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Abstract

De Finetti’s optimal dividend problem has recently been extended to the case when
dividend payments can be made only at Poisson arrival times. In this paper we consider
the version with bail-outs where the surplus must be nonnegative uniformly in time. For
a general spectrally negative Lévy model, we show the optimality of a Parisian-classical
reflection strategy that pays the excess above a given barrier at each Poisson arrival time
and also reflects from below at 0 in the classical sense.
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1. Introduction

In the bail-out model of de Finetti’s dividend problem, a joint optimal dividend and capital
injection strategy is pursued so as to maximize the total expected dividend payments minus the
cost of capital injections. In the past decade, the classical Cramér–Lundberg model has been
generalized to a spectrally negative Lévy model. In particular, Avram et al. [4] showed the
optimality of a double barrier strategy that reflects from below at 0 and also from above at a
certain barrier.

In this paper we consider its extension with a periodic dividend constraint. Periodic observa-
tion models have recently been studied widely in the insurance literature; see, e.g. [1], [2]. For
the case without capital injections in which dividends are paid until the time of ruin, a periodic
barrier strategy that pays any excess above a certain barrier at each payment opportunity is
expected to be optimal. Its optimality has been confirmed for the spectrally positive Lévy
(dual) models by Avanzi et al. [3] and Pérez and Yamazaki [15], and for the spectrally negative
Lévy models with a completely monotone Lévy density by Noba et al. [14]. On the other hand,
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regarding the bail-out case, the optimality results are available only for the dual model given in
the second problem considered in [15], to the best of the authors’ knowledge.

The objective of this paper is to show the optimality of a periodic-classical barrier strategy
under a general spectrally negative Lévy model. This can be seen as the bail-out extension of
[14] and also as the spectrally negative version of the bail-out model in [15].

We follow the guess-and-verify procedure to tackle the problem. Under a periodic-classical
barrier strategy, the expected net present values (NPVs) of dividends and capital injections
can be written in terms of the scale function using the results in [16]. The candidate optimal
barrier is first chosen using the conjecture that the slope of the value function at the barrier
becomes 1. The optimality of the selected strategy is then confirmed by showing that the
candidate value function solves the proper variational inequalities. This is indeed satisfied by
the convexity of the candidate value function, that is shown by our observation that its slope
becomes proportional to a certain ruin identity, which is monotone in the starting value of the
process.

Regarding the comparison with the dual model [15], there are both similarities and differ-
ences. In this paper we focus on the differences and omit similar results, such as the verification
lemma, that can be attained similarly to [15]. In the dual model, only minimal modifications
are necessary to solve the bail-out case from the case with ruin. As shown in [15], the value
functions for both cases admit exactly the same expressions except that the optimal barriers are
different. On the other hand, this is not expected in the spectrally negative Lévy model. The
expressions of the optimal solutions are different, and we use different approaches to show the
variational inequalities. It is noted that in this paper we do not assume the completely monotone
density assumption which was needed in [14].

The rest of the paper is organized as follows. The considered problem is formulated and a
review of the spectrally negative Lévy process is given in Section 2. In Section 3 we define the
periodic-classical barrier strategies and construct the corresponding surplus process. We also
provide a review of the scale function and obtain the expected NPVs corresponding to these
strategies. In Section 4 we obtain the optimal barrier for the periodic-classical strategy, and
in Section 5 we prove that the expected NPVs associated with this strategy solves the proper
variational inequalities. Finally, in Section 6, we provide some numerical results.

2. Preliminaries

2.1. Spectrally negative Lévy processes

Let X = (X(t); t ≥ 0) be defined on a probability space (�,F ,P), modeling the surplus
of an insurance company in the absence of control. For x ∈ R, we denote by Px the law of X
when it starts at x and write for convenience P in place of P0. Accordingly, we shall write Ex

and E for the associated expectation operators.
In this paper we assume that X is a spectrally negative Lévy process that is not the negative

of a subordinator, and its Laplace exponent ψ(θ) : [0,∞) → R is such that

E[eθX(t)] =: eψ(θ)t , t, θ ≥ 0,

given by the Lévy–Khintchine formula

ψ(θ) := γ θ + 1

2
η2θ2 +

∫
(−∞,0)

(eθz − 1 − θz1{z>−1})�(dz), θ ≥ 0. (2.1)
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Here, γ ∈ R, η ≥ 0, and � is a Lévy measure on (−∞, 0) such that∫
(−∞,0)

(1 ∧ z2)�(dz) < ∞.

