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We study the extended Stefan problem which includes constitutional supercooling for the solidifica-
tion of a binary alloy in a finite spherical domain. We perform an asymptotic analysis in the limits
of large Lewis number and small Stefan number which allows us to identify a number of spatio-
temporal regimes signifying distinct behaviours in the solidification process, resulting in an intricate
boundary layer structure. Our results generalise those present in the literature by considering all time
regimes for the Stefan problem while also accounting for impurities and constitutional supercooling.
These results also generalise recent work on the extended Stefan problem for finite planar domains
to spherical domains, and we shall highlight key differences in the asymptotic solutions and the
underlying boundary layer structure which result from this change in geometry. We compare our
asymptotic solutions with both numerical simulations and real experimental data arising from the
casting of molten metallurgical grade silicon through the water granulation process, with our anal-
ysis highlighting the role played by supercooling in the solidification of binary alloys appearing in
such applications.
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1 Introduction

The process of solidification arises in a variety of applications, both in the natural sciences and
in industry. Many solidification processes can be modelled using Stefan problems [25, 35, 38]
which, except in very particular cases, do not admit closed-form analytical solutions, motivating
a variety of analytical and numerical approaches. We can distinguish between one-phase and
two-phase Stefan problems, and in the literature, the former has received a lot of attention. One
of the usual analytical approaches is to use asymptotic techniques to determine approximate
solutions to it. A common asymptotic limit to consider is where the Stefan number is large,
corresponding to the situation where latent heat dominates, with a variety of geometries being
studied [23, 28, 29, 34, 37, 39, 44]. Asymptotics for the small-time behaviour [5, 9, 18, 19] and
end-time behaviour [28, 29, 34, 37, 39] are well studied for the one-phase problem. In addition to
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asymptotic analysis, various numerical approaches for solving one-phase Stefan problems have
been considered [1, 7, 8, 26, 27, 36, 40]. The asymptotic analysis of the solidification of spheres
was first considered by Pedroso and Domoto [33], with asymptotic solutions of the one-phase
Stefan problem in a sphere obtained in the small Stefan number limit (latent heat dominated).
This analysis was subsequently extended and refined [34, 39, 37], requiring the consideration
of several layers in the problem. A more general asymptotic analysis for the one-phase Stefan
problem in an arbitrary three-dimensional geometry near the end of the solidification process was
later considered [29].

Despite many applications, analysis of the corresponding two-phase Stefan problem is more
mathematically involved and as a result has received less attention. There are some results for
the two-phase Stefan problem in cylindrical or spherical domains [22, 24, 20]. A comprehen-
sive analysis of the two-phase Stefan problem for a sphere was given by McCue et al. [30],
which gave an exponentially small correction in the small timescale. The inward solidification
of a binary alloy in a sphere was considered by Yang et al. [48], and however, only the well-
mixed limit was considered, valid for when concentration and temperature profiles are spatially
uniform. As such, their model is equivalent to a one-phase Stefan problem with a supercooling
condition that depends on the position of the interface. The two-phase Stefan problem with con-
stitutional supercooling in a sphere was studied in [15], which includes an asymptotic analysis
of the small-time regime, yet the late-time dynamics were only discussed qualitatively with no
formal analysis was provided. Such results, while qualitatively useful in some regimes, neglect
the full boundary layer structure which naturally emerges from this problem. On the numerical
side, these problems have been addressed using many different techniques, such as the enthalpy
method [8, 43], interface-tracking methods [16, 45], phase-field methods [46, 47] and level-set
methods [6, 41]. A detailed review of these techniques can be found in [21].

In the present paper, we perform an asymptotic analysis in order to study the extended Stefan
problem for a binary alloy with constitutional supercooling in a spherical domain, in the limits
of large Lewis number and small Stefan number. We assume that the diffusivity of impurities
in the solid, segregation coefficient and initial concentration and temperature are small while
the supercooling coefficient is large, meaning that a large concentration of impurities is required
to cause a significant change in the solidification temperature. Such assumptions are relevant to
real-world applications, such as the solidification of metallurgical grade silicon. Analysis of this
problem shows the existence of a complicated boundary layer structure, which we exploit for our
asymptotic analysis. Our results generalise various results in the literature [15, 30, 37] by con-
sidering all time regimes in the Stefan problem with impurities and constitutional supercooling.
Due to their definition of the Stefan number, the analysis in those papers corresponds to the large
Stefan number limit (i.e. the case when the problem is dominated by latent heat). A similar phys-
ical problem was recently studied in planar domains in which the solidification fronts remain flat
[4]. However, many real-world solidification problems take place in domain geometries which
involve curvature, and the present paper constitutes an extension of the results of Brosa Planella
et al. [4] to curved domains. In particular, the choice of a spherical domain corresponds well to
the solidification of droplets under the water granulation process. While the early-time dynamics
are similar between the flat and curved domains, we find that there are fundamental differences
between the late-time dynamics leading to extinction, and hence the related boundary layer struc-
ture when curvature is involved, necessitating a separate and more nuanced analysis from that of
the planar geometry [4].
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FIGURE 1. Sketch of the sphere solidification problem. As the problem is symmetric, we can just consider
a one-dimensional problem with a symmetry condition at r = 0.

The remainder of this paper is organised as follows. In Section 2, we present the model for the
solidification of a sphere. Our asymptotic analysis in the large Lewis number limit reveals eight
different layers which are studied in Sections 3–6 and then matched together through the method
of matched asymptotic expansions. All of these asymptotic results are summarised and discussed
in Section 7, where we also compare the asymptotic solutions to direct numerical simulations of
the full problem and also to experimental data from the solidification of silicon under the water
granulation process. We conclude with a discussion of the results in Section 8.

2 Model for the solidification of a sphere

We study the solidification of a binary alloy in a three-dimensional spherically symmetric geom-
etry. Recall that, as we have assumed spherical symmetry, the problem can be reduced to a
one-dimensional model in the radial coordinate with the geometry shown in Figure 1. Our appli-
cation of interest is metallurgical grade silicon, which is composed of over 99% silicon with the
remaining being different types of impurities. In our model, we consider all impurities together
as a single phase, and we use a binary alloy model to describe the system. In keeping with our
application of interest, for the rest of the paper, we refer to the base of the alloy as silicon and we
refer to the solutes as impurities.

We take the general model for the solidification of a binary alloy in an arbitrary domain pre-
sented in [4] and derive from it the model for a solidification of a spherically symmetric problem.
This model is composed of four diffusion equations (for heat and impurities in both the solid and
liquid phases) and five boundary conditions in the moving boundary which impose continuity of
temperature, thermodynamic equilibrium using a linear phase diagram, conservation of heat and
conservation of mass through the boundary. We take the independent variables r for the radial
coordinate and t for time. Then, we define the following unknowns which depend on r and t:
concentrations of impurities cs and cl and the temperatures Ts and Tl, where the subscripts s and l
denote the solid and liquid phases, respectively. We also define the position of the interface S(t),
so we define fi = r − S(t) in the model in [4]. Finally, we take the differential operator ∇ to be
for a spherically symmetric geometry.

Then, the general model in [4] reduces to the following. For the solid phase, which is given by
S(t) < r < 1, the dimensionless model reads

∂cs

∂t
= D

Le

1

r2

∂

∂r

(
r2 ∂cs

∂r

)
,

∂Ts

∂t
= κ

1

r2

∂

∂r

(
r2 ∂Ts

∂r

)
. (2.1a)
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The liquid phase is given by 0 < r < S(t), and the equations in this region of the domain are

∂cl

∂t
= 1

Le

1

r2

∂

∂r

(
r2 ∂cl

∂r

)
,

∂Tl

∂t
= 1

r2

∂

∂r

(
r2 ∂Tl

∂r

)
. (2.1b)

The interface is given by r = S(t), and the interface conditions reduce to

Ts = Tl, cs = αcl, cl = −mlTl,
ρ

St

dS

dt
= k

∂Ts

∂r
− ∂Tl

∂r
,

and (1 − α)cl
dS

dt
= D

Le

∂cs

∂r
− 1

Le

∂cl

∂r
. (2.1c)

The boundary and initial conditions are given by

∂Tl

∂r
= 0 and

∂cl

∂r
= 0, at r = 0, Ts = −1 and

∂cs

∂r
= 0, at r = 1, (2.1d)

S = 1, Tl = T0, and cl = c0, at t = 0. (2.1e)

The dimensionless parameters are as defined in [4], where St is the Stefan number and Le is the
Lewis number. The following dimensional values are defined as the ratio between the value of the
parameter in the solid phase over the value in the liquid phase: D is the diffusivity of impurities,
κ is the thermal diffusivity, ρ is the density and k is the thermal conductivity. Finally, ml is
the dimensionless supercooling coefficient and α is the segregation coefficient, and both come
from the dimensionless phase diagram. As discussed in the derivation of the model in [4], we
consider different values of densities in each phase for their contribution to the heat diffusivity
but assume that both the solid and liquid phases are stationary. Therefore, we do not consider the
advection introduced to the system by this variation in density and note that by neglecting this
we are effectively working in the regime ρ ≈ 1. We later fix ρ = 1 when plotting our asymptotic
solutions and performing numerical simulations.

Similarly to Brosa Planella et al. [4], we are interested in the limit of very large Lewis number.
However, as could be expected from the results in the literature [30, 37, 39], in order to find
analytical solutions, we need to take the limit of small Stefan number as well. In our analysis, we
first take the large Lewis number limit. For convenience, as we did in the planar geometry case,
we write ε = Le−1 and consider the limit ε → 0. We then take the limit St → 0. We will show
later that this procedure is valid provided ε

2
3 � St, which is true in our problem. The validity of

this distinguished limit between the two small parameters is discussed in Section 4. The rest of
the parameters are scaled as D = εD̂, ml = m̂l

ε
, α = εα̂, c0 = εĉ0, T0 = εT̂0, where D̂, m̂l, α̂, ĉ0,

and T̂0 are all order one. By setting these scalings, we are not implying that all the parameters
above are related physically to Le. Rather, we are using ε as an order parameter and choosing
the scaling with ε based on order-of-magnitude requirements for each parameter. The order one
hat-parameters then hold information on the specific reference value of that parameter. In this
way, we reduce the number of independent small or large parameters in the system, making
the problem amenable to analysis. These hat-parameter scalings are chosen from the typical
parameter values for the cast of metallurgical grade silicon, which can be found in [3].

