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Turbidity currents interacting with
three-dimensional seafloor topography
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Direct numerical simulations are employed to investigate the interactions of bidisperse
turbidity currents with three-dimensional seafloor topography in the form of Gaussian
bumps. Results for two different bump heights are compared against currents
propagating over a flat surface. The bump heights are chosen such that the current
largely flows over the smaller bump, while it primarily flows around the taller
bump. Furthermore, the effects of the settling velocity are investigated by comparing
turbidity currents with corresponding compositional gravity currents. The influence
of the bottom topography on the front velocity of turbidity currents is seen to be
much weaker than the influence of the particle settling velocity. Consistent with
earlier work on gravity currents propagating over flat boundaries, the influence of the
Reynolds number on the front velocity of currents interacting with three-dimensional
bottom topography is found to be small, as long as Re>O(1000). The lobe-and-cleft
structures, on the other hand, exhibit a stronger influence of the Reynolds number. The
current/bump interaction deforms the bottom boundary-layer vorticity into traditional
horseshoe vortices, with a downwash region in the centre of the wake. At the
same time, the vorticity originating in the mixing layer between the current and
the ambient interacts with the bump in such a way as to form ‘inverted horseshoe
vortices’, with an upwash region in the wake centre. Additional streamwise vortical
structures form as a result of baroclinic vorticity generation. The dependence of
the sedimentation rate and streamwise vorticity generation on the height of the
bump are discussed, and detailed analyses are presented of the energy budget and
bottom wall-shear stress. It is shown that for typical laboratory-scale experiments,
the range of parameters explored in the present investigation will not give rise to
bedload transport or sediment resuspension. Based on balance arguments for the
kinetic and potential energy components, a scaling law is obtained for the maximum
bump height over which gravity currents can travel. This scaling law is validated by
simulation results, and it provides a criterion for distinguishing between ‘short’ and
‘tall’ topographical features. For turbidity currents, this scaling result represents an
upper limit. An interesting non-monotonic influence of the bump height is observed
on the long-term propagation velocity of the current. On the one hand, the lateral
deflection of the current by the bump leads to an effective increase in the current
height and its front velocity in the region away from the bump. At the same time,
taller bumps result in a more vigorous three-dimensional evolution of the current,
accompanied by increased levels of dissipation, which slows the current down. For
small bumps, the former mechanism dominates, so that on average the current front
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propagates faster than its flat bottom counterpart. For currents interacting with larger
bumps, however, the increased dissipation becomes dominant, so that they exhibit a
reduced front velocity as compared to currents propagating over flat surfaces.

Key words: gravity currents, stratified flows, topographic effect

1. Introduction
Gravity currents form when a heavier fluid propagates into a lighter, ambient fluid

as a result of horizontal hydrostatic pressure gradients (Benjamin 1968; Huppert
1986; Simpson 1997; Borden & Meiburg 2013). Understanding the dynamics of such
currents is of general interest, as they occur frequently both in the environment and
in engineering applications. Turbidity currents constitute a special class of gravity
currents, in which the density difference is caused by suspended sediment. Their
flow structure usually gives rise to both erosion and deposition (Kneller & McCaffrey
1999), and hence they represent an important mechanism for the transport of sediment
in oceans or lakes (Meiburg & Kneller 2010). Repeated interactions of turbidity
currents with the seafloor can result in the formation of a variety of topographical
features, among them meandering channels, fans and lobes, gullies, levees, sediment
waves and graded bedding (Kuenen & Migliorini 1950; Wynn et al. 2000; Migeon
et al. 2001; Nakajima & Satoh 2001; Normark et al. 2002; Wynn & Stow 2002).
This renders turbidity currents of interest in the context of hydrocarbon reservoir
formation in the deep ocean (Syvitski et al. 1996).

Due to the unpredictable and often catastrophic character of natural turbidity
currents, many investigations aimed at obtaining insight into their dynamics have
employed laboratory experiments, most often involving currents propagating over flat
surfaces (e.g. Luthi 1981; Bonnecaze, Huppert & Lister 1993; Gladstone, Phillips
& Sparks 1998; de Rooij & Dalziel 2001). Currents over flat substrates are also
amenable to simplified theoretical approaches, such as box models, shallow-water
models and linear stability analyses (Rottman & Simpson 1983; Bonnecaze et al.
1993; Dade & Huppert 1995; Hallworth, Hogg & Huppert 1998; Hall, Meiburg &
Kneller 2008; Lesshafft et al. 2011). In recent years, fully three-dimensional numerical
simulations of turbidity currents propagating over flat beds have become feasible as
well (e.g. Necker et al. 2002, 2005; Huang, Imran & Pirmez 2008; Cantero et al.
2009). Due to their numerical resolution requirements, however, these simulations to
date have mostly been limited to laboratory scales. Nevertheless, they have provided
detailed information about the dynamics of turbidity currents in simple geometries,
including the spatiotemporal evolution of their particle concentration fields, energy
budgets, wall-shear stresses and transient statistics.

Comparatively few investigations to date have addressed the dynamics of turbidity
currents propagating over more complex seafloor topographies involving slopes
or meandering submarine channels (see Woods, Bursik & Kurbatov 1998; Kubo
& Nakajima 2002; Kassem & Imran 2004; Kubo 2004; Blanchette et al. 2005;
Oehy & Schleiss 2007; Peakall et al. 2007; Kane et al. 2010; Janocko et al. 2012;
Strauss & Glinsky 2012, and several references cited in Middleton 1993). From
these investigations we have gained some insight into the depositional behaviour of
turbidity currents (Al Ja Aidi 2000), the nature of their secondary flow in channel
bends, and their turbulence structure. However, to the best of the authors’ knowledge
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a detailed investigation into energy budget components of turbidity currents interacting
with three-dimensional seafloor topography has not yet been undertaken. The present
investigation aims to provide insight into these issues.

Our knowledge regarding the interaction of constant-density, continuous flows
with wall-mounted obstacles is more mature. For example, many experimental and
computational investigations have demonstrated the existence of horseshoe vortices,
flow separation, vortex shedding and other phenomena in such flow fields (e.g. Baker
1979; Mason & Sykes 1979; Mason & Morton 1987; Belcher & Hunt 1998; Sau
et al. 2003).

When the flow over obstacles exhibits a stable density stratification, a host of
additional phenomena can arise, such as the emergence and breaking of internal waves,
the suppression of flow separation, and the formation of hydraulic jumps and internal
bores (e.g. Hunt & Snyder 1980; Castro, Snyder & Marsh 1983; Armi 1986; Lin
et al. 1992; Castro & Snyder 1993; Vosper et al. 1999; Eiff & Bonneton 2000; Tseng,
Meneveau & Parlange 2006; Ooi, Constantinescu & Weber 2009). Very recently,
several investigations have addressed the interaction of compositional gravity currents
with spanwise uniform, two-dimensional obstacles (e.g. Gonzalez-Juez, Meiburg &
Constantinescu 2009; Tokyay, Constantinescu & Meiburg 2012). Simplified analytical
models have been developed that include such features as dividing streamlines and
particle pathlines, and that account for internal bores, drag and shear (Snyder et al.
1985; Smolarkiewicz & Rotunno 1989, 1990; Gonzalez-Juez et al. 2010; Winters &
Armi 2012). Many of these investigations have focused on steady or quasisteady flow
regimes, whereas the transient interaction of current fronts with obstacles has not
been investigated at a comparable level of detail.

