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Since their introduction more than forty years ago, antenatal glucocorticoids have become a cornerstone in the management of preterm birth and
have been responsible for substantial reductions in neonatal mortality and morbidity. Clinical trials conducted over the past decade have shown
that these benefits may be increased further through administration of repeat doses of antenatal glucocorticoids in women at ongoing risk of
preterm and in those undergoing elective cesarean at term. At the same time, a growing body of experimental animal evidence and observational
data in humans has linked fetal overexposure to maternal glucocorticoids with increased risk of cardiovascular, metabolic and other disorders in
later life. Despite these concerns, and somewhat surprisingly, there has been little evidence to date from randomized trials of longer-term harm
from clinical doses of synthetic glucocorticoids. However, with wider clinical application of antenatal glucocorticoid therapy there has been greater
need to consider the potential for later adverse effects. This paper reviews current evidence for the short- and long-term health effects of antenatal
glucocorticoids and discusses the apparent discrepancy between data from randomized clinical trials and other studies.
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Introduction

After more than forty years since being first introduced,
antenatal glucocorticoid therapy to promote fetal maturation
remains one of the most important interventions for preterm
birth and has been acknowledged as a ‘rare example of a
technology that yields substantial cost savings in addition to
improving health.’1 A key reason for this success is that
synthetic glucocorticoids mimic the developmental matura-
tional changes that normally occur in late gestation in response
to rising fetal glucocorticoids. But it is this capacity of gluco-
corticoids to exert potent effects throughout gestation that
makes exposure to excess maternal glucocorticoids, the transfer
of which is normally tightly regulated by the placenta, an
important candidate mechanism underlying known associa-
tions between an adverse fetal environment and risk of
cardiometabolic and other diseases in adulthood.

Remarkably, despite the emerging body of evidence linking
fetal glucocorticoid excess to permanent changes in home-
ostasis and organ function, there has been little evidence to date
from randomized trials of harm following exposure to clinical
doses of antenatal glucocorticoids. However, with wider use of
glucocorticoids in an attempt to maximize neonatal benefits,
including repeat doses and administration before cesarean at
term, there is increased need to consider whether short-term
benefits could be outweighed by later adverse effects.

In this paper, we outline the clinical benefits and actions
of synthetic glucocorticoids, highlight areas of clinical uncer-
tainty, review what is currently known about long-term effects
of antenatal glucocortcoids, and discuss the apparent dis-
crepancy between data from randomized clinical trials and
other studies.

Clinical benefits of antenatal glucocorticoid treatment

The benefits of antenatal glucocorticoid treatment in women
with threatened or planned preterm birth have been summar-
ized in a Cochrane systematic review involving 21 trials
(4269 infants), and include a reduced incidence of neonatal
death, respiratory distress syndrome, intraventricular hemor-
rhage, early neonatal sepsis and necrotizing enterocolitis, with
numbers needed to treat to benefit of 30 or fewer (Table 1).2

These benefits were not associated with an increase in the
incidence of intrauterine infection or puerperal sepsis. In these
trials, efforts were made to expose fetuses to glucocorticoids for
at least 48 to 72 h,3 though subgroup analysis showed that the
incidence of neonatal death and respiratory distress syndrome
were reduced even if exposure to glucocorticoids was within
24 and 48 h of birth, respectively.2

Although the earliest trials were performed before many of
the advances in modern neonatal intensive care, approximately
a quarter of all data in the review came from trials that com-
pleted recruitment after 1990. In this subgroup, the relative
and absolute benefits of treatment were at least as good as, if not
better than, those for infants born in earlier decades,2 possibly
reflecting synergistic effects between antenatal glucocorticoids
and other treatments such as surfactant.4–7
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In the review, statistically significant reductions in the inci-
dence of respiratory distress syndrome were seen only with
administration of glucocorticoids before 35 weeks’ gestation,
though risk ratios at 35 to 36 weeks’ gestation were similar.1 In
two subsequent open-label trials, antenatal glucocorticoid
treatment before cesarean at term reduced admission for
respiratory distress, primarily at early-term gestation.8,9 How-
ever, in another double-blind trial at late-preterm gestation
betamethasone had no effect on the incidence of respiratory
distress, though the need for phototherapy was reduced.10

Although selective use of antenatal glucocorticoids after
34 weeks’ gestation has been recommended by some
authorities,11 there is concern that the balance of benefits and
potential harms in the more mature fetus may be different,
particularly given the low incidence of serious morbidity.12,13

Indeed, a two-fold increase in teacher-reported low
academic ability in children exposed to betamethasone at term
suggests need for caution.14 Further evidence from ongoing
trials of glucocorticoid treatment in late gestation is awaited
(NCT01222247,NCT01206946,NCT00446953, Khazardoust
et al.15), and long-term follow-up of these infants will be
crucial in determining the overall effect of treatment.

