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NOTES ON EXTREMAL AND TAME VALUED FIELDS

SYLVY ANSCOMBE AND FRANZ-VIKTORKUHLMANN

Abstract. We extend the characterization of extremal valued fields given in [2] to the missing case of
valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization
of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame
valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finite p-degree,
the images of all additive polynomials have the optimal approximation property. This fact can be used
to improve the axiom system that is suggested in [8] for the elementary theory of Laurent series fields
over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to
characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways
of constructing extremal valued fields; in particular, we show that in every ℵ1 saturated valued field the
valuation is a composition of extremal valuations of rank 1.

§1. Introduction. A valued field (K, v) with valuation ring O and value group
vK is called extremal if for every multi-variable polynomial f(X1, . . . , Xn) over K
the set

{v(f(a1, . . . , an)) | a1, . . . , an ∈ O} ⊆ vK ∪ {∞}
has amaximal element. For the history of this notion, see [2]. In that paper, extremal
fields were characterised in several special cases, but some cases remained open. In
the present paper we answer the question stated after Theorem 1.2 of [2] to the
positive, thereby removing the condition of equal characteristic from the theorem.
The most comprehensive version of the theorem now reads:
Theorem 1.1. Let (K, v) be a nontrivially valued field. If (K, v) is extremal, then
it is algebraically complete and
(i) vK is a Z-group, or
(ii) vK is divisible and Kv is large.

Conversely, if (K, v) is algebraically complete and
(i) vK � Z, or vK is a Z-group and charKv = 0, or
(ii) vK is divisible and Kv is large and perfect,

then (K, v) is extremal.
Note that a valued field (K, v) is called algebraically complete if every finite
algebraic extension (L, v) satisfies

[L : K ] = (vL : vK)[Lv : Kv] , (1)
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where Lv, Kv denote the respective residue fields. Every algebraically complete
valued field (K, v) is henselian, i.e., v admits a unique extension to its algebraic
closure K̃ (which we will again denote by v). Also, every algebraically complete
valued field (K, v) is algebraically maximal, that is, does not admit proper algebraic
immediate extensions (L, v) (immediate means that vL = vK and Lv = Kv). For
later use let us mention that a valued field is called maximal if it does not admit
proper immediate extensions at all.
Further, (K, v) is a tame field if it is henselian, perfect, and K̃ is equal to the ram-
ification field of the extension (K̃ |K, v). All tame fields are algebraically complete
(cf. [12, Lemma 3.1]).
A fieldK is large if every smooth curve overK which has aK-rational point, has
infinitely many such points. For more information about large fields, see [13], [10],
and [2].

In [2] it was proved that an algebraically complete valued field (K, v)with divisible
value group and large perfect residue field is extremal if charK = charKv (the equal
characteristic case). To this end, we used the Ax–Kochen–Ershov Principle

vK ≡ vL ∧ Kv ≡ Lv =⇒ (K, v) ≡ (L, v), (2)

which holds for all tame valued fields of equal characteristic (see [12, Theorem 1.4]).
We were not able to cover the mixed characteristic case charK 
= charKv because
the principle was not known for this case. In fact, we will show below (Theorem 1.5)
that it is false. However, we can do with lesser tools that are known. After all,
at least the corresponding Ax–Kochen–Ershov Principle for elementary extensions
has been proved in [12]:

Theorem 1.2. If (L|K, v) is an extension of tame fields such that vK ≺ vL and
Kv ≺ Lv, then (K, v) ≺ (L, v).
This theorem enables us to prove:

Theorem 1.3. Take a nontrivially valued tame field (K, v) and two ordered abelian
groups Γ and Δ such that Γ ≺ vK and Γ ≺ Δ. Then there exist two tame fields
(K ′, v) and (L, v) with vK ′ = Γ, vL = Δ, Kv = K ′v = Lv, (K ′, v) ≺ (K, v), and
(K ′, v) ≺ (L, v). In particular, (K, v) ≡ (L, v).
If vK is nontrivial and divisible and Δ is any nontrivial divisible ordered abelian
group, then we can take Γ = Q to obtain that Γ ≺ vK and Γ ≺ Δ since the
elementary class of nontrivial divisible ordered abelian groups is model complete.
Thus, Theorem 1.3 yields the following result:

Corollary 1.4. If (K, v) is a nontrivially valued tame field with divisible value
group and Δ is any nontrivial divisible ordered abelian group, then there is a tame field
(L, v) ≡ (K, v) with vL = Δ and Lv = Kv.
It is easy to see that (2) cannot hold in this generality in the mixed characteristic
case. One can construct two algebraic extensions (L, v) and (L′, v′) of (Q, vp), where
vp is the p-adic valuation on Q, both having residue field Fp, such that:

1) L does not contain
√
p and vL is the p-divisible hull of (vpp)Z,

2) L′ contains
√
p and v′L′ is the p-divisible hull of (vp

√
p)Z = 1

2(vpp)Z.

Then vL � v′L′ and hence vL ≡ v′L′, but (L, v) 
≡ (L′, v′).
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One could hope, however, that this problem vanishes when one strengthens the
conditions by asking that vL and v′L′ are equivalent over vpQ (and Lv and L′v′

are equivalent over Qvp). But the problem remains:

Theorem 1.5. Take any prime p. Then there exist valued field extensions

(Q, vp) ⊂ (L0, v) ⊂ (L1, v) ⊂ (L2, v) and (Q, vp) ⊂ (F0, v) ⊂ (F1, v) ⊂ (F2, v)
such that the following assertions hold :

a) The fields (L0, v) and (F0, v) are extensions of degree p(p− 1) of the henseliza-
tion of Q under the p-adic valuation and extremal with L0v = Fp = F0v and
vL0 = vF0 = 1

p(p−1) (vpp)Z, but (L0, v) 
≡ (F0, v).
b) The fields (L1, v) and (F1, v) are algebraic over Q and tame with L1v = F1v =

Fp and vL1 = vF1 equal to the p-divisible hull of 1
p−1 (vpp)Z, but (L1, v) 
≡

(F1, v).
c) The fields (L2, v) and (F2, v) are tame and extremal, with perfect residue fields
L2v = F2v and vL2 = vF2 = Q, but (L2, v) 
≡ (F2, v).

Corollary 1.6. TheAx–Kochen–ErshovPrinciple (2) fails for extremal fields with
value group isomorphic to Z in mixed characteristic. It also fails for tame extremal
fields with value group isomorphic toQ and perfect residue field inmixed characteristic.