The present investigation aims to provide insight into the mechanisms by which
turbidity currents interact with three-dimensional seafloor topography. Towards this
end, we will focus on the example of a local seamount in the form of a Gaussian
bump. We will explore how the topography affects such global properties as the
propagation velocity of the current, its sedimentation, the resulting bottom shear
stress as well as several other features. In addition, we will analyse the coherent
vortical structures of the flow, along with their effect on such quantities as the
wall-shear stress and the energy budget. Towards this end, we will employ our
computational code TURBINS (Nasr-Azadani & Meiburg 2011; Nasr-Azadani, Hall
& Meiburg 2013) to conduct high-resolution, direct numerical simulations of turbidity
currents interacting with three-dimensional Gaussian bumps (cf. figure 1). Here, the
turbidity currents are generated by the familiar lock–release process. By comparing
results for several different bump heights with the flow over a flat surface, we will
be able to shed light on how the current/topography interaction mechanisms depend
on the bump height. We will present general results regarding the dynamics of
compositional gravity currents versus turbidity currents, and concerning the critical
bump height, beyond which the current is forced to go around the bump rather than
over it. We furthermore explore currents at different values of the Reynolds number.
For a discussion of the resulting deposit profiles, we refer the reader to Nasr-Azadani
& Meiburg (2013).

Section 2 formulates the governing equations and the modelling approach, and
it describes the flow geometry in detail. Subsequently, we briefly review the
numerical approach employed by TURBINS in § 3. Section 4 focuses on such
general current properties as the front velocity of turbidity versus gravity currents
and the sedimentation rate of the former, and it identifies some non-monotonic
dependence on the bump height. Section 5 analyses the vortical structures of the flow,
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FIGURE 1. Initial set-up for a lock–release turbidity current interacting with three-
dimensional seafloor topography in the form of a Gaussian bump. The lock contains a
bidisperse suspension. To start the flow, the membrane separating the suspension from the
ambient fluid is removed.

and it demonstrates the existence of both traditional and inverted horseshoe vortices.
Results for two different Reynolds numbers are compared, with an emphasis on the
lobe-and-cleft structures. The section furthermore contrasts currents propagating over
small bumps with those moving around tall bumps, and provides a scaling relationship
for the critical current height that separates these two regimes. This scaling law is
subsequently validated by analysing the path lines for currents interacting with bumps
of different heights. Section 6 provides detailed information on the bottom wall-shear
stress, and on the ability of the current to erode the sediment bed. Section 7 focuses
on energy budgets, and it identifies some important differences between compositional
gravity currents and turbidity currents in this regard. Finally, § 8 employs the detailed
information provided by the simulations in order to explain the reasons for the
non-monotonic dependence of the long-term front velocity on the bump height
observed earlier.

2. Problem description and modelling approach

The modelling approach and governing equations are described in depth by Necker
et al. (2002) and Nasr-Azadani & Meiburg (2011), so that a brief summary suffices
here. We employ the Navier–Stokes equations in the Boussinesq approximation to
model dilute suspensions with typical particle volume fractions of O(1 %) or less

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇p+ 1

Re
∇2u+ cteg. (2.2)

In the above equations, the non-dimensional quantities u, p and ct represent the fluid
velocity, pressure and the total particle concentration (volume fraction), respectively.
The Reynolds number Re is defined as

Re= ûbĤ/2
ν̂

, (2.3)
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with ν̂, Ĥ and ûb representing the kinematic viscosity, lock height (see figure 1) and
buoyancy velocity

ûb =
√

Ĥ
2
(ρ̂p − ρ̂0)Cr

ρ̂0
ĝ, (2.4)

respectively. Here, the ˆ sign refers to a dimensional quantity, whereas symbols
without this sign indicate dimensionless quantities. Here Cr, ρ̂p and ρ̂0 represent,
respectively, the initial particle volume fraction within the lock, the density of the
particle material and the ambient fluid density. In the above, the half-height of the
lock Ĥ/2 and the buoyancy velocity ûb serve as characteristic quantities for scaling
the flow variables, i.e. x= x̂/(Ĥ/2), u= û/ûb and p= p̂/(ρ̂0û2

b).
By assuming a dilute suspension of small particles, we can neglect particle inertia

and particle–particle interactions. Hence, the particles are assumed to move with the
fluid velocity plus the Stokes settling velocity

ûs =
d̂2

p(ρ̂p − ρ̂)ĝ
18µ̂

, (2.5)

acting in direction of gravity (cf. Dietrich 1982).
The suspension contains two different particle sizes with identical particle material

density ρ̂p. For the ith particle size (i = 1, 2), we define a continuum concentration
field ci(x, t). Each concentration field is then evolved in an Eulerian manner by

∂ci

∂t
+ (u+ ui

se
g) · ∇ci = 1

ReSci
∇2ci, i= 1, 2. (2.6)

Here, ui
s and Sci denote the ith particle settling speed and Schmidt number

Sci = ν̂

κ̂i
, i= 1, 2, (2.7)

respectively. In (2.7), κ̂i represents the diffusion coefficient associated with the ith
concentration field. Since for Sc > O(1) the Schmidt number has a negligible effect
on the dynamics of the flow (Härtel, Meiburg & Necker 2000b), we set all Sci
to unity. We assign a non-dimensional particle settling speed ui

s to each particle
concentration field, respectively. These values can be translated back into dimensional
settling velocities via (2.5). In the present investigation, we employ dimensionless
settling velocities of u1

s = 0.03 (coarse particles) and u2
s = 0.006 (fine particles), and

initial relative mass fractions of 50 % each.
The particle concentration fields Ci are scaled with the total initial volume fraction

of the particles in the lock Cr, i.e.

ci = Ci

Cr
, i= 1, 2. (2.8)

Given the above definition, the total concentration ct (see (2.2)) at any location can
be obtained by adding all of the concentration fields ci

ct =
2∑

i=1

ci. (2.9)

Thus, at time t = 0, ct varies between zero in the ambient fluid and one in the lock
region.
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The computational domain size is Lx × Ly × Lz = 38 × 2 × 3, and the lock has
dimensions Ls × H × W = 1 × 2 × 3 (see figure 1). No-slip conditions are imposed
everywhere along the boundaries except for the top (y= Ly) and side walls (z= 0, Lz),
where free-slip conditions are employed. To solve for the concentration fields, we
implement no-flux boundary conditions at the upstream, downstream, top and side
walls, respectively 

∂ci

∂x
= 0 x= 0, Lx

∂ci

∂z
= 0 z= 0, Lz i= 1, 2.

ciui
s +

1
SciRe

· ∂ci

∂y
= 0 y= Ly

(2.10)

Along the bottom boundary, we enforce a vanishing normal derivative of the
concentration field

n · ∇ci = 0, y= Γ (x, z) i= 1, 2. (2.11)

Here, Γ and n denote the bottom surface height and the unit normal vector on the
bottom surface pointing toward the fluid region, respectively. We remark that at the
bottom, the particles leave the computational domain freely with a constant settling
speed ui

s in the direction of gravity. Moreover, we assume that the deposit layer
height is small, so that it does not alter the bottom surface height throughout the
simulation. In the current investigation, we do not account for any incipient motion
of settled particles in the form of bedload transport and/or erosion and resuspension
of particles back into the current (Garcia & Parker 1993; Blanchette et al. 2005).
In all simulations, the fluid initially is at rest. The particle concentration is set to
unity within the lock, and to zero outside. The interface between the suspension and
ambient fluid initially is smoothed over three to four grid intervals, in order to avoid
any spurious oscillations.

We conduct four main simulations. The first three have identical lock dimensions
and suspension properties, but different bottom topographies. Simulation B1 includes
a shallow bump, simulation B2 a tall bump and simulation FL a flat bottom for
comparison purposes. Furthermore, in order to gain insight into the difference between
compositional gravity currents and turbidity currents, we carry out a fourth simulation
B2-GC, which is identical to B2 except that the settling velocity is set to zero. Table 1
summarizes the parameter values employed in these simulations. Additional parametric
simulations for different bump heights, Reynolds numbers and control volume widths
will be referred to in more detail in the relevant sections.