There are insufficient data from randomized trials to
evaluate effects of antenatal glucocorticoid treatment before
26 weeks’ gestation, but in large cohort studies of extremely
preterm infants antenatal glucocorticoid exposure has been

consistently associated with significant clinical benefit,
especially improved survival and a decreased incidence of
intraventricular hemorrhage.16–20 Furthermore, studies in
animals and human lung explants have shown that
glucocorticoid-induced pulmonary maturation occurs from the
early saccular phase of lung development.21–23

Obstetric subgroups

Randomized trial data are available for a limited number of
maternal subgroups, and have shown that antenatal glucocorti-
coids are effective in women with pre-clampsia and preterm pre-
labour rupture of membranes (PPROM), without increasing the
incidence of intrauterine or neonatal infection.2,24 Recent studies
support the use of antenatal glucocorticoids in fetuses that may be
affected by inflammation or infection,25–28 though early admin-
istration appears to be important.29

In the Cochrane systematic review, antenatal glucocorticoids
did not have a significant effect in multiple pregnancy,2 raising
concern that higher doses of glucocorticoid may be required.30

However, this is likely to represent a type 2 error as there were
few data available for this subgroup and subsequent studies
have shown maternal and fetal glucocorticoid pharmacoki-
netics are not altered in multiple pregnancy.31,32

Cardiovascular responses to glucocorticoids may differ
between normally grown and growth restricted fetuses,
with growth restricted fetuses showing reduced rather than

Table 1. Perinatal effects of antenatal glucocorticoids compared with placebo or no treatment in women at risk of preterm birth

Outcome Total infants or women Risk ratio, fixed effects (95% CI)
Number needed to treat to

benefit (95% CI)

Perinatal
Perinatal death 3627 0.77 (0.67, 0.89) 23 (16, 48)
Neonatal death 3956 0.69 (0.58, 0.81) 22 (16, 36)
Respiratory distress syndrome
All 4038 0.66 (0.59, 0.73) 12 (10, 15)
Moderate or severe 1686 0.55 (0.43, 0.71) 14 (11, 21)

Ventilatory support 569 0.69 (0.53, 0.90) 10 (7, 31)
Surfactant use 456 0.72 (0.51, 1.03) na
Bronchopulmonary dysplasia 818 0.86 (0.61, 1.22) na
Intraventricular hemorrhage
All 2872 0.54 (0.43, 0.69) 21(17, 30)
Severe (grade 3 or 4) 572 0.28 (0.16, 0.50) 7 (8, 12)

Necrotizing enterocolitis 1675 0.46 (0.29, 0.74) 30 (23, 29)
Early neonatal sepsis 1319 0.56 (0.38, 0.85) 27 (19, 78)
Proven neonatal sepsis 2607 0.83 (0.66, 1.04) na
Birthweight (g) 2588 −17 (−62, 27) na
Small for gestational age 378 0.96 (0.63, 1.44) na
Maternal chorioamnionitis 2485 0.91 (0.70, 1.18) na
Maternal puerperal sepsis 1003 1.35 (0.93, 1.95) na

Early childhood
Developmental delay 518 0.49 (0.24, 1.00) na
Cerebral palsy 904 0.60 (0.34, 1.03) na

na, not applicable; CI, confidence interval.
Adapted from meta-analysis of Roberts and Dalziel.2
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increased fetal and placental vascular resistance33–35 and
increased cerebral blood flow.36–38 These observations have
raised concern that glucocorticoids may disrupt fetal cardio-
vascular compensation for placental insufficiency39–41 and
increase cerebral oxidative stress and injury.37,42 While rando-
mized trials have not specifically addressed the use of antenatal
glucorticoids in the presence of fetal growth restriction, key
trials did include such pregnancies3 and observational data,
though limited, appear reassuring with respect to later neuro-
logical outcome.43 One trial suggested that glucocorticoids
may be less effective in reducing respiratory distress syndrome
in infants with lower birthweight percentile,44 but in growth
restricted fetal sheep, glucocorticoid-induced pulmonary
maturation was similar to that of normally grown animals.45

Antenatal glucocorticoid therapy causes a transient increase
in maternal glucose concentrations,46–48 often more pro-
nounced in women with diabetes,46,49 and some47 but not all50

randomized trials have shown an increase in the incidence of
glucose intolerance in women following glucocorticoid
administration. While hyperglycemia and hyperinsulinism can
impair glucocorticoid action,51–53 outcomes appear similar for
preterm infants of mothers with and without diabetes when
there is adequate maternal glycemic control and a high rate of
antenatal glucocorticoid exposure.54,55 Consequently, antenatal
glucocorticoid therapy remains indicated in women with
diabetes,11 although increased insulin therapy may be required.56

