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This paper focuses on the evaluation of the probability that both components of a bivari-
ate stochastic process ever simultaneously exceed some large level; a leading example
is that of two Markov fluid queues driven by the same background process ever reach-
ing the set (u,∞) × (u,∞), for u > 0. Exact analysis being prohibitive, we resort to
asymptotic techniques and efficient simulation, focusing on large values of u. The first
contribution concerns various expressions for the decay rate of the probability of inter-
est, which are valid under Gärtner–Ellis-type conditions. The second contribution is
an importance-sampling-based rare-event simulation technique for the bivariate Markov
modulated fluid model, which is capable of asymptotically efficiently estimating the prob-
ability of interest; the efficiency of this procedure is assessed in a series of numerical
experiments.
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1. INTRODUCTION

Let ((At, Bt))t≥0 be a bivariate stochastic process, with possibly dependent components.
This paper focuses on techniques to quantify the so-called (bivariate) ruin probability over
level u, denoted by αu, being defined as the probability that this process will ever hit
the set Su := (u,∞) × (u,∞), for some u > 0. Note that even in the case that the two
processes are independent, this is probability cannot be evaluated from the corresponding
one-dimensional ruin probabilities, since both components have to be bigger than u at the
same time.
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A leading example of such a bivariate model is the two-dimensional Markov modulated
fluid model, which can be described as follows. Let (Xt)t≥0 be an irreducible Markov process,
taking values on a finite state space. Whenever Xt = i, both At and Bt change at constant,
possibly negative, rates rA

i and rB
i respectively so that

(At, Bt) =
(∫ t

0

rA
Xs

ds,

∫ t

0

rB
Xs

ds

)
;

the two processes (At)t≥0 and (Bt)t≥0 thus depend on each other as they react to the same
realization of the background process (Xt)t≥0. The process (At, Bt) could be used to model
the evolution of two random quantities, which are driven by the same environment. Many
examples can be thought of: the process can represent data buffers in a wireless network
whose dynamics react to the same variations in the channel conditions, or multiple asset
prices reacting to the same market fluctuations. The one-dimensional counterpart of this
model is well understood. In particular, techniques have been developed to evaluate the ruin
probabilities, by setting up a system of linear differential equations which can be solved by
imposing the appropriate boundary conditions; see for example, Elwalid and Mitra [4].
Importantly, in the two-dimensional case these methods fail.

Since an exact analysis of αu has been beyond reach so far, in this paper we turn to
two approximative techniques that are intended to gain insight into the quantitative prop-
erties of αu. The first technique is of an asymptotic nature: it characterizes the (essentially
exponential) tail behavior of αu for large u. The second approach is an efficient simulation
technique based on importance sampling; it remedies the complication that straightfor-
ward, näıve simulation methods are typically slow due to the rarity of the event under
consideration.

The research reported on in this paper is in the tradition of a series of papers on
large deviations estimates and importance sampling for queues. For an introduction to
importance sampling, we refer to for example, Rubino and Tuffin [12]. Importance sampling
is a variance-reduction technique, which essentially amounts to sampling under another
measure than the actual one, recovering unbiasedness by weighing the simulation data by
appropriate likelihood ratios; the complication lies in the selection of the new measure, which
should ideally be chosen such that the variance of the resulting estimator is minimized. Part
of the paper relates to relatively general bivariate processes, and part to the specific case of
bivariate Markov fluid. Asymptotics and efficient simulation for the one-dimensional model
have been studied in detail; see for example, Mandjes and Ridder [11] and Rubino and Tuffin
[12, Section 5.3.3]. We also mention Kesidis et al. [9], where to focus lies on the existence
of so-called effective bandwidths ; as it turns out, despite the fact that this work focuses on
one-dimensional Markov fluid, results from this paper turn out to be useful in the context
of our two-dimensional setup.

There is a vast literature that directly relates to the material presented in this paper;
without aiming to give a complete overview, we mention a number of relevant contri-
butions. In Glynn and Whitt [7], for a broad class of queues the exponential decay
rate of the waiting time distribution is given; this result can be translated into the
context of ruin probabilities. In Duffield and O’Connell [3], it is generalized to contin-
uous time, as well as to non-linear scaling. Collamore [2] considers a related result for
multi-dimensional discrete time Markov additive processes. In Kella [8], a fluid model is
considered as well, but only for a Lévy input process (i.e., without Markov modulation);
the main result is an expression for the Laplace–Stieltjes transform of the joint steady-state
distribution.
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This paper has two main results. The first one is Theorem 2.2, which gives multiple
equivalent expressions for the decay rate

lim
u→∞

1
u

ln P (∃t > 0 : At > u,Bt > u)

under mild assumptions. Importantly, these assumptions are met by the bivariate Markov
fluid model. In the first part of the proof, we interpret a representation of the decay rate
as the solution of a concave optimization problem with respect to several constraints. The
use of this interpretation we believe is novel; for example, using this argumentation would
have led to a considerably shorter proof in the one-dimensional case in Ganesh, O’Connell,
and Wischik [6, Lemma 1.7]. A different expression for the decay rate is provided as well,
with a proof that is split into two parts. First the lower bound is proven, which focuses on
the largest contribution to αu (in terms of a “dominant time scale”). For the upper bound,
we determine the decay rate of the probability that the bivariate process hits some set Tu,
which contains Su; we let Tu be as small as possible so as to still obtain the correct decay
rate. This approach is similar to the one used by Kosiński et al. [10].