The surface shapes of the bumps in simulations B1, B2 and B2-GC are given by

Γ (x, z)= h exp
(
−(x− xb)

2 + (z− zb)
2

2ε2

)
. (2.12)

The centre of the Gaussian bump is located at (xb, zb)= (5.5, 1.5) (see figure 1) and
the width parameter ε of the bump is set to ε = 0.25. The bump height h is 0.25 for
B1, and 0.5 for B2 and B2-GC, cf. figure 2.
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Bump Re Number of grid Domain size Lock dimensions
Name Shape height (h) points (Nx,Ny,Nz) (Lx, Ly, Lz) (Ls,H,W)

FL Flat 0 2000 (1545, 184, 250) (38, 2, 3) (1, 2, 3)
B1 Bump 0.25 2000 (1645, 195, 362) (38, 2, 3) (1, 2, 3)
B2 Bump 0.5 2000 (1645, 215, 362) (38, 2, 3) (1, 2, 3)
B2-GC Bump 0.5 2000 (1645, 215, 362) (38, 2, 3) (1, 2, 3)

TABLE 1. Parameter sets of the four main simulations.

2.0

FL
B1
B21.5

y

z

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 2. Cross-sections of the bottom topography (Γ ) in simulations FL, B1 and
B2, corresponding to a flat bottom, and bump heights equal to h = 0.25 and h = 0.5,
respectively. The y, z plane is shown at the streamwise location of the bumps peak, x=5.5.

3. Numerical method

Since a detailed description of the numerical method is given by Nasr-Azadani &
Meiburg (2011), we provide only a brief summary here. The momentum equations
are solved using a projection method (Chorin 1968) in conjunction with the fractional
step method (Kim & Moin 1985), on a MAC-staggered grid. We employ a fully
implicit central differencing method to discretize the viscous and diffusion terms in
the momentum and transport equations, while the convective terms are discretized via
an explicit third-order essentially non-oscillatory (ENO) scheme (Harten et al. 1987).
The time integration for the transport and momentum equations is performed via a
second-order total variation diminishing Runge–Kutta method (TVD-RK2; cf. Harten
1997). The boundary conditions along the bottom topography are implemented via an
immersed boundary method with direct forcing (Mohd-Yusof 1997; Mittal et al. 2008).
Validation results, with a focus on accurate wall-shear stress data, are presented in
Nasr-Azadani & Meiburg (2011), and comparisons with experiments are described in
Nasr-Azadani et al. (2013).

We employ a non-uniform structured Cartesian grid in all three directions,
cf. figure 3 (Vinokur 1983). In the x direction and in the vicinity of the bump,
the grid is uniform with the spacing 1x= 0.0067. Away from the bump, the grid is
smoothly stretched to values 1x= 0.02 for 06 x6 2, and to 1x= 0.04 for 186 x. In
the y direction, the minimal spacing 1y= 0.0055 (B1 06 y6 0.3 and B2 and B2-GC
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0

y
(a)

(b)

z

x

2

0
3

4 8 12 16 20 24 28 32 36

FIGURE 3. Non-uniform structured grid for simulation B2 (see table 1). Every 12th grid
point is shown in all directions.

0 6 y 6 0.55) is smoothly stretched to the maximum value of 1y= 0.02 close to the
top wall. In the spanwise z direction, a minimum spacing of 1z= 0.0067 is used in
the vicinity of the bump, and stretched to the maximum value of 1z = 0.014 close
to the lateral boundaries.

For case FL, a minimum grid spacing 1x=0.017 is utilized close to the lock region,
and stretched to 1x= 0.04 farther downstream (186 x). A uniform grid is used in the
z direction with spacing 1z = 0.012. In the y direction, the minimal spacing 1y =
0.0055 (0 6 y 6 0.1) is stretched to 1y= 0.02 close to the top wall.

The above grid spacing ensures that the first grid point above the bottom surface lies
within the viscous sublayer. To check this, we define the dimensionless wall-normal
distance of this grid point as

η+n =
η̂nûτ
ν̂
= ηnuτRe, (3.1)

where ûτ and η̂n represent the friction velocity and wall-normal distance, respectively.
In all three simulations we obtain η+n ≈ 1. This allows us to compute the bottom shear
stress via linear interpolation from the adjacent velocity grid nodes.

The time integration was generally performed up to t= 200, by which the fluid has
nearly come to rest in all simulations.

4. General current properties

Here we compare some of the overall current features for the different bottom
topographies, such as their suspended mass as a function of time, their sedimentation
rates, and their respective front locations. In addition, we will contrast the dynamics
of turbidity current B2 with a corresponding compositional gravity current B2-GC.

We define the suspended mass of particle size i as

mi
s(t)=

∫
Ω

ci dV, i= 1, 2, (4.1)

with Ω denoting the computational domain. Figure 4 shows the front location xf of
each current, along with the time history of the suspended mass for each particle size.
To determine xf , we average the total concentration ct in the spanwise and vertical
directions, respectively, so that we obtain a one-dimensional profile cf (x). The front
location is then defined as the farthest downstream location at which cf exceeds the
threshold value of 10−3.
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0

FIGURE 4. Temporal evolution of the front location xf (a) and the suspended mass (b).
Dots, dashed and solid lines represent turbidity currents FL, B1 and B2, respectively. (i),
(ii) and (tot) refer to normalized suspended masses of coarse (u1

s = 0.03), fine (u2
s = 0.006)

and all particles, respectively. The bump height has a non-monotonic influence on the front
location, in that B1 advances faster than FL, whereas B2 propagates more slowly than FL
and B1. The front location of the compositional gravity current B2-GC at Re= 2000 is
shown for comparison (dash-dotted line), along with the front location of a simulation
identical to B2-GC except that Re = 5000 (solid line). The Reynolds number has a
negligible effect on the front velocity. The bottom topography is seen to have only a weak
influence on the rate at which the suspended mass decreases with time.

We observe that after a brief initial transient all currents propagate with nearly
the same constant velocity. During this stage of the current, which includes the well-
studied slumping phase (Huppert & Simpson 1980), the front velocity of the current
is largely independent of the settling velocity. After t≈ 15, all three turbidity currents
gradually slow down in comparison with the compositional gravity currents, since they
increasingly lose suspended particles, so that their driving force diminishes. For all of
the turbidity currents, at t= 20 only ∼50 % of the particle mass is still in suspension.
While the presence of the obstacles does not have a significant influence on the mass
of the suspended particles, the front location of the turbidity currents displays an
interesting non-monotonic behaviour: current B1 over the small bump moves faster
than current FL over the flat substrate; however, a further increase in the bump height
to B2 results in a current that is slower than both B1 and FL. We will further explore
the reasons for this non-monotonic behaviour below, in the context of discussing the
effective current heights and dissipation rates for each of the currents.

Figure 5 shows the time history of the sedimentation rate on the bottom surface
ṁd(t), defined as the time derivative of the suspended particle mass. For each particle
size

ṁi
d =−

∫
A

ui
sc

i
weg
· n dA, i= 1, 2. (4.2)

Here, cw denotes the particle concentration at the bottom wall, and A represents the
bottom surface area.
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100
(Total)

10–2
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10–6

100 101 102 0 10 20 30 40

0.16

0.12

0.04

0.08
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0.040

0.013

0.027

0

(a) (b)

FIGURE 5. Time history of particle sedimentation rate for coarse (ṁ1
d) and fine (ṁ2

d)
particles. (a) Case B1 shown on a logarithmic scale. (b) Comparison of all cases, where
dotted, dashed and solid lines represent cases FL, B1 and B2, respectively.

Both particle sizes experience two distinctly different stages. During the first
stage, the sedimentation rate can be approximated by a power law in the form of
ṁi

d(t) ∼ t0.5. This is consistent with the observation by Necker et al. (2002) for a
monodisperse current with a particle settling speed of us = 0.02 propagating over
a flat wall. Equation (4.2) indicates that, for a current with constant concentration
along the bottom wall, the sedimentation rate would be proportional to the bottom
surface area covered by the current. Since the front velocity is nearly constant during
the early stage, this would result in a linear increase of the sedimentation rate with
time. Hence, the observed exponent of 0.5 must be due to variations in the particle
concentration along the bottom surface as a result of mixing, or as a result of the
bore that is reflected from the back wall of the lock region.