We can write the rescaled dimensionless model as

∂cs

∂t
= ε2D̂

(
∂2cs

∂r2
+ 2

r

∂cs

∂r

)
,

∂Ts

∂t
= κ

(
∂2Ts

∂r2
+ 2

r

∂Ts

∂r

)
, for S(t) < r < 1, (2.2a)
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∂cl

∂t
= ε

(
∂2cl

∂r2
+ 2

r

∂cl

∂r

)
,

∂Tl

∂t
= ∂2Tl

∂r2
+ 2

r

∂Tl

∂r
, for 0 < r < S(t), (2.2b)

Ts = Tl, cs = εα̂cl, εcl = −m̂lTl,
ρ

St

dS

dt
= k

∂Ts

∂r
− ∂Tl

∂r
,

and (1 − εα̂)cl
dS

dt
= ε2D̂

∂cs

∂r
− ε

∂cl

∂r
, at s = S(t), (2.2c)

∂cl

∂r
= 0 and

∂Tl

∂r
= 0 at r = 0,

∂cs

∂r
= 0 and Ts = −1 at r = 1, (2.2d)

cl = εĉ0, Tl = εT̂0, and S = 1, at t = 0. (2.2e)

In order to solve (2.2), we shall employ the method at matched asymptotics. When we take the
large Lewis number limit, we identify three different time regimes in the problem, and within
each regime there are different spatial layers. Overall, we identify the eight layers, as shown in
Figure 2. When we then take the small Stefan number limit, we need to consider five extra layers
within regime i, which are studied in Section 4. Once solutions are obtained in each layer, we
then match them in order to obtain the asymptotic solution for the whole problem. Notice that we
use hats for the position of the interface and the temperature and concentration profiles whenever
they are rescaled with powers of ε. On the other hand, we use tildes when a variable is rescaled
with powers of St, regardless of whether it has been previously rescaled with powers of ε or not.
To minimise confusion, we give a reminder of the rescalings at the beginning of the analysis of
each layer.

Similarly to the analysis in [4], the scalings in Figure 2 are primarily picked by the physics.
At the start of the process, which is regime i, we expect to see diffusion of both heat and impu-
rities, but, given the difference in the size of the diffusion coefficients, we need to introduce
an inner layer of size O (ε) around the interface (named layer B) to capture the rejection and
transport of impurities, while heat diffusion is observed in the outer layers (A and C). Contrary
to what we observed in the planar problem, now the interfacial concentration does not remain
constant at leading order, and therefore, the solutions in regime i cease to hold when the inter-
facial concentration increases to ci =O (

ε−1
)
, which occurs when S =O (

ε1/3
)
. This motivates

the introduction of regime ii, in which we need to distinguish three layers: an outer layer D in
the solid phase where temperature and concentration remain constant, an intermediate layer E
of size O (

ε1/3
)

near the origin in which we observe the motion of the solidification front (and
which, using the Stefan condition, provides the timescale of this regime) and an inner layer F
around the moving boundary where we observe rejection and transport of impurities, similar to
what we previously observed in layer B. At the end of this regime, we have that the position of
the interface becomes zero at leading order, and therefore, the liquid part of layer E vanishes, so
the inner layer F notices the symmetry condition at r = 0. Hence, we need to introduce regime iii,
in which the scalings are motivated by the diffusion of impurities in the liquid phase. These scal-
ings reveal two layers: an outer layer G in the solid phase where temperature and concentration
remain constant, and an inner layer H near the origin where we observe diffusion of impurities
in the liquid phase and the motion of the solidification front.

We observe that in regimes ii and iii, the interfacial concentration is of size ci =O (
ε−1

)
,

which is not realistic. We notice as well that the model predicts that the solidification process
never finishes, contradicting the experimental observations. Therefore, similar to what happened
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FIGURE 2. Sketch of the regimes and layers in the process and table of scalings for the variables in each
layer of the problem. The sketch shows the evolution of the interface S(t) in time, so the area above (in
white) is the solid and the area below (in blue) is the liquid. The three regimes, identified with lower case
Roman numerals, are the behaviours at different times. In each regime, we consider various layers which
are labelled with letters. The variables τ and θ represent time at different scalings, and the variables ξ and
R are the space variables in the intermediate and inner layers of each regime, respectively. For the position
of the interface, temperature and concentration, we use hats whenever they are rescaled.
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for the planar problem in [4], we find that in regimes ii and iii, the model loses some physical
relevance as some of the modelling assumptions no longer hold, but it still has interest from the
mathematical point of view as it provides a full picture of (2.2).

In the following sections, we determine asymptotic solutions in each layer and then match
them to construct solutions valid over the whole problem domain.

3 Asymptotic solutions in regime i

We start by considering the behaviour at the beginning of the process, described in regime i.
In this regime, the interface is far from the centre, and we distinguish three space layers: the
outer layer, A, in the solid; the inner layer, B, around the moving interface which comprises both
phases; and the outer layer, C, in the liquid. We solve the equations for each layer and then
proceed to match the layers between them in order to fully determine the solutions.

3.1 Layer A

The first layer in this regime is the outer layer in the solid phase: layer A. Rescaling the problem
using the scalings in Figure 2, which for this layer is only cs = εĉs, we find that the problem is
defined by

∂ ĉs

∂t
= ε2D̂

(
∂2ĉs

∂r2
+ 2

r

∂ ĉs

∂r

)
,

∂Ts

∂t
= κ

(
∂2Ts

∂r2
+ 2

r

∂Ts

∂r

)
, in S(t) < r < 1, (3.1a)

∂ ĉs

∂r
= 0, Ts = −1, at r = 1, (3.1b)

and, as initially all the material is liquid, we have no additional initial conditions. The problem
is completed with the corresponding matching conditions which are discussed in Section 3.4.
Expanding ĉs = ĉs0 + εĉs1 +O (

ε2
)

and Ts = Ts0 + εTs1 +O (
ε2
)
, we find that at leading order

ĉs0 = α̂ci

(
S−1

0 (r)
)= α̂

ĉ0

3

kSt

ρ

1 − r3

(1 − r)r3
, (3.2)

where ci is the concentration at the interface as defined in Section 3.4; while Ts0 is the solution
to the problem

∂Ts0

∂t
= κ

(
∂2Ts0

∂r2
+ 2

r

∂Ts0

∂r

)
, for S0(t) < r < 1, (3.3a)

Ts0 = 0 at r = S0(t), and Ts0 = −1 at r = 1, (3.3b)

ρ

St

dS0

dt
= k

∂Ts0

∂r
at r = S0(t), and S0 = 1 at t = 0, (3.3c)

with the latter condition derived from matching in Section 3.4.
Notice that this problem corresponds to the one-phase Stefan problem, and so, within this

regime, we need to distinguish different timescales, as discussed in [30, 37]. We give the analysis
of these different timescales in Section 4.

https://doi.org/10.1017/S095679252000011X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252000011X


Extended Stefan problem for the solidification of binary alloys 249

3.2 Layer B

Layer B is the inner layer of size ε around the moving interface. Therefore, defining the inner
variable R = r−S(t)

ε
, and using the scalings cs = εĉs, Ts = εT̂s, Tl = εT̂l, we find that the problem

is defined as

ε
∂ ĉs

∂t
= S′(t)

∂ ĉs

∂R
+ εD̂

(
∂2ĉs

∂R2
+ ε

2

S(t) + εR

∂ ĉs

∂R

)
, (3.4a)

ε2 ∂ T̂s

∂t
= εS′(t)

∂ T̂s

∂R
+ κ

(
∂2T̂s

∂R2
+ ε

2

S(t) + εR

∂ T̂s

∂R

)
, (3.4b)

for R > 0, and

ε
∂cl

∂t
= S′(t)

∂cl

∂R
+ ∂2cl

∂R2
+ ε

2

S(t) + εR

∂cl

∂R
, (3.4c)

ε2 ∂ T̂l

∂t
= εS′(t)

∂ T̂l

∂R
+ ∂2T̂l

∂Z2
+ ε

2

S(t) + εR

∂ T̂l

∂R
, (3.4d)

for R < 0. At the interface, R = 0, we have

T̂s = T̂l, ĉs = α̂cl, cl = −m̂lT̂l,
ρ

St

dS

dt
= k

∂ T̂s

∂R
− ∂ T̂l

∂R
,

and (1 − εα̂)cl
dS

dt
= ε2D̂

∂ ĉs

∂R
− ∂cl

∂R
. (3.4e)

The remaining conditions are given by the matching conditions with layers A and C. The
solutions are found to be

cs = εα̂ci(t) +O (
ε2
)

, (3.5a)

cl = ci(t)e
−S′

0(t)R + ε
(
A1(t) +A2(t, R)e−S′

0(t)R
)

+O (
ε2
)

, (3.5b)

Ts = ε

(
A1(t)R − ci(t)

m̂l

)
+O (

ε2
)

, (3.5c)

Tl = ε

((
kA1(t) − ρ

St
S′

0(t)
)

R − ci(t)

m̂l

)
+O (

ε2
)

, (3.5d)

where

A1(t) = c′
i(t)

S′
0(t)2

+ ci(t)

(
α̂ + 2

S0(t)S′
0(t)

− S′′
0 (t)

S′
0(t)3

)
, (3.6a)

A2(t, R) = − c′
i(t)

S′
0(t)2

(
1 + S′

0(t)R
)+ A2(t)

+ ci(t)

[
S′′

0 (t)

S′
0(t)3

(
1 + S′

0(t)R + 1

2
S′

0(t)2R2

)
−
(
1 + S′

0(t)R
) (

2 + S0(t)S′
1(t)
)

S′
0(t)S0(t)

]
,

(3.6b)
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while ci(t), A1(t) and A2(t) are functions to be determined from the matching. Matching cl from
layers A to B, we obtain

c′
i(t) + ci(t)

(
α̂S′

0(t)2 + 2
S′

0(t)

S0(t)
− S′′

0 (t)

S′
0(t)

)
= ĉ0S′

0(t)2, (3.7)

which allows us to determine ci(t) once we know S0(t). We give the calculations for ci(t) in
Section 4.

3.3 Layer C

The last layer in regime i is layer C, the outer layer in the liquid. Rescaling the problem with
cl = εĉl and Tl = εT̂l, we find that the problem is defined in 0 < r < S(t) by

∂ ĉl

∂t
= ε

(
∂2ĉl

∂r2
+ 2

r

∂ ĉl

∂r

)
,

∂ T̂l

∂t
= ∂2T̂l

∂r2
+ 2

r

∂ T̂l

∂r
, in 0 < r < S(t), (3.8a)

∂ ĉl

∂r
= 0 and

∂ T̂l

∂r
= 0, at r = 0, and ĉl = ĉ0 and T̂l = T̂0, at t = 0. (3.8b)

The problem is completed by the matching conditions with layer B. The leading-order solutions
are cl = εĉ0, Tl = εT̂l0(t, r), where the problem for T̂l0 is given by

∂ T̂l0

∂t
= ∂2T̂l0

∂r2
+ 2

r

∂ T̂l0

∂r
, for 0 < r < S0(t), (3.9a)

∂ T̂l0

∂r
= 0 at r = 0, T̂l0 = −ci(t)

m̂l
at r = S0(t), and T̂l0 = T̂0 at t = 0, (3.9b)

where the latter two conditions in (3.9b) are derived in Section 3.4. We solve (3.9) in Section 4.