The second main result concerns efficiency properties of an importance-sampling-based
simulation scheme, which applies to the bivariate Markov fluid model only; it states that the
underlying new measure is optimal (in a specific asymptotic sense). The new measure we
propose can be regarded as the two-dimensional analogue of the change of measure that was
used for the one-dimensional model in for example, Mandjes and Ridder [11] and Rubino
and Tuffin [12, Section 5.3.3]. A complication is that the process (At, Bt) can attain values in
the target set while the “embedded process” (recording values of (At, Bt) only at transition
epochs of the background process) does not; we describe a technique to remedy this.

The rest of the paper is organized as follows. Section 2 contains the first main result,
namely the decay rate for the general two-dimensional stochastic process under a Gärtner–
Ellis (GE)-type condition. In Section 3, we specifically consider the bivariate Markov fluid
model; we first present a number of results for this model, then we develop an efficient
simulation algorithm, and finally we present a number of illustrative numerical examples.
For readability, the proof of Theorem 3.1 is given in the Appendix. The paper concludes with
Section 4, in which we discuss two natural extensions of the theory developed in Section 2,
namely the extension of the theory to higher dimensions and the extension to bivariate
processes for which the components may hit level u at different times.

2. LOGARITHMIC ASYMPTOTICS UNDER GÄRTNER-ELLIS CONDITIONS

Let ((At, Bt))t≥0 be a bivariate stochastic process on R2. We are interested in the proba-
bility αu that the process will ever hit the set Su := (u,∞) × (u,∞), for u � 0, when the
average movement of the process is directed away from this set. More specifically, we wish
to characterize the decay rate of this probability, that is,

lim
u→∞

1
u

ln P (∃t : At > u,Bt > u) . (1)

We consider the situation that(
lim

t→∞
EAt

t
, lim
t→∞

EBt

t

)
�∈ [0,∞) × [0,∞),

so that the event of interest is indeed rare. We will also assume that the process can reach
the set with a positive probability. Note that we do not have to restrict the event of interest
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to both components having to reach the same level, that is, the results developed in this
paper can also handle the event

{∃t > 0 : At > u,Bt > cu}
for any c > 0. This can be done by applying the analysis to the stochastic process
((At, Bt/c))t≥0. Hence, we will choose c = 1 in the remainder of this paper.

In order to be able to analyze the above decay rate, we now provide some results from
large deviations theory, following the setup of Ganesh et al. [6]. We denote the limiting
cumulant generating function of ((At, Bt))t≥0 by

M(θ1, θ2) := lim
t→∞

1
t

ln E
(
eθ1At+θ2Bt

)
. (2)

A function I : Rd → R∗ (where R∗ := R ∪ {∞}) is a rate function if it is non-negative and if
it is lower semi-continuous, that is, all level sets are closed. Furthermore, it is called a good
rate function if in addition all level sets are compact. We say that ((At, Bt))t≥0 satisfies a
large deviations principle in R2 with rate function I : R2 → R∗ if for any measurable set
F ⊆ R2

− inf
x∈F◦

I(x) ≤ lim inf
t→∞

1
t

ln P ((At, Bt) ∈ F ) ≤ lim sup
t→∞

1
t

ln P ((At, Bt) ∈ F ) ≤ − inf
x∈F̄

I(x),

where F ◦ and F̄ denote the interior and closure of F , respectively. For any function f : Rd →
R∗, we denote its convex conjugate by f∗(x) := supθ〈θ, x〉 − f(θ). A function f : Rd → R∗

is called essentially smooth if the interior of its effective domain (the set on which f is
finite-valued) is non-empty, f is differentiable in the interior of its effective domain and f
is steep, namely, for any sequence xn, which converges to a boundary point of the effective
domain, limn→∞ |∇f(xn)| = ∞. The following well-known theorem will be used in the proof
of our main result.

Theorem 2.1 [Gärtner–Ellis, see Ganesh et al. [6, Theorem 2.11]]: If (2) exists for all
θ1, θ2, possibly taking value infinity, and if it is essentially smooth, lower semi-continuous
and finite in a neighborhood of the origin, then the process ((At/t,Bt/t))t≥0 satisfies a large
deviations principle in R2 with good convex rate function M∗.

Our main result gives the aforementioned decay rate in terms of the corresponding
limiting cumulant generating function. Aside from assuming GE conditions, we also want
to ensure that the continuous-time process is locally well-behaved so that we can apply the
one-dimensional result from Duffield and O’Connell [3]. In order to make this precise, we
define for n ∈ N:

(An + Bn)∗ := sup
0≤r<1

(An+r + Bn+r) .

Theorem 2.2: Let M(·, ·) satisfy the conditions of the GE theorem and let either

lim sup
n→∞

1
n

ln E

(
e(θ1An+θ2Bn)∗−θ1An−θ2Bn

)
= 0 (3)

for all θ1, θ2 > 0, or let (3) hold for some θ1, θ2 > 0 and let

lim sup
n→∞

1
n

ln P ((wAn + (1 − w)Bn)∗ − wAn − (1 − w)Bn > xn) ≤ −I(x, x) (4)
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hold for all x > 0 and all w ∈ [0, 1], with I(·, ·) as in (6). Then

lim
u→∞

1
u

ln P (∃t > 0 : At > u,Bt > u) = − inf
x>0,y>0

I(x, y)
min(x, y)

(5)

holds, where

I(x, y) := sup
θ1,θ2

(θ1x + θ2y − M(θ1, θ2)) . (6)

Furthermore,

inf
x>0,y>0

I(x, y)
min(x, y)

= sup
θ1≥0,θ2≥0:M(θ1,θ2)=0

(θ1 + θ2) . (7)

Proof: We begin with the proof of the latter statement, that is, (7). To this end, write

inf
x,y>0

I(x, y)
min(x, y)

= inf
x,y>0

sup
θ1,θ2

θ1x + θ2y

min(x, y)
− M(θ1, θ2)

min(x, y)
.