The process X has paths of bounded variation if and only if η = 0 and
∫
(−1,0) |z|�(dz) is

finite. In this case, X can be written as

X(t) = ct − S(t), t ≥ 0,

where

c := γ −
∫
(−1,0)

z�(dz)

and (S(t); t ≥ 0) is a driftless subordinator. By the assumption that it does not have monotone
paths, we must have c > 0 and we can write

ψ(θ) = cθ +
∫
(−∞,0)

(eθz − 1)�(dz), θ ≥ 0.

2.2. The optimal Poissonian dividend problem with classical capital injection

A (dividend/capital injection) strategy is a pair of processes π := (Lπ(t), Rπ(t); t ≥ 0)
consisting of the cumulative amount of dividends Lπ and those of capital injection Rπ .

Regarding the dividend strategy, we assume that the dividend payments can be made only at
the arrival times Tr := (T (i); i ≥ 1) of a Poisson process Nr = (Nr(t); t ≥ 0) with intensity
r > 0, which is independent of the Lévy process X. In other words, T (i)− T (i − 1), i ≥ 1,
(with T (0) := 0) are independent and exponentially distributed with mean 1/r . More precisely,
Lπ admits the form

Lπ(t) =
∫

[0,t]
νπ (s) dNr(s), t ≥ 0, (2.2)

for some càglàd process νπ adapted to the filtration F := (F (t); t ≥ 0) generated by the
processes (X,Nr).

Regarding the capital injection, we assume that Rπ is a nondecreasing, right-continuous,
and F-adapted process with Rπ(0−) = 0. Contrary to the dividend payments, capital injection
can be made continuously.

The corresponding risk process is given by Uπ(0−) = X(0) and

Uπ(t) := X(t)− Lπ(t)+ Rπ(t), t ≥ 0,

and (Lπ ,Rπ) must be chosen so that Uπ(t) ≥ 0 for all t ≥ 0 almost surely.
Assuming that β > 1 is the cost per unit injected capital and q > 0 is the discount factor,

the objective is to maximize

vπ(x) := Ex

(∫
[0,∞)

e−qt dLπ(t)− β

∫
[0,∞)

e−qt dRπ(t)

)
, x ≥ 0,

over the set of all admissible strategies A that satisfy all the constraints described above and

Ex

(∫
[0,∞)

e−qt dRπ(t)

)
< ∞. (2.3)
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Hence, the problem is to compute the value function

v(x) := sup
π∈A

vπ(x), x ≥ 0, (2.4)

and obtain an optimal strategy π∗ that attains it, if such a strategy exists. Throughout the paper,
for the solution to be nontrivial, we assume that

E[X(1)] = ψ ′(0+) > −∞. (2.5)

3. Periodic-classical barrier strategies

As in the spectrally positive case [15], the objective of this paper is to show the optimality
of the periodic-classical barrier strategy

π0,b := {(L0,b
r (t), R0,b

r (t)); t ≥ 0}.
The controlled process U0,b

r becomes the Lévy process with Parisian reflection above and
classical reflection below considered in [15], which can be constructed as follows.

Let R(t) := (− inf0≤s≤t X(s)) ∨ 0 for t ≥ 0, and then we have

U0,b
r (t) = X(t)+ R(t), 0 ≤ t < T̂ +

b (1),

where T̂ +
b (1) := inf{T (i) : X(T (i)) + R(T (i)) > b}. The process then jumps down by

X(T̂ +
b (1)) + R(T̂ +

b (1)) − b so that U0,b
r (T̂ +

b (1)) = b. For T̂ +
b (1) ≤ t < T̂ +

b (2) :=
inf{T (i) > T̂ +

b (1) : U0,b
r (T (i)−) > b}, U0,b

r (t) is the process reflected at 0 of the process

(X(t) − X(T̂ +
b (1)) + b; t ≥ T̂ +

b (1)). The process U0,b
r can be constructed by repeating this

procedure. It is clear that it admits a decomposition

U0,b
r (t) = X(t)− L0,b

r (t)+ R0,b
r (t), t ≥ 0,

where L0,b
r (t) and R0,b

r (t) are, respectively, the cumulative amounts of Parisian and classical
reflection until time t .