Open problem. Can the situation be improved by adding the Macintyre power
predicates to the language?

Note that (L, v) ≡ (L′, v′) if and only if they are equivalent over (Q, vp), and this
in turn holds if and only if we have the equivalence

(L, v)� ≡ (L′, v′)� over (Q, vp)�

of their amc structures of level �, for all � ∈ (vpp)Z (see [7, Corollary 2.4]). But this
fact is of little use for the proof of Corollary 1.4 since it is by no means clear how to
construct an extension of (Q, vp) whose amc structures of level � are equivalent to
those of (K, v).
The improvement in Theorem 1.1 yields a corresponding improvement of Propo-
sition 5.3 from [2]. Note that when we speak of a composition v = w ◦ w of
valuations, we do not mean a composition as functions, but in fact refer to the
composition of their associated places. That is, if Q and Q̄ are the places associated
with w and w̄, then their composition (with the obvious additional rules for∞) is
the place associated with v.

Proposition 1.7. Take a valued field (K, v) with perfect residue field. Assume that
v is the composition of two nontrivial valuations: v = w ◦w. Then (K, v) is extremal
with divisible value group if and only if the same holds for (K,w) and (Kw,w).

We may say that a property P of valuations is compatible with composition if
P(v)⇔ P(w)∧P(w̄) for each composition v = w ◦ w̄. Examples of such properties
are “henselian”, “maximal”, “algebraically complete”, and, “divisible value group”.
The latter two will be used in the proof of the proposition, given in Section 2. The
proposition in fact yields that also the property “extremal with divisible value group
and perfect residue field” is compatible with composition (since if (Kw, w̄) has this
property, then in particular it is perfect).
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It should be noted that the condition on the value groups cannot be dropped
without a suitable replacement, even when all residue fields have characteristic 0.
Indeed, if the value group of (K,w) is a Z-group and w is nontrivial, then the value
group of (K, v) is neither divisible nor a Z-group and (K, v) cannot be extremal.
Let us state two

Open problems.

1) If v = w ◦ w̄ with w and w̄ extremal and w having divisible value group, does it
follow that v is extremal?

2) We know that if v = w ◦ w̄ is extremal, then so is w̄ (see Lemma 4.1 below). But
we do not know whether it follows that also w is extremal.

Tame fields of positive residue characteristic p > 0 are algebraically complete,
and by [12, Theorem 3.2], they havep-divisible value groupswhich consequently are
not Z-groups. On the other hand, by the same theorem all algebraically complete
valued fields with divisible value group and perfect residue field are tame fields.
Therefore, in the case of positive residue characteristic and value groups that are
not Z-groups, the above Theorem 1.1 is in fact talking about tame fields:

Theorem 1.8. A tame field of positive residue characteristic is extremal if and only
if its value group is divisible and its residue field is large.

Again, we see that we know almost everything about tame fields (with the excep-
tion of quantifier elimination in the case of equal characteristic), but almost nothing
about imperfect valued fields. As shown in [2], there are some algebraically complete
valued fields with value group a Z-group and a finite residue field that are extremal,
and others that are not. In particular, the Laurent series field Fq((t)) over a finite
field Fq with q elements is extremal.
It is a longstanding open question whether Fq((t)) has a decidable elementary
theory. However, in recent years progress has been made on the existential theory.
Denef and Schoutens showed in [4] that if Resolution of Singularity holds in positive
characteristic in all dimensions (which is a longstanding open problem), then the
existential theory of (Fq((t)), t)—i.e., the field together with the constant t—is
decidable. More recently, Anscombe and Fehm showed in [1] that the existential
theory of Fq((t)) is decidable, under no assumptions.
Since the question for the full elementary theory has remained open, it is impor-
tant to search for a complete recursive axiomatization. Such an axiomatization was
suggested in [8], using the elementary property that the images of additive polyno-
mials have the optimal approximation property (see Section 3 for the definition of
this notion). For the case of Fq((t)), this was proved in [3]. At first sight, extremality
seems to imply the optimal approximation property for the images of additive poly-
nomials. But the latter uses inputs from the whole field while the former restricts to
inputs from the valuation ring. However, we will prove in Section 3:

Theorem 1.9. If (K, v) is an extremal field of characteristic p > 0 with [K :
Kp] <∞, then the images of all additive polynomials have the optimal approximation
property.

Open problem. Does the assertion of this theorem fail in the case of [K : Kp]
=∞?
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Since the elementary property of extremality is more comprehensive and easier
to formulate than the optimal approximation property, it is therefore a good idea to
replace the latter by the former in the proposed axiom system for Fq((t)). We also
note that every extremal field is algebraically complete by Theorem 1.1. So we ask:

Open problem. Is the following axiom system for the elementary theory of
Fq((t)) complete?

1) (K, v) is an extremal valued field of positive characteristic,
2) vK is a Z-group,
3) Kv = Fq .

In order to obtain the assertion of Theorem 1.9 in the case of algebraically
complete perfect fields of positive characteristic (which are exactly the tame fields of
positive characteristic), one does not need the assumption that the field be extremal.
Indeed, S. Durhan recently proved in [5]:

Theorem 1.10. If (K, v) is a tame field of positive characteristic, then the images
of all additive polynomials have the optimal approximation property.

There are tame fields of positive characteristic that are not extremal, e.g., the
power series field Fp((Γ)) with Γ the p-divisible hull of Z (see Theorem 1.8).
Therefore, the previous theorem yields:

Corollary 1.11. There are perfect nonextremal fields of positive characteristic in
which the images of all additive polynomials have the optimal approximation property.

Open problem. Is there an imperfect nonextremal field of characteristic p > 0 in
which the images of all additive polynomials have the optimal approximation property?

Finally, let us point out that we still do not have a complete characterization of
extremal fields:

Openproblem. Take a valued field (K, v) of positive residue characteristic.Assume
that vK is a Z-group, or that vK is divisible and Kv is an imperfect large field. Under
which additional assumptions do we obtain that (K, v) is extremal?

Additional assumptions are indeed needed, as we will show in Section 4:

Proposition 1.12. a) There are algebraically complete valued fields (K, v) of
positive characteristic and value group a Z-group that are extremal, and others
that are not.

b) There are algebraically complete valued fields (K, v) ofmixed characteristicwith
value group a Z-group that are extremal, and others that are not.

c) There are algebraically complete nontrivially valued fields (K, v) of positive
characteristic with divisible value group and imperfect large residue field that
are extremal, and others that are not.

d) There are algebraically complete valued fields (K, v) of mixed characteristic
with divisible value group and imperfect large residue field that are extremal,
and others that are not.