Setting p := min(x, y) we obtain

inf
x,y>0

sup
θ1,θ2

θ1x + θ2y

min(x, y)
− M(θ1, θ2)

min(x, y)
= inf

x,y,p>0,p=min(x,y)
sup
θ1,θ2

θ1x

p
+

θ2y

p
− M(θ1, θ2)

p
.

We may now replace in the infimum p = min(x, y) by p ≤ min(x, y), so that we find

inf
x,y,p>0,p=min(x,y)

sup
θ1,θ2

θ1x

p
+

θ2y

p
− M(θ1, θ2)

p

= inf
x,y,p>0,p≤min(x,y)

sup
θ1,θ2

θ1x

p
+

θ2y

p
− M(θ1, θ2)

p
;

this equality holds because

◦ The “≥” part holds because the infimum on the right-hand side is taken over a
larger set.

◦ The “≤” part holds because the supremum is non-negative (choose θ1 = θ2 = 0),
hence p will be taken as large as possible.

The next step is to replace the quantities x/p, y/p and 1/p by u, v, q respectively, which
is allowed as long as we impose the restrictions u, v ≥ 1 and q > 0 in the infimum. We thus
obtain

inf
x,y,p>0,p≤min(x,y)

sup
θ1,θ2

θ1x

p
+

θ2y

p
− M(θ1, θ2)

p
= inf

u,v≥1,q>0
sup
θ1,θ2

θ1u + θ2v − qM(θ1, θ2).

We can now write uθ1 = (1 + a)θ1 with a ≥ 0, and similarly for θ2 in order to obtain the
alternative representation

inf
u,v≥1,q>0

sup
θ1,θ2

θ1u + θ2v − qM(θ1, θ2) = inf
a,b≥0,q>0

sup
θ1,θ2

(θ1 + θ2) + aθ1 + bθ2 − qM(θ1, θ2).

The right-hand side of the previous display can now be seen as the Lagrangian dual of a
concave optimization problem with respect to constraints as given in the infimum; it should
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be borne in mind that the limiting cumulant generating function M(θ1, θ2) is convex. As a
consequence,

inf
a≥0,b≥0,q>0

sup
θ1,θ2

(θ1 + θ2) + aθ1 + bθ2 − qM(θ1, θ2) = sup
θ1≥0,θ2≥0,M(θ1,θ2)≤0

θ1 + θ2,

which establishes the proof of (7).
We will split the proof of the first statement, that is, (5), into a lower bound and an

upper bound. We first give the lower bound. For all s, u > 0 we have the obvious bound

P (∃t > 0 : At > u,Bt > u) = P (∃t > 0 : Atu > u,Btu > u) ≥ P (Asu > u,Bsu > u) .

This means that also, for all s > 0,

lim inf
u→∞

1
u

ln P (∃t > 0 : Atu > u,Btu > u) ≥ lim inf
u→∞

1
u

ln P (Asu > u,Bsu > u) .

As this inequality is uniform in s > 0, we can take the supremum on the right-hand side.
We thus obtain, after rewriting:

lim inf
u→∞

1
u

ln P

(
∃t :

Atu

tu
>

1
t
,
Btu

tu
>

1
t

)
≥ sup

s>0
lim inf
u→∞

1
u

ln P

(
Asu

su
>

1
s
,
Bsu

su
>

1
s

)
(8)

Furthermore, the GE theorem gives us the following inequality:

lim inf
u→∞

1
u

ln P

(
Atu

tu
>

1
t
,
Btu

tu
>

1
t

)
=t

[
lim inf
u→∞

1
tu

ln P

(
Atu

tu
>

1
t
,
Btu

tu
>

1
t

)]

GE≥ − t inf
x> 1

t ,y> 1
t

[
sup
θ1,θ2

θ1x + θ2y − M(θ1, θ2)

]
. (9)

Upon combining (8) and (9), we thus conclude

lim inf
u→∞

1
u

ln P (∃t : At > u,Bt > u) = lim inf
u→∞

1
u

ln P

(
∃t :

Atu

tu
>

1
t
,
Btu

tu
>

1
t

)

(8)

≥ sup
t>0

lim inf
u→∞

1
u

ln P

(
Atu

tu
>

1
t
,
Btu

tu
>

1
t

)
(9)

≥ sup
t>0

−t inf
x,y> 1

t

[
sup
θ1,θ2

θ1x + θ2y − M(θ1, θ2)

]

= sup
t>0

−t inf
x> 1

t ,y> 1
t

I(x, y) = − inf
t>0

inf
x,y> 1

t

tI(x, y) = − inf
x,y>0

inf
t>max( 1

x , 1
y )

tI(x, y) =

= − inf
x,y>0

max
(

1
x

,
1
y

)
I(x, y) = − inf

x>0,y>0

I(x, y)
min(x, y)

,

which establishes the lower bound.
For the upper bound, we consider the probability of (At, Bt) reaching a set in which