Mechanism of action and pharmacology

Fetal glucocorticoids have a key role in late gestation in preparing
the fetus for extra-uterine life and are important in achieving
synchrony between maturation and parturition.57–59 They
induce a wide range of proteins and enzymes with morphological
and functional maturational effects in most fetal tissues, espe-
cially the lung, liver and intestine (Table 2). However, this tends
to occur at the expense of ongoing cell division.60

Glucocorticoid action is mediated primarily by activation of
the cytosolic glucocorticoid receptor with subsequent effects on
transcription,61 mRNA stability62 and post-translational pro-
cessing.63 The activated glucocorticoid receptor induces a
limited number of genes directly via nuclear response elements
within the gene promoter,62,64–68 but for most genes tran-
scription is induced indirectly through interactions with
nuclear transcription factors that coordinate expression of
multiple genes.61 At higher concentrations, glucocorticoids
may have a variety of non-genomic effects, including altered
cell membrane permeability, mitochrondrial function and
intracellular signaling.69–71

The success of glucocorticoid therapy is due in large part to
the fact that clinical doses of synthetic glucocorticoids accel-
erate a similar sequence of coordinated organ development in
the preterm fetus to that which normally occurs in late gesta-
tion in response to the rise in endogenous fetal glucocorti-
coids.57,58,63 Glucocorticoid receptor expression is high in fetal
tissues from mid-gestation, especially in the lung, intestine,

pituitary and thymus,72 though glucocorticoid action may be
influenced by fetal expression of the 11β-hydroxysteroid
dehydrogenases (11β-HSD) that determine local glucocorti-
coid concentrations,73 chromatin conformation, 61 the devel-
opmental stage of tissues74,75 and glucocorticoid receptor
polymorphisms.76

The clinical benefits of glucocorticoids in preterm infants
result from combined maturational effects on multiple organ
systems and pathways. For example, prevention of intraven-
tricular hemorrhage is likely due to increased circulatory sta-
bility and vascular resistance,6,77–79 maturation of cerebral
microvasculature80,81 and improved lung function reducing
the need for mechanical ventilation. Initial improvements in
lung function are due to enhanced absorption of fetal lung fluid
and thinning of alveolar septae, followed by increased surfac-
tant proteins and phospholipids, the concentrations of which
are not significantly altered until at least 48 h after glucocorti-
coid exposure.82–87

Dexamethasone and betamethasone are the only parenterally
administered glucocorticoids that reliably cross the placenta
due to their limited affinity for placental 11β-HSD-2, which
metabolizes maternal cortisol into inactive cortisone.88 Fetal
serum concentrations of dexamethasone and betamethasone
are approximately one-third that of maternal.89,90 Hydro-
cortisone and prednisone do reach the fetus if given in sufficient
amounts, but are rapidly cleared from the fetal circulation and
thus have limited fetal effect.75 Although dexamethasone and
betamethasone are stereoisomers of the same fluorinated ster-
oid, meta-analysis of several small trials suggested that dex-
amethasone was more effective at preventing intraventricular
hemorrhage.91 This may be due to dexamethasone having
slightly greater affinity for the glucocorticoid receptor than
betamethasone, the longer duration of increased fetal gluco-
corticoid activity achieved with current dexamethasone dosing
regimens,75,92,93 and greater potency for non-genomic
effects.70 Results of a large clinical trial comparing the effect
of dexamethasone and betamethasone for preterm birth on
later neurodevelopment are awaited.94

One trial found that doubling the dose of betamethasone
administered to women (two doses of 24 mg) did not result in
any additional neonatal benefit,95 which is not surprising given
that the glucocorticoid receptor is saturated at low nanomolar
concentrations of glucocorticoids.75 The molecular action of
glucocorticoids suggests that a small but sustained increase in
fetal glucocorticoid activity would be sufficient to induce pre-
mature maturation. Indeed, in sheep a single maternal injection
of betamethasone in a depot form (betamethasone acetate) was
as effective as serial bolus dosing (betamethasone phosphate),
despite considerably lower fetal plasma concentrations.96

Repeat doses

The use of repeat doses of antenatal glucocorticoids was ori-
ginally proposed because subgroup analysis of the first and
largest trial showed that infants born 7 or more days after
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Table 2. Maturational effects of glucocorticoids on the fetus in late gestation

Organ Morphological effects Functional effects (protein or enzyme induced)

Lung Epithelial cytodifferentiation
Thinning of alveolar septae
Increased alveolar airspace
Increased elastin and collagen content
Maturation of alveolar capillaries

Increased tissue and alveolar surfactant (surfactant proteins A, B, C, D; fatty acid synthetase, phosphatidyl acid phosphatase,
lyso PC acyl CoA acyltransferase; fibroblast pneumocyte factor)