We shall see that the strategy π0,b := {(L0,b
r (t), R

0,b
r (t)); t ≥ 0} for b ≥ 0 is admissible for

the problem described in Section 2.2 (since (2.3) holds by Lemma 3.1 and our assumption (2.5)).
Its expected net present value of dividends minus the cost of capital injection is

vb(x) := Ex

(∫
[0,∞)

e−qt dL0,b
r (t)− β

∫
[0,∞)

e−qt dR0,b
r (t)

)
, x ≥ 0. (3.1)

3.1. Scale functions

For fixed q ≥ 0, letW(q) : R → [0,∞) be the scale function of the spectrally negative Lévy
process X. This takes the value 0 on the negative half-line, and on the positive half-line it is a
continuous and strictly increasing function defined by its Laplace transform∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ)− q
, θ > �(q), (3.2)

where ψ is as defined in (2.1) and

�(q) := sup{λ ≥ 0 : ψ(λ) = q}. (3.3)
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We also define, for all x ∈ R,

W
(q)
(x) :=

∫ x

0
W(q)(y) dy, W

(q)
(x) :=

∫ x

0

∫ z

0
W(q)(w) dw dz,

Z(q)(x) := 1 + qW
(q)
(x), Z

(q)
(x) :=

∫ x

0
Z(q)(z) dz = x + qW

(q)
(x).

Since W(q)(x) = 0 for −∞ < x < 0, we have

W
(q)
(x) = 0, W

(q)
(x) = 0, Z(q)(x) = 1, Z

(q)
(x) = x, x ≤ 0.

Remark 3.1. (i)W(q) is differentiable almost everywhere. In particular, if X is of unbounded
variation or the Lévy measure does not have an atom, it is known thatW(q) is C1(R \ {0}); see,
e.g. [6, Theorem 3].

(ii) As in [9, Lemma 3.1],

W(q)(0) =
{

0 if X is of unbounded variation,

c−1 if X is of bounded variation.

We also use W(q+r) and �(q + r), which are defined by (3.2) and (3.3) with q replaced by
q + r . By the convexity of ψ on (0,∞), we have �(q + r) > �(q) for r > 0, and, from [12,
Equation (6)],

W(q+r)(x)−W(q)(x) = r

∫ x

0
W(q+r)(u)W(q)(x − u) du, x ∈ R.

We let, for q, r > 0 and x ∈ R,

Z(q)(x,�(q + r)) := e�(q+r)x
(

1 − r

∫ x

0
e−�(q+r)zW(q)(z) dz

)
= r

∫ ∞

0
e−�(q+r)zW(q)(z+ x) dz

> 0.

Here, the second equality holds since (3.2) yields
∫ ∞

0 e−�(q+r)xW(q)(x) dx = r−1. Differen-
tiating this with respect to the first argument, we have

Z(q)′(x,�(q + r)) := ∂

∂x
Z(q)(x,�(q + r))

= �(q + r)Z(q)(x,�(q + r))− rW(q)(x), x > 0.

Finally, for b ≥ 0 and x ∈ R, we define

W
(q,r)
−b (x) := W(q)(x + b)+ r

∫ x

0
W(q+r)(y)W(q)(x − y + b) dy,

Z
(q,r)
−b (x) := Z(q)(x + b)+ r

∫ x

0
W(q+r)(y)Z(q)(x − y + b) dy,

Z
(q,r)

−b (x) := Z
(q)
(x + b)+ r

∫ x

0
W(q+r)(y)Z(q)(x − y + b) dy.

(3.4)
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Remark 3.2. Using the identities from [12, Equation (5)], we have

W
(q,r)
0 (x) = W(q+r)(x) and Z

(q,r)
0 (x) = Z(q+r)(x), x ∈ R.

Remark 3.3. Fix b ≥ 0. Let Xr be the Parisian reflected process of X from above at level 0
(without classical reflection) as studied in [16], and

τ−
−b(r) := inf{t > 0 : Xr(t) < −b}.

Then, using [16, Corollary 3], for any x ∈ R,

Ex−b[exp(−τ−
−b(r))]

= Z
(q,r)
−b (x − b)− rZ(q)(b)W

(q+r)
(x − b)

− q
Z(q)(b,�(q + r))

Z(q)′(b,�(q + r))
(W

(q,r)
−b (x − b)− rW(q)(b)W

(q+r)
(x − b)), (3.5)

where, in particular,

E0[exp(−τ−
−b(r))] = Z(q)(b)− q

Z(q)(b,�(q + r))

Z(q)′(b,�(q + r))
W(q)(b). (3.6)

These identities are used later in Remark 4.1 and the proof of Lemma 5.2.

For a detailed study on the scale function and its applications, see [9] and [10].