(u,∞) × (u,∞) is contained. We evidently have, for all “weights” w ∈ [0, 1],

P (∃t > 0 : At > u,Bt > u) ≤ P (∃t > 0 : wAt + (1 − w)Bt > u) ;

for the moment we keep w fixed; later in the proof we minimize over w to identify the
tightest upper bound. The crucial idea is that wAt + (1 − w)Bt is now a one-dimensional
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stochastic process, for which we can apply the result of Duffield and O’Connell [3, Corollary
2.3], so as to obtain

lim sup
u→∞

1
u

ln P (∃t > 0 : At > u,Bt > u) ≤ lim
u→∞

1
u

ln P (∃t > 0 : wAt + (1 − w)Bt > u)

≤ − inf
x>0

Iw(x)
x

= −θ∗w,

where (i) the rate function Iw(x) is defined by supθ(θx − Mw(θ)); (ii) the limiting cumulant
generating function Mw(θ) by

lim
t→∞

1
t

ln E

(
eθwAt+θ(1−w)Bt

)
= 0,

and (iii) θ∗w > 0 solves Mw(θ) = 0. Because the above upper bound on the decay rate holds
for any w ∈ [0, 1], we can take the infimum with respect to w on both sides. We thus obtain

lim sup
u→∞

1
u

ln P (∃t > 0 : At > u,Bt > u) ≤ − sup
w∈[0,1]

θ∗w.

Setting θ∗1 := wθ∗w and θ∗2 := (1 − w)θ∗w, we observe that M(θ∗1 , θ∗2) = 0. So then

lim sup
u→∞

1
u

ln P (∃t > 0 : At > u,Bt > u) ≤ − sup
θ∗

w>0,w∈[0,1]:M(wθ∗
w,(1−w)θ∗

w)=0

wθ∗w + (1 − w)θ∗w

= − sup
θ1≥0,θ2≥0:M(θ1,θ2)=0

θ1 + θ2,

which establishes the upper bound. �

The first part of the proof uses a Lagrange-multiplier argument in order to show that
the optimizing θ1 and θ2 are non-negative. This (seemingly novel) idea can be used more
broadly; for instance in the proof of Ganesh et al. [6, Lemma 1.7]. In the proof of the upper
bound, there is a one-to-one correspondence between w, θ∗w and θ1, θ2, namely θ1 = wθ∗w
and θ2 = (1 − w)θ∗w. A similar result is proven in Collamore [2] in a discrete time Markov
additive setting, though the representation of the decay rate is different.

3. EFFICIENT ESTIMATION OF RUIN PROBABILITY IN BIVARIATE FLUID
MODEL

In this section, as mentioned in the introduction, we let At and Bt represent two
fluid processes, modulated by the same Markov process (Xt)t≥0 that attains values
on a finite state space N . We apply the theory of the previous section to set up an
importance-sampling-based efficient simulation procedure for estimating

αu = P (∃t > 0 : At > u,Bt > u) = P (∃t > 0 : (At, Bt) ∈ Su) .

To make the model precise, let rA and rB be two vectors in R|N |. Whenever Xt = i, the
net input per time unit of the two components are rA

i and rB
i , respectively; note that these

numbers are not necessarily positive. A compact representation is

dAt

dt
= rA

i ,
dBt

dt
= rB

i ifXt = i, (10)

where we set A0 = B0 = 0.
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In the following subsection, we analyze the above model in greater detail, and conclude
that it satisfies the conditions of Theorem 2.2. In Section 3.2 we construct a method in order
to estimate the ruin probability efficiently and in Section 3.3 we give numerical examples
(which also indicate the efficiency gain with respect to näıve simulation approaches).

3.1. Analysis of the Fluid Model

In order for the process to have a positive probability to hit the set Su, some conditions
have to be imposed on rA and rB . These conditions can be satisfied in essentially two ways.
The first way is that there exists some state i such that rA

i > 0 and rB
i > 0. If such a state

does not exist, we need two states i and j such that rA
i > 0, rB

i ≤ 0, rA
j ≤ 0, rB

j > 0 such
that if the Markov process spends time in those states in a correct ratio, both At and Bt

increase. A geometrical intuition for these conditions is given in Figure 1.
The following theorem characterizes these conditions, and shows that if Su can be

reached, it can do so by using, indeed, only at most two of the states of the modulating
Markov process. Its (algebraic) proof is postponed to the appendix.

Theorem 3.1: The following three statements are equivalent:

1. The joint process can reach the set Su, in that P (∃t : At > u,Bt > u) > 0.
2. There exist i, j ∈ N (possibly i = j) and c, d ≥ 0 such that crA

i + drA
j > 0 and

crB
i + drB

j > 0.

3. There exists �c ∈ R
|N |
+ such that 〈�c, rA〉 > 0 and 〈�c, rB〉 > 0, where 〈·, ·〉 denotes the

inner product.

Figure 1. This figure illustrates the conditions under which the process can hit the set
Su = (u,∞) × (u,∞). The arrows represent the direction the process is going when Xt

remains in some state for one time unit. The first possibility is that there is an arrow in the
upper-right quadrant, like the bold arrow. The other possibility is that there are two arrows
in the upper-left and lower-right quadrant respectively, of which at least one is above the
dashed line and the other makes an angle less than 180◦ with the first one. An example for
this possibility is given by the two non-bold arrows.
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In order to avoid trivialities, we also assume that both components have a negative drift,
that is, 〈rA, π〉 < 0 and 〈rB , π〉 < 0, where π denotes the equilibrium distribution of X.

It is not clear yet that this process satisfies the conditions of the GE theorem. The
following theorem, which is a generalization of Kesidis et al. [9, page 5], shows that it indeed
does. Note also that condition (3) is satisfied trivially, since (θ1An + θ2Bn)∗ − θ1An − θ2Bn

is uniformly bounded in n. We can thus apply Theorem 2.2 to this model.