3.4 Matching of the solutions

We can now match the solutions between the different layers using Van Dyke’s rule (see [42] for
details). The notation we use to denote the asymptotic expansions is the following. By (mti)(nto),
we mean taking n terms in the outer solution written in terms of the inner variable and expanded
to mth order in the inner variable. Similarly, by (nto)(mti), we mean taking m terms in the inner
solution written in terms of the outer variable and expanded to nth order in the outer variable.
Then, according to Van Dyke’s rule, these two expansions have to be equal for any n and m.

We start matching cl between the outer layer C and the inner layer B. We take two terms in
the inner solution and two terms in the outer solution and write them both in terms of the inner
variable, so εĉ0 = (2ti)(2to) = (2to)(2ti) = εA1(t), and therefore, we have

c′
i(t)

S′
0(t)2

+ ci(t)

(
α̂ + 2

S0(t)S′
0(t)

− S′′
0 (t)

S′
0(t)3

)
= ĉ0, (3.10)

which is the equation (3.7) we have used to determine ci(t) at leading order.
We next match cs between the outer layer A and the inner layer B though εĉs0(S0(t)) =

(2ti)(2to) = (2to)(2ti) = εα̂ci(t), giving ĉs0(S0(t)) = α̂ci(t), and so we can conclude that ĉs0(r) is
ĉs0(r) = α̂ci

(
S−1

0 (r)
)
.
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We now match the temperature in the solid phase, Ts, between layers A and B. Taking two
terms in the inner solution and two terms in the outer solution, and writing them in terms of the
inner variable, (2ti)(2to) = (2to)(2ti). We find

Ts0(t, S0(t)) + ε

(
Ts1(t, S0(t)) + (R + S1(t))

∂Ts0

∂r

∣∣∣∣
r=S0(t)

)
= ε

(
A1(t)R − ci(t)

m̂l

)
, (3.11)

from which we conclude

A1(t) = ∂Ts0

∂r

∣∣∣∣
r=S0(t)

and Ts0(t, S0(t)) = 0. (3.12)

We use the latter as a boundary condition to complete (3.3).
Finally, we match the temperature in the liquid phase between layers B and C. Taking two

terms in both the inner and outer solutions, and writing them in terms of the inner variable, we
find

εT̂l0(t, S0(t)) = (2ti)(2to) = (2to)(2ti) = ε

((
kA1(t) − ρ

St
S′

0(t)
)

R − ci(t)

m̂l

)
, (3.13)

which give the boundary condition we need for (3.9)

T̂l0(t, S0(t)) = −ci(t)

m̂l
, (3.14)

and the condition for the moving boundary,

ρ

St
S′

0(t) = k
∂Ts0

∂r

∣∣∣∣
r=S0(t)

. (3.15)

This completes the problem in this regime. In the next section, we perform an asymptotic
analysis in the limit St → 0 in order to find approximate solutions for regime i.

4 Small St analysis of regime i

In this section, we perform the small Stefan number analysis of the thermal problem found in the
previous section. Taking the limit St → 0, we can determine approximate analytical solutions
to the problem in regime i. Because the concentration problem has almost decoupled from the
thermal problem when taking the limit ε → 0, the problem we have to solve is very similar to
the one studied in [30]. Still, there are three main differences between the problem in [30] and the
problem studied here. The first difference is the scalings we took for the non-dimensionalisation
and thus where the dimensionless parameters appear in the solutions. The second difference is
that we consider constitutional supercooling, therefore the temperature at the interface depends
on the concentration of impurities at the interface which is found from an ordinary differential
equation that depends on the position of the interface, but not on the temperature. The last dif-
ference is that in our problem we have assumed that the scaled initial temperature of the melt
is small, which physically means that the initial temperature is above but close to the melting
temperature. The amount of supercooling is also assumed to be small. Therefore, we find that
the temperature gradient in the liquid will have no influence on the position of the interface at
leading order, reducing the free boundary problem to a one-phase Stefan problem.
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This last assumption is crucial to decouple the thermal problem into the following subprob-
lems.

The first subproblem is a one-phase Stefan problem, involving temperature in the solid phase
and the moving boundary given by (3.3). Once we have solved problem (3.3), we can use S0(t)
to calculate the concentration at the interface from (3.7). Finally, knowing the concentration at
the interface, we can solve the problem for the temperature in the liquid given in (3.9).

To solve these problems, we follow the same method as in [30], finding asymptotic solutions
in the limit St → 0. Therefore, within regime i, we need to distinguish five different sublayers
which now scale with St. These five new sublayers are showed in red in Figure 3. Notice that to
avoid confusion with rescalings with ε, we use tilde to denote the rescalings with St.

4.1 Subregime i(1)

The first subregime we have to study is subregime i(1) which corresponds to early time. In this
layer t =O (1), which is small compared to the critical time t∗ =O(St−1). This critical time cor-
responds to the solidification time of the equivalent pure melt problem. In this layer, the interface
has not moved much, so it is near r = 1, and we can write it as S0 = 1 + √

StS̃0. Therefore, we
need to consider an outer layer in the liquid phase and an inner layer comprising both phases
defined as r = 1 + √

StR, where R is the inner variable.

4.1.1 Layer a

We first focus on the outer solution in the liquid phase. The thermal problem in the liquid is

∂ T̂l0

∂t
= ∂2T̂l0

∂r2
+ 2

r

∂ T̂l0

∂r
, for 0 < r < 1, (4.1a)

∂ T̂l0

∂r
= 0 at r = 0, T̂l0 = 0 at r = 1, T̂l0 = T̂0 at t = 0, (4.1b)

where the condition at r = 1 comes from the matching conditions with layer b. Using separation
of variables, we find that the solution at leading order is [30]

T̂l0 = 2T̂0

πr

∞∑
n=1

(−1)n+1

n
e−n2π2t sin (nπr) +O

(√
St
)

. (4.2)

4.1.2 Layer b

We now solve the system in the inner layer b. This layer accounts for both the solid and liquid
phases, therefore we need to solve for both thermal fields and the concentration at the interface.
We start by solving the one-phase Stefan problem that determines the temperature in the solid and
the position of the interface. With the rescalings r = 1 + √

StR, S0 = 1 + √
StS̃0, T̂l0 = √

StT̃l0

and ci = εc̃i, the problem (3.3) becomes

St
∂Ts0

∂t
= κ

(
∂2Ts0

∂R2
+ 2

√
St

1 + √
StR

∂Ts0

∂R

)
, for S̃0(t) < R < 0, (4.3a)

Ts0 = 0 at R = S̃0(t), (4.3b)
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FIGURE 3. Sketch of the layers in St in regime i and table of scalings for the variables in each sublayer of
regime i. The new layers are shown on top of the layers in ε discussed in Figure 2, and they are identified
with lower case letters. The subregimes within regime i are identified as subregimes i(1), i(2) and i(3). The
variable R is the space variable in the inner layers. For temperature, concentration and time, we use tildes
whenever they are rescaled with powers of St.

Ts0 = −1 at R = 0, (4.3c)

ρ
dS̃0

dt
= k

∂Ts0

∂R
at R = S̃0(t), (4.3d)

S̃0 = 0, at t = 0. (4.3e)
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Expanding Ts0 and S̃0 in powers of
√

St, we find

Ts0 = R

S̃0,0(t)
− 1 + √

St

(
− R2

S̃0,0(t)
+
(

1 − S̃0,1(t)

S̃0,0(t)2

)
R

)
+O (St) , (4.4a)

S̃0 = −
√

2k

ρ
t − √

St
2k

3ρ
t +O (St) . (4.4b)

We now need to determine c̃i using the calculated values of S̃0. With the rescaled concentration,
(3.7) becomes

c̃′
i(t) + c̃i(t)

(
Stα̂S̃′

0(t)2 + 2
√

St
S̃′

0(t)

1 + √
StS̃0(t)

− S̃′′
0 (t)

S̃′
0(t)

)
= ĉ0S̃′

0(t)2, (4.5)

and expanding c̃i(t) in powers of
√

St, we find

c̃i = ĉ0k

ρ
+ √

Stĉ0

√(
2k

ρ

)3

t +O (St) , (4.6)

where we have used the fact that we require c̃i to remain bounded as t → 0 as our initial condition.
Finally, we can use the values of c̃i and S̃0 to determine the temperature in the liquid. Rescaling

(3.9), we have

St
∂ T̃l0

∂t
= ∂2T̃l0

∂R2
+ 2

√
St

1 + √
StR

∂ T̃l0

∂R
, in R < S̃0(t), (4.7a)

T̃l0 = − c̃i(t)

m̂l
at R = S̃0(t), (4.7b)

and the remaining condition is given by the matching with the outer layer. Then, in the inner
layer, the temperature is given by

T̃l0 = −2T̂0R
∞∑

n=1

e−n2π2t
(

R − Ŝ0,0(t)
)√

St +O (St) . (4.8)

Notice that the supercooling effects are of O (St), therefore they are only seen at higher order.
Then, the solution to the problem in this subregime is given, at leading order, by

Ts0 ≈ −1 +
√

ρ

2kSt

1 − r√
t

, (4.9a)

T̂l0 ≈ 2T̂0

πr

∞∑
n=1

(−1)n+1

n
e−n2π2t sin (nπr), (4.9b)

S0 ≈ 1 −
√

2kSt

ρ
t, (4.9c)

ci ≈ ĉ0
kSt

ρ
. (4.9d)
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4.2 Subregime i(2) (layer c)

Now we need to consider the central subregime i(2), in which t =O(St−1). For this problem, we
only need to consider one layer. We start solving the one-phase Stefan problem (3.3) which, with
the new time scaling t = St−1 t̃, becomes

St
∂Ts0

∂ t̃
= κ

(
∂2Ts0

∂r2
+ 2

r

∂Ts0

∂r

)
, in S0(t̃) < r < 1, (4.10a)

Ts0 = 0, at r = S0(t̃), Ts0 = −1, at r = 1, ρ
dS0

dt̃
= k

∂Ts0

∂r
at r = S0(t̃), (4.10b)

and the initial conditions come from matching with subregime i(1). For convenience, as done
in [30], we take r and S0 to be the independent variables, so then the dependent variables are
Ts0(S0, r) and t̃(S0). Then, we expand Ts0 and t̃ as

Ts0 = 1

1 − S0

(
S0

r
− 1

)
+ St

k

κρ

1 − r

6rS0(1 − S0)

(
1 −

(
1 − r

1 − S0

)2
)

+O (
St2
)

, (4.11a)

t̃ = ρ

k

(
1

2
(1 − S0)2 − 1

3
(1 − S0)3

)
+ St

1

6κ
(1 − S0)2 +O (

St2
)

. (4.11b)

Notice that when S2
0 =O (St), this solution breaks down, so this motivates the study of sub-

regime i(3). Now, we need to determine the concentration at the interface from (3.7), which,
rescaling time and the concentration itself as ci = Stc̃i, becomes

c̃′
i(t̃) = ĉ0S′

0(t̃)2 − c̃i(t̃)

(
Stα̂S′

0(t̃)2 + 2
S′

0(t̃)

S0(t̃)
− S′′

0 (t̃)