Figure 6 verifies the above picture for the early stages of the flow. On the one hand,
the particle concentration at the bottom wall is reduced in the vicinity of the nose
region due to the thin layer of ambient fluid that is overrun by the current front as
a result of the no-slip condition at the bottom wall. In addition, as the bore reflected
from the left wall propagates forward, it reduces the particle concentration at the wall
in the tail section of the current. Hence, for longer or deeply submerged locks, or for
slip conditions along the bottom wall, we would expect to see a different dependence
of the sedimentation rate on time (Necker et al. 2005).

After t ≈ 15, the turbidity currents undergo the aforementioned deceleration. We
note that this time corresponds approximately to the peak sedimentation rate. In
addition to losing suspended particles, the currents are being diluted as ambient fluid
is entrained via turbulent mixing. This phase coincides with a dramatic change in
the sedimentation rate for both particle sizes. The rate at which the coarse particles
sediment out decreases rapidly, following a power-law exponent of approximately
n = −7. This compares with a value of n = −2.4 observed by Necker et al. (2002)
for a monodisperse current with us= 0.02, which suggests that the sedimentation rate
during the deceleration phase is a function of the particle settling speed. Furthermore,
we note that the nonlinear coupling between different particle sizes will also influence
the temporal decay of the sedimentation rate, as discussed by Gladstone et al. (1998)
and Harris, Hogg & Huppert (2002).
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FIGURE 6. Temporal evolution of the concentration (ct) along the bottom wall during the
initial sedimentation phase for case B1: (a) t= 4; (b) t= 6. The vertical plane depicts the
concentration profile in the centreplane z = 1.5. The white lines represent the ct = 0.95
contour. We find that the particle concentration at the bottom wall is reduced by the thin
layer of ambient fluid overrun by the current front, and by the bore reflected from the
back wall of the lock.

For fine particles, on the other hand, the sedimentation rate does not follow a power
law during this phase. Beyond t = 50 nearly all of the coarse particles have settled
out, so that the total sedimentation rate follows that of the fine particles. Figure 5(b)
compares the respective sedimentation rates for the FL, B1 and B2 cases. We find that
the bottom topography has a very weak influence on the rate at which the particles
settle out.

Figure 7 compares the current heights of flows B2 and B2-GC at different times.
To compute the current height, we integrate the spanwise averaged concentration
field in the y direction. We note that a variety of current height measures have been
employed in the past, such as the current moment (cf. Ellison & Turner 1959), the
half-height of the lock (cf. Shin, Dalziel & Linden 2004) and the depth-integrated
density profile (cf. Birman, Martin & Meiburg 2005). Upon arrival of the current
at the bump location, both cases demonstrate very similar current height profiles.
Beyond this stage, however, the turbidity current experiences a more pronounced
deceleration, while the frontal region of the compositional gravity current maintains
a thicker profile, which accounts for its larger sustained front velocity.

In summary, we find that the influence of bottom topography on the front velocity
of turbidity currents is much weaker than the influence of the particle settling velocity.
The effect of the bump height on the current velocity is non-monotonic, so that the
current interacting with a bump of intermediate height advances more rapidly than
its counterparts propagating over a flat bottom or interacting with a tall bump. All
turbidity currents begin to decelerate appreciably sometime after having interacted
with the bump. A corresponding compositional gravity current, on the other hand, is
able to maintain a substantially higher front velocity for longer times.

5. Structure of the current
The erosional and depositional nature of turbidity currents is dominated by their

large-scale vortices. Hence, in this section we focus on characterizing these vortical
structures, and on how their evolution is affected by the bottom topography. We
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FIGURE 7. Current height for cases B2 (solid line) and B2-GC (dashed line), at three
different times. After interacting with the bump, the front of the compositional gravity
current B2-GC maintains a larger height and thus travels faster.

furthermore compare currents propagating over small bumps with those flowing
around larger bumps, and we derive scaling arguments for the critical bump height
that separates these two parameter regimes. We subsequently validate this scaling
law by analysing particle path lines for currents interacting with bumps of different
heights. We furthermore compare the vortical and lobe-and-cleft structures for currents
of two different Reynolds numbers, and we assess the influence of the lateral domain
boundaries by contrasting two simulations for different computational domain widths.

Figure 8 illustrates the temporal evolution of turbidity current B1 by visualizing
the c= 0.1 contours of the coarse and fine particle concentration fields, respectively.
During the initial phase, the flow is dominated by a pair of spanwise startup vortices
(Härtel et al. 2000b), although a noticeable lobe-and-cleft instability is emerging after
t = 6. Around t = 8, the current head encounters the obstacle and experiences some
lateral deflection. We note that, during these early stages, the concentration fields of
the coarse and fine particles are quite similar. Over long times, however, we expect
the different settling velocities of the coarse and fine particles to result in major
discrepancies. This is confirmed by the frames for t= 16, which show that many of
the coarse particles have already settled out, while most of the fine particles remain
in suspension.

Figure 9 compares the structure of the B1 and B2 currents as they encounter the
obstacle, with the FL current at the same time. While the front of FL is dominated
by the lobe-and-cleft instability (Simpson 1972; Härtel, Carlsson & Thunblom 2000a),
B1 and B2 are noticeably influenced by the obstacle. However, while B1 primarily
passes over the bump, the front of B2 is bisected by the bump, so that it mostly
flows around it. Hence, at t= 12, the front of B1 resembles the FL case again, while
B2 still exhibits a strong wake effect.

The different front dynamics of B1 and B2 are clearly visible in figure 10, which
shows the concentration field in the plane x= 5.5, along with the v- and w-velocity
components, for times 8 and 12. During the impact stage at t = 8, the front of B1
is seen to flow over the bump, while the taller bump in case B2 bisects the front,
deflecting it laterally away from the highest point. The ambient fluid above both
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FIGURE 8. Temporal evolution of the turbidity current produced by a lock release
flow passing over a Gaussian bump (case B1). The c = 0.1 isosurfaces of the particle
concentration fields are shown for the coarse (a) and fine particles (b), respectively. From
top to bottom, times are 8 and 16.

currents is deflected upwards at this time. Both fronts exhibit plumes of the lighter,
ambient fluid from the overrun boundary layer rising upward from the bottom wall,
as a result of the lobe-and-cleft instability. At t= 12, both currents plunge downward
in the plane x= 5.5; however, B2 maintains a bisected front.

The above discussion raises the general question about the limiting bump height
that the current is able to travel over, and beyond which it will have to go around
the bump. For linearly stratified flows over obstacles, issues such as the existence of
dividing streamline, the generation of internal waves and vortex shedding have
been the focus of several investigations (Snyder et al. 1985; Smolarkiewicz &
Rotunno 1990; Winters & Armi 2012). However, we are not aware of corresponding
investigations for transient current fronts interacting with obstacles.

In the following, we first consider currents with vanishing settling velocities, in
order to develop scaling arguments that are independent of this quantity. Due to the
relatively high Reynolds numbers and low dissipation rates of the gravity currents
under investigation, we can follow the analysis by Snyder, Britter & Hunt (1979), and
employ balance arguments for the kinetic and potential energy components in order
to assess the currents’ capacity to travel over an obstacle of a given height. Those
authors argue that a heavier fluid layer of thickness ĥc submerged below a lighter
ambient fluid of density ρ0 can flow over a hill of height ĥb if

Û2
∞

ĝĥc1ρ̂/ρ̂0

> 2

(
ĥb

ĥc

− 1

)
(5.1)

is satisfied, where 1ρ̂ denotes the density difference. Here, Û∞ represents the
upstream velocity of the dense current. Employing the reference variables of the
present study, (5.1) can be written in dimensionless form as

U2
∞

hc
= 2

(
hb

hc
− 1
)
. (5.2)
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FIGURE 9. Development of the current structure for cases FL, B1 and B2, visualized
by the concentration contour ct = 0.1. FL is dominated by the growth of lobe-and-cleft
structures in the frontal region, whereas cases B1 and B2 show a strong influence of the
bump. While current B1 primarily flows over the shallow bump, current B2 mostly flows
around the taller bump. The shading in the bottom plane indicates the magnitude of the
wall-shear stress, and the vertical plane to the right depicts the concentration field in the
symmetry plane z= 1.5.