3.2. Expression of vb via the scale function

Using the functions given in (3.4), we can compute (3.1) immediately using [16, Corollar-
ies 10 and 11] via the scale function. Recall in our assumption (2.5) thatψ ′(0+) is finite. Below,
we extend the domain of vb to R by setting vb(x) = βx + vb(0) for x < 0 so as to include the
case when the process is started at a negative value and is pushed up to 0 immediately.

Lemma 3.1. For b ≥ 0 and x ∈ R,

vb(x) = −Cb(Z(q,r)−b (x − b)− rZ(q)(b)W
(q+r)

(x − b))− rW
(q+r)

(x − b)

+ β

(
Z
(q,r)

−b (x − b)+ ψ ′(0+)
q

− rZ
(q)
(b)W

(q+r)
(x − b)

)
, (3.7)

where

Cb := r(βZ(q)(b)− 1)

q�(q + r)Z(q)(b,�(q + r))
+ β

�(q + r)
. (3.8)

In particular, for x ≤ b, we obtain

vb(x) = −CbZ(q)(x)+ β

(
Z
(q)
(x)+ ψ ′(0+)

q

)
. (3.9)

Proof. Using [16, Corollaries 10 and 11] for all b ≥ 0 and x ∈ R, we have

Ex

(∫
[0,∞)

e−qt dL0,b
r (t)

)

= r

(
Z
(q,r)
−b (x − b)− rZ(q)(b)W

(q+r)
(x − b)

q�(q + r)Z(q)(b,�(q + r))
−W

(q+r)
(x − b)

)
,
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and

Ex

(∫
[0,∞)

e−qt dR0,b
r (t)

)
=

(
rZ(q)(b)

q�(q + r)Z(q)(b,�(q + r))
+ 1

�(q + r)

)
× (Z

(q,r)
−b (x − b)− rZ(q)(b)W

(q+r)
(x − b))

−
(
Z
(q,r)

−b (x − b)+ ψ ′(0+)
q

− rZ
(q)
(b)W

(q+r)
(x − b)

)
.

Combining these, we have the claim. �

3.3. Smoothness of vb

Here we analyze the smoothness of the function vb. The proof of the following lemma is
straightforward and is hence omitted.

Lemma 3.2. For all b ≥ 0,

v′
b(x) = −qCbW(q,r)

−b (x − b)− rW
(q+r)

(x − b)+ βZ
(q,r)
−b (x − b), x ∈ R \ {0}, (3.10)

and

v′′
b (x

+) = −qCb
(
W(q)′(x+)+ rW(q+r)(x − b)W(q)(b)

+ r

∫ x−b

0
W(q+r)(y)W(q)′(x − y) dy

)
− rW(q+r)(x − b)

+ β(qW
(q,r)
−b (x − b)+ rW(q+r)(x − b)Z(q)(b)), x ∈ R \ {0, b}. (3.11)

By the smoothness of the scale function on R \ {0} as in Remark 3.1(i), the derivative
(3.10) is continuous on R \ {0}. In particular, in the case that X is of unbounded variation, by
Remarks 3.1(i) and 3.1(ii), the second derivative, given by (3.11), is continuous on R \ {0}.
Hence, we have the following results.

Lemma 3.3. For all b ≥ 0, we have the following:

(i) when X is of bounded variation, vb is continuously differentiable on R \ {0};
(ii) when X is of unbounded variation, vb is twice continuously differentiable on R \ {0}.

Remark 3.4. (Continuity/smoothness at 0.) For b ≥ 0, we have the following:

(i) by Lemma 3.1, it follows that vb is continuous at 0.

(ii) for the case thatX is of unbounded variation, vb is continuously differentiable at 0 since,
using Lemma 3.2 and Remark 3.1(ii), v′

b(0
+) = −qCbW(q)(0)+ β = β = v′

b(0
−).

4. Selection of a candidate optimal barrier b∗

In this section we focus on the periodic barrier strategy defined in the previous section and
choose the candidate barrier b∗, which satisfies v′

b∗(b∗) = 1 if such b∗ > 0 exists, and set it to
be 0 otherwise.
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Recall, as in Lemma 3.3, that vb is continuously differentiable except at 0. If b > 0, using
(3.8) and (3.10), we have

v′
b(b) = −qCbW(q)(b)+ βZ(q)(b) = g(b)+ 1, (4.1)

where we define, for b ≥ 0,

g(b) :=
(

1 − rW(q)(b)

�(q + r)Z(q)(b,�(q + r))

)
(βZ(q)(b)− 1)− βq

�(q + r)
W(q)(b)

= Z(q)′(b,�(q + r))

�(q + r)Z(q)(b,�(q + r))
(βZ(q)(b)− 1)− βq

�(q + r)
W(q)(b). (4.2)

In other words, for b > 0, v′
b(b) = 1 if and only if g(b) = 0.