S′
0(t̃)

)
. (4.12)

As we did before, we take S0 to be the time-like independent variable and t̂ the dependent
variable. Then, we rewrite (4.12) as

c̃′
i(S0)t̃′(S0) = ĉ0 − c̃i(S0)

(
Stα̂ + 2

S0
t̃′(S0) + t̃′′(S0)

)
. (4.13)

Expanding c̃i(t̃) and t̃ in powers of St, we find that, at leading order,

c̃′
i,0(S0)t̃′,0(S0) = ĉ0 − c̃i,0(S0)

(
2

S0
t̃′,0(S0) + t̃′′,0(S0)

)
, (4.14)

therefore, using the definition of t̃,0(S0) from (4.11b), we find

c̃i,0(S0) = 3C1ρ − ĉ0kS3
0

3ρ(1 − S0)S3
0

, (4.15)

where C1 is a constant to be determined. Matching with the solution in subregime i(1), we find
C1 = ĉ0k

3ρ
, therefore we conclude that

c̃i,0 = ĉ0

3

k

ρ

1 − S3
0

(1 − S0)S3
0

. (4.16)

Note that we could alternatively determine the value of C1 by imposing that c̃i is bounded as
S0 → 1, finding the same result.
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Finally, we need to determine the temperature in the liquid from the rescaled version of (3.9),
which is

St
∂ T̂l0

∂ t̂
= ∂2T̂l0

∂r2
+ 2

r

∂ T̂l0

∂r
, in 0 < r < S0(t̃), (4.17a)

∂ T̂l0

∂r
= 0 at r = 0, T̂l0 = −St

c̃i(t̂)

m̂l
at r = S0(t̃), (4.17b)

and the initial conditions from the matching with regime i(1).
In order to solve this problem, we proceed as in [30], and however, we need to introduce extra

terms in powers of St to account for the non-homogeneous boundary condition. We find that the
solution to leading order is given by

T̂l0 = 2T̂0S0(t̃)

πr

∞∑
n=1

(−1)n+1

n
exp

(
−n2π2

St

∫ t̃

0

ds̃

S0(s̃)2

)
sin

(
nπr

S0(t̃)

)
− St

c̃i0(t̃)

m̂l
. (4.18)

Notice that, as discussed in [30], the inclusion of the exponentially small terms allows us to
match the initial conditions, and thus it is not necessary to consider subregime i(1).

Then, the solution to the problem in this subregime at leading order is given by

Ts0 ≈ 1

1 − S0(t)

(
S0(t)

r
− 1

)
, (4.19a)

T̂l0 ≈ −ci(t)

m̂l
+ 2T̂0S0(t)

πr

∞∑
n=1

(−1)n+1

n
exp

(
−n2π2

∫ t

0

ds

S0(s)2

)
sin

(
nπr

S0(t)

)
, (4.19b)

t ≈ ρ

kSt

(
1

2
(1 − S0)2 − 1

3
(1 − S0)3

)
, (4.19c)

ci ≈ ĉ0

3

kSt

ρ

1 − S0(t)3

(1 − S0(t))S0(t)3
. (4.19d)

The explicit form of S0(t) can be found inverting (4.19c), but for simplicity we do not reproduce
the result here.

4.3 Subregime i(3)

We finally consider the last subregime, which corresponds to the late-time behaviour. This late
time is t∗ − t =O (1), where t∗ =O(St−1) is the critical time in which the pure material would
finish solidifying. Then, we define the time variable as t = t∗ + t̃, where t̃ < 0 is the new time
variable. In this subregime, the interface position is of (

√
St), so we rescale S0 = √

StS̃0 and

ci = St−
1
2 c̃i. Therefore, we need to consider an outer layer in the solid phase and an inner layer

comprising both phases.

4.3.1 Layer d

We start by considering the outer layer in the solid phase. With the rescalings t = t∗ + t̃, S0 =√
StS̃0 and ci = St−

1
2 c̃i, the system (3.3) becomes

∂Ts0

∂ t̃
= κ

(
∂2Ts0

∂r2
+ 2

r

∂Ts0

∂r

)
for 0 < r < 1, Ts0 = −1 at r = 1, (4.20a)
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with the corresponding matching conditions with the inner layer and the previous subregime.
The latter matching gives that, at leading order, Ts0,0 = −1 +O(

√
St), and thus we conclude that

Ts0 ≈ −1.

4.3.2 Layer e

The last layer we need to study is the inner layer near the origin. The scalings in this layer

are t = t∗ + t̃, r = √
StR, S0 = √

StS̃0, T̂l0 = St−
1
2 T̃l0 and ci = St−

1
2 c̃i. We consider the one-phase

Stefan problem (3.3), which once rescaled becomes

St
∂Ts0

∂ t̃
= κ

(
∂2Ts0

∂R2
+ 2

R

∂Ts0

∂R

)
, for R > S̃0(t̃), (4.21a)

Ts0 = 0 at R = S̃0(t̃), ρ
dS̃0

dt̃
= k

∂Ts0

∂R
at R = S̃0(t̃), (4.21b)

with matching conditions with the outer layer and the previous subregime. We find

Ts0 = −1 + S̃0,0(t̃)

R
+O

(√
St
)

, S̃0 =
√

−2k

ρ
t̃ +O

(√
St
)

. (4.22)

We use the value of S̃0 to calculate the concentration at the interface by solving

c̃′
i(t̃) + c̃i(t̃)

(
Stα̂S̃′

0(t̃)2 + 2
S̃′

0(t̃)

S̃0(t̃)
− S̃′′

0 (t̃)

S̃′
0(t̃)

)
= St

3
2 ĉ0S̃′

0(t̃)2. (4.23)

Expanding c̃i in powers of
√

St, we find that

c̃i,0 = ĉ0

3

k

ρ

1

S̃0,0(t̃)3
+O

(√
St
)

. (4.24)

Finally, we determine the temperature in the liquid phase. Rescaling (3.9), we find

St
∂ T̃l0

∂ t̃
= ∂2T̃l0

∂R2
+ 2

R

∂ T̃l0

∂R
, for 0 < R < S̃0(t̃), (4.25a)

∂ T̃l0

∂R
= 0 at R = 0, T̃l0 = − c̃i(t̃)

m̂l
at R = S̃0(t̃), (4.25b)

and the matching conditions with subregime i(2) act as initial conditions. Expanding the
temperature in powers of

√
St, we determine the leading-order solution as

T̃l0 = − c̃i,0(t̃)

m̂l
+O

(√
St
)

. (4.26)

Then, the solution to the problem in this subregime at leading order is given by

Ts0 ≈ −1 + S0(t)

r
, (4.27a)

T̂l0 ≈ −ci(t)

m̂l
, (4.27b)
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S0 ≈
√

−2kSt

ρ
(t∗ − t), (4.27c)

ci ≈ ĉ0

3

kSt

ρ

1

S0(t)3
, (4.27d)

t∗ ≈ ρ

6kSt
. (4.27e)

4.4 Discussion and summary of the solutions

In this section, we have considered the three subregimes that arise from taking the small Stefan
number limit to solve the problems found in regime i, after first taking the large Lewis number
limit. As we have mentioned, our analysis for this regime is similar to that of McCue et al. [30].
However, we remark that, with their definition of the Stefan number, this analysis corresponds to
their large Stefan number limit. After calculating the solutions, which are given in (4.9), (4.19)
and (4.27), we notice that at leading order, the solutions in subregimes i(1) and i(3) are lineari-
sations of the solution in subregime i(2). Therefore, to find the leading-order behaviour when we
expand in St, it is enough to consider the solution in subregime i(2).

Finally, we need to discuss the validity of the analysis, given that we have taken first the limit
ε → 0 and second the limit St → 0. The physical meaning of the limit ε → 0 is that mass dif-
fusion happens at a much slower timescale than heat diffusion does. The limit St → 0 means
that the timescale of the motion of the interface is much smaller than the thermal diffusive
timescale. We expect that the concentration profile to be driven by the motion of the interface,
which corresponds to the limit ε � St � 1, which in terms of timescales means that the solute
diffusion timescale is much smaller than the interface motion timescale, which in turn is much
smaller than the heat diffusion timescale. Mathematically, this condition ensures that we can
first take the small epsilon limit, and second the small Stefan number limit. However, we shall
in practice use the more restrictive condition of ε2/3 � St, which arises from considering that
subregime i(3) happens before regime ii. We have that, when S =O (

ε1/3
)
, the concentration at

the interface ci =O (
ε−1

)
, and thus we need to consider another regime. Knowing that in sub-

regime i(3), the interface position is S =O(
√

St), in order for subregime i(3) to happen before
regime ii, we require

√
St � ε1/3. Notice that in [30], the authors consider a fourth timescale,

which is exponentially small. However, regime ii happens before this new subregime, as long as

ε � exp
(− 3

√
2π
St

)
(which is satisfied for our problem), as well.

5 Asymptotic solutions in regime ii

We now consider the transition region, regime ii. In this regime, the interface is still far away
from the centre, so we need to distinguish three layers: the outer layer D in the solid, the thermal
inner layer E near the centre of the cast and the concentration inner layer F around the moving
interface.
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5.1 Layer D

We consider first the outer layer in the solid. Taking the scalings t = t∗ + ε
2
3 τ , S = ε

1
3 Ŝ and

cs = εĉs, we find that

∂ ĉs

∂t
= ε

8
3 D̂

(
∂2ĉs

∂r2
+ 2

r

∂ ĉs

∂r

)
,

∂Ts

∂t
= ε

2
3 κ

(
∂2Ts

∂r2
+ 2

r

∂Ts

∂r

)
, for 0 < r < 1, (5.1a)

∂ ĉs

∂r
= 0 and Ts = −1, at r = 1, (5.1b)

and with boundary conditions at r = 0 given by the matching with layer E. Initial conditions are
given by the matching with layer A. At leading order, we find that the solutions are constant in
time, and using the matching conditions, which are detailed in Section 5.4, we conclude that

cs = εα̂
ĉ0

3

kSt

ρ

1 − r3

(1 − r)r3
and Ts = −1. (5.2)

5.2 Layer E

Now, we consider the inner layer of size (ε
1
3 ) around the centre of the sphere. This layer com-

prises both phases, and it is in this layer where we see thermal diffusion. We use the rescalings

t = t∗ + ε
2
3 τ , r = ε

1
3 ξ , S = ε

1
3 Ŝ and cl = εĉl, so that we can write down the problem for this layer:

∂cs

∂τ
= ε2D̂

(
∂2cs

∂ξ 2
+ 2

ξ

∂cs

∂ξ

)
,

∂Ts

∂τ
= κ

(
∂2Ts

∂ξ 2
+ 2

ξ

∂Ts

∂ξ

)
, for ξ > Ŝ(τ ), (5.3a)

∂ ĉl

∂τ
= ε

(
∂2ĉl

∂ξ 2
+ 2

ξ

∂ ĉl

∂ξ

)
,

∂Tl

∂τ
= ∂2Tl

∂ξ 2
+ 2

ξ

∂Tl

∂ξ
, for 0 < ξ < Ŝ(τ ), (5.3b)

∂ ĉl

∂ξ
= 0 and

∂Tl

∂ξ
= 0, at ξ = 0. (5.3c)

In this layer, we have no interface conditions, as they are imposed through the matching with
layer F in each phase. The remaining conditions are found by matching the solutions with layer
D. At O (1), the problem is

∂cs0

∂τ
= 0,

∂Ts0

∂τ
= κ

(
∂2Ts0

∂ξ 2
+ 2

ξ

∂Ts0

∂ξ

)
, for ξ > Ŝ(τ ), (5.4a)

∂ ĉl0

∂τ
= 0,

∂Tl0

∂τ
= ∂2Tl0

∂ξ 2
+ 2

ξ

∂Tl0

∂ξ
, for 0 < ξ < Ŝ(τ ), (5.4b)

∂ ĉl0

∂ξ
= 0 and

∂Tl0

∂ξ
= 0, at ξ = 0. (5.4c)

We can immediately determine the concentrations cs = α̂ci(Ŝ
−1
0 (ξ )) and cl = εĉ0, where for cs we

have used the matching condition with layer F and for cl we have used the matching condition
with layer C.