Increased antioxidant activity (superoxide dismutase, catalase, glutathione peroxidase)
Enhanced clearance of fetal lung fluid (sodium-potassium ATPase subunits, epithelial sodium channel subunits)
Increased glycogenolysis, which provides substrate for phospholipid synthesis
Increased catecholamine induced surfactant synthesis and clearance of lung fluid
(β adrenergic receptors)

Reduced vascular permeability

Liver Increased bile canaliculi Increased glygcogen deposition (glycogen synthetase)
Increased gluconeogenesis (phospho-phenolpyruvate carboxykinase, glucose-6-phosphatase)
Enhanced protein and lipid metabolism (fatty acid synthetase, aminotransferases)
Increased synthesis of plasma proteins (cortisol binding globulin)
Induction of hepatic receptors (growth hormone, β adrenoreceptors)
Increased conversion of thyroxine (T4) to triidothyronine (T3) (5′-monodeiodinase)
Decreased expression of some hormones (insulin-like growth factor 2, angiotensinogen)

Kidney Increased renal blood flow
Increased glomerular filtration rate
Increased tubular sodium reabsorption (sodium-potassium ATPase, sodium-hydrogen exchanger)
Enhanced sodium regulation (increased secretion of renin)

Gut Increased villus height and density
Maturation of glands in stomach and small intestine

Increased stomach acid secretion (gastrin)
Enhanced digestive activity of intestine (pancreatic amylase and trypsin; brush border hydrolases)
Reduced permeability to large proteins

Pancreas Enhanced insulin response to glucose

Adrenal Increased adrenaline content of medulla
Increased cortical response to adrenocorticotrophic hormone

Skin Keratinization

Blood Regression of lymphoid tissue in thymus and spleen Switch from liver to bone marrow as primary site of hematopoiesis

Brain Enhanced blood–brain barrier
Maturation of microvascular circulation

Heart Myocyte differentiation Increased cardiac output (myocardial adenylyl cyclase, sodium-potassium ATPase α-isoforms)
Enhanced closure of ductus arteriosus

Adapted from Ballard and Ballard,243 Fowden and Li,58 Grier and Halliday244 and Liggins.57
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glucocorticoid treatment did not experience respiratory benefit
and may have actually been at increased risk of respiratory
distress syndrome.95,97 Subsequently, nine placebo-controlled
trials allowed use of weekly repeat doses of glucocorticoids but
the effect on the incidence of respiratory distress syndrome and
neonatal death in these trials was similar to those permitting
only a single course of glucocorticoids.2

However, experimental animal studies have shown that
repetitive maternal dosing or longer courses of glucocorticoids
result in greater biochemical and structural maturation in the
preterm fetal lung than a single dose or course.23,86,98–104 This
may be partly due to the reversibility of glucocorticoid action in
fetal tissues and declining effect over time.105 However,
improvements in lung function and architecture persist in the
fetus for at least 2 to 3 weeks before gradually reverting to the
baseline developmental state.98,100,106,107 Overall, these studies
suggest that a maximal maturational response in the preterm
fetus requires repeat exposure to glucocorticoids.

More recent trials have investigated the effect of giving
repeat dose(s) of glucocorticoids to women at risk of preterm
birth 7 or more days after an initial course of glucocorticoids.
Though treatment regimens were quite variable and not all
trials showed neonatal benefit, a Cochrane systematic review
(10 trials, 5700 infants) found that repeat dose(s) of beta-
methasone were associated with a reduced incidence of
respiratory distress syndrome and combined serious neonatal
morbidity compared with a single course (Table 3).108 Other
related benefits included decreased use of oxygen, surfactant,
mechanical ventilation and inotropes, and reduced treatment
for patent ductus arteriosus.108 Most trials included women
with PPROM and there was no significant increase in inci-
dence of intrauterine infection or puerperal sepsis (Table 3).
Importantly, the absolute benefit of repeat dose(s) was similar
to that of an initial course (numbers needed to treat to prevent
respiratory distress syndrome [95% CI]: single course 12
[10, 19]2; repeat dose[s] 17 [11, 32]108).