Remark 4.1. (Probabilistic representation of g.) Using (3.6) and (4.2),

g(b) = q

�(q + r)

βE0[exp(−qτ−
−b(r))] − 1

Z(q)(b)− E0[exp(−qτ−
−b(r))]

W(q)(b). (4.3)

(i) Since Z(q)(b)− E0[exp(−qτ−
−b(r))] > 0 for b > 0 and b �→ βE0[exp(−qτ−

−b(r))] − 1
is strictly decreasing, there exists at most one root of g(b) = 0.

(ii) Using, in (4.3), the fact that limb↑∞ E0[exp(−qτ−
−b(r))] = 0, and W(q)(x)/Z(q)(x) →

�(q)/q as x ↑ ∞, as in [10, Exercise 8.5(i)], it follows that

lim
b↑∞ g(b) = − �(q)

�(q + r)
< 0.

Therefore, g(b) must be negative for sufficiently large b.

In order to also handle the case where such a b does not exist, we define

b∗ := inf{b ≥ 0 : g(b) ≤ 0}, (4.4)

which is well defined since, using Remark 4.1(ii), the set {b ≥ 0 : g(b) ≤ 0} = ∅.
Below, we provide a necessary and sufficient condition for the optimal barrier b∗ to be 0.

Lemma 4.1. We have b∗ = 0 if and only if X is of bounded variation and

β − 1 − r(β − 1)+ qβ

c�(q + r)
≤ 0. (4.5)

Proof. By the definition of b∗ as in (4.4), we have b∗ = 0 if and only if g(0) ≤ 0 where,
by (4.2),

g(0) = β − 1 − (r(β − 1)+ qβ)
W(q)(0)

�(q + r)
.

For the case of unbounded variation (where W(q)(0) = 0 by Remark 3.1(ii)), we have g(0) =
β − 1 > 0 and, hence, b∗ > 0. On the other hand, for the case of bounded variation, by
Remark 3.1(ii), b∗ = 0 if and only if (4.5) holds. �
Remark 4.2. (Slope at b∗.) (i) If b∗ > 0 (i.e. g(b∗) = 0), (4.1) implies that v′

b∗(b∗) = 1.

(ii) If b∗ = 0 (i.e. g(0) ≤ 0), (4.1) yields v′
b∗(0+) ≤ 1.

https://doi.org/10.1017/jpr.2018.85 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.85


1280 K. NOBA ET AL.

Remark 4.3. Suppose that b∗ > 0 (i.e. g(b∗) = 0). Then, by (4.1), we have

Cb∗ = βZ(q)(b∗)− 1

qW(q)(b∗)
.

Remark 4.4. From (4.3) and (4.4), we have

b∗ = inf

{
b > 0 : E0[exp(−qτ−

−b(r))] ≤ 1

β

}
. (4.6)

Identity (4.6) implies that b∗ decreases as the discount rate q increases.

5. Verification of optimality

In this section we shall show the optimality of the strategy π0,b∗
for the value of b∗ selected

in the previous section.

Theorem 5.1. The strategy π0,b∗
is optimal and the value function of problem (2.4) is given

by v = vb∗ .

In order to prove Theorem 5.1, it suffices to prove the variational inequalities. We omit the
proof of the following proposition since it is essentially the same as the spectrally positive case
[15, Lemma 5.3]. Here we slightly relax the assumption on the smoothness at 0, which can be
done by applying the Meyer–Itô formula as in [17, Theorem IV.71].

Let L be the infinitesimal generator associated with the process X applied to a measurable
function f on R, i.e. C1(0,∞) (respectively, C2(0,∞)) for the case in whichX is of bounded
(respectively, unbounded) variation with

Lf (x) := γf ′(x)+ 1

2
η2f ′′(x)+

∫
(−∞,0)

[f (x + z)− f (x)− f ′(x)z 1{−1<z<0}]�(dz).

Below, as in [4], we extend the domain of vπ of (3.1) to R by setting vπ(x) = βx + vπ(0) for
x < 0.

Proposition 5.1. Suppose that π̂ ∈ A is such that vπ̂ isC1(0,∞) (respectively, C2(0,∞)) for
the case that X is of bounded (respectively, unbounded) variation, continuous on R, and, for
the case of unbounded variation, continuously differentiable at 0. In addition, suppose that

(L − q)vπ̂ (x)+ r max
0≤l≤x{l + vπ̂ (x − l)− vπ̂ (x)} ≤ 0, v ′̂

π (x) ≤ β, x > 0,

inf
x≥0

vπ̂ (x) > −m for some m > 0.
(5.1)

Then π̂ is an optimal strategy and vπ̂ (x) = v(x) for all x ≥ 0.