For the temperature fields, we need the extra conditions given by the matching with layers
D and F. The details of the matching are shown in Section 5.4, but they give the leading-order
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boundary conditions

Ts0 = Tl0 = −ci0(τ )

m̂l
,

ρ

St

dŜ0

dτ
= k

∂Ts0

∂ξ
− ∂Tl0

∂ξ
, at ξ = Ŝ0(τ ), (5.5a)

∂Tl0

∂ξ
= 0, at ξ = 0, and Ts0 → −1, as ξ → +∞, (5.5b)

where ci0(τ ) is the solution of

c′
i0(τ ) + ci0(τ )

(
α̂Ŝ′

0(τ )2 + 2
Ŝ′

0(τ )

Ŝ0(τ )
− Ŝ′′

0 (τ )

Ŝ′
0(τ )

)
= 0. (5.6)

The initial conditions are provided by the matching with regime i.
We cannot obtain exact solutions to this problem, but we can find asymptotic approxima-

tions in the limit St → 0. We introduce the scalings τ = St−
1
3 τ̃ , ξ = St

1
3 ξ̃ and Ŝ0 = St

1
3 S̃0, which

transforms (5.5) to

St
∂Ts0

∂τ̃
= κ

(
∂2Ts0

∂ξ̃ 2
+ 2

ξ̃

∂Ts0

∂ξ̃

)
, for ξ̃ > S̃0(τ̃ ), (5.7a)

St
∂Tl0

∂τ̃
= ∂2Tl0

∂ξ̃ 2
+ 2

ξ̃

∂Tl0

∂ξ̃
, for 0 < ξ̃ < S̃0(τ̃ ), (5.7b)

Ts0 = Tl0 = −ci0(τ̃ )

m̂l
, ρ

dS̃0

dτ̃
= k

∂Ts0

∂ξ̃
− ∂Tl0

∂ξ̃
, at ξ̃ = S̃0(τ̃ ), (5.7c)

∂Tl0

∂ξ̃
= 0, at ξ̃ = 0, and Ts0 → −1, as ξ̃ → +∞, (5.7d)

c′
i0(τ̃ ) + ci0(τ̃ )

(
Stα̂S̃′

0(τ̃ )2 + 2
S̃′

0(τ̃ )

S̃0(τ̃ )
− S̃′′

0 (τ̃ )

S̃′
0(τ̃ )

)
= 0. (5.7e)

The condition when ξ̃ → +∞ comes from considering the outer layer (within which we have
not rescaled ξ ), which gives that at leading order the temperature is constant in time. Matching
shows that temperature is homogeneous in space and equal to −1.

We take ξ̃ and S̃0 as the independent variables, with Ts0, Tl0, ci0 and τ̃ as the depen-
dent variables, and we expand them in powers of St using the notation Ts0 = Ts0,0 + StTs0,1 +
O (

St2
)
, Tl0 = Tl0,0 + StTl0,1 +O (

St2
)
, ci0 = ci0,0 + Stci0,1 +O (

St2
)
, τ̃ = τ̃,0 + Stτ̃,1 +O (

St2
)
.

Using these expansions in (5.7), we find that at O (1) the problem is

∂2Ts0,0

∂ξ̃ 2
+ 2

ξ̃

∂Ts0,0

∂ξ̃
= 0, for ξ̃ > S̃0,

∂2Tl0,0

∂ξ̃ 2
+ 2

ξ̃

∂Tl0,0

∂ξ̃
= 0, for 0 < ξ̃ < S̃0, (5.8a)

Ts0,0 = Tl0,0 = −ci0,0(S̃0)

m̂l
, ρ = dτ̃,0

dS̃0

(
k
∂Ts0,0

∂ξ̃
− ∂Tl0,0

∂ξ̃

)
, at ξ̃ = S̃0, (5.8b)
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∂Tl0,0

∂ξ̃
= 0, at ξ̃ = 0, and Ts0,0 → −1, as ξ̃ → +∞, (5.8c)

c′
i0,0(S̃0)τ̃ ′

,0(S̃0) + ci0,0(S̃0)

(
2

S̃0

τ̃ ′
,0(S̃0) + τ̃ ′′

,0(S̃0)

)
= 0. (5.8d)

We solve (5.8), finding

Ts0,0 = −1 +
(

−ci0,0(S̃0)

m̂l
+ 1

)
S̃0

ξ̃
, Tl0,0 = −ci0,0(S̃0)

m̂l
, ci0,0 = C2

S̃2
0 τ̃

′
,0(S̃0)

, (5.9)

where C2 is a constant yet to be determined.
We substitute these expressions into (5.8d), to find

τ̃,0 = −C2

m̂l

1

S̃0

− ρ

2k
S̃2

0 + C3, ci0,0 = C2km̂l

C2k − m̂lρS̃3
0

. (5.10)

where C3 is a constant. We can determine C2 by matching concentration at the interface with
regime i(3) and, as shown later in Section 5.4, C2 = − ĉ0

3 . Substituting this expression back into
(5.10) and (5.9), and rescaling using original variables,

τ ≈ ĉ0

3m̂l

1

Ŝ0

− ρ

2Stk
Ŝ2

0 + τ ∗, ci0 ≈ ĉ0kStm̂l

ĉ0kSt + 3m̂lρŜ3
0

, (5.11)

where τ ∗ = St−
1
3 C3 is a time shift (which we do not consider here).

5.3 Layer F

We finally study the layer F. This layer is of thickness (ε
4
3 ) around the moving boundary, and

it is in this layer where we observe both diffusion and advection (the latter due to the moving

boundary) of impurities in the liquid phase. The rescaling for this layer is t = t∗ + ε
2
3 τ , r =

ε
1
3 (Ŝ(τ ) + εR), S = ε

1
3 Ŝ and cl = ε−1ĉl. For R > 0, we have

ε
∂cs

∂τ
= Ŝ′(τ )

∂cs

∂R
+ εD̂

(
∂2cs

∂R2
+ ε

2

Ŝ(τ ) + εR

∂cs

∂R

)
, (5.12a)

ε2 ∂Ts

∂τ
= εŜ′(τ )

∂Ts

∂R
+ κ

(
∂2Ts

∂R2
+ ε

2

Ŝ(τ ) + εR

∂Ts

∂R

)
, (5.12b)

for R < 0, we have

ε
∂ ĉl

∂τ
= Ŝ′(τ )

∂ ĉl

∂R
+ ∂2ĉl

∂R2
+ ε

2

Ŝ(τ ) + εR

∂ ĉl

∂R
, (5.12c)

ε2 ∂Tl

∂τ
= εŜ′(τ )

∂Tl

∂R
+ ∂2Tl

∂R2
+ ε

2

Ŝ(τ ) + εR

∂Tl

∂R
, (5.12d)
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and at the interface, R = 0, we have

Ts = Tl, cs = α̂ĉl, ĉl = −m̂lTl, ε
ρ

St

dŜ

dτ
= k

∂Ts

∂R
− ∂Tl

∂R
,

and (1 − εα̂)ĉl
dŜ

dτ
= ε2D̂

∂cs

∂R
− ∂ ĉl

∂R
. (5.12e)

Notice that this is almost the same problem as in layer B, therefore we do not detail the solution

procedure here. We expand in powers of ε
1
3 , due to the matching with layer E, and find that the

solutions are

cs = α̂ci0(τ ) + ε
1
3 α̂ci 1

3
(τ ) + ε

2
3 α̂ci 2

3
(τ ) + ε

(
α̂ci0(τ )

Ŝ′
0(τ )

R + α̂ci1(τ )

)
, (5.13a)

cl = ε−1ci0(τ )e−Ŝ′
0(τ )R + ε− 2

3

(
ci 1

3
(τ ) − Rci0(τ )Ŝ′

1
3
(τ )

)
e−Ŝ′

0(τ )R

+ ε− 1
3

(
ci 2

3
(τ ) − R

(
ci 1

3
(τ )Ŝ′

1
3
(τ ) + ci0(τ )Ŝ′

2
3
(τ )

)
+ R2

2
ci0(τ )Ŝ′

1
3
(τ )

)
e−Ŝ′

0(τ )R

+
(
A1(τ ) + (ci1(τ ) −A1(τ ) + RA2(τ , R)) e−Ŝ′

0(τ )R
)

, (5.13b)

Ts = −ci0(τ )

m̂l
− ε

1
3

ci 1
3
(τ )

m̂l
− ε

2
3

ci 2
3
(τ )

m̂l
+ ε

(
A4(τ )R − ci1(τ )

m̂l

)
, (5.13c)

Tl = −ci0(τ )

m̂l
− ε

1
3

ci 1
3
(τ )

m̂l
− ε

2
3

ci 2
3
(τ )

m̂l
+ ε

((
kA4(τ ) − ρ

St
Ŝ′

0(τ )
)

R − ci1(τ )

m̂l

)
, (5.13d)

with

A1(τ ) = c′
i0(τ )

Ŝ′
0(τ )2

+ ci0(τ )

(
α̂ + 2

Ŝ0(τ )Ŝ′
0(τ )

− Ŝ′′
0 (τ )

Ŝ′
0(τ )3

)
, (5.14a)

A2(τ , R) = −c′
i0(τ )

Ŝ′
0(τ )

− ci 2
3
Ŝ′

1(τ ) + 1

2
ci 1

3
(τ )

(
RŜ′

1
3
(τ )2 − 2Ŝ′

23(τ )

)

+ ci0(τ )

(
− 2

Ŝ0(τ )
− R2

6
Ŝ′

1
3
(τ )3 + RŜ′

1
3
Ŝ′

2
3
− Ŝ′

1(τ ) +
(

1 + R

2
Ŝ′

0(τ )

)
Ŝ′′

0 (τ )

Ŝ′
0(τ )2

)
,

(5.14b)

where ci0(τ ) and A4(τ ) are determined from matching. The values of ci 1
3
, ci 2

3
and ci1 require

matching of higher order solutions not presented here.

