 5c). Remember
that ẼI(km) only includes points at which wavelets cross the interface, and the wavelet
transform will detect any sharp changes. All of the droplet-laden cases have some
degree of velocity non-smoothness at the interface as in figure 2. Decreasing We
makes the droplets less deformable, increasing ρd/ρc gives the droplets more inertia,
and increasing µd/µc increases the difference between ∂uc/∂xi and ∂ud/∂xi across the
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FIGURE 8. (Colour online) Carrier-phase energy-transfer rate T̃C(km) (2.11).
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FIGURE 9. (Colour online) Dashed lines: total viscous-dissipation rate Ṽ(km) (2.12)
(shown only for km/kmin 6 64). Solid lines: carrier-phase viscous-dissipation rate ṼC(km)
(2.12).

interface (Dodd & Ferrante 2016, § 3.4.4). These factors cause the velocity gradients
to peak at the droplet interface and in turn ẼI(km) to contain more energy at high
wavenumbers, and this increase is reflected in Ẽ(km), which is slightly lower than
ẼI(km) due to the averaging with ẼC(km). This is the same phenomenon that causes an
oscillating increase in energy at high wavenumbers for the Fourier energy spectrum
(figure 1). However, thanks to our novel wavelet-spectrum decomposition, we are able
to isolate this effect to the portion of the domain containing the interface.

(iii) Ẽ(km) is lowered for the droplet-laden cases with ρd/ρc> 1 at km/kmin 6 16 with
respect to that of case A (figure 5a). This effect can also be seen to a lesser extent in
the Fourier energy spectrum in figure 1. The only parameter that changes the amount
of this decrease is the density ratio: case F has the highest density ratio and shows
the greatest decrease; case E is the only droplet-laden case with density ratio 1, and it
shows nearly no decrease at these wavenumbers. This pattern suggests that energy is
decreased at low wavenumbers due to the increased inertia of higher-density droplets.
According to (2.10), the evolution of Ẽ(km) depends on Ṽ(km), T̃(km) and S̃(km).
However, we focus our attention on Ṽ(km) because S̃(km) is one order of magnitude
smaller than Ṽ(km) and T̃(km), while T̃(km) is not as significantly affected by the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.515


926 A. Freund and A. Ferrante

Droplet

(i) Small scales unaffected by droplets

(ii) Increased velocity gradients
and local dissipation

(iii) Increased dissipation at large scales
reduces energy

20˙10˙0

FIGURE 10. Schematic of results (i)–(iii).

droplets as Ṽ(km). Droplets with higher density than the surrounding fluid increase
the dissipation rate Ṽ(km) at low wavenumbers, as shown in figure 9, by increasing
the velocity gradients occurring in the flow. Because of their higher inertia, they will
disturb the large-scale eddies more by being more resistant to the carrier flow motion
with respect to no droplets (case A) or buoyant droplets (case E). In summary, while
droplets with density ratio 1 (case E), by not changing Ṽ(km) at low wavenumbers
with respect to case A, do not change Ẽ(km) at low wavenumbers according to (2.10),
droplets with increasing density ratio from 10 to 100, by increasing the dissipation
rate Ṽ(km) at the low wavenumbers km/kmin 6 16 with respect to case A, reduce Ẽ(km)

at these wavenumbers according to (2.10).

4. Conclusion

We have presented the wavelet energy-spectrum equations, proposed a new decom-
position for two-fluid incompressible isotropic turbulence, and applied it to analyse
the DNS data set of droplet-laden decaying isotropic turbulence of Dodd & Ferrante
(2016). The proposed domain decomposition allows separating the effects of droplets
on the spectra of carrier flow, droplet flow and flow regions crossing the interface. Our
results show that, at an average distance from the droplets larger than 5η or D/4 and
at high wavenumbers (km/kmin > 128), the carrier-phase spectra are nearly unaffected
by the droplets for the given parameter set (in particular for a volume fraction of
5 %). Also, droplets increase the energy at high wavenumbers (km/kmin > 256) near the
interface due to the local larger velocity gradients. Furthermore, the droplets increase
the dissipation rate at low wavenumbers (km/kmin 6 16) and thereby decrease the TKE
spectra at those wavenumbers. A visual summary of these results is given in the
schematic of figure 10.

Note that our results do not easily lend themselves to a power-law analysis. For
one, the wavelet spectra do not necessarily have the same slopes as their Fourier
counterparts (Perrier et al. 1995). Secondly, our Reynolds number is not high enough
(Reλ = 83) to see an inertial subrange of wavenumbers (see the dashed lines of
figure 1), which is instead present at Reλ & 257 (see figure 3 of Ishihara, Gotoh &
Kaneda (2009)).
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These results show that wavelets are an important tool for understanding the physics
of multiphase turbulence. In particular, this may open new avenues to formulate LES
models for multiphase flows. Because we decomposed droplet-laden DNS results and
saw that spectral effects of the droplets were restricted to nearby regions at distances
from the droplets smaller than D/4, especially that ṼC(km) and ẼC(km) were unaffected
by the droplets at high wavenumbers. This indicates that an LES model in a flow
configuration similar to the one described here could still model the subgrid scales at
distances larger than D/4 or 5η from the droplets as single-phase flow. The wavelet
decomposition could also have useful applications to related multiphase experiments.
For example, the time-series velocity data gained from hot-film anemometry in bubbly
flows typically contain velocity spikes due to penetration of the bubbles by the probe,
similar to the high velocity gradients at the interfaces of our droplets. The wavelet-
decomposition method could be used to generate carrier-phase wavelet energy spectra
in the frequency domain.
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