We shall provide some preliminary results in order to show the variational inequalities (5.1).

Lemma 5.1. For b ≥ 0, we have

(L − q)vb(x) =
{

0 if x ∈ (0, b),
−r{(x − b)+ vb(b)− vb(x)} if x ∈ [b,∞).

(5.2)
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Proof. (i) Suppose that 0 < x < b. By the proof of [5, Theorem 2.1], we have

(L − q)Z(q)(y) = (L − q)

(
Z
(q)
(y)+ ψ ′(0+)

q

)
= 0, y > 0. (5.3)

Applying these in (3.9), we obtain (5.2).

(ii) Suppose that x > b. From the proof of [14, Lemma 5.2], we have

(L − q)W
(q+r)

(x − b) = 1 + rW
(q+r)

(x − b),

(L − q)W
(q+r)

(x − b) = (x − b)+ rW
(q+r)

(x − b). (5.4)

On the other hand, from the proof of [8, Lemma 4.5], we have

(L − (q + r))

(∫ x−b

0
W(q+r)(y)Z(q)(x − y) dy

)
= (L − (q + r))

(∫ x−b

0
W(q+r)(x − b − y)Z(q)(b + y) dy

)
= Z(q)(x),

and, hence,

(L − q)

(∫ x−b

0
W(q+r)(y)Z(q)(x − y) dy

)
= Z

(q,r)
−b (x − b). (5.5)

Combining (5.3) and (5.5), we obtain

(L − q)Z
(q,r)
−b (x − b) = rZ

(q,r)
−b (x − b). (5.6)

In a similar way, we see that

(L − q)

(∫ x−b

0
W(q+r)(y)Z(q)(x − y) dy

)
= Z

(q,r)

−b (x − b), (5.7)

and, using (5.3) and (5.7), we obtain

(L − q)

(
Z
(q,r)

−b (x − b)+ ψ ′(0+)
q

)
= rZ

(q,r)

−b (x − b). (5.8)

Therefore, applying (5.4), (5.6), and (5.8) in (3.7),

(L − q)vb(x) = −Cb(rZ(q,r)−b (x − b)− rZ(q)(b)(1 + rW
(q+r)

(x − b)))

− r((x − b)+ rW
(q+r)

(x − b))

− rβZ
(q)
(b)(1 + rW

(q+r)
(x − b))+ rβZ

(q,r)

−b (x − b)

= −r((x − b)+ vb(b)− vb(x)),

where in the last equality we use the fact that vb(b) = −CbZ(q)(b)+ β(Z(q)(b)+ψ ′(0+)/q).
This completes the proof. �
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Lemma 5.2. We have 1 ≤ v′
b∗(x) ≤ β for x ∈ (0, b∗) and 0 ≤ v′

b∗(x) ≤ 1 for x ∈ (b∗,∞).

Proof. We prove separately for the cases (i) b∗ > 0 and (ii) b∗ = 0.
(i) Suppose that b∗ > 0. Then, using (3.10) and Remark 4.3, we obtain

v′
b∗(x) = βZ

(q,r)
−b∗ (x − b∗)− rW

(q+r)
(x − b∗)− βZ(q)(b∗)− 1

W(q)(b∗)
W
(q,r)
−b∗ (x − b∗). (5.9)

From the second equality of (4.2) and the fact that g(b∗) = 0, we obtain

q
Z(q)(b∗,�(q + r))

Z(q)′(b∗,�(q + r))
W(q)(b∗) = βZ(q)(b∗)− 1

β
.

Hence, using the above expression and (5.9) in (3.5), we obtain, for x > 0,

βEx−b∗ [exp(−qτ−
−b∗(r))]

= βZ
(q,r)
−b∗ (x − b∗)− rβZ(q)(b∗)W(q+r)

(x − b∗)

− βZ(q)(b∗)− 1

W(q)(b∗)
(W

(q,r)
−b∗ (x − b∗)− rW(q)(b∗)W(q+r)

(x − b∗))

= v′
b∗(x), (5.10)

where the last inequality follows from (5.9).
From (5.10), we then deduce that 0 ≤ v′

b∗(x) ≤ β and that v′
b∗ is decreasing on (0,∞).

This and the fact that v′
b∗(b∗) = 1 as in Remark 4.2 complete the proof.