5.4 Matching of the solutions

In this section, we detail the matching between the solutions of the different layers that we have
used in the previous sections to fully determine the problem.

We start matching layer D with layer A to obtain the initial conditions that determine the
leading-order solutions in layer D. The matching for cs is trivial, as the solution is indepen-
dent of time in both layers. For Ts, we take one term in the inner solution and one term in the
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outer solution, finding −1 = (1ti)(1to) = (1to)(1ti) = limτ→−∞ Ts0, so we can fully determine the
leading-order solutions in layer D. Similarly, we can match cl and Tl between layers C and E.

We now have to match the space layer D with layer E, which provides the boundary condition
needed for Ts (it is not necessary to match for cs, as at leading order the condition is not required).
Then, taking one term in both the inner and outer solutions, we find −1 = (1ti)(1to) = (1to)(1ti) =
limξ→+∞ Ts0.

The next layers we have to match are layers E and F. We start by matching the temperature
fields, both in the solid and the liquid, taking two terms in the inner and the outer solutions. For
the solid, we match

(2ti)(2to) = Ts0(τ , Ŝ0(τ )) + ε
1
3 (· · · ) + ε

2
3 (· · · ) + ε

(
(· · · ) +

(
R + Ŝ1(τ )

) ∂Ts0

∂ξ

∣∣∣∣
ξ=Ŝ0

)
,

(5.15a)

(2to)(2ti) = −ci0(τ )

m̂l
− ε

1
3

ci 1
3
(τ )

m̂l
− ε

2
3

ci 2
3
(τ )

m̂l
+ ε

(
RA4(τ ) − ci1(τ )

m̂l

)
. (5.15b)

The (· · · ) here represents terms that are known, as shown in (5.13), but not necessary for the
matching, given the purpose of our analysis. Therefore, to simplify the notation, we do not
reproduce these terms here. We conclude

Ts0(τ , Ŝ0(τ )) = −ci0(τ )

m̂l
, A4(τ ) = ∂Ts0

∂ξ

∣∣∣∣
ξ=Ŝ0

. (5.16a)

In the liquid, we match

(2ti)(2to) = Tl0(τ , Ŝ0(τ )) + ε
1
3 (· · · ) + ε

2
3 (· · · ) + ε

(
(· · · ) +

(
R + Ŝ1(τ )

) ∂Tl0

∂ξ

∣∣∣∣
ξ=Ŝ0

)
,

(5.17a)

(2to)(2ti) = −ci0(τ )

m̂l
− ε

1
3

ci 1
3
(τ )

m̂l
− ε

2
3

ci 2
3
(τ )

m̂l
+ ε

((
kA4(τ ) − ρ

St

dŜ0

dτ

)
R − ci1(τ )

m̂l

)
, (5.17b)

which gives

Tl0(τ , Ŝ0(τ )) = −ci0(τ )

m̂l
, kA4(τ ) − ρ

St

dŜ0

dτ
= ∂Tl0

∂ξ

∣∣∣∣
ξ=Ŝ0

. (5.18)

We have the boundary conditions for both Ts0 and Tl0 in layer E, as well as the Stefan condition

ρ

St

dŜ0

dτ
= k

∂Ts0

∂ξ

∣∣∣∣
ξ=Ŝ0

− ∂Tl0

∂ξ

∣∣∣∣
ξ=Ŝ0

, (5.19)

so we have fully determined the problem (5.5).
Matching cs between layers E and F, we find cs0(Ŝ0(τ )) = (1ti)(1to) = (1to)(1ti) = α̂ci(τ ). In

order to match cl between layers E and F, we proceed in the same way as we did to match
between layers B and C, finding A1(τ ) = (1ti)(1to) = (1to)(1ti) = 0, which gives

c′
i0(τ )

Ŝ′
0(τ )2

+ ci0(τ )

(
α̂ + 2

Ŝ0(τ )Ŝ′
0(τ )

− Ŝ′′
0 (τ )

Ŝ′
0(τ )3

)
= 0. (5.20)

https://doi.org/10.1017/S095679252000011X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252000011X


264 F. Brosa Planella et al.

Finally, we need to match ci between regimes i and ii, where regime i acts as the outer layer
and ii as the inner layer. This matching determines Ŝ0(τ ) up to a time shift, which requires higher
order matching and is not studied here. For simplicity, we take ci as a function of Ŝ0. Using

Ŝ0 = St
1
3 S̃0, we rescale (5.9) like

ci0(Ŝ0) = C2Stkm̂l

C2Stk − m̂lρŜ3
0

. (5.21)

Now, using that S0 = ε
1
3 Ŝ0, we can take the inner solution up to O (

ε−1
)

and the outer solution

up to O (1), finding ĉ0
3

kSt
ρ

1
Ŝ3

0
ε−1 = (1ti)(1to) = (1to)(1ti) = −C2

kSt
ρ

1
Ŝ3

0
ε−1, hence C2 = − ĉ0

3 .

This concludes the analysis of regime ii. In this regime, we have observed how the solidifi-
cation process is driven by a build-up of the interfacial concentration due to rejection from the
solid phase. This build-up causes a decrease in the interfacial temperature due to constitutional
supercooling and, therefore, a decrease in the thermal gradients at the interface that slows down
the motion of the solidification front. At the end of this regime, when τ → +∞, we find that the
position of the interface at leading order goes to zero. That means that the liquid part of layer
E vanishes, and therefore, we need to consider another regime in which the impurity diffusion
inner layer now notices the symmetry boundary condition at r = 0.

6 Asymptotic solutions in regime iii

We finally consider regime iii. In this regime, the interface is at a distance (ε2/3) from the origin
and we need to distinguish two different layers, namely the outer layer in the solid, G, and the
inner layer, H , that comprises both phases.

6.1 Layer G

We first consider the outer layer in the solid. Taking the scalings t = t∗ + ε
1
3 θ , S = ε

2
3 Ŝ and

cs = εĉs, we find

∂ ĉs

∂θ
= ε

7
3 D̂

(
∂2ĉs

∂r2
+ 2

r

∂ ĉs

∂r

)
,

∂Ts

∂θ
= ε

1
3 κ

(
∂2Ts

∂r2
+ 2

r

∂Ts

∂r

)
, for 0 < r < 1, (6.1a)

∂ ĉs

∂r
= 0 and Ts = −1, at r = 1, (6.1b)

and with the remaining conditions given by the matching with layers D and H . At leading order,
the solutions are constant in time, and from the matching given in Section 6.3, we conclude
cs = εα̂ci

(
S−1

0 (r)
)
, Ts = −1.

6.2 Layer H

Finally, we consider the inner layer H of thickness (ε
2
3 ) around the origin. In this layer, the

scalings are t = t∗ + ε
1
3 θ , r = ε

2
3 R, S = ε

2
3 Ŝ and cl = ε−1ĉl. We find

∂cs

∂θ
= εD̂

(
∂2cs

∂R2
+ 2

R

∂cs

∂R

)
, ε

∂Ts

∂θ
= κ

(
∂2Ts

∂R2
+ 2

R

∂Ts

∂R

)
, for R > Ŝ(θ ), (6.2a)
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∂ ĉl

∂θ
= ∂2ĉl

∂R2
+ 2

R

∂ ĉl

∂R
, ε

∂Tl

∂θ
= ∂2Tl

∂R2
+ 2

R

∂Tl

∂R
, for R < Ŝ(θ ), (6.2b)

Ts = Tl, cs = α̂ĉl, ĉl = −m̂lTl, ε
ρ

St

dŜ

dθ
= k

∂Ts

∂R
− ∂Tl

∂R
,

and
(
1 − εα̂

)
ĉl

dŜ

dθ
= ε2D̂

∂cs

∂R
− ∂ ĉl

∂R
, at R = Ŝ(θ ), (6.2c)

∂ ĉl

∂R
= 0 and

∂Tl

∂R
= 0, at R = 0. (6.2d)

The remaining conditions come from matching with other layers and are detailed in Section 6.3.
At O (1), the problem reads

∂cs0

∂θ
= 0,

∂2Ts0

∂R2
+ 2

R

∂Ts0

∂R
= 0, for R > Ŝ0(θ ), (6.3a)

∂ ĉl0

∂θ
= ∂2ĉl0

∂R2
+ 2

R

∂ ĉl0

∂R
,

∂2Tl0

∂R2
+ 2

R

∂Tl0

∂R
= 0, for R < Ŝ0(θ ), (6.3b)

Ts0 = Tl0, cs0 = α̂ĉl0, ĉl0 = −m̂lTl0, k
∂Ts0

∂R
= ∂Tl0

∂R
,

and ĉl0
dŜ0

dθ
+ ∂ ĉl0

∂R
= 0, at R = Ŝ0(θ ), (6.3c)

∂ ĉl0

∂R
= 0 and

∂Tl0

∂R
= 0, at R = 0. (6.3d)

Matching with the Ts in layer G derived later in Section 6.3 gives Ts = Tl = −1. From here, we
conclude that ĉl0 = m̂l at the interface. We also determine that cs = α̂m̂l. To determine ĉl0 and Ŝ0,

it will be useful to introduce the scalings ĉl0 = m̂lc, Ŝ0 =
(

ĉ0
3m̂l

) 1
3

S, R =
(

ĉ0
3m̂l

) 1
3

r, θ =
(

ĉ0
3m̂l

) 2
3

t,

which results in the parameter-free problem

∂c

∂t
= ∂2c

∂r2
+ 2

r

∂c

∂r
, in 0 < r < S(t), (6.4a)

∂c

∂r
= 0, at r = 0, c = 1 and c

dS

dt
+ ∂c

∂r
= 0, at r = S(t), (6.4b)

c ∼ exp

(
−dS

dt
(r − S(t))

)
and S ∼ 1

t
, when t → 0, (6.4c)

which is a one-phase Stefan problem describing the impurity diffusion in a shrinking core.
We are unable to determine analytical solutions to this problem. However, as we have elimi-

nated all parameters of the problem, we can calculate the solution numerically. We use a finite
volume scheme similar to the one we shall describe in the Appendix, but in this case, it is sim-
pler as we only need to solve the problem for the concentration and the position of the interface.
Because of the singularity in the initial condition as t → 0, we have to impose the initial condi-
tions of the numerical scheme at some initial time t = t0 close to zero. As the problem (6.4) with
an initial condition at t = t0, with t0 arbitrarily small, is a classical one-phase Stefan problem with
sufficiently smooth data, from Theorem III.2 in [11], we know that the solution on t ∈ [t0, ∞) is
unique. The different numerical simulations for different values of t0 seem to converge as t0 → 0,
even though we do not have an analytical proof that in this limit the solution to the problem is
unique. Notice as well that the problem is a supercooled Stefan problem, and therefore it could
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(a)

(b)

FIGURE 4. Plots of the interface position S over time (a) and concentration profiles c over space for various
values of time (b) arising from (6.4). Numerical solutions were obtained using a fixed boundary method and
a finite volume scheme.

go unstable. These problems have been studied in the literature [12, 13, 14, 17], but it remains
an open question whether this particular problem is stable. The numerical simulations, however,
do not show instability. The plots for the position of the interface and the concentration profiles
are shown in Figure 4.