Table 3. Effects of repeat dose(s) of antenatal betamethasone compared with placebo or no treatment given to women at risk of preterm birth 7 or more days
after an initial course of glucocorticoids

Outcome
Total infants or

women
Relative risk or mean difference, fixed

effect (95% CI)
Number needed to treat to

benefit (95% CI)

Perinatal
Perinatal death 5554 0.94 (0.71, 1.23) na
Neonatal death 2713 0.91 (0.62, 1.34) na
Respiratory distress syndrome 3206 0.83 (0.75, 0.91) 17 (11, 32)
Severe lung diseasea 4826 0.83 (0.72, 0.96) na
Ventilatory support 4918 0.84 (0.71, 0.99) 22 (13, 368)
Surfactant use 5525 0.78 (0.65, 0.95) 19 (12, 86)
Bronchopulmonary dysplasia 5393 1.06 (0.87, 1.30) na
Intraventricular hemorrhage
All 3065 0.94 (0.75, 1.18) na
Severe IVH 4819 1.13 (0.69, 1.86) na

Composite serious infant outcomeb 5094 0.84 (0.75, 0.94) 33 (20, 83)
Necrotizing enterocolitis 5394 0.74 (0.51, 1.08) na
Early neonatal sepsis 1544 0.93 (0.79, 1.11) na
Proven neonatal sepsis 5002 1.00 (0.83, 1.20) na
Birthweight (g) 5626 − 76 (−118, − 34) na
Small for gestational age 3975 1.18 (0.97, 1.43) na
Maternal chorioamnionitis 4261 1.16 (0.92, 1.46) na
Maternal puerperal sepsis 3091 1.15 (0.83, 1.60) na

Early childhood
Death or neurosensory disability 3164 0.99 (0.87, 1.12) na
Cerebral palsy 3800 1.03 (0.71, 1.50) na
Mental developmental index (Bayley Scales of
Development II)

1162 1 (−1, 3) na

Score 1 to 2 S.D. below mean 1595 1.00 (0.83, 1.20)
Score > 2 S.D. below mean 3496 0.94 (0.77, 1.15)

CI, confidence interval; na, not applicable.
Adapted from meta-analysis of Crowther et al.108
aStatistically significant heterogeneity (I2 = 76%); average relative risk (random effects) 0.80 (95% CI 0.56, 1.14); 95% prediction interval

0.4 to 1.56 (τ2 = 0.12).
bVariously defined but includes severe lung disease, chronic lung disease, severe intraventricular hemorrhage, periventricular leukomalacia,

necrotizing enterocolitis, retinopathy of prematurity, proven sepsis, patent ductus arteriosus requiring treatment and perinatal death.
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In this systematic review, subgroup analysis of trials based on
planned glucocorticoid dose and frequency did not identify any
particular treatment regimen as being superior to another.108

However, a meta-analysis of individual patient data, currently
in progress, may help to determine optimal dose and frequency
of repeat doses, and pregnancies in which benefits are likely to
be maximized.109 For example, secondary analysis of one trial
suggested that benefits were greatest when repeat doses were
commenced before 29 weeks’.110

Adverse effects and long-term outcomes after antenatal
glucocorticoid treatment

The glucocorticoid hypothesis of the developmental origins of
disease

Fetal overexposure to glucocorticoids is an important potential
mechanism underlying the known associations between fetal
growth restriction or undernutrition and adult cardiometabolic
diseases, such as diabetes, hypertension, stroke and ischemic
heart disease.111 Key evidence includes the demonstration in
animals that both fetal growth restriction and components of
metabolic syndrome can be induced by administration of
exogenous glucocorticoids112–114 or by manipulations that
increase placental transfer of maternal glucocorticoids, such as
inhibition of placental 11-β-HSD-2.115 Moreover, maternal
protein restriction reduces placental 11-β-HSD-2 activity and
induces hypertension in offspring,116 which can be prevented
by blockade of maternal corticosteroid synthesis.117 In
humans, maternal and fetal glucocorticoid concentrations are
correlated with birthweight118–121 and offspring blood pres-
sure,122 adiposity123 and cortisol concentrations,124 and may
be related to risk of later cognitive impairment,125,126 psychiatric
disorders127–131 and osteoporosis.132

Risk factors for cardiometabolic disease

In animals, antenatal exposure to synthetic glucocorticoids has
been associated with increased risk factors for cardiometabolic
disease including enhanced fat deposition,133,134 impaired meta-
bolism of visceral fat,135,136 higher blood pressure 112,137–145 and
decreased insulin sensitivity,113,114,141,146,147 which in some cases
occurred without associated effects on fetal growth.145 In several
studies, there were more marked effects on physiological function
with larger or repeat doses of glucocorticoids.114,145,148,149

These pertubations in later cardiometabolic function may be
due to permanent changes in organ structure, such as reduced
nephron mass,137,143,150–153 or altered neuro-hormonal reg-
ulation, including increased expression of peripheral glucoco-
corticoid113,136 and central mineralocorticoid receptors,154,155

altered tissue activity of 11β-HSD,140,156,157 and increased
reactivity of sympathetic,158–160 renin–angiotensin–aldoster-
one139,141,144,161,162 and hypothalamic–pituitary–adrenal
(HPA) systems.138,141,145,163,164 In addition, impaired glucose
tolerance may result from altered insulin signaling,165,166

upregulation of hepatic gluconeogentic enzymes, such as

phosphophenolpyruvate carboxykinase113,145 and glucose-6-
phosphate,167 and reduced β-cell function.114,145,168–170