None of the nonextremal fields that we construct for the proof of parts a)–d) of
this proposition is maximal. This leads us to the following

Conjecture. Every maximal field with value group a Z-group, or divisible value
group and large residue field, is extremal.
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The following theorem, also proved in Section 4, provides a compelling way of
constructing maximal extremal fields and is used in the proof of parts c) and d) of
the previous theorem.

Theorem 1.13. Let (K, v) be any ℵ1-saturated valued field. Assume that Γ and
Δ are convex subgroups of vK such that Δ ⊂

�= Γ and Γ/Δ is archimedean. Let u
(respectively w) be the coarsening of v corresponding to Δ (resp. Γ). Denote by ū the
valuation induced on Kw by u. Then (Kw, ū) is maximal, extremal and large, and its
value group is isomorphic either to Z or to R. In the latter case, also Ku = (Kw)ū is
large.

Remark 1.14. Pairs (Γ,Δ) of convex subgroups satisfying the conditions of this
theorem are abundant and can easily be constructed. Indeed, for any � ∈ vK
we can take Γ to be the smallest convex subgroup of vK containing � (the intersec-
tion of all convex subgroups of vK containing �), and Δ to be the largest convex
subgroup of vK not containing � (the union of all convex subgroups of vK not
containing �). Then Δ is the largest proper convex subgroup of Γ and therefore,
Γ/Δ is archimedean.

From Theorem 1.13 we can derive an interesting observation about infinite com-
positions of henselian valuations. Note that every valuation can be viewed as a
possibly infinite composition of rank 1 valuations, i.e., valuations with archimedean
ordered value groups. It is well known that v = w ◦ w̄ is henselian if and only if
both w and w̄ are. However, in Section 4 we will derive the following result:

Corollary 1.15. There exist nonlarge (and therefore nonhenselian) valued fields
(K, v) with the following property: if v = w1 ◦ w2 ◦ w3 with w2 of rank 1, then w2 is
henselian and both Kw1 and (Kw1)w2 are large.

The part about henselianity also follows from an actually stronger result, stating
the existence of a nonhenselian valued field (K, v) with the following property: if
v = w1 ◦ w2 with nontrivial w1, then w2 is henselian; see [11, Proposition 4]. The
latter again implies thatKw1 is large, but we do not know how to show that the field
constructed in the cited paper is not large.

§2. Proof of Theorems 1.1, 1.3, and 1.5, and Proposition 1.7. As a preparation,
we need a few basic facts about tame fields. For the following lemma, see [12,
Lemma 3.7]:

Lemma 2.1. Take a tamefield (L, v). IfK is a relatively algebraically closed subfield
of L such that Lv|Kv is algebraic, then (K, v) is a tame field, vL/vK is torsion free,
and Lv = Kv.

We derive:

Corollary 2.2. Take a tame field (K, v) and an ordered abelian group Γ ⊂ vK
such that vK/Γ is torsion free. Then there exists a tame subfield (K ′, v) of (K, v) with
vK ′ = Γ and K ′v = Kv.
Proof. Denote the prime field of K by K0 and note that k0 := K0v is the
prime field of Kv. Take a maximal system �i , i ∈ I , of elements in Γ rationally
independent over vK0 . Choose elements xi ∈ K such that vxi = �i , i ∈ I . Further,
take a transcendence basis tj , j ∈ J , ofKv over its prime field, and elements yj ∈ K
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such that yjv = tj for all j ∈ J . For K1 := K0(xi , yj | i ∈ I , j ∈ J ) we obtain
from [12, Lemma 2.2] that vK1 = vK ⊕ ⊕

i∈I �iZ and K1v = k0(tj | j ∈ J ), so
that Γ/vK1 is a torsion group and Kv|K1v is algebraic.
Now we take K ′ to be the relative algebraic closure of K1 in K . Then by
Lemma 2.1, (K ′, v) is a tame field with vK/vK ′ torsion free and K ′v = Kv.
Since Γ ⊆ vK and Γ/vK2 is a torsion group, we have that Γ ⊆ vK ′. Since vK/Γ is
torsion free, we also have that vK ′ ⊆ Γ, so that vK ′ = Γ. �
Lemma 2.3. Take a tame field (K, v) and an ordered abelian group Δ containing
vK such thatΔ is p-divisible, where p is the characteristic exponent ofKv. Then there
exists a tame extension field (L, v) of (K, v) with vL = Δ and Lv = Kv.

Proof. By Theorem 2.14 of [9] there is an extension (K1, v) of (K, v) such that
vK1 = Δ and K1v = Kv. We take (L, v) to be a maximal immediate algebraic
extension of (K1, v); then (L, v) is algebraically maximal. Since vL = vK1 = Δ is
p-divisible, and Lv = K1v = Kv is perfect by [12, Theorem 3.2] applied to (K, v),
it follows from the same theorem that (L, v) is a tame field. �
Now we can give the

Proof of Theorem 1.3. Since Γ ≺ vK by assumption, we have that vK/Γ is
torsion free. Hence by Corollary 2.2 we find a tame subfield (K ′, v) of (K, v) with
vK ′ = Γ and K ′v = Kv. Again since Γ ≺ vK , it follows from Theorem 1.2 that
(K ′, v) ≺ (K, v).
Since (K ′, v) is a tame field, we know that Γ = vK ′ is p-divisible. As Γ ≺ Δ, the
same holds for Δ. Hence by Lemma 2.3 we can find a tame extension field (L, v)
of (K ′, v) with vL = Δ and Lv = K ′v. Since vK ′ = Γ ≺ Δ = vL, it follows again
from Theorem 1.2 that (K ′, v) ≺ (L, v). �
Theorem 1.3 is the key to the

Proof of Theorem 1.1. In view of Theorems 1.2 and 4.1 of [2], we only have to
show that if (K, v) is algebraically complete with divisible value group and large
perfect residue field, then (K, v) is extremal. Note that (K, v) is then a tame field,
being algebraically complete with perfect residue field and p-divisible value group.
Every trivially valued field is extremal, sowemay assume that (K, v) is nontrivially
valued. We apply Corollary 1.4 with Δ = R to obtain a tame field (L, v) ≡ (K, v)
with value group vL = R. By the proof of Theorem 1.2 in [2], this field is extremal.
Since extremality is an elementary property, also (K, v) is extremal. �
We turn to the