Upon arrival of the current at the bump location (t ≈ 10), the front velocity is
approximately U∞ ≈ 0.7, with a current height hc ≈ 0.7. Equation (5.2) then suggests
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FIGURE 10. Evolution of currents (a) B1 and (b) B2 in the plane of the peak of the
bump at x= 5.5. The top row corresponds to t= 8, whereas the bottom row depicts the
currents for t= 12. The in-plane v, w-velocity vectors are also shown. The grey shading
represents the total concentration field ct, with the line showing the contour ct=0.1. While
B1 passes over the bump, B2 mostly flows around the bump.

that the lower sections of the current, i.e. the sections above the bottom boundary
layer, are able to flow over bumps of height hb . 0.9.

In order to validate the above scaling law, we conducted a series of simulations
for compositional gravity currents interacting with bumps of different heights hb,
cf. figure 11. For hb = 1.25 the bump fully bisects the current front, whereas for
hb = 0.5 part of the current still manages to flow over the top of the bump. This
is confirmed by figure 12, which compares the current height computed in the
y, z-plane at x = 5.5 (corresponding to the bump’s peak) for several bump heights.
For increasing bump heights we note that, while the current thickness at the peak of
the bump decreases, it increases away from the bump.

To further investigate the dynamics of different vertical current sections during
the interaction with the obstacle, fluid path lines for passive markers are shown in
figure 13. These markers are initially located at y= 0.1, 0.3, 0.5 and 0.7 upstream of
the bump at x= 4.35 in the symmetry plane at z= 0.5Lz. They are released at t= 7,
and their path lines are integrated until t= 20.

The observed particle path lines are seen to be consistent with the above scaling
law. For bump heights hb . 0.9, even particles originating in the near-wall region
are seen to be lifted over the top of the bump. On the other hand, for hb = 1.0 the
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FIGURE 11. Isosurface of the concentration field c= 0.1 shown for two different bump
heights at t = 10: (a) hb = 0.5; (b) hb = 1.25. The bottom section of the current is not
able to fully cross-over the bump peak for hb & 0.9.
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FIGURE 12. Comparison of current heights in the plane of the bump peak, for gravity
currents interacting with bumps of different heights. Dashed line, solid line, dash-dots and
dots correspond to bump heights of hb= 0.5, 0.75, 1.0 and 1.25, respectively. The current
height is averaged over the time interval from t= 8 to t= 12.

marker released at y=0.1 travels around the bump, rather than over it. We furthermore
observe that fluid marker particles released near the top of the current experience
strong recirculating motion, indicative of the concentrated vortical structures forming
in the mixing layer between the current and the ambient.

In order to analyse how the above observations for compositional gravity currents
are modified due to the presence of a settling velocity, figure 14 compares fluid
path lines for turbidity currents B1 and B2, for the same initial marker positions as
before. Unlike for the compositional gravity current case B2-GC, the lowest marker
for turbidity current B2 does not advance over the peak of the bump. This is a
consequence of the lower height hc (see (5.2)) of turbidity current B2 as compared
with gravity current B2-GC. In addition, the energy loss of the turbidity current
due to the Stokes dissipation in the small-scale flow around the particles lowers the
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FIGURE 13. Fluid path lines for gravity currents interacting with Gaussian bumps of
different heights. The fluid marker particles are released at x=4.35 (in the symmetry plane
z=1.5) and time t=7, and their locations are shown for times t=7, 13 and 20. For hb=1,
the fluid marker particles in the lower current sections are seen to flow around the bump
rather than over it, consistent with the scaling law (see (5.2)): (a) hb = 0.5; (b) hb = 1.

current’s capacity to travel over the obstacle. This will be analysed in further detail
below, within the context of the energy budget discussion. We conclude that, for a
given current height and velocity, the scaling law (5.2) represents an accurate criterion
for compositional gravity currents, whereas it serves as an upper limit for turbidity
currents.

When comparing the uppermost fluid path lines for gravity and turbidity currents
interacting with bumps of various heights in figures 13 and 14, we recognize
a stronger recirculating motion for the turbidity currents. This suggests that the
turbidity currents give rise to more vigorous mixing of interstitial and ambient fluid,
as compared with the gravity currents.

Figure 15 depicts selected in-plane streamlines for case B2 within the symmetry
plane z= 1.5, in the laboratory reference frame. These indicate that the flow separates
from the rear of the bump. However, due to the highly transient nature of the flow, this
separation region is very short-lived, and periodic vortex shedding does not occur. The
figure furthermore shows the spanwise vorticity component. Strong clockwise vortices
exist in the bottom boundary layer. We draw particular attention to the boundary-layer
vortex located near x = 5, which is just upstream of the bump. As this spanwise
vortex is wrapped around the sides of the bump by the flow, it will be stretched in
the streamwise direction, thus taking on the familiar structure of a horseshoe vortex
(cf. Baker 1980), which is characterized by a downflow region in the wake of the
bump. This behaviour is well-known from the flow of constant density boundary layers
over obstacles (Baker 1978; Doligalski, Smith & Walker 1994).

At the same time, the mixing layer separating the current from the ambient
counterflow above gives rise to counterclockwise Kelvin–Helmholtz (KH) vortices in
the spanwise direction. We expect the interaction of these spanwise vortices with the
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FIGURE 14. Fluid path lines shown for turbidity currents (a) B1 and (b) B2. Four seed
markers released at t = 7 and x= 4.35 (in the symmetry plane z= 1.5) follow the fluid
velocity until t= 20. The markers are also shown at time t= 13, indicating that the lowest
marker is able to flow over the peak of the bump only for case B1, but not for case B2.
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FIGURE 15. In-plane streamlines plotted in the symmetry plane z = 1.5, at t = 11 for
case B2. Background shading represents the out-of-plane vorticity component wz (black
corresponding to +15, white to −15 and grey to zero). The separation and reattachment
of the front are visible.

bump to result in the formation of streamwise vorticity as well. If the section of the
KH vortex above the bump slows down compared with neighbouring sections, the
resulting streamwise vorticity should be opposite in sign to that of the traditional
horseshoe vortex, i.e. it should lead to an upflow region in the centre of the bump’s
wake. Conversely, if the KH vortex is accelerated above the bump, it should result in
the formation of streamwise vorticity of the same sign as that of the horseshoe vortex.

This picture is confirmed by figure 16, which shows the streamwise vorticity along
with the v- and w-velocity components for case B2 within two different x = const.
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FIGURE 16. Streamwise vortical structure of current B2, illustrated by in-plane velocity
vectors and the out-of-plane streamwise vorticity component ωx (black, +8; white, −8;
and grey, 0), at t= 13. In (a) the flow in the plane x= 5.5 is dominated by a traditional
horseshoe vortex with a downwash at the centre, whereas in (b) the streamwise vortex
pair of the opposite sign dominates the plane x= 5.9. This vortex pair is likely created
by the deformation of mixing layer vorticity.

planes. At x= 5.5 we observe two strong coherent vortical structures adjacent to the
sides of the bump. Their sign, with a downwash region at the centre, is consistent
with that of a classical horseshoe vortex formed from the boundary-layer vorticity
(Doligalski et al. 1994). At x= 5.9, on the other hand, we find that a counter-rotating
streamwise vortex pair of the opposite sign dominates the near-wall region, i.e. with
an upwash region at the wake centre. This streamwise vortex pair likely originated
from the mixing layer at the top of the turbidity current.
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FIGURE 17. Vortical structures of turbidity current B2 visualized by isosurfaces of scalar
Q (see (5.3)) at t = 13. Isosurfaces are shown for positive values of 10 (light grey) and
22 (dark grey). A strong streamwise vortex pair is seen to extend from the mixing layer
all of the way down to the near-wall region in the wake of the bump.