It is important to note that these findings have not been uni-
versal135,167,171–174 and effects have often varied between
sexes,141,163,175 among species, with the stage of fetal develop-
ment, and over time. In general, adverse effects on cardiometa-
bolic function have been seen more consistently in smaller
animals, possibly reflecting a longer duration of glucocorticoid
exposure relative to gestation length. Nevertheless, in rodents
glucose intolerance only occurred with prolonged but not short
courses of antenatal dexamethasone.113,141,148 However, rodents
appear particularly susceptible to glucocorticoid-induced hyper-
tension,112,137,141,150,151 whereas the association is more variable
in sheep135,167 and primates,145,173 perhaps due to the earlier
onset of metanephric development in higher species.176 In some
studies, antenatal glucocorticoid exposure was associated with
increased HPA axis activity in juvenile animals but decreased
activity in older animals, emphasizing the importance of assess-
ments throughout the life course.149,177

In contrast to animal studies, long-term follow-up of adult
subjects in one clinical trial found that those exposed antena-
tally to betamethasone compared with placebo had similar
blood pressure, adiposity, blood lipids and morning cortisol
concentrations.178 Betamethasone-exposed subjects did have a
slightly increased insulin response to oral glucose challenge,
with some evidence of greater effect in the higher dose arm of
this trial.178 However, the clinical significance of this result is
uncertain as the differences were small and fasting insulin
concentrations and glucose tolerance did not differ between
groups. In another trial, antenatal betamethasone exposure was
actually associated with slightly lower adult systolic blood
pressure.179

Results from human observational studies have been con-
flicting, with many showing no association between antenatal
glucocorticoid exposure and later risk factors for cardiometa-
bolic disease, including blood pressure,180–182 insulin sensitiv-
ity,180,181 cortisol concentrations,180 peripheral arterial
function,180 blood lipids and adiposity.180,181 However, in
others there was a small increase in blood pressure,183 slight
decrease in renal clearance181 and β-cell function,184 and evi-
dence of increased aortic stiffness.184 In addition, two studies
demonstrated increased stress reactivity in term-born children
exposed antenatally to glucocorticoids.185,186

There are currently few data from randomized trials on the
long-term effects of repeat doses of antenatal glucocorticoids on
cardiometabolic function, apart from blood pressure, which did
not differ between children exposed to repeat doses or a single
course.187–189 Results of a detailed investigation of the effects of
repeat doses on later physiological function in one trial are
awaited.190

Growth, bone mass and reproduction

In many animal studies, antenatal glucocorticoids have been
associated with a dose-related reduction in birthweight,
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primarily due to decreases in soft tissue and solid organ mass
with less effect on skeletal size.191 However, in primates
birthweight is not invariably affected, even after prolonged
exposure.145 Several mechanisms may contribute to
glucocorticoid-induced slowing of fetal growth, including
altered placental function and nutrient transfer,146,191,192

decreased DNA synthesis and cell division,75 reduced fetal tis-
sue water content193 and increased protein catabolism.194–196

It is likely that altered expression and action of insulin-like
growth factors underlie many of these changes, with an overall
shift from paracrine to centrally regulated secretion.196–201 In
both small and larger animals, glucocorticoid-induced fetal
growth restriction was followed by rapid catch-up
growth,103,141,146,197 and did not affect adult body size, even
after repeat doses.167,173,202

In a Cochrane systematic review, exposure to repeat doses of
antenatal glucocorticoids compared with a single course was
also associated with a small reduction in birth size (Table 3),
though anthropometric measures that adjusted for gestational
age were similar between groups.108 It is important to note that
even a single course of antenatal glucocorticoids may decrease
birthweight, but this effect is not seen until at least 48 h after
treatment.2 Nevertheless, secondary analysis in one trial sug-
gested that placental growth was reduced in a dose-dependent
manner.203 However, as in other animals, effects on human
fetal growth are transitory,204 and antenatal glucocorticoid
treatment has not been associated with altered body size, in
either childhood108,187,205,206 or adulthood.178,179

There are few data on the long-term effects of antenatal
glucocorticoids on bone development. In one study, adult
female rats exposed to antenatal dexamethasone had decreased
femoral cortical thickness.207 However, in a human rando-
mized trial antenatal betamethasone treatment did not have any
effect on bone mineral density or femoral geometry in early
adulthood.208

Similarly, the long-term effects of antenatal glucocorticoids
on reproduction have, until recently, received little attention.
In female guinea pigs, antenatal exposure to repeat doses of
betamethasone led to reduced fertility.209 Several studies have
also demonstrated that antenatal glucocorticoids can alter
physiological function in second generation offspring, includ-
ing decreased stress reactivity210 and altered β-cell function.147

In humans, one trial found a trend towards delayed pubarche in
boys exposed to antenatal betamethasone,205 which was not
observed in another trial,178 though the finding in this study of
increased appendicular growth relative to axial growth208 may
be suggestive of a delay in onset of puberty.