Theorem 3.2: The value of M(θ1, θ2) is equal to the largest real eigenvalue of the matrix

Q + θ1R
A + θ2R

B,

where RA and RB are diagonal matrices with the rate vectors rA and rB, respectively, on
their diagonals. Furthermore, M(·, ·) is differentiable.

Proof: We will first derive an expression for f(t) := E (exp(θ1At + θ2Bt)) =
∑

i fi(t),
where

fi(t) := E
(
eθ1At+θ2Bt1 (X(t) = i)

)
.

Relying on standard “Markovian reasoning]”, as Δ ↓ 0,

fi(t) =
∑
k 
=i

fk(t − Δ)qkiΔeθ1rA
kiΔeθ2rB

kiΔ + fi(t − Δ)(1 − qiΔ)eθ1rA
i Δeθ2rB

i Δ + o(Δ).

By writing exponentials as power series we straightforwardly obtain:

fi(t) =
∑
k 
=i

fk(t − Δ)qkiΔ(1 + θ1r
A
kiΔ)(1 + θ2r

B
kiΔ)

+ fi(t − Δ)(1 − qiΔ)(1 + θ1r
A
i Δ)(1 + θ2r

B
i Δ) + o(Δ),

which simplifies to

fi(t) =
∑
k 
=i

fk(t − Δ)qkiΔ + fi(t − Δ)(1 − qiΔ + θ1r
A
i Δ + θ2r

B
i Δ) + o(Δ).

Rearranging and dividing by Δ gives

fi(t) − fi(t − Δ)
Δ

=
∑
k 
=i

fk(t − Δ)qki + fi(t − Δ)(−qi + θ1r
A
i + θ2r

B
i ) + o(1).

Now letting Δ ↓ 0 and realizing that qi := −qii =
∑

k 
=i qki,

f ′
i(t) =

∑
k

fk(t)qki + fi(t)(θ1r
A
i + θ2r

B
i ),

which is in matrix–vector notation equivalent to f ′(t) = (QT + θ1R
A + θ2R

B)f(t). This
system of linear differential equations is solved by f(t) = exp((QT + θ1R

A + θ2R
B)t) f(0).

Along the lines of Kesidis et al. [9, page 5], the first result now follows.
Note that exp(QT + θ1R

A + θ2R
B) has positive entries only. This can be seen by

choosing some a > 0 large enough such that Q + θ1R
A + θ2R

B + aI ≥ 0 and hence

eQ+θ1RA+θ2RB

= eQ+θ1RA+θ2RB+aI−aI = e−aeQ+θ1RA+θ2RB+aI > 0.

The last strict inequality holds because Q is irreducible, and thus so is Q + θ1R
A + θ2R

B +
aI, and then according to Seneta [13, Lemma 1.3] some power of this matrix is positive. Note
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that each entry of exp(QT + θ1R
A + θ2R

B) can be written as a power series in the variables
θ1 and θ2, so each entry of exp(QT + θ1R

A + θ2R
B) is infinitely many times differentiable

with respect to these variables. It thus follows from Biggins and Sani [1, Proposition 1] that
M is differentiable. �

3.2. Simulation: Construction of an Efficient Method

As discussed in the introduction, we propose to use importance sampling in order to effi-
ciently estimate αu. In this section, we identify an appropriate new measure Q, adopting
an approach similar to that used in the one-dimensional case; see for example, Mandjes and
Ridder [11]. There it is argued that the decay rate can be found by solving the eigensystem
−θ∗RAx = Qx, that is, by calculating the eigenvectors and eigenvalues of (RA)−1Q, where
the non-negative eigenvector that corresponds to the largest negative eigenvalue, is used in
the change of measure; such eigenvector/eigenvalue pair exists due to “Perron–Frobenius”.
For the two-dimensional model, where the analogous eigensystem is −(θ1R

a + θ2R
b)x = Qx,

we can not use this method any more, since left-hand side of the eigensystem can not be
inverted without knowing θ1 and θ2 beforehand. However, we can combine Theorems 2.2 and
3.2 in order to find θ∗1 and θ∗2 numerically, by using binary search on the value of θ1 + θ2.
Once we have found θ∗1 and θ∗2 , we can use the eigensystem to calculate the appropriate
eigenvector.

Theorem 3.3: For all θ1, θ2 such that M(θ1, θ2) = 0, there exists x ∈ R
|N |
+ such that

−(θ1R
A + θ2R

B)x = Qx.

Proof: Since the value of M(θ1, θ2) is equal to the largest real eigenvalue of Q + θ1R
A +

θ2R
B, it follows from Seneta [13, Theorem 2.5(e) (pp. 40, 41)] that

qi > θ1r
A
i + θ2r

B
i

for all i. We need this for the existence of specific moment generating functions below. Let

xii := E

(
exp(θ1Ãii + θ2B̃ii)

)
,

where Ãii (B̃ii) denotes the net amount of fluid generated by At (Bt) between two
consecutive visits of the Markov process to state i. Likewise, we let

xij := E

(
eθ1Âij+θ2B̂ij

)
,

i �= j, where Âij (B̂ij) denotes the net amount of fluid generated by At (Bt) between a visit
of the Markov process to state i and the next visit to state j �= i. We can then write, by
conditioning on the first state the Markov process visits,

xii ≡ xii(θ1, θ2) =
∑
j 
=i

λij

λi

λi

λi − θ1rA
i − θ2rB

i

xji.