We must keep in mind, however, that in addition to the convection, diffusion and
stretching of vorticity we also have baroclinic vorticity production, as a result of the
density difference between the current and the ambient. This mechanism most likely is
responsible for the formation of the smaller, concentrated streamwise vortices visible
at the top of the interface at x= 5.9.

To illustrate the three-dimensional nature of the vortical structures, we employ the
familiar Q-criterion (Hunt, Wray & Moin 1988). The scalar quantity Q is defined
based on the second invariant of the velocity gradient tensor ∇u as

Q= 1
2
(ΩmnΩmn − SmnSmn). (5.3)

Here, Ωmn and Smn are the antisymmetric and symmetric components of ∇u

Ωmn = 1
2

(
∂um

∂xn
− ∂un

∂xm

)
, (5.4)

Smn = 1
2

(
∂um

∂xn
+ ∂un

∂xm

)
, (5.5)

respectively. Isosurfaces of a positive Q imply that the flow is locally dominated by
fluid rotation, so that they allow us to visually identify vortex tubes. Figure 17 shows
the structure of the vorticity field for case B2 at t = 13. We recognize a prominent
pair of streamwise vortices that extend all of the way from the mixing layer at the
top of the current, to the near-wall region in the wake of the bump. This is consistent
with the streamwise vorticity shown in figure 16.

To gain insight into the influence of the Reynolds number, figure 4(b) compares the
time-dependent front location for case B2-GC for the two different Reynolds number
values of 2000 and 5000. While both currents initially travel with nearly identical
speeds, the higher-Reynolds-number current is seen to be slightly faster after t ≈ 4,
due to lower dissipative losses. Consistent with the observations of other authors, we
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FIGURE 18. Vortical structures for case B2-GC at t = 10, for (a) Re = 2000
and (b) Re = 5000. While the large-scale structures are similar for both flows, the
higher-Reynolds-number flow generates more fine-scale structure, as expected.

find that for Reynolds numbers above O(1000) the front velocity depends only weakly
on Re (Simpson & Britter 1979; Cantero et al. 2007). Figure 18 demonstrates the
turbulent structures in the current shown by the Q-criterion (see (5.3)) during the
interaction of the current with the bump. The large-scale structures are similar for
both cases, while the higher-Reynolds-number case is seen to generate more fine-scale
structure.

Figure 19 compares the temporal evolution of the lobe-and-cleft structures for
the two Reynolds numbers. In both cases we observe the development of spanwise
periodic lobe-and-cleft instabilities upstream of the bump, with a somewhat shorter
wavelength for the higher Reynolds number. The strongly nonlinear evolution
triggered by the interaction with the bump, which involves the merging, splitting and
meandering of lobes, subsequently results in significantly wider lobes downstream of
the bump for the lower Re value. Härtel et al. (2000a) employed a linear stability
analysis to predict the growth rate and wave length of the lobes as a function of
Sc× Re. For the present Reynolds numbers (and Sc= 1), we find the most unstable
wave numbers to be, respectively, βRe=2000 ≈ 30 and βRe=5000 ≈ 53 (see figure 6 of
Härtel et al. 2000a). These values correspond to wavelengths of λ = 2π/β equal to
λRe=2000 = 0.21 and λRe=5000 = 0.12. The present simulation results upstream of the
bump are fully consistent with these values, as they show dominant wave numbers
of λs

Re=2000 = 0.214 and λs
Re=5000 = 0.125, respectively.

5.1. Lateral deflection
To quantify the lateral deflection of the current as it interacts with the bump, we
employ the vertically integrated, streamwise concentration flux uc as a function of the
spanwise location

uc(z)=
∫ Ly

y=yΓ

uct dy. (5.6)

Figure 20 compares the temporal evolution of uc(z) for all three cases, in the peak
plane x= 5.5. We recognize that both at t= 8, when the front is just passing over the
bump, and at t= 14, when the front has travelled quite a distance further downstream,
the flux over the obstacle is somewhat reduced for case B1, and strongly reduced for
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FIGURE 19. The formation, merging, splitting and meandering of lobe-and-cleft structures
as shown by concentration contours of c= 0.05 at the bottom surface for case B2-GC at
the two different Reynolds numbers of (a) Re = 2000 and (b) Re = 5000. The contour
lines are indicated for time intervals of 1t= 0.2 until t= 20.
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FIGURE 20. Streamwise concentration flux uc at x= 5.5, for all three currents at times
(a) t = 8 and (b) t = 14. A comparison of cases FL (dots), B1 (dashed lines) and B2
(solid lines) shows that the lateral deflection of the current reduces the flux over the
bump somewhat for B1, and strongly for B2, while enhancing the flux on the sides of
the bumps.

case B2, as compared with the flat plate case FL. By contrast, the regions on each
side of the bump see enhanced streamwise flux. We remark that the strong spanwise
oscillations at t = 8 are due to the presence of the lobe-and-cleft instability, and the
development of spanwise deformations of the mixing layer above the turbidity current.

In order to investigate the influence of the lateral domain boundaries, we repeated
simulation B2-GC with twice the computational domain width, i.e. Lz = 6. Figure 21
compares the current height in the y, z-plane at the x location of the peak. The current
heights are comparable near z= 0 and 3, indicating a minor influence of the lateral
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FIGURE 21. Current height in the y, z-plane x = 5.5 for case B2-GC and two different
control volume widths Lz=3 (solid line) and Lz=6 (dashed line). The results are averaged
in time from t = 8 to t = 10. The current height above the peak is somewhat lower for
the narrower control volume, while the current height near z= 0 and 3 is similar for both
control volumes, indicating a relatively small influence of the lateral boundaries.

boundaries for the flow in the narrower domain. Right above the peak of the bump,
the narrower current shows a lower depth.

To summarize, consistent with earlier work on gravity currents propagating
over flat boundaries, we find that the front velocity of currents interacting with
three-dimensional bottom topography is only weakly affected by the value of the
Reynolds number, as long as Re > O(1000). The lobe-and-cleft structures, on the
other hand, show a stronger influence of the Reynolds number. The current/bump
interaction is seen to deform the bottom boundary layer vorticity into traditional
horseshoe vortices, and the opposite-sign mixing layer vorticity into inverted horseshoe
vortices. Additional streamwise vortical structures form as a result of baroclinic
vorticity generation. Based on balance arguments for the kinetic and potential energy
components, we are able to derive a scaling law for the maximum bump height that
can be overcome by gravity currents. For turbidity currents, this estimate represents
an upper limit.

6. Bottom shear stress and potential for erosion
In order to assess the potential of the current for triggering bedload transport and

resuspension, the wall-shear stress distribution along the bottom boundary provides
important information. Ultimately, the distances over which turbidity currents travel,
and the stratigraphy they produce, depend strongly on this quantity. We record the
wall-shear stress in terms of the friction velocity

uτ = ûτ
ûb
=
√

1
Re
∂ut

∂ηn

∣∣∣∣
y=yΓ

. (6.1)

Here, ut and ηn denote the velocity component tangential to the wall, and the wall-
normal distance, respectively.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.47


432 M. M. Nasr-Azadani and E. Meiburg

0

1

2

3

0

1

2

3
0

1

2

3

98

0 0.05 0.10 0.15

7654 987654

FL

x

z

z

z

(a) (b)

x

B2

B1

FL

B2

B1

FIGURE 22. Magnitude of the friction velocity uτ (grey shading) for cases FL, B1 and
B2 at times (a) t = 10.8 and (b) t = 14. The lines represent the directional field of the
instantaneous wall-shear stress. The vortical structures in the wake of the bump strongly
modify the friction velocity field.