(ii) Suppose that b∗ = 0 (then necessarilyX is of bounded variation by Lemma 4.1). Due to

C0 = r(β − 1)+ qβ

q�(q + r)
,

we have, by (3.10) and Remark 3.2,

v′
0(x) = − r(β − 1)+ qβ

�(q + r)
W
(q,r)
0 (x)− rW

(q+r)
(x)+ βZ

(q,r)
0 (x)

= r(β − 1)+ qβ

r + q

(
Z(q+r)(x)− r + q

�(q + r)
W(q+r)(x)

)
+ r

r + q
. (5.11)

Differentiating (5.11) further, we obtain

v′′
0 (x

+) = (r(β − 1)+ qβ)

(
1 − 1

�(q + r)

W(q+r)′(x+)
W(q+r)(x)

)
W(q+r)(x). (5.12)

Since β > 1, we have r(β − 1) + qβ > 0. In addition, x �→ W(q+r)′(x+)/W(q+r)(x) is
monotonically decreasing in x as in [10, Equation (8.18) and Lemma 8.2] and converges to
�(r + q) as x → ∞. By these facts and (5.12), we have v′′

0 (x
+) < 0, meaning v0 is concave.

Recall, as in Remark 4.2, that v′
0(0

+) ≤ 1. Hence, we have v′
0(x) ≤ 1 for all x ∈ (0,∞).

Finally, we have v′
0(x) → r/(r+q) > 0 as x ↑ ∞, sinceZ(q+r)(x)−(r + q)W(q+r)(x)/�(r+

q) vanishes in the limit by [10, Theorem 8.1(ii)], and, hence, v′
0(x) > 0. �

Next, by applying Lemma 5.2 for b∗ > 0 and b∗ = 0, the following results are immediate.
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Lemma 5.3. For b∗ ≥ 0, we have

max
0≤l≤x{l + vb∗(x − l)− vb∗(x)} =

{
0 if x ∈ [0, b∗],
x − b∗ + vb∗(b∗)− vb∗(x) if x ∈ (b∗,∞).

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. We shall show that vb∗ satisfies all the conditions given in Propo-
sition 5.1. The desired smoothness/continuity of vb∗ holds by Lemma 3.3 and Remark 3.4.
Hence, we need to prove only the variational inequalities given in (5.1).

Lemmas 5.1 and 5.3 yield the validity of the first item of (5.1) with equality. The second
item holds by Lemma 5.2. Finally, the third item follows since, by the monotonicity of vb∗ in
view of Lemma 5.2 and (2.5), we have infx≥0 vb∗(x) ≥ vb∗(0) > −∞. �
Remark 5.1. Let X be the spectrally negative Lévy process used in this paper with η > 0.
We consider another spectrally negative Lévy process X̃ with a lower value of the diffusion
coefficient η̃ ∈ (0, η) (with the same values of (γ,�)). By ṽ and L̃ we denote the corresponding
value function and infinitesimal generator, respectively.

With the assumption η̃ > 0, ṽ is sufficiently smooth for the original process X and, hence,
Lṽ is well defined. Since ṽ solves the variational inequality for the generator L̃ and by the
concavity of ṽ,

(L − q)̃v(x)+ r max
0≤l≤x{l + ṽ(x − l)− ṽ(x)}

= (L̃ − q)̃v(x)+ r max
0≤l≤x{l + ṽ(x − l)− ṽ(x)} + 1

2 (η
2 − η̃2)̃v′′(x)

≤ 1
2 (η

2 − η̃2)̃v′′(x)
< 0.

In addition, since ṽ is the optimal value function under X̃, which solves (5.1) as in Proposi-
tion 5.1, we have ṽ′(x) ≤ β for x > 0 and infx≥0 ṽ(x) > −m for some m > 0.

In summary, ṽ satisfies the requirements given in (5.1) under the generator L and, hence,
proceeding as the proof of [15, Lemma 5.3], we obtain, for any π ∈ A, ṽ(x) ≥ vπ(x), implying
the inequality ṽ(x) ≥ v(x) for all x ≥ 0.