Using the reasoning of Mandjes and Ridder [11], solutions of M(θ1, θ2) = 0 also solve
xii(θ1, θ2) = 1. Canceling the qi and multiplying by the denominator of the right-hand side
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gives us

(λi − θ1r
A
i − θ2r

B
i )xii =

∑
j 
=i

qijxji,

which is equivalent to

(−θ1r
A
i − θ2r

B
i )xii =

∑
j

qijxji.

In the same way we can also write, for j �= i,

xji =
qji

qj − θ1rA
j − θ2rB

j

+
∑

d
=j,d
=i

qjd

qj − θ1rA
j − θ2rB

j

xdi,

which can be rewritten as

(−θ1r
A
j − θ2r

B
j )xji = qji +

∑
d
=i

qjdxdi.

As we have that xii = 1, we obtain, for all i, j that

(−θ1r
A
j − θ2r

B
j )xji =

∑
d

qjdxdi.

For fixed i, this can be rewritten as −(θ1R
A + θ2R

B)xi = Qxi, with xi := (xji)j . �

The new measure Q under which we sample (Xt)t≥0 is then constructed as follows. Let
θ∗1 and θ∗2 be the optimizing values resulting from Theorem 2.2, and let x be the correspond-
ing eigenvector as given in Theorem 3.2. We replace Q = (λij)i,j with Q̃ = (q̃ij)i,j , where
q̃ij := qijxj/xi for i �= j and q̃i := −q̃ii = qi − rA

i θ∗1 − rB
i θ∗2 .

Our objective is to show that this is indeed a good change of measure, in the sense that
it is asymptotically optimal (see Rubino and Tuffin [12, Definition 1, pp. 89, 90]). To this
end, let L be the likelihood ratio of a path generated under the change of measure for which
both At > u,Bt > u for some t > 0. Denote by Jm the state of the Markov process after
the mth jump and let Tm denote the time spent there. Furthermore, let

N := inf{n ∈ N : ∃t ≤ tnsuchthatAt > uandBt > u},

that is, N is the smallest number of jumps until there was some t such that both components
were bigger than u at time t. As pointed out in Rubino and Tuffin [12], the likelihood ratio
then reads

L =
πJ0

�J0

qJ0J1

q̃J0J1

· · · qJN−1JN

q̃JN−1JN

· qJN

q̃JN

· exp

(
−

N∑
m=0

(qJm
− q̃Jm

)Tm

)
, (11)

with � the invariant distribution of Xt under Q.
We first point out a “näıve” implementation, which we denote by Q1. Start with some

initial state X0, sampled according to �; say we draw j0. Then sample, according to the
corresponding exponential distribution (i.e., with parameter q̃j0), some time t0 > 0 for which
the Markov process remains in this state. We can then update the likelihood and calculate
At0 and Bt0 . If both are bigger then u we stop; else we sample the next state, say j1, using
the probabilities q̃j0,k/q̃j0 for k �= j0. We continue with this procedure until both AtN

> u
and BtN

> u.
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Figure 2. The process hits the desired set, bounded by the dashed lines, between t1 and
t2, but is not in the set at t1 or t2.

There is a complication, however. With the above procedure we only check at transition
epochs of the modulating Markov process whether or not Su has been reached. However,
this poses a problem which does not occur in the one-dimensional process: it could happen
that at two consecutive transition epochs the process did not reach the desired set, but at
some time epoch in between these jumps, it did. This scenario is illustrated in Figure 2.

As a result, using this procedure we do not estimate αu, but rather, with Un :=
T0 + . . . + Tn,

ᾱu := P (∃n ∈ N : AUn
> u,BUn

> u) .

Clearly ᾱu < αu, creating a bias.
Whether or not the scenario of Figure 2 has occurred can, however, easily be checked

from subsequent pairs of the form (AtN−1 , BtN−1) and (AtN
, BtN

). If this happens, we
propose to replace the factor

qJN

q̃JN

· exp (−(qJN
− q̃JN

)TN ) (12)

in (11) by

exp (−(qJN
− q̃JN

)τ) , (13)

where τ is the length of the interval between tN−1 and the first time epoch at which the
process hit the desired set. The theorem below states that this adapted version of the näıve
implementation, denoted by Q2, estimates αu in an unbiased and asymptotically optimal
way.

Theorem 3.4: The implementation Q1 yields an unbiased, asymptotically optimal estimate
of ᾱu. The implementation Q2 yields an unbiased, asymptotically optimal estimate of αu.
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Proof: We start by proving the claim regarding Q1. Directly from the definition of the
new rates q̃ij and the stopping time TN ,

L =
πJ0

�J0

xJ0

xJN

qJN

q̃JN

· exp

(
−

N∑
m=0

(qJm
− q̃Jm

)Tm

)

=
πJ0

�J0

xJ0

xJN

qJN

q̃JN

· exp

(
−

N∑
m=0

(rA
Jm

θ∗1 + rB
Jm

θ∗2)Tm

)
≤ k · exp (−(θ∗1 + θ∗2)u)

with

k := max
i,j

πi

�i

xi

xj

qj

q̃j
;

realize that
N∑

m=0

rA
Jm

Tm > u,
N∑

m=0

rB
Jm

Tm > u.

From this upper bound on the likelihood it follows that

lim
u→∞

1
u

ln EQ1

(
L21 (∃n ∈ N : AUn

> u,BUn
> u)

) ≤ lim
u→∞

1
u

ln
[
k · e−2(θ∗

1+θ∗
2 )u
]

= −2(θ∗1 + θ∗2).