Figure 22 compares the instantaneous wall-shear stress for cases FL, B1 and B2 at
two different times. We observe that for all flows the streamwise vortices associated
with the lobe-and-cleft instabilities give rise to longitudinal streaks in the shear stress
pattern. Even for currents B1 and B2, away from the bump these structures are
maintained for some time after the current front passes the bump, cf. figure 22(a).
For B1 and B2, a region of strong wall-shear stress exists just upstream of the peak
at t = 10.8. Along the centreline of the bump’s wake the shear stress is reduced,
indicating an area of flow separation or reattachment. To the sides of this separation
region, the wall-shear stress is enhanced. A comparison of the wall-shear stress
patterns for cases B1 and B2 demonstrates the tendency of the flow to go around the
taller bump, whereas it tends to move over the smaller bump, cf. figure 22(b).
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FIGURE 23. Magnitude of the friction velocity uτ averaged from t= 10 to t= 30. Regions
with high average wall-shear stress exist near the top of the bumps for B1 and B2, and
to the sides of the wake centreline for B2.

Figure 23 compares the uτ values averaged from t = 10 to t = 30. Case FL is
characterized by long, fairly straight and evenly spaced streaks behind the front, due
to lobe-and-cleft instabilities. Occasionally, these streaks are seen to merge. For cases
B1 and B2, streaks also exist downstream of the bump, but they are not as straight
and as evenly spaced as for FL. The vicinity of the bump’s peak exhibits strong
time-averaged shear, indicating that it might get preferentially eroded if erosion were
included in the simulation. For case B2, further regions of high wall-shear stress
appear near the spanwise boundaries downstream of the bump, which suggests that
the existence of these boundaries may influence the flow to some extent for case B2.

A comparison of the wall-shear stress levels for case B2-GC with control volume
widths of Lz = 3 and 6 shows slightly elevated shear stress levels near the side walls
for the narrow control volume. However, the overall main shear stress pattern in the
wake is seen to be largely unaffected by the side walls. For Re= 5000 the wall-shear
stress field is more uniform, and reduced in magnitude, as compared with Re= 2000.

6.1. Potential for erosion
Several approaches are available in the literature to estimate the critical shear stress
level beyond which incipient particle motion can occur. Towards this end, we employ
the particle Reynolds number Re∗ and the Shields parameter Υ

Re∗ = ûτ d̂p

ν̂
, (6.2)

Υ = ρ̂û2
τ

(ρ̂p − ρ̂)ĝd̂p

. (6.3)

A critical value of Υcr as a function of Re∗ is suggested by Yalin & Karahan (1979).
In order to apply their criterion, we need to employ dimensional quantities. To relate
the above simulations to a typical laboratory-scale experiment, we choose a channel
height of Ĥ = 0.2 m. We further assume the ambient fluid to be water with room
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temperature properties (i.e. ρ̂0=1000 kg m−3, ν̂=10−6 m2 s−1). We consider particles
of spherical shape with a material density of ρ̂p = 2500 kg m−3 (this density is an
appropriate choice for turbidity currents forming on the continental slopes and/or many
submarine fans; cf. Normark, Posamentier & Mutti 1993). Using our definition of the
Reynolds number in (2.3), the buoyancy velocity is computed as ûb = 0.02 m s−1.
Furthermore, we assume the particle settling velocity to be equal to the Stokes value
(see (2.5)) for spherical particles. Thus, we obtain coarse and fine particle diameters
of d̂c

p = 27 µm and d̂f
p = 12 µm.

Using the maximum shear stress value of uτ =0.11 from figure 23, we obtain values
of Re∗= 0.0594 and 0.0264, and Υ = 0.0122 and 0.0274, for coarse and fine particles,
respectively. According to Yalin & Karahan (1979), for the above values of Re∗, the
corresponding critical thresholds are Υcr = 0.2 and 0.25, respectively. These values
are well above those obtained above, which suggests that incipient particle motion is
unlikely to occur.

In general, our choice of dimensionless parameters corresponds to laboratory scales.
In natural settings, however, typical Reynolds numbers are significantly higher, which
will alter the above critical values.

7. Energy budgets
A gravity current is characterized by the conversion of potential into kinetic energy.

Eventually, the current will come to rest as this kinetic energy is dissipated by
viscosity. In particle-laden currents, it is useful to distinguish between the viscous
dissipation that occurs at the macroscopic scales, and the dissipative losses in the
microscopic Stokes flow around each particle. While the former is fully resolved in
the current simulations, the latter is accounted for only indirectly, through the settling
motion of the particles.

In this section, we examine how the temporal evolution of the different energy
components is affected by the current’s interaction with the bottom topography.
Towards this goal, we employ the kinetic and potential energy equations, in following
the approach applied by Necker et al. (2005) for currents propagating over a flat
bottom wall. For the detailed derivation of the various terms in the energy equation,
we refer the reader to this earlier work. We obtain for the rate of change of the total
mechanical energy of the flow

d
dt
(Ek + Ep) = −

∫
Ω

2
Re

SmnSmn dV

−
2∑

i=1

(∫
Ω

ui
sci dV

)
−

2∑
i=1

(
−
∫

A
yΓ ui

sc
i
weg
· n dA

)
, (7.1)

where Ek and Ep denote the kinetic and potential energy components, respectively. We
can interpret the last term on the right-hand side of (7.1) as the loss of potential
energy due to settling of particles at locations along the bottom boundary with non-
zero height (yΓ ), cf. figure 2.

In (7.1), the loss of mechanical energy can be linked to three mechanisms, namely
the loss due to viscous dissipation at macroscopic scales εd, the loss due to viscous
effects in the microscopic Stokes flow around each particle εs, and the deposition of
particles along the bottom boundary εl

εd =
∫
Ω

2
Re

SmnSmn dV (7.2)
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εs =
2∑

i=1

(∫
Ω

ui
sci dV

)
(7.3)

εl =
2∑

i=1

(
−
∫

A
yΓ ui

sc
i
weg
· n dA

)
. (7.4)

Integrating (7.1) with respect to time yields

Ek + Ep + Ed + Es + El = const.= Ep0 + Ek0 = Et, (7.5)

with

Ed =
∫ t

0
εd(τ ) dτ , (7.6)

Es =
∫ t

0
εs(τ ) dτ , (7.7)

El =
∫ t

0
εl(τ ) dτ , (7.8)

and Ep0 and Ek0 representing the initial potential and kinetic energy available in the
domain. We remark that in the present investigation the flow starts from rest, so that
Ek0=0. A discussion of the effects of initial turbulent kinetic energy on the subsequent
flow is provided by Necker et al. (2002) and Necker et al. (2005). We remark that in
the present study, we ignore the influence of particle diffusion on the potential energy.
For a detailed discussion of such effects, see Winters et al. (1995) and Espath et al.
(2014).

Figure 24 shows the time history of all energy components for case B1. During
the early stages after the lock release, we observe a rapid conversion of potential
into kinetic energy, which reaches its peak at t ≈ 5. Subsequently, the potential and
kinetic energy components both decline as a result of viscous dissipation. While the
microscopic Stokes dissipation initially slightly outweighs the viscous dissipation at
the large scales, this trend reverses after t ≈ 15. By the final time of the simulation,
∼56 % of the initial potential energy has been dissipated at the macroscopic scales,
and ∼41 % has been lost in the microscopic flow around the particles. The loss due
to the settling of particles on the bump (El) is of O(1 %), since the bump occupies
only a small fraction of the entire bottom boundary, and comparatively few particles
are deposited in this region.