Proof of Theorem 1.5. Weextend thep-adic valuation vp ofQ to somevaluation
v on the algebraic closure of Q. Adjoining a primitive p-th root of unity �p to Q
and passing to the henselization K := Q(�p)h = Q

h(�p), we obtain that vK =
1
p−1 (vpp)Z and Kv = Qvp = Fp.
By general ramification theory, the Galois extension Fpp |Fp can be lifted to
a Galois extension of degree p of K . Since K contains the p-th roots of unity,
Kummer theory shows that this extension is generated by an arbitrary p-th root of
some element b ∈ K .
Now we takeL0 (respectively, F0) to be the Galois extension ofK generated by a
p-th root of bp (resp., of p). Then 1

p(p−1) (vpp)Z ⊆ vL0 and 1
p(p−1) (vpp)Z ⊆ vF0,
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and since

[L0 : K ] = [F0 : K ] = p =
(

1
p(p − 1)(vpp)Z : vK

)
,

the fundamental inequality n ≥ ef shows that

vF0 = vL0 =
1

p(p − 1)(vpp)Z and L0v = F0v = Fp .

Since both (L0, v) and (F0, v) are henselian fields of characteristic 0 with value
group isomorphic to Z, they are algebraically complete. Hence by [2, Theorem 4.1],
both fields are extremal.
Next, in order to construct (L1, v) and (F1, v), we choose algebraic extensions
(L′
1, v) of (L0, v) and (F

′
1 , v) of (F0, v) such that vL

′
1 = vF

′
1 is the p-divisible hull

of vL0 = vF0 and hence of 1
p−1 (vpp)Z, and L

′
1v = L0v = Fp = F0v = F ′

1v; this is
possible by [9, Theorem 2.14].
Now we take (L1, v) (resp., (F1, v)) to be a maximal immediate algebraic exten-
sion of (L′

1, v) (resp., (F
′
1 , v)). Then by [12, Theorem 3.2], (L1, v) and (F1, v) are

tame fields. Their value groups and residue fields are as in the assertion of part b)
of Theorem 1.5.
Finally, in order to construct (L2, v) and (F2, v), we choose an arbitrary nontriv-
ially valued henselian and perfect field (k,w) of characteristic p such that kw = Fp .
(For example, we could take the power series field Fp((tQ)) for k and the t-adic
valuation for w; but also the much smaller relative algebraic closure of Fp(t) in
Fp((tQ)) works.) Using [9, Theorem 2.14] again, we construct extensions (L′

2, v) of
(L1, v) and (F ′

2 , v) of (F1, v) such that vL
′
2 = vF

′
2 = Q and L′

2v = F
′
2v = k. As

before, we take (L2, v) (resp., (F2, v)) to be a maximal immediate algebraic exten-
sion of (L′

2, v) (resp., (F
′
2 , v)). Then again by [12, Theorem 3.2], (L2, v) and (F2, v)

are tame fields. Since their residue field k admits a nontrivial henselian valuation, it
is a large field. Hence by Theorem 1.1, (L2, v) and (F2, v) are also extremal.
It remains to show that (Li , v) and (Fi , v) are not elementarily equivalent, for
i = 1, 2, 3. Assume the contrary. Then L0 and F0 orL1 and F1 would be isomorphic
over Q, as all of them are algebraic over Q. Likewise, if (L2, v) and (F2, v) are
elementarily equivalent then we obtain an isomorphism of the algebraic parts of L2
and F2 overQ. In all three cases, this yields an embedding of F0 in L2 and hence the
existence of all p-th roots of p in L2 . But L2 also contains a p-th root of bp, hence
a p-th root of b as well. This however contradicts the fact that by construction,
(L2v)w does not contain Fpp . �
We conclude this section with the

Proof of Proposition 1.7. In both directions we assume that Kv is perfect.
First we assume that (K, v) is extremal and vK is divisible. By the compatibility
of “divisible value group” with composition, both wK and w̄(Kw) are divisible.
Theorem 1.1 shows that (K, v) is algebraically complete and that Kv = (Kw)w̄
is large. By the compatibility of “algebraically complete” with composition, both
(K,w) and (Kw, w̄) are algebraically complete. The latter has a large perfect residue
field, hence by Theorem 1.1, it is extremal. As in addition its value group is divisible
and its residue field is perfect, it is itself perfect. Since Kw carries the nontrivial
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henselian valuation w̄, it is large (see e.g., [10, Proposition 16]). Therefore, also
(K,w) has a large perfect residue field, and again it follows from Theorem 1.1 that
it is extremal.
For the converse, we assume that both (K,w) and (Kw, w̄) are extremal with
divisible value group. By Theorem 1.1, both are algebraically complete, with large
residue fields. By compatibility it follows that (K, v) is algebraically complete with
divisible value group. We know that Kv = (Kw)w̄ is large, and it is also perfect by
assumption. Now Theorem 1.1 shows that (K, v) is extremal. �

§3. Additive polynomials over extremal fields. We start by introducing a more
precise notion of extremality. Take a valued field (K, v), a subset S of K , and a
polynomial f in n variables over K . Then we say that (K, v) is S-extremal with
respect to f if the set vf(Sn) ⊆ vK ∪ {∞} has a maximum. We say that (K, v) is
S-extremal if it is S-extremal with respect to every polynomial in any finite number
of variables. With this notation, (K, v) being extremal means that it is O-extremal,
where O denotes the valuation ring of (K, v).
A subset A of a valued field (K, v) has the optimal approximation property if for
every z ∈ K there is some y ∈ A such that v(z − y) = max{v(z − x) | x ∈ A}.
A polynomial h ∈ K [X1, . . . , Xn] is called a p-polynomial if it is of the form f + c,
where f ∈ K [X1, . . . , Xn] is an additive polynomial and c ∈ K . The proof of the
following observation is straightforward:

Lemma 3.1. The images of all additive polynomials over (K, v) have the optimal
approximation property if and only ifK isK-extremalwith respect to allp-polynomials
over K .

We will work with ultrametric balls

Bα(a) := {b ∈ K | v(a − b) ≥ α} ,
where α ∈ vK and a ∈ K . Observe thatO = B0(0). We note:
Proposition 3.2. Take α, � ∈ vK and a, b ∈ K . Then (K, v) is Bα(a)-extremal
if and only if it is B�(b)-extremal. In particular, (K, v) is Bα(a)-extremal if and only
if it is extremal.