Neurodevelopment

In animal studies, exposure to antenatal glucocorticoids has
been associated with reduced brain mass,164,211,212 delayed
myelination,213–215 decreased maturation of the retina and
peripheral nerves213–215 and impaired programmed apopto-
sis.216,217 Many of these effects were dose related and some

persisted into adulthood,167 raising concern that antenatal
glucocorticoid therapy may have adverse effects on long-term
neurodevelopment. However, in clinical trials a single course of
antenatal glucocorticoids has not been associated with adverse
effects on later cognitive and academic ability in child-
hood218–221 or adulthood,179,222 and may reduce the incidence
of developmental delay and cerebral palsy (Table 1).2

Similarly, in a Cochrane systematic review, pre-school chil-
dren randomly exposed to repeat doses of antenatal beta-
methasone compared with those exposed to a single course of
glucocorticoids did not differ in cognitive function or incidence
of neurosensory disability, including cerebral palsy, despite a
possible small negative effect on head circumference at birth
(four trials, Table 3).108 Subsequently, one of the trials inclu-
ded in this review also found that by early school-age intellec-
tual ability was similar between groups but there was a trend
towards a decrease in the incidence of severe cerebral palsy in
those exposed to repeat doses.187 Despite several reports sug-
gesting adverse effects on emotional regulation,77,223 in longer-
term follow-up of clinical trials antenatal glucocorticoid expo-
sure has not been associated with clinically significant dis-
turbances in early childhood behavior, executive function or
adult psychiatric illness, even after repeat doses.187,189,222,224

Additional outcome data at school age are awaited from another
large trial.225

While these data are reassuring, a small observational study
suggested that infants who were born at term after exposure to
repeat doses of antenatal glucocorticoids may have less mature
brain development.226 Unlike preterm infants in whom
potential adverse effects on brain growth may be mitigated by
reduced neonatal morbidity, outcomes may be different if
pregnancy continues to term. In a secondary analysis of infants
born at term in one trial, those exposed to repeat doses of
betamethasone compared with a single course of glucocorti-
coids had increased risk of sensory disability. However, very few
children were affected and the impairments in vision and
hearing were not severe.187,227 Furthermore, this effect was not
seen in the main trial and the potential for bias in subgroup
analyses based on post-randomization variables is well recog-
nized.228 It should be noted that in the first and largest trial that
played such a key role in establishing the long-term safety of
antenatal glucocorticoid treatment, ∼40% of subjects were
born at or after 36 weeks’ gestation.2

Respiratory function

Glucococorticoids induce many beneficial changes in fetal lung
architecture but also cause slowing of secondary septation and
alveolar formation.229–231 Although the effect on alveolariza-
tion is reversible,23,231–233 rats exposed to antenatal gluco-
corticoids had larger and fewer alveolar air spaces in
adulthood,231,234 raising concern that later lung growth may be
impaired. However, a single course of glucocorticoids did not
affect spirometric measures of lung volume or expiratory flow
in childhood2,205,235 and adulthood.236 The effect of repeat
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doses on later lung function is currently unknown, but data
from one trial are awaited.190

Discussion

The neonatal benefits of antenatal glucocorticoid therapy are
now well established and are recommended for all women at
<35 weeks’ gestation with threatened or planned preterm
birth, with few exceptions.2 While a single course of antenatal
glucocorticoids has been associated with several subtle late
physiological effects, including mildly increased stimulated
insulin and altered body segment proportions, these are unli-
kely to be of major clinical significance. Importantly, in ran-
domized cohorts there has been no evidence of clinical side
effects across a range of organ systems, including neurocogni-
tive, cardiovascular, endocrine and respiratory function,
through into early adulthood.