From this and Theorem 2.2, asymptotic optimality follows.
Regarding implementation Q2, realize that, because of the definition of τ ,

N−1∑
m=0

rA
Jm

Tm + rA
JN

τ > u,

N−1∑
m=0

rB
Jm

Tm + rB
JN

τ > u.

In this case,

L =
πJ0

�J0

xJ0

xJN

qJN

q̃JN

× exp

(
−θ∗1

(
N−1∑
m=0

rA
Jm

Tm + rA
JN

τ

))

× exp

(
−θ∗2

(
N−1∑
m=0

rB
Jm

Tm + rB
JN

τ)

))

≤ k · exp (−(θ∗1 + θ∗2)u) .

Asymptotic optimality follows as before. To show that Q2 indeed yields an unbiased estimate
of αu, we need to show that (12) and (13) have the same expectation under Q2 whenever
TN > τ . Note that

EQ2

(
e−(λJN

−μJN
)τ1 (TN > τ)

)
= e−(λJN

−μJN
)τPQ (TN > τ)

= e−(λJN
−μJN

)τe−μJN
τ = e−λJN

τ ,
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and

EQ2

(
λJN

μJN

· e−(λJN
−μJN

)TN1 (TN > τ)
)

=
λJN

μJN

EQ2

(
e−(λJN

−μJN
)TN |1 (TN > τ)

)
PQ2 (1 (TN > τ))

=
λJN

μJN

e−(λJN
−μJN

)τEQ2

(
e−(λJN

−μJN
)(TN−τ)|1 (TN > τ)

)
PQ2 (1 (TN > τ))

=
λJN

μJN

e−(λJN
−μJN

)τEQ2

(
e−(λJN

−μJN
)TN

)
PQ2 (1 (TN > τ))

=
λJN

μJN

e−(λJN
−μJN

)τ μJN

μJN
− (λJN

− μJN
)
e−μJN

τ = e−λJN
τ ,

�

3.3. Numerical Results

We now consider some numerical examples. For the first example, we consider 20 on–off
processes feeding into a two-dimensional reservoir.

Each on–off process generates, while on, traffic at constant rate 3 (4) into the first
(second) reservoir. The first reservoir has a constant leak rate of 30.5, where for the second
reservoir this is equal to 47.5. Note that the reservoirs have an equal net input when 17 of
the sources are turned on. When a source is off, it will turn on at rate 2, while a working
source turns off at rate 3. Since all sources behave identically, it suffices to take as state
space N = {0, . . . , 20}, where Xt = i means that at time t there are i sources turned on.
The rate matrix Q is then

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 · · · 18 19 20
0 −40 40
1 3 −41 38
2 6 −42 36
3 9 −43 34
...

. . .
19 57 −59 2
20 60 −60

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and rA and rB are

rA =
(−30.5 −27.5 −24.5 · · · 26.5 29.5

)
,

rB =
(−47.5 −44.5 −40.5 · · · 28.5 32.5

)
.

The results can be found in Table 1.
The second example has the same structure as the first example. We now consider five

on–off sources. The first reservoir has a constant service rate of 8.5, where for the second
reservoir this is equal to 12.5. The other numbers are the same as for the first example.
Note that the reservoirs have an equal net input when 4 of the sources are turned on. A key
difference is that under the change of measure, in this example both queues have the same
drift, whereas is the first example At has a higher drift than Bt. Informally this means that
for the second example the two processes reach level u roughly simultaneously, while for the
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Table 1. Simulation results of the first example. We denote by α̂
the estimated probabilities for both importance sampling and Monte
Carlo sampling. Furthermore, we denote by θ∗ the value of (7). This
table also shows the number of samples needed to get a 95% con-
fidence interval with 10% precision. The missing values took more
than 100, 000 samples in order to give the desired precision. In this
case θ∗1 = 0, θ∗2 = 1.004.

Importance sampling Monte Carlo sampling

u α̂ α̂eθ∗u # Samples α̂ # Samples

0.25 2.95 × 10−2 3.79 × 10−2 4,884 2.78 × 10−2 13,457

0.50 1.76 × 10−2 2.90 × 10−2 5,667 1.70 × 10−2 22,212

1.00 7.97 × 10−3 2.18 × 10−2 6,846 8.22 × 10−3 46,369

1.50 4.94 × 10−3 2.23 × 10−2 10,987 4.78 × 10−3 80,170

2.00 2.24 × 10−3 1.66 × 10−2 5,113 – –

3.00 7.61 × 10−4 1.55 × 10−2 8,244 – –

4.00 2.83 × 10−4 1.57 × 10−2 14,962 – –

5.00 9.01 × 10−5 1.36 × 10−2 8,493 – –

6.00 3.42 × 10−5 1.42 × 10−2 9,893 – –

7.00 1.14 × 10−5 1.28 × 10−2 9,886 – –

8.00 4.63 × 10−6 1.43 × 10−2 10,354 – –

9.00 1.66 × 10−6 1.39 × 10−2 12,600 – –

10.00 5.87 × 10−7 1.35 × 10−2 12,777 – –

first example the joint process will hit the set Su when Bt does. The results can be found
in Table 2. In both examples, the number of runs needed when using importance sampling
is significantly lower than when ordinary Monte Carlo sampling is used. Furthermore, when
using Monte Carlo sampling, the number of runs needed increases rapidly as a function of u,
while there there is only a slight increase when using importance sampling.