Proof. It suffices to prove that “Bα(a)-extremal” implies “B� (b)-extremal”. Take
a polynomialf in n variables. If c ∈ K is such that vc = �−α, then the functiony �→
c(y− a)+ b establishes a bijection from Bα(a) ontoB� (b). We set g(y1, . . . , yn) :=
f(c(y1 − a) + b, . . . , c(yn − a) + b). It follows that f(B�(b)n) = g(Bα(a)n),
whence vf(B�(b)n) = vg(Bα(a))n . Hence if (K, v) is Bα(a)-extremal with respect
to g, then it is B� (b)-extremal with respect to f. This yields the assertions of the
proposition. �
A valued field (K, v) of characteristic p > 0 is called inseparably defectless if
every finite purely inseparable extension (L|K, v) satisfies equation (1) (note that
the extension of v from K to L is unique). This holds if and only if every finite
subextension of (K |Kp, v) satisfies equation (1).
If (K, v) is inseparably defectless with [K : Kp] < ∞, then for every � ≥ 1, the
extension (K |Kp� , v) has a valuation basis, that is, a basis of elements b1, . . . , b� that
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are valuation independent over Kp
�

, i.e.,

v(c1b1 + · · ·+ c�b�) = min
1≤i≤�

vcibi

for all c1, . . . , c� ∈ Kp� .
Note that every algebraically complete valued field is in particular inseparably
defectless. By Theorem 1.1, every extremal field is algebraically complete and hence
inseparably defectless.

Proposition 3.3. Take an inseparably defectless valued field (K, v) with [K :
Kp] <∞ and an additive polynomial f in n variables over K . Then for some integer
� ≥ 0 there are additive polynomials g1, . . . , gm ∈ K [X ] in one variable such that
a) f(Kn) = g1(K) + · · ·+ gm(K),
b) all polynomials gi have the same degree p� ,
c) the leading coefficients b1, . . . , bm of g1, . . . , gm are valuation independent
over Kp

�

.

Proof. The proof can be taken over almost literally from Lemma 4 of [3]. One
only has to replace the elements 1, t, . . . , t�i−1 from that proof by an arbitrary basis
of K |K�i . �
The following theorem is a reformulation of Theorem 1.9 of the Introduction.

Theorem 3.4. Assume that (K, v) is an extremal field of characteristic p > 0 with
[K : Kp] < ∞. Then it is K-extremal w.r.t. all p-polynomials and therefore, the
images of all additive polynomials have the optimal approximation property.

Proof. Take a p-polynomial h in n variables over K , and write it as h = f + c
withf an additive polynomial in n variables overK and c ∈ K . We choose additive
polynomials g1, . . . , gm ∈ K [X ] in one variable satisfying assertions a), b), c) of
Proposition 3.3. Then h(Kn) = g1(K) + · · ·+ gm(K) + c.
We write gi = biX p

�

+ ci,�−1Xp
�−1
+ · · ·+ ci,0X for 1 ≤ i ≤ m. Then we choose

α ∈ vK such that
α < min{0, vc − vbi , vci,k − vbi | 1 ≤ i ≤ m , 0 ≤ k < �} .

Because α < 0, it then follows that for each a with va ≤ α,
vbi + p�va ≤ vbi + p�α ≤ vbi + α < vc

and for 0 ≤ k < �,
vbi + p�va ≤ vbi + va + pkva ≤ vbi + α + pkva < vci,k + pkva .

It then follows that

vgi(a) = vbi + p�va ≤ vbi + p�α < vc . (3)

On the other hand, if va′ ≥ α, then vbi + p�va′ ≥ vbi + p�α and vci,k + pkva′ ≥
vci,k + pkα > vbi + p�α for 0 ≤ k < �. This yields that

vgi(a′) ≥ vbi + p�α . (4)

Now take any (a′1, . . . , a
′
m) ∈ Bα(0)n and (a1, . . . , am) ∈ Kn \Bα(0)n. So we have:

min{va1, . . . , vam} < α ≤ min{va′1, . . . , va′m} .
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Since b1, . . . , bm are valuation independent over Kp
�

, we then obtain from (3) and
(4) that

vh(a1, . . . , am) = min
1≤i≤m

vbi + p�vai

< min
1≤i≤m

vbi + p�α ≤ vh(a′1, . . . , a′m) .

This proves that
vh(Bα(0)n) > vh(Kn \ Bα(0)n) .

Since (K, v) is extremal by assumption, Proposition 3.2 shows that vh(Bα(0)n) has
a maximal element, and the same is consequently true for vh(Kn). This shows that
(K, v) is K-extremal w.r.t. h, from which the first assertion follows. The second
assertion follows by Lemma 3.1. �

§4. More constructions of extremal fields, and proof of Theorem 1.13. It follows
from [2, Theorem 4.1] that the Laurent series fields (Fp((t)), vt) and the p-adic
fields (Qp, vp) are extremal. The former have equal characteristic, the latter mixed
characteristic. All of them have Z as their value group, which is a Z-group.
In [8] a valued field extension (L, v) of (Fp((t)), vt) is presented in which not all
images of additive polynomials have the optimal approximation property. In [2] it
is shown that (L, v) is not extremal, although it is algebraically complete and its
value group vL is a Z-group (of rank 2). It is also shown that for the nontrivial
coarsening w of v corresponding to the convex subgroup (vtt)Z of vL, also (L,w)
is not extremal. As a coarsening of an algebraically complete valuation, it is also
algebraically complete. Its value group wL = vL/(vtt)Z is divisible and its residue
field Lw = Fp((t)) is large, but not perfect. Note that (L, v) and (L,w) are of equal
characteristic.
In order to prove the remaining existence statements of Proposition 1.12 con-
cerning nonextremal fields in mixed characteristic, we consider compositions of
valuations. Unfortunately, contrary to the assertion that the proof of Lemma 5.2
of [2] is easy (and thus left to the reader), we are unable to prove it in the cases
that are not covered by Proposition 1.7. (However, we also do not know of any
counterexample.) In fact, a slightly different version can easily be proved: If (K, v)
is Ov-extremal, then also (K,w) is Ov-extremal.We do not know whether the latter
impies that (K,w) is Ow-extremal. Proposition 3.2 is of no help here because Ov is
in general not a ball of the form Bα(a) in (K,w).
It appears, though, that we actually had in mind the following result, which is
indeed easy to prove:

Lemma 4.1. If (K, v) is extremal and v = w ◦ w, then (Kw,w) is extremal.
Proof. Assume that (K, v) is extremal with v = w ◦ w; note that for any a, b ∈