This is somewhat surprising given the wider animal literature
in which the potential for long-term adverse effects after fetal
glucocorticoid exposure has been well documented. Further-
more, in humans, as with most species, antenatal glucocorti-
coid treatment can have a small negative effect on fetal growth,
a potential marker of altered organ development. There
are several possible reasons for the apparent discrepancy in
outcomes between clinical trials and animal experimental
studies. First, fetal effects can vary among species due to dif-
ferences in the timing of organ development and expression
of glucocorticoid receptors and the 11β-HSD, which deter-
mine local glucocorticoid concentrations. Second, dosage
schedules in animals have tended to be longer relative to
gestation length and there have been few pharmacological stu-
dies involving measurement of fetal glucocorticoid concentra-
tions to establish appropriate physiological doses.96,237,238 In
humans, the increase in fetal glucocorticoid activity with cur-
rent clinical treatment regimens is similar to that seen in pre-
term infants with respiratory distress syndrome, but effective
fetal doses are likely to be higher in many animal studies.238

Third, there are few comparative animal models of current
neonatal intensive care practice. Finally, publication guide-
lines for animal studies have not, until recently, required
the same methodological rigor as clinical trials, with greater
potential for bias.239

While clinical trial data are reassuring, several observational
studies have reported adverse cardiometabolic effects in adult-
hood. However, studies in which exposures are not randomly
allocated are at greater risk of bias. This was well illustrated by
an observational study that was performed in parallel with a
clinical trial by the same investigators using a similar protocol;
infants who were exposed to repeat doses of betamethasone in
the observational study demonstrated cardiac hypertrophy,
whereas those in the trial did not.240,241 Thus, longitudinal
study of trial cohorts is essential for reliable estimates of
long-term risk.

Evidence from clinical trials has shown that there is oppor-
tunity to achieve additional neonatal benefit through extended

use of antenatal glucocorticoid therapy, including administra-
tion of repeat doses in women at risk of preterm birth at
<34 weeks’ gestation and before elective early-term cesarean.
However, given the range of dose-dependent effects that have
been observed in animal studies and the possibility that out-
comes may be different at term, it cannot be assumed that long-
term safety data derived from earlier trials apply equally to these
newer clinical applications. Thus, short-term benefits and their
clinical importance need to be weighed against the uncertainty
about later health outcomes.
Infants of women who are considered eligible for repeat

doses continue to have high neonatal morbidity despite expo-
sure to a single course of glucocorticoids 7 or more days earlier,
including an incidence of respiratory distress syndrome of 35%,
severe lung disease of 13% and combined serious neonatal
complications of 20%.108 Thus, use of repeat doses to max-
imize fetal maturation and decrease this level of morbidity
would seem justified, particularly given the relatively high
absolute benefits and that there is high quality evidence
showing absence of harmful effects on neurodevelopment and
general health in early to mid-childhood. However, more data
are needed on longer-term cardiometabolic and respiratory
outcomes, and the influence of different obstetric risk factors
on the benefits achieved.
In contrast, only about 5% of infants born at term

by elective cesarean require admission for respiratory distress,
and serious morbidity and severe disease is uncommon.8

Although preventing these admissions is desirable, the finding
of lower teacher-reported academic ability in those exposed to
glucocorticoids raises serious concern about whether gluco-
corticoid treatment in this group may actually be harmful, and
long-term follow-up with psychometric testing is required
before the balance of benefits and risks can be accurately
defined. In addition, for many women there is an equally
effective alternative, namely, delaying elective cesarean
until 39 weeks’.8

Research is ongoing into the most effective type of synthetic
glucocorticoid and whether there are benefits from antenatal
glucocorticoid treatment at late preterm gestations. Other areas
of uncertainty include the use of different preparations of
betamethasone, the minimally effective glucocorticoid dose
and the optimal timing of glucocorticoid administration before
preterm birth.
It is important that these and future questions are investi-

gated in randomized trials powered to assess clinically relevant
effects on both short- and long-term outcomes, especially
neurodevelopment but also cardiometabolic and respiratory
effects. A recent study that showed increased risk of necrotizing
enterocolitis with a simple change in the timing of beta-
methasone administration from 24 to 12 hourly is a reminder
that the effects of antenatal glucocorticoids on the fetus are
complex and clinical practice must remain firmly based on
evidence from clinical trials.242

In summary, the introduction of antenatal glucocorticoid
treatment for preterm birth remains one of the most
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important discoveries in perinatal medicine and has been
responsible for substantial reductions in neonatal mortality
and morbidity. Remarkably, despite the evidence linking
fetal glucocorticoid exposure with adverse long-term health out-
comes, in randomized trials a single course of antenatal gluco-
corticoids has not been associated with clinical harm
up to early adulthood.More recent evidence has shown that there
is opportunity to maximize neonatal benefit through extended
use of antenatal glucocorticoids, including administration of
repeat doses in women at risk of preterm birth and before elective
cesarean. However, the longer-term effects of these newer appli-
cations are less certain and more longitudinal research is needed
to determine the overall effect of treatment in these situations.
More than forty years ago, the investigators of the first antenatal
glucocorticoid trial concluded that ‘it would be surprising if there
were no scope for improved results from therapeutic regimens
based on a better understanding of the mode of action of gluco-
corticoids…[and] better selection of patients.’3 To this we must
also add the need for a better understanding of the effects of
antenatal glucocorticoid therapy throughout the life-course.
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