Figure 25(a) compares the kinetic and potential energy for flows FL, B1 and B2.
We observe that cases FL and B1 show very similar behaviour for all times. After the
current front has passed over the bump (t > 10), the kinetic energy decreases more
rapidly for B2 as compared with FL and B1. Partly this is due to the fact that some
of the current fluid gains potential energy. However, figure 25(b) indicates that the
energy Ed dissipated at the macroscopic scales is also larger for B2 than it is for FL
and B1, due to the pronounced streamwise vorticity generation for t > 10 resulting
from the interaction of the mixing layer with the bump (see figure 17). On the other
hand, the viscous energy losses in the microscopic flow around the particles are nearly
identical for FL, B1 and B2.

Figure 26 displays the temporal evolution of the energy components for cases B2
and B2-GC. Until t ≈ 4, the potential and kinetic energy curves are very similar.
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FIGURE 24. Time history of potential energy Ep, kinetic energy Ek, dissipation
components Ed and Es, and the energy loss El due to particle settling on the bump. All
energies are normalized by the initial potential energy Ep0. Total energy Et verifies total
energy conservation. Results are from simulation B1.
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FIGURE 25. Temporal evolution of the energy budgets normalized by the initial potential
energy for simulations Fl, B1, and B2. (a) Kinetic Ek and potential energy Ep. (b) Energy
loss components including viscous dissipation Ed, Stokes dissipation Es and depositional
loss El.

Thereafter, the loss of particles and forward momentum reduces the kinetic and
potential energy components for turbidity current B2. Figure 26(b) compares the
viscous (Ed) and Stokes (Es) dissipation components. We note that Es is present only
in the turbidity current B2 (see (7.3)). At t≈ 10, the viscous dissipation component Ed

produced in case B2-GC surpasses its B2 counterpart, and it subsequently maintains
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FIGURE 26. Time history of the various energy budget components shown for case
B2 (solid lines and dots) and B2-GC (dashed lines). (a) Kinetic and potential energy
components. (b) Viscous and Stokes dissipation.

higher values for the remainder of the simulation. This is a consequence of the higher
kinetic energy levels of the gravity current which lead to stronger dissipative energy
loss.

The total energy loss in case B2 (dots in figure 26b) including the Stokes dissipation
Es (which is absent in case B2-GC) exceeds that of case B2-GC from the start. By
time 40, 75 % of the total initial potential energy has been lost to dissipation in case
B2. Gravity current B2-GC, on the other hand, retains approximately 45 % of the
initial potential energy by t= 40, which allows it to travel farther downstream.

In summary, the influence of the bottom topography is seen to be non-monotonic.
The tallest bump simulation exhibits the highest levels of streamwise vorticity during
the interaction stages, whereas during the late stages these levels drop below those
for the flat bottom simulation. As expected, currents interacting with taller bumps
dissipate more energy, as compared with currents propagating over lower bumps or
flat bottoms.

8. Discussion and conclusions
8.1. Applicability to field-scale currents

As it is both difficult and costly to conduct field-scale measurements of turbidity
currents in natural settings (Xu, Noble & Rosenfeld 2004), the question arises as to
how much insight can be gained from laboratory or simulation data into field-scale
flows. The two main dimensionless parameters characterizing turbidity currents are
the Reynolds and Froude numbers. For sufficiently large values of Re > O(1000),
certain properties of turbidity currents, such as their non-dimensional front velocity
and frontal shape, are known to depend only weakly on Re. The shear stress and
turbulence properties of the bottom boundary layer, on the other hand, are strong
functions of Re, which consequently also applies to their ability to erode sediment,
and hence to their runout length.

The Froude number Fr = U/
√

g′h (with U, h and g′ representing the velocity and
height of the current and the reduced gravity, respectively) can have a significant
influence on the general properties of gravity currents, as discussed by Sequeiros et al.
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(2010) in the context of supercritical versus subcritical currents, cf. also Pirmez &
Imran (2003). Supercritical currents tend to have the velocity maximum close to the
sediment bed, while subcritical ones exhibit milder velocity and density gradients in
this region.

In summary, while Froude number similarity appears to be essential for upscaling
laboratory flows, such small flows cannot be expected to duplicate the erosional
behaviour and runout length of field-scale currents due to limitations in the Reynolds
number.

8.2. Non-monotonic behaviour
Early on in our analysis, we had observed that the influence of the bottom topography
on the front velocity of turbidity currents is significantly weaker than the influence of
the particle settling velocity. However, we had noticed an interesting non-monotonic
behaviour, in that the current interacting with a bump of intermediate height advanced
more rapidly than its counterparts propagating over a flat bottom or interacting with
a tall bump. Based on the above information regarding the spatiotemporal evolution
of the concentration and dissipation fields, we can now obtain insight into the
mechanisms that lead to this non-monotonic influence of the bump height on the
late-stage front velocity. Figure 27(a) compares the front velocities

Uf = dxf

dt
(8.1)

of currents FL, B1, B2 and B2-GC. Around t≈ 8, as the front begins to interact with
the bump, we observe an increase of the front velocity with the bump height. This is
a direct result of the lateral deflection of the currents by the bump, which leads to an
effective increase in the current height

h̄(x, z)=
∫ Ly

yΓ

ct(x, y, z) dy (8.2)

in the regions between the bump and the lateral domain boundaries. This is clearly
recognizable in figure 27(b), which shows that successively taller bumps reduce the
effective current height above the bump, but increase it in the regions to the side
of the bump. Thus, the streamwise hydrostatic pressure gradient driving the current
increases in these regions, which in turn accelerates the current front. This increase
in the current height is also consistent with the increase in the potential energy of B1
and B2 seen in figure 25(a) around this time. We conclude that the presence of the
bump effectively reduces the width of the flow domain available to the current, so that
its height increases.

A short time later, however, all currents begin to slow down. We note that B2
decelerates more rapidly than FL and B1, and by t ≈ 12, B2 exhibits the lowest
front velocity of all currents. This is consistent with figure 25(b), which shows
that beyond t & 12, B2 displays a higher rate of dissipation than FL and B1. This
increased dissipation is a consequence of the strongly three-dimensional nature of
the flow, resulting from the current’s interaction with the tall bump as described
above. It reduces the kinetic energy of current B2 as compared with currents FL and
B1, cf. figure 25(a), which undergo less-vigorous three-dimensional evolutions, and
hence have lower dissipation rates. As a result, for late times B2 has the lowest front
velocity of all currents, cf. figure 27(a).
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FIGURE 27. (a) Time history of the front velocities for currents FL (dots), B1 (dashed
line), B2 (solid line) and B2-GC (dash-dotted line). As the current arrives at the bump and
is deflected laterally, its height increases in the regions to the side of the bump, which in
turn results in an increase of the front velocity. (b) Current height h̄ in the plane x= 5.5
shown at t = 8. Dots, dashed line and solid lines represent cases FL, B1 and B2,
respectively. The current height is reduced above the bump, but increases in the regions to
the side of the bump. Consequently, the streamwise hydrostatic pressure gradient driving
the flow increases in these regions, and the current front accelerates.

In summary, the following picture emerges: the lateral deflection of the current
by the bump leads to an effective increase in the current height, and hence its front
velocity, with the bump height. At the same time, taller bumps result in a more
vigorous three-dimensional evolution of the currents, accompanied by increased rates
of dissipation, which tend to slow down the currents. For relatively small bumps,
the former mechanism dominates, so that on average the current front propagates
faster than its flat bottom counterpart. For currents interacting with larger bumps, on
the other hand, the increased dissipation becomes dominant, so that they exhibit a
reduced front velocity as compared with currents over flat surfaces.

The above analysis demonstrates that the interaction of turbidity currents with three-
dimensional seafloor topography gives rise to a variety of mechanisms that frequently
tend to favour opposing outcomes with regard to their mixing dynamics and rate of
propagation. Hence, the spatiotemporal evolution of turbidity currents can react quite
sensitively to specific topographical features. It will be interesting to explore how the
current/seafloor interaction is affected by the presence of erosion, resuspension and
bedload transport.
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