Ow , w(aw) > w(bw) implies va > vb.
Assume further that g ∈ Kw[X1, . . . , Xn]. Then choose f ∈ Ow [X1, . . . , Xn] such
that fw = g. By assumption, there are b1, . . . , bn ∈ Ov such that

vf(b1, . . . , bn) = max{vf(a1, . . . , an) | a1, . . . , an ∈ Ov} .
Since b1, . . . , bn ∈ Ov ⊆ Ow we have that

f(b1, . . . , bn)w = fw(b1w, . . . , bnw) = g(b1w, . . . , bnw) .
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We claim that

wg(b1w, . . . , bnw) = max{wg(a1, . . . , an) | a1, . . . , an ∈ Ow} .
Indeed, if there were a1, . . . , an ∈ Ow with wg(a1, . . . , an) > wg(b1w, . . . , bnw),
then for any choice of a1, . . . , an ∈ Ow with aiw = ai for 1 ≤ i ≤ n wewould obtain
that a1, . . . , an ∈ Ov and vf(a1, . . . , an) > vf(b1, . . . , bn), a contradiction. �
We use this lemma to prove the existence of the nonextremal fields in mixed
characteristic as claimed in Proposition 1.12. We consider again the two nonex-
tremal fields (L, v) and (L,w) mentioned above. By Theorem 2.14 of [9] there is an
extension (K0, v0) of (Q, vp) with divisible value group and L as its residue field.
We replace (K0, v0) by a maximal immediate extension (M,v0). Then (M,v0) is
algebraically complete, and so are (M,v0 ◦ v) and (M,v0 ◦ w). The value group of
(M,v0 ◦ v) is a Z-group, and (M,v0 ◦ w) has divisible value group and nonperfect
large residue field. But by Lemma 4.1, both fields are nonextremal.
Finally, we have to prove the existence of extremal fields as stated in parts c) and
d) of Proposition 1.12. We will employ Theorem 1.13 which we will prove now.
We note that by Theorem 1.1, the residue field of an extremal field with divisible
value groupmust be large. Also, every nontrivially valued extremal field is henselian,
which implies that it is itself a large field. Therefore, it remains to prove the following
assertion:
Let (K, v) be any ℵ1-saturated valued field. Assume that Γ and Δ are convex
subgroups of vK such that Δ ⊂

�= Γ and Γ/Δ is archimedean. Let u (respectively w) be
the coarsening of v corresponding to Δ (resp. Γ). Denote by ū the valuation induced
onKw by u. Then (Kw, ū) is maximal and extremal, and its value group is isomorphic
either to Z or to R.
Proof. Denote byOu (resp.Ow) the valuation ring corresponding to u (resp.w).

We note that the value group of u is vK/Δ, the value group of w is vK/Γ, and we
have that

Ov ⊂ Ou ⊂ Ow .
We show first that (Kw, ū) is maximal. From [6, Theorem 4] we know that a
valued field is maximal if and only if every pseudo Cauchy sequence has a limit
in the field. We refer the reader to [6] for an excellent introduction to the theory
of pseudo Cauchy sequences (which Kaplansky calls “pseudoconvergent sets”). If
(ai)i<	 is any pseudo Cauchy sequence in (Kw, ū), then the sequence ū(ai+1 − ai)
in ū(Kw) = Γ/Δ is strictly increasing. But the cofinality of any strictly increasing
sequence in R (and hence also in any archimedean ordered abelian group) is at
most 
. Therefore, it suffices to show that every pseudo Cauchy sequence (ai)i<

in (Kw, ū) has a limit. By definition, a ∈ Kw is a limit of this sequence if and only
if ū(a − ai) = ū(ai+1 − ai) for all i < 
.
Write ai = biw with bi ∈ Ow , i < 
. Then the sequence (u(bi+1 − bi))i<

is strictly increasing in vK/Δ. This implies that the sequence (v(bi+1 − bi))i<
 is
strictly increasing in vK .We consider the following (partial) type in countablymany
parameters:

{v(x − bi) = v(bi+1 − bi) | i < 
} .
It is finitely realizable in (K, v) since for x = bi+1 we obtain that v(x − bj) =
v(bj+1− bj) holds for 0 ≤ j ≤ i . By saturation, there is some b ∈ K which realizes
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this type. Now v(b − bi) = v(bi+1 − bi) implies that
w(b − bi) = v(b − bi) + Γ = v(bi+1 − bi) + Γ = w(bi+1 − bi) ,
u(b − bi) = v(b − bi) + Δ = v(bi+1 − bi) + Δ = u(bi+1 − bi) .

The former implies that b ∈ Ow as also all bi are inOw ; so we can set a := bw. The
latter then implies that

ū(a−ai) = ū(bw−biw) = ū((b−bi)w) = u(b−bi) = u(bi+1−bi) = ū(ai+1−ai) .
This proves that a ∈ Kw is a limit of the pseudo Cauchy sequence (ai)i<
 and
shows that (Kw, ū) is maximal.
Now we distinguish two cases.

Case 1: ū(Kw) is isomorphic to Z. In this case, it follows from the maximality that
(Kw, ū) is algebraically complete and hence extremal [2, by Theorem 4.1].

Case 2: ū(Kw) = Γ/Δ is densely ordered. Note that since the archimedean ordered
group Γ/Δ is embeddable in R, any subset of it has coinitiality and cofinality no
greater than ℵ0.
We show that (Kw, ū) is extremal. The value group ū(Kw) is Γ/Δ and Oū is the
image of Ou under the residue map x �→ xw of w. For a tuple a = (a1, ..., am) from
Ow , we denote by aw := (a1w, ..., amw) the corresponding tuple of residues.
Let f̄ ∈ Kw[x] be a polynomial in the variablesx = (x1, ..., xm) and letf ∈ Ow [x]
denote any lift of f̄ so that fw = f̄. We must show that the set of ū-values of the
image of f̄, i.e.,

X :=
{
ū(f̄(b)) ∈ Γ/Δ ∪ {∞} | b ∈ Oū

}

=
{
ū(f̄(aw)) ∈ Γ/Δ ∪ {∞} | a ∈ Ou

}
,

has a maximum. As noted above, the cofinality of X is no greater than ℵ0. Thus
there is a sequence (an)n<
 of m-tuples from Ou such that the sequence

(ū(f̄(anw))n<


is increasing and cofinal in X . For each n < 
 we set αn := v(f(an)), and note that
either f̄(anw) = 0 (in which case ū(f̄(anw)) =∞ must be the maximum of X ) or

αn + Δ = u(f(an)) = ū(f̄(anw)).