Even though we cannot find analytical solutions to the problem (6.4), we can calculate the
steady state. One can check that the total amount of impurities in problem (6.4) is conserved.
Then, since we know that the steady-state concentration profile is homogeneous in space, we
have that the total concentration at the steady state is ctot = 4

3πS3
endcend, where Send and cend are

the interface position and the concentration at the steady state, respectively. Because the total
concentration is conserved, ctot must be equal to the initial amount, which is given by

ctot = lim
t→0

4π

∫ S(t)

0
r2 exp

(
−dS

dt
(r − S(t))

)
dr

= lim
t→0

4π

(
1 − 2t3 + 2t6

(
1 − e

− 1
t3

))
= 4π .

(6.5)
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We know that the steady-state concentration is cend = 1, as given by the boundary condition
(6.4c), hence we conclude Send = 3

√
3 ≈ 1.4423, which agrees with the numerical result shown in

Figure 4(a).

6.3 Matching of the solutions

In this section, we match the solutions of the different layers. We start by matching the tem-
perature and concentration in layer G with the solutions in layer D, limθ→0 Ts0 = (1ti)(1to) =
(1to)(1ti) = −1. For ĉs0, because the solutions in both layers do not depend on time, the matching
is trivial.

The next condition we need to derive is the matching of Ts between layers G and H . Taking one
term both in the inner and outer solutions, we find −1 = (1ti)(1to) = (1to)(1ti) = limR→+∞ Ts0,
which is used to determine Ts0.

Finally, we need to determine the initial conditions used in (6.4). We start with ĉl0 which
we have to match with the solution found in layer F. Taking the solutions up to O (

ε−1
)
, we

determine the matching condition

lim
θ→0

ε−1ĉl0 = (1ti)(1to) = (1to)(1ti) = lim
τ→+∞ ε−1ci(τ ) exp

(
dŜ0

dτ

(
R − Ŝ0(τ )

))
, (6.6)

and we know from the solution in regime ii that ci → m̂l and Ŝ0 → ĉ0
3m̂lSt

1
τ

as τ → +∞.

The last condition is the one for Ŝ0(θ ). We match the solution in regime iii with the solution
in regime ii. Taking the solutions at leading order in each regime (so O (

ε1/3
)

in regime ii and
O (

ε2/3
)

in regime iii), we find

lim
θ→0

ε
2
3 S0 = (1ti)(1to) = (1to)(1ti) = ε

2
3

ĉ0

3m̂l

1

θ
. (6.7)

We have now finished the analysis of regime iii and notice that the solutions given here hold
up to θ → +∞, therefore this is the last regime to consider. With the solutions found in each
regime, we can now describe the behaviour of the system (2.2) at leading order for t ∈ [0, +∞).

7 Summary of the asymptotic solutions and results

After performing the asymptotic analysis of the extended Stefan problem in the spherically sym-
metric three-dimensional geometry, we have distinguished three different time regimes with
significantly different behaviours of the solution. Similar to what was observed in the finite pla-
nar geometry configuration [4], the concentration of impurities in the solid remains constant over
time, while the concentration at each point is only determined by the time when it solidified. In
this section, we provide the leading-order solutions in each layer. The solutions are written in
terms of the original dimensionless parameters (i.e. before rescaling). Recall that we defined the
small parameter ε = Le−1.

7.1 Leading-order behaviour of solutions

Regime i corresponds to the beginning of the process and has three different layers: two outer
layers, one in the solid phase and one in the liquid phase, and an inner layer around the interface.
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Recall that, in order to determine the solutions for this layer, we required a further expansion in
the small Stefan number, as discussed in Section 4. In the outer layer in the solid (r > S(t), layer
A), we have

cs ≈ α
c0

3

kSt

ρ
Le

1 − r3

(1 − r)r3
, (7.1a)

Ts ≈ 1

1 − S(t)

(
S(t)

r
− 1

)
, (7.1b)

in the transition layer (r = S(t), layer B), we have

cs ≈ αci(t), (7.1c)

Ts ≈ − r − S(t)

(1 − S(t))S(t)
− ci(t)

ml
, (7.1d)

cl ≈ ci(t) exp

(
−dS

dt
Le (r − S(t))

)
, (7.1e)

Tl ≈ −ci(t)

ml
, (7.1f)

and in the outer layer in the liquid (r < S(t), layer C), we have

cl ≈ c0, (7.1g)

Tl ≈ −ci(t)

ml
+ 2T0S(t)

πr

∞∑
n=1

(−1)n+1

n
exp

(
−n2π2

∫ t

0

ds

S(s)2

)
sin

(
nπr

S(t)

)
, (7.1h)

where

t ≈ ρ

kSt

(
1

2
(1 − S(t))2 − 1

3
(1 − S(t))3

)
+ 1

6κ
(1 − S(t))2 and (7.1i)

ci(t) ≈ c0

3

kSt

ρ
Le

1 − S(t)3

(1 − S(t))S(t)3
. (7.1j)

In this regime, the system is driven by the thermal problem since the supercooling is small, and
therefore we observe similar behaviour to that described in [30]. The impurity build-up happens
only in a small layer around the solidification front. However, in this geometry, because the
volume of liquid shrinks as the cube of the position of the interface (as opposed to the linear
relation we observed in the finite planar problem), the rejection of impurities is stronger and we
observe that the concentration of impurities at the interface is no longer constant but grows in
time. This is the reason why the next regime to consider is driven by supercooling while the
solidification front is still far away from the centre of the sphere.

Then, in this new regime, the front is still at a distance O (
ε1/3

)
from the centre, but the

impurity build-up causes a significant change in the melting temperature that affects the dynamics
of the solidification front. This corresponds to a time of O (

ε2/3
)

around the critical time t = t∗.
We distinguish three layers: an outer layer in the solid, an intermediate layer O (

ε1/3
)

around the
centre of the sphere and an inner layer O (ε) around the solidification front. To obtain analytical
solutions, we need to also take the small Stefan number limit. In the outer layer D (r > 0), we
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have

cs ≈ α
c0

3

kSt

ρ
Le

1 − r3

(1 − r)r3
, (7.2a)

Ts ≈ −1, (7.2b)

in the intermediate layer E (r > 0), we have

cs ≈ αml

(
1 + 3ml

c0

ρ

kSt

r3

Le

)−1

, (7.2c)

Ts ≈ −1 +
(

−ci(t)

ml
+ 1

)
S(t)

r
, (7.2d)

cl ≈ c0, (7.2e)

Tl ≈ −ci(t)

ml
, (7.2f)

and in the inner layer F around r = S(t), the solutions are

cs ≈ αci(t), (7.2g)

Ts ≈ −ci(t)

ml
, (7.2h)

cl ≈ ci(t) exp

(
−dS

dt
Le (r − S(t))

)
, (7.2i)

Tl ≈ −ci(t)

ml
, (7.2j)

where

t ≈ c0

3ml
Le

1

S(t)
+ ρ

2kSt
S(t)2 + t∗ + ε

2
3 τ ∗, (7.2k)

ci ≈ ml

(
1 + 3ml

c0

ρ

kSt

S(t)3

Le

)−1

, (7.2l)

t∗ ≈ ρ

6kSt
+ 1

6κ
. (7.2m)

We observe that the dynamics in this regime are driven by the build-up of impurities at the
interface, which causes enough supercooling to decrease the temperature in the whole domain
down to the temperature of the boundary. This change in the interface temperature results in a
decrease in the thermal gradients, and thus the interface slows down. Because the liquid region
is still reasonably large, the impurities can diffuse away from the interface, so we still observe
an exponential profile in the impurity concentration.

Finally, we consider regime iii, at a late time O (
ε1/3

)
after the critical time t = t∗, where the

interface is within a distance O (
ε2/3

)
of the centre of the sphere. We distinguish two layers: an

outer layer in the solid and an inner layer of O (
ε2/3

)
around the centre. In the outer layer (r > 0,
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layer G), the solutions are

cs ≈ αml

(
1 + 3ml

c0

ρ

kSt

r3

Le

)−1

, (7.3a)

Ts ≈ −1, (7.3b)

while in the inner layer around r = 0, we have

cs ≈ αml, (7.3c)

Ts ≈ −1, (7.3d)

Tl ≈ −1, (7.3e)

while cl and S have to be determined numerically. In this layer, the temperature in both phases
is identical to the boundary temperature, therefore the thermal problem is in steady state. This
means that the concentration at the interface remains constant. The concentration in the liquid
and the position of the interface evolve following a classical one-phase Stefan problem, which
ensures that total mass is conserved. We plot the position of the interface and the concentration
of impurities on the liquid side of the interface in Figure 5 for various parameter values, finding
that an increase in St results in faster motion of the interface, whereas an increase in Le results
in an increase in the impurity concentration.

7.2 Comparison with numerical simulations

We compare the asymptotic solutions to the results of numerical simulations, where the numer-
ical scheme is discussed in the Appendix. When performing our simulations, we set St = 0.1,
Le = 1000, ρ = 1, cp = 1, k = 0.36, ml = 1000, c0 = 0.01 and T0 = 0, which are parameter val-
ues close to metallurgical grade silicon [4]. The reason for taking Le = 1000 and St = 0.1 is to

make sure that the condition ε
2
3 � St � 1 is satisfied, and thus the asymptotic solutions are valid.

We take Ns = 2 × 103 grid points in the solid phase, Nl = 2 × 104 grid points in the liquid phase
and an initial time step of �t = 10−3. At each step, we use relaxation iterations to solve the non-
linear system, and we take a relaxation parameter ω = 0.1 and a tolerance of δ = 0.01. To help
convergence, if one time step takes more than 100 iterations before converging, and the time step
is larger than 10−5, we halve the time step. This algorithm is capable of solving the full problem
with a total mass variation smaller than 0.1%.

The comparison between our asymptotic solutions and numerical simulations is shown in
Figure 6. We find quite good qualitative agreement, and thus we believe that the asymptotic
solutions describe the dynamics of the solidification process for the entire time domain. In the
plots, we observe a slight discrepancy between both results in regime ii, which is more noticeable
in ci due to the scale of the solution there relative to the accuracy of the lowest order matched
asymptotic solution. The agreement would be improved by calculating higher order terms in the
matched asymptotic expansion for the solution in that regime, given that for the solution plotted
here we only took the leading-order terms in both St and ε expansion, but the result is in quali-
tative agreement with what one would expect. Figure 6(a) shows the position of the interface as
a function of time, and we can clearly observe the behaviour for t < t∗, which is similar to the
pure material problem [30, 37]. Near the critical time, we observe a rapid transition that slows
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(a)

(b)

FIGURE 5. Asymptotic solutions for the interface position S as a function of Stefan number St (a) and the
concentration of impurities on the liquid side of the interface ci as a function of Lewis number Le (b).

down the interface, and at late times (t > t∗), we see a decay to the steady state at a very small
length scale. Figure 6(b) shows the concentration of impurities at the interface as a function of
time. At the beginning of the process, we notice that concentration of impurities increases, but
remaining of O (1), while around the critical time there is a very quick build-up until they reach
the maximum concentration cl = ml. Finally, at late time, the concentration remains equal to this
maximum value.