6. Numerical results

In this section we give numerical results using the spectrally negative Lévy process with
phase-type jumps of the form

X(t)−X(0) = ct + ηB(t)−
N(t)∑
n=1

Zn, 0 ≤ t < ∞,

where B = (B(t); t ≥ 0) is a standard Brownian motion, N = (N(t); t ≥ 0) is a Poisson
process with arrival rate 1, and Z = (Zn; n = 1, 2, . . .) is an independent and identically
distributed sequence of phase-type random variables that approximate the (folded) normal
distribution with mean 0 and variance 1 (the phase-type parameters can be found in [11]); see,
e.g. [13] for a review of the phase-type distribution. The processes B,N , and Z are assumed to
be mutually independent. We refer the reader to [7] and [9] for the forms of the corresponding
scale functions. Throughout we set q = 0.05.
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Figure 1: Plots of b �→ g(b) for cases 1 and 2. The values of b∗ are indicated by the circles.
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Figure 2: Plots of vb∗ (solid) for cases 1 and 2 in comparison to vb (dashed) with b = 0, 1
2b

∗, 3
2b

∗
for case 1 and b = 0.5, 1.0, 1.5 for case 2. The points (b∗, vb∗(b∗)) are indicated by the squares and
the points (b, vb(b)) are indicated by the down-pointing (respectively, up-pointing) triangles if b < b∗

(respectively, b > b∗).

We first illustrate the implementation procedure using case 1 (unbounded variation) with
η = 0.2, c = 1, and β = 1.5 and case 2 (bounded variation) with η = 0, c = 0.3, and
β = 1.05, with the common value of r = 0.5.

Recall the definition of b∗ as in (4.4). In Figure 1 we present the plot of the function g(b) as
in (4.2) for cases 1 and 2. As studied in Remark 4.1 and Lemma 4.1, if g(0) > 0 as in case 1,
there exists a unique value b∗ such that g(b∗) = 0, and, hence, this can be computed using the
bisection method. For the case of g(0) ≤ 0 as in case 2, we set b∗ = 0. Using the selected
b∗, the optimal value functions vb∗ are computed, and we present the plots in Figure 2 for both
cases 1 and 2. In the same graphs, in order to confirm the optimality, we plot the function vb
for a different selection of b. It is confirmed that vb∗ dominates vb for b = b∗, uniformly in x.

In Figure 3 we present the behaviors of the optimal solutions with respect to the parameters β
and r using the same parameters as case 1 (unless stated otherwise for the values of β and r).
In the left panel we present the plot of vb∗ for β ranging from 1.01 to 20. As expected, vb∗
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Figure 3: Left: plots of vb∗ for β = 1.01, 1.02, . . . , 1.09, 1.1, 1.2, . . . , 1.9, 2, 3, . . . , 19, 20
with the points (b∗, vb∗(b∗)) indicated by the circles. Right: plots of vb∗ (dashed) for
r = 0.0001, 0.0002, . . . , 0.0009, 0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.1, 0.2, . . . , 0.9, 1, 2, . . . ,
9, 10, 20, 30, 40, 50 with the points (b∗, vb∗(b∗)) indicated by circles, along with the classical case vb†

(solid line) as in [4] with the point (b†, vb†(b†)) indicated by the square.

is decreasing in β uniformly in x. In addition, we observe that b∗ increases as β increases.
In the right panel we present the plot of vb∗ for various values of r ranging from 0.0001 to
50 along with the results in the classical bail-out case (without the restriction (2.2)), say vb†

with the optimal classical barrier b†, as in [4]. It is observed that the value function converges
increasingly to that in [4]. It is also confirmed that b∗ increases in r and converges to b† of [4]
as r → ∞.

7. Concluding remarks

In this paper we obtained an optimal dividend-capital injection strategy under the assumption
that dividend payment opportunities arrive at Poisson arrival times while capital injection can
be made continuously. Under this setting, we showed that the optimal strategy is of periodic-
barrier type, and the optimal barrier as well as the value function can be written in terms of the
scale function.

It is a natural and interesting question for future research to consider an extension where
capital injection opportunities are also restricted to Poisson arrival times. Contrary to the
problem considered in this paper, ruin may not be avoidable and, hence, the positivity constraint
on the surplus process must be removed.

In light of the conclusions given in this paper, a double periodic barrier strategy—that pushes
the process into a certain interval whenever dividend/capital injection opportunities arrive—is a
reasonable candidate for the optimal strategy. On the other hand, as in [14], certain assumptions
(such as complete monotonicity) on the Lévy measure might be needed.

As the arrival rate of the capital injection opportunities increases to ∞, the problem consid-
ered in this paper can be seen as the limiting case. In reality, companies are expected to increase
the rate of observations when the surplus is near the ruin boundary and, hence, we conjecture
that the results of this paper can potentially be a good approximation in these scenarios. It is
worthy of investigation to confirm this approximation both analytically and numerically so as
to see the link between these models.
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