In our next example the two processes are positively correlated. We let rA and rB be

rA =
(−8 −6 8 2

)
, rB =

(−5 −9 3 9
)
.

We let Q contain only ones off the diagonal, so that all values on the diagonal are −3. We
want to focus on the quality of the importance sampling results, so we did not do Monte
Carlo sampling. The results can be found in Table 3.

It can be seen that the logarithmic result is very accurate as u grows large, as the
fraction of the logarithmic result and θ∗ tends to unity. However, from the next column we
can see that by using the logarithmic asymptotics we lose some information, as the values
in that column do not tend to a constant.

In the fourth example, we let the two processes be negatively correlated. We let rA

and rB be

rA =
(−8 −6 8 2

)
, rB =

(
3 9 −5 −9

)
.

Note that rA is the same as in the fourth example, and that rB is a permutation of rB as
in the third example. The results can be found in Table 4.

It can be seen that the hitting probability decreases much faster than in the previous
example. This can be explained by the fact that the Markov process in the previous example
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Table 2. Simulation results of the second example. We denote by α̂
the estimated probabilities for both importance sampling and Monte
Carlo sampling. Furthermore, we denote by θ∗ the value of (7). This
table also shows the number of samples needed to get a 95% confi-
dence interval with 10% precision. The missing values took more than
100, 000 samples in order to give the desired precision. In this case,
θ∗1 = 0.128, θ∗2 = 1.072.

Importance sampling Monte Carlo sampling

u α̂ α̂eθ∗u # Samples α̂ # Samples

0.25 1.37 × 10−1 1.85 × 10−1 685 1.38 × 10−1 2,407

0.50 9.91 × 10−2 1.81 × 10−1 794 1.03 × 10−1 3,339

1.00 4.85 × 10−2 1.61 × 10−1 770 4.88 × 10−2 7,507

1.50 2.49 × 10−2 1.51 × 10−1 825 2.69 × 10−2 13,908

2.00 1.45 × 10−2 1.60 × 10−1 1,001 1.14 × 10−2 33,320

3.00 4.08 × 10−3 1.50 × 10−1 856 4.04 × 10−3 94,731

4.00 1.21 × 10−3 1.47 × 10−1 855 – –

5.00 3.51 × 10−4 1.42 × 10−1 723 – –

6.00 1.04 × 10−4 1.40 × 10−1 992 – –

7.00 3.30 × 10−5 1.47 × 10−1 1,517 – –

8.00 1.02 × 10−5 1.52 × 10−1 932 – –

9.00 2.71 × 10−6 1.34 × 10−1 1,035 – –

10.00 7.68 × 10−7 1.26 × 10−1 1,075 – –

Table 3. Simulation results of the third example. We denote
by α̂ the estimated probabilities. Furthermore, we denote by
θ∗ the value of (7). This table also shows the number of
samples needed to get a 95% confidence interval with 10%
precision. In this case θ∗1 = 0.094, θ∗2 = 0.001.

Importance sampling

u α̂ (−1/uθ∗) ln(α̂) α̂eθ∗u # Samples

1 6.37 × 10−1 4.748 7.00 × 10−1 73

2 6.14 × 10−1 2.572 7.42 × 10−1 40

3 5.23 × 10−1 2.273 6.96 × 10−1 67

4 4.46 × 10−1 2.125 6.52 × 10−1 84

5 4.72 × 10−1 1.580 7.59 × 10−1 54

6 3.62 × 10−1 1.784 6.40 × 10−1 96

7 3.28 × 10−1 1.677 6.37 × 10−1 100

8 2.98 × 10−1 1.592 6.38 × 10−1 89

9 3.11 × 10−1 1.366 7.31 × 10−1 70

10 2.58 × 10−1 1.428 6.66 × 10−1 80

20 8.60 × 10−2 1.291 5.75 × 10−1 129

50 4.80 × 10−3 1.124 5.54 × 10−1 181

100 3.39 × 10−5 1.084 4.52 × 10−1 260

250 2.00 × 10−11 1.038 4.09 × 10−1 344
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Table 4. Simulation results of the fourth example. We
denote by α̂ the estimated probabilities. Furthermore, we
denote by θ∗ the value of (7). This table also shows the
number of samples needed to get a 95% confidence interval
with 10% precision. In this case θ∗1 = 0.344, θ∗2 = 0.325.

Importance sampling

u α̂ (−1/uθ∗) ln(α̂) α̂eθ∗u # Samples

1 1.34×10−1 3.002 2.62×10−1 657

2 6.05×10−2 2.098 2.30×10−1 766

3 2.95×10−2 1.757 2.19×10−1 1,179

4 1.32×10−2 1.619 1.91×10−1 1,180

5 6.60×10−3 1.502 1.87×10−1 1,531

6 3.26×10−3 1.428 1.80×10−1 1,881

7 1.59×10−3 1.377 1.72×10−1 1,858

8 7.60×10−4 1.343 1.60×10−1 5,005

9 3.84×10−4 1.307 1.58×10−1 3,319

10 1.79×10−4 1.291 1.43×10−1 4,241

20 1.77×10−7 1.163 1.13×10−1 8,366

50 2.16×10−16 1.079 7.10×10−2 6,000

100 5.11×10−31 1.043 5.54×10−2 26,001

250 8.85×10−75 1.020 3.43×10−2 22,857

just needs to spend enough time in one of the to up-states for long enough, while in this
example the process needs to visit two states long enough, and also has to do this in a
correct ratio. Note that in this example it will happen frequently that the process will hit
the set (u,∞) × (u,∞) in the way as depicted in Figure 2.