7.3 Comparison with experiments

One possible application of our results is to the solidification of metallurgical grade silicon, as
explained in previous work [2, 4]. Amongst the various casting techniques used in the silicon
industry, we focus here on the water granulation process, in which liquid silicon is solidified
into small spherical particles by quenching the molten silicon in a pool of water [31, 32]. Such a
process can be described by the model (2.2).
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(a)

(b)

FIGURE 6. Comparison of the asymptotic and numerical solutions for the interface position S (a) and
concentration of impurities on the liquid side of the interface ci (b). The slight discontinuity near t = 5 occurs
where the solutions are matched across regimes, and including higher order in the matched asymptotic
expansions terms would improve the agreement.

The experimental data presented here, which were provided by Elkem, are for two different
particles (with diameters 7.5 and 6.0 mm, respectively) of 97% pure silicon cast using water
granulation. To measure the distribution of impurities, each particle was polished down to the
central cross section, and a scanning electron microscope (SEM) was then used to take a pic-
ture of a 1.7-mm-wide band around one of the diameters of the particle. The measurements of
the impurity fraction along the diameter were then measured by averaging the values over the
direction perpendicular to the diameter at each point. The SEM image of the samples is shown
in Figure 7.

The concentration profile in the particle can be described using the expression of cs in layer
E, see (7.3a), as it captures the leading-order behaviour for the whole problem. Given that the
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FIGURE 7. Comparison of asymptotic solutions and experimental data for the concentration of impurities
(as a volume fraction) in a silicon granule for two distinct samples. Both experimental data and images
of the samples have been provided by Elkem. The analytical solution corresponds to (7.4) with parameter
values a = 0.03 and b = 8. The same parameters are used in both samples as they come from the same cast.
Notice that, because the data are for the impurities volume fraction and the fraction of the cast thickness,
which are dimensionless quantities, we use the dimensionless model directly without the need for rescaling.

experimental data are along the diameter but the model assumes symmetry, the expression to fit
to the experimental data can be constructed combining cs (1 − 2x) and cs (2x − 1), where x is the
fraction of cast thickness, and

cs(r) = a

1 + br3
, where a = αml and b = 3mlρ

c0kStLe
. (7.4)
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We find that the values a ≈ 0.03 and b ≈ 8 give reasonable agreements between the experimen-
tal data and the asymptotic results as shown in Figure 7; no additional parameter fitting was
employed. The noise in the data is inherent to the experimental measurements, and it is caused
by the microstructure configurations. Still, we find a direct comparison better than artificially
cleaning the data. Despite the noise in the measurements, we can still observe a certain trend in
the concentration: increasing from the boundaries to the interior, and then a region of roughly
constant concentration at the centre of the domain. This trend agrees with the behaviour pre-
dicted by (7.4), therefore our simple model helps us to better understand the underlying trend,
even though the data are rather noisy.

8 Discussion

In this paper, we have considered the solidification problem of a binary alloy in a spherical
domain. Since closed-form exact solutions cannot be found, we have performed an asymptotic
expansion in large Lewis number limit and then in small Stefan number (which is valid for

Le− 2
3 � St). We also made the following assumptions: small diffusivity of impurities in the

solid, segregation coefficient, initial concentration and initial temperature and large supercooling
coefficient. We distinguished eight different layers over three time regimes. The dynamics of the
early stage of the problem are similar to the problem for the pure material described in [30], as
the supercooling effects are small. The impurities are rejected into the liquid phase and diffuse
away over a very short length scale. For this geometry, we observed that the concentration at the
interface does not remain constant but grows in time. It is this growth which leads to the second
regime, around the critical time t∗ ≈ ρ

6kSt + 1
6κ

. In this regime, the concentration of impurities
has become large enough to cause a significant change in the melting temperature, resulting in
a change in the thermal problem and a deceleration of the moving boundary. At late times, the
temperature of the whole system has reached the minimum temperature and thus the thermal
problem remains in steady state, implying that the interfacial concentration stays constant. Then,
we need to solve the one-phase Stefan problem for the diffusion of impurities in a shrinking core,
in order to find the concentration in the liquid and the position of the interface, which has to be
solved numerically. The asymptotic solutions show good agreement with the numerical simu-
lations. We also compare the asymptotic solutions with experimental data provided by Elkem
for silicon granules. By choosing a suitable parameter set, we find good agreement between the
experiments and the asymptotic solution, therefore the results presented here can be used to better
understand the water granulation casting process.

The analysis highlights the crucial role of constitutional supercooling in the behaviour of
the system, even though its contribution was assumed to be small in the model. It is constitu-
tional supercooling which triggers regime ii, and thus we observe a different behaviour to that
described in previous works on the solidification of pure materials [30, 37, 39], or in [15], where
supercooling was taken to be much smaller so that it fully decoupled from the thermal prob-
lem. Compared with the finite planar geometry studied in [4], we also observe a change of the
order of the regimes, and hence the boundary layer structure. For the sphere, we first see the
supercooling effects bring the temperature of the system down to the minimal temperature and
slow the motion of the interface, and later the diffusion of impurities in the liquid region to the
homogeneous steady state.
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Even though the model is quite simple and the available experimental data are noisy, we have
shown that the matched asymptotic solutions to the model are able to capture the underlying
qualitative trend in the data. In terms of practical application, the model provides insight on
the timescale required for solidification (in the model, this is the timescale until regime iii).
The model also shows the effect of the impurities on the solidification process and, in par-
ticular, how these impurities are distributed along the particle radius. This distribution can be
useful for further analysis on the properties of the solidified material, which may be linked to the
microstructure of the solidified material, at least in an empirical manner. Our results can be used
to determine how long the particles need to be cooled until they have solidified, as well as the
influence of each parameter on the final solidification time and impurity distribution within the
particle. In turn, this may enable our industrial partners to perform additional experiments using
certain parameter groups as control parameters, in order to improve their approach to silicon
manufacture through the water granulation process.

One could extend this work considering other aspects of the symmetric problem. A possible
extension is to determine higher order asymptotic solutions, in order to increase the accuracy of
our approximations; however, we suspect that this will require one to consider other layers and
the problem complexity will increase, similarly to what was shown in other work [30, 37, 39].
Other extensions would be to consider a more general geometry and extend the analysis of
McCue et al. [29] to binary alloys. One could perform a similar asymptotic analysis for other spe-
cial geometries, such as a cylinder, which should be conceptually similar to the sphere. Finally,
one might also consider a stability analysis for the spherical problem, or other three-dimensional
geometries, akin to what we did for infinite and semi-infinite planar domain problems, in [3].
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Appendix: Numerical scheme

In order to solve (2.2) numerically, we choose a fixed boundary scheme as it was done in [4] for
the planar geometry. The key idea is the following: rescale solid and liquid regions so that they
have fixed boundaries. We ensure that the algorithm conserves mass of impurities.
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We introduce the variable x = r−S(t)
1−S(t) for the solid phase and y = r

S(t) for the liquid phase, which
are both defined in the domain [0, 1]. In order to write the system in conservation form, we define
the following quantities:

φ1(t, x) =
(

x + S(t)

1 − S(t)

)2

(1 − S(t))3cs(t, x), φ3(t, y) = S(t)3cl(t, y),

φ2(t, x) =
(

x + S(t)

1 − S(t)

)2

(1 − S(t))3Ts(t, x), φ4(t, y) = S(t)3Tl(t, y),

(A1)

so that we can rewrite the system (2.2) in the following way. In the solid phase x ∈ (0, 1), we
have

∂φ1

∂t
= ∂

∂x

⎛
⎝
⎛
⎝ S′(t)

1 − S(t)
(1 − x) − 2DLe−1(

x + S(t)
1−S(t)

)
(1 − S(t))2

⎞
⎠ φ1 + DLe−1

(1 − S(t))2

∂φ1

∂x

⎞
⎠, (A2a)

∂φ2

∂t
= ∂

∂x

⎛
⎝
⎛
⎝ S′(t)

1 − S(t)
(1 − x) − 2κ(

x + S(t)
1−S(t)

)
(1 − S(t))2

⎞
⎠ φ2 + κ

1 − S(t)2

∂φ2

∂x

⎞
⎠. (A2b)

In the liquid phase y ∈ (0, 1), we have

∂φ3

∂t
+ 1

y2

∂

∂y

[
y2

(
−S′(t)

S(t)
yφ3 − 1

LeS(t)2

∂φ3

∂y

)]
= 0, (A2c)

∂φ4

∂t
+ 1

y2

∂

∂y

[
y2

(
−S′(t)

S(t)
yφ4 − 1

S(t)2

∂φ4

∂y

)]
= 0. (A2d)

At the interface, given by x = 0 and y = 1, we have

S(t)φ2 = (1 − S(t))φ4, S(t)φ1 = α(1 − S(t))φ3, φ3 = −mlφ4, (A2e)

ρ

St

dS

dt
= k

(1 − S(t))2S(t)2

∂φ2

∂x
− 2k

(1 − S(t))S(t)3
φ2 − 1

S(t)4

∂φ4

∂y
, (A2f)

(
− S′(t)

(1 − S(t))S(t)2
+ 2D

Le(1 − S(t))S(t)3

)
φ1 − D

Le(1 − S(t))2S(t)2

∂φ1

∂x

= −S′(t)
S(t)

φ3 − 1

LeS(t)2

∂φ3

∂y
. (A2g)

The boundary conditions are

∂φ3

∂y
= ∂φ4

∂y
= 0 at y = 0, (A2h)

∂φ1

∂x
= 2(1 − S(t))φ1 and φ2 = −(1 − S(t)) at x = 1, (A2i)

and we prescribe the corresponding initial conditions for φ1, φ2, φ3, φ4 and S. Notice that if we
start with a liquid phase only, this means S → 1, so that x → ∞. In order to avoid this singularity,
we initialise the problem with a thin layer of solid near S = 1, and we use the early-time solutions
calculated as the initial conditions.
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To avoid numerical instabilities, we use a total variation diminishing discretisation for the
advection term, and we implement the finite volume scheme in Matlab using FVToolbox [10].
Since α is very small, we take α = 0, and therefore we neglect the impurities in the solid, consid-
ering only impurities in the liquid when performing our simulations. This reduces the condition
(A2f) to a no-flux condition and removes equation (A2a) as well as the middle condition in (A2d)
from the system. At each time step, we iterate using a relaxation scheme until convergence as
described in [4].
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