Next we setY := {�+Δ ∈ Γ/Δ | �+Δ < Δ}. ThenY is equal to the image under
u of the elements ofOw \Ou (and also equal to the image under ū ofKw \Oū). By
assumption, Γ/Δ is densely ordered; thus Y has no maximum. Also the cofinality
of Y can be no greater than ℵ0. Thus there is a sequence (�n)n<
 in Γ such that
(�n + Δ)n<
 is a strictly increasing and cofinal sequence in Y .
Finally we consider the following (partial) x-type in countably many parameters:

p(x) := {αn ≤ v(f(x)) | n < 
 } ∪ {�n ≤ v(xi) | n < 
, 1 ≤ i ≤ m } .
This is finitely realised in (K, v). By saturation, it is realized by some m-tuple
c = (c1, ..., cm) ∈ Km.
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For 1 ≤ i ≤ m we examine the second set of formulas in p(x) to find that
�n ≤ v(ci), for each n < 
. Thus �n+Δ ≤ v(ci)+Δ = u(ci), again for each n < 
.
By the cofinality of the sequence (�n + Δ)n<
 in Y we have that ci ∈ Ou.
Finally, by examining the first set of formulas in p(x), we see that αn ≤ v(f(c)),
for all n < 
. Then either ū(f̄(cw)) =∞ (in which case∞ is the maximum of X )
or we have that

αn + Δ ≤ v(f(c)) + Δ = u(f(c)) = ū(f̄(cw)),
for all n < 
. Since (αn + Δ) is cofinal in X , ū(f̄(cw)) is the maximum of X . This
shows that (Kw, ū) is extremal, as required.

For the conclusion of the proof, we show that the value group of (Kw, ū) is cut
complete, which shows that it is isomorphic to R. Take a Dedekind cut (D,E) in
ū(Kw), that is,D is a nonempty initial segment of ū(Kw) andE is a nonempty final
segment of ū(Kw) such thatD ∪ E = ū(Kw). As noted before, the cofinality of D
and the coinitiality of E are no greater than ℵ0. Thus there are sequences (�n)n<

and (�n)n<
 in Γ such that (�n + Δ)n<
 is an increasing and cofinal sequence in
D and (�n + Δ)n<
 is a decreasing and coinitial sequence in E. We consider the
following (partial) type in countably many parameters:

{�n ≤ vx | n < 
} ∪ {�n ≥ vx | n < 
} .
This is finitely realized in (K, v). Hence by saturation, it is realized by some d ∈ K .
Then �n ≤ vd ≤ �n and therefore �n + Δ ≤ ud ≤ �n + Δ , for each n < 
. It
follows that ud lies in the convex hull of Γ/Δ in vK/Δ, which shows that wd = 0.
So dw ∈ Kw, and we obtain that

D ≤ ū(dw) = ud ≤ E ,
which proves that the cut (D,E) is realized in ū(Kw), showing that this group is cut
complete. �
We may choose (K, v) so that Γ/Δ is densely ordered, for any Δ ⊂ Γ ⊂ vK .
Indeed, if we take any integer n ≥ 2 and (K, v) such that vK is n-divisible, then
also Γ/Δ will be n-divisible and hence densely ordered. If on the other hand, the
residue field Kv is imperfect and w ⊂ u ⊂ v are as in the theorem, then also the
residue field of (Kw, ū), which is equal to Ku, is imperfect. Taking (K, v) to be an
ℵ1-saturated valued field of equal characteristic p with imperfect large residue field
and n-divisible value group, and choosing Γ and Δ according to Remark 1.14, we
obtain from Theorem 1.13:
Corollary 4.2. Letp be a prime.There exist extremal fields of equal characteristic
p with value group isomorphic to R and imperfect residue field.
To give an example of an extremal field obtained by this corollary, we begin
by taking any ℵ1-saturated elementary extension (K, v) of the Puiseux series field⋃
n∈N Fp(x)((t1/n)) over Fp(x), where x is transcendental over Fp . As the residue
fieldKv is an elementary extension of the lower residue field, it is also imperfect. As
the value group vK is an elementary extension of the lower value group, it is also
divisible.
On the other hand, we can extend the p-adic valuation from Q to a valuation v
on Q(x) such that xv is transcendental over Fp; then the residue field of (Q(x), v)
will be the imperfect field Fp(xv). By adjoining n-th roots repeatedly, we can pass,
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without changing the residue field, to an algebraic extension (k, v) of (Q(x), v) with
n-divisible value group. Now we can take any ℵ1-saturated elementary extension
(K, v) of (k, v). Then Kv will again be imperfect, vK will be n-divisible, and (K, v)
will have mixed characteristic (0, p).
In order to achieve that the valued field (Kw, ū) in Theorem 1.13 also has mixed
characteristic, we choose Γ and Δ as follows. We take Δ to be the largest convex
subgroup of vK not containing vp and let Γ be the smallest convex subgroup of vK
containing vp. Then Δ is the largest proper convex subgroup of Γ, and therefore
Γ/Δ is archimedean. It follows that pw 
= 0 since vp /∈ Δ, but (pw)ū = pu = 0
since vp ∈ Γ. This shows that charKw = 0 and char (Kw)ū = p. We thus obtain:
Corollary 4.3. Let p be a prime. There exist extremal fields of mixed character-
istic (0, p) with value group isomorphic to R and imperfect residue field.
Corollaries 4.2 and 4.3 together complete the proof of Proposition 1.12.
By taking (K, v) as in one of these corollaries and (L, v) to be a countable model
of Th (K, v), we obtain:

Corollary 4.4. Let p be a prime. There exist countable extremal fields of equal
characteristic p with divisible value group not isomorphic to R and imperfect residue
field. Likewise, there exist countable extremal fields of mixed characteristic (0, p)with
divisible value group not isomorphic to R and imperfect residue field.
By choosingmodels of arbitrary cardinality, one can obtain divisible value groups
of arbitrarily large cardinality. But we do not know which divisible ordered abelian
groups (and not even which cardinalities) can be thus obtained, as we are lacking
an AKE-principle.
We will now give the

Proof of Corollary 1.15. We take (K, v) to be an ℵ1-saturated elementary
extension of an arbitrary nonlarge valued field whose value group is divisible by
some n ≥ 2, and apply Theorem 1.13. Since also vK is divisible by n, for all u andw
as in the theorem the value group of (Kw, ū) is divisible. Hence if v = w1 ◦w2 ◦ w3
with w2 of rank 1, then by setting w = w1 and u = w1 ◦ w2 it follows from the
theorem that (Kw1, w2) is extremal with nontrivial divisible value group, hence

a) w2 is henselian,
b) Kw1 is large,
c) (Kw1)w2 is large. �
For the conclusion of this paper, let us discuss how the property of extremality
behaves in a valued field extension (L|K, v) where (K, v) is existentially closed in
(L, v). In this case, it is known thatL|K and Lv|Kv are regular extensions and that
vL/vK is torsion free. (An extension L|K of fields is called regular if it is separable
and K is relatively algebraically closed in L.)

Proposition 4.5. Take a valued field extension (L|K, v) such that (K, v) is existen-
tially closed in (L, v), a subset SK ofK that is existentially definable with parameters
in K , and a polynomialf in n variables over K . Denote by SL the subset of L defined
by the existential formula that defines SK in K . Then the following assertions hold.
a) If (K, v) is SK -extremal w.r.t. f, then (L, v) is SL-extremal w.r.t. f and
max vf(SnL) = max vf(S

n
K). In particular, if (K, v) is extremal, then (L, v)

is extremal w.r.t. all polynomials with coefficients in K .
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b) Assume in addition that vL = vK . If (L, v) is SL-extremal w.r.t. f, then (K, v)
is SK -extremal w.r.t. f andmax vf(SnL) = max vf(S

n
K). In particular, if (L, v)

is extremal, then so is (K, v).

Proof. a): Assume that a ∈ SnK such that vf(a) = max vf(SnK). Then the
assertion that there exists an element b in SnL such that vf(b) > vf(a) is an
elementary existential sentencewith parameters inK .Hence if it held inL, then there
would be an element b′ in SnK such that vf(b

′) > vf(a), which is a contradiction
to the choice of a. It follows that max vf(SnL) ≤ max vf(SnK). Since SK ⊆ SL , we
obtain that max vf(SnL) = max vf(S

n
K ).

b): Take b ∈ SnL such that vf(b) = max vf(SnL). Since vL = vK by assumption,
there is c ∈ K such that vc = vf(b). Now the assertion that there exists an
element b in SnL such that vf(b) = vc is an elementary existential sentence with
parameters in K . Hence there is a ∈ SnK such that vf(a) = vc = max vf(SnL).
Since vf(a) ∈ vf(SnK) ⊆ vf(SnL), we obtain that vf(a) = max vf(SnK). �

§5. Acknowledgments. Several of the ideas contained in this paper were con-
ceived at a 2 hour seminar talk the second author gave to the logic group at the
University of Wroclaw in Poland. The audience was arguably the most lively and
inspiring the author has ever witnessed. He would like to thank this group for the
great hospitality.
The authors would like to thank the referee for his careful reading of the
manuscript and for several very useful suggestions that inspired them to come
up with Theorem 1.13 and with a new version of Theorem 1.5.
The second author would like to thank Koushik Pal for proofreading an earlier
version of the paper, andAnnaBlaszczok for very helpful corrections and comments
on a later version.
During this research, the first author was funded by EPSRC grant
EP/K020692/1, and the second author was partially supported by a Canadian
NSERC grant and a sabbatical grant from the University of Saskatchewan.

REFERENCES

[1] S. Anscombe and A. Fehm, The existential theory of equicharacteristic henselian valued fields,
http://arxiv.org/abs/1501.04522, 2015.
[2] S. Azgin, F.-V. Kuhlmann, and F. Pop, Characterization of extremal valued fields. Proceedings of

the American Mathematical Society, vol. 140 (2012), pp. 1535–1547.
[3] L. van denDries and F.-V. Kuhlmann, Images of additive polynomials inFq((t)) have the optimal

approximation property. Canadian Mathematical Bulletin, vol. 45 (2002), pp. 71–79.
[4] J. Denef and H. Schoutens, On the decidability of the existential theory of Fp[[t]], Valuation

Theory and ItsApplications,Vol. II (Saskatoon, SK, 1999), pp. 43–60, Fields InstituteCommunications,
vol. 33, American Mathematical Society, Providence, RI, 2003.
[5] S.Durhan,Additive Polynomials over Perfect Fields, Valuation Theory in Interaction, Proceedings

of the Second International Valuation Theory Conference, Segovia / ElEscorial, 2011, EMS Series of
Congress Reports 2014.
[6] I. Kaplansky, Maximal fields with valuations I. Duke Mathematical Journal, vol. 9 (1942),

pp. 303–321.
[7] F.-V. Kuhlmann, Quantifier elimination for henselian fields relative to additive and multiplicative

congruences. Israel Journal of Mathematics, vol. 85 (1994), pp. 277–306.

https://doi.org/10.1017/jsl.2016.6 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.6


416 SYLVY ANSCOMBE AND FRANZ-VIKTORKUHLMANN

[8] , Elementary properties of power series fields over finite fields, this Journal, vol. 66 (2001),
pp. 771–791.
[9] , Value groups, residue fields and bad places of rational function fields. Transactions of the

American Mathematical Society, vol. 356 (2004), pp. 4559–4600.
[10] ,On places of algebraic function fields in arbitrary characteristic.Advances inMathematics,

vol. 188 (2004), pp. 399–424.
[11] , Dense subfields of Henselian fields, and integer parts, Logic in Tehran, Lecture Notes in

Logic, vol. 26, pp. 204–226, Association of Symbolic Logic, La Jolla, CA, 2006.
[12] , The algebra and model theory of tame valued fields. Journal für die Reine und Ange-

wandte Mathematik, to appear. Preliminary version published in: Séminaire de Structures Algébriques
Ordonnées, 81, Prépublications Paris 7 (2009).
[13] F. Pop, Embedding problems over large fields. Annals of Mathematics, vol. 144 (1996), pp. 1–34.

JEREMIAH HORROCKS INSTITUTE
LEIGHTON BUILDING LE7
UNIVERSITY OF CENTRAL LANCASHIRE
PRESTON, PR1 2HE, UK

E-mail: sanscombe@uclan.ac.uk

INSTITUTE OFMATHEMATICS
UNIVERSITY OF SILESIA
UL. BANKOWA14, 40-007 KATOWICE
POLAND

E-mail: fvk@math.us.edu.pl

https://doi.org/10.1017/jsl.2016.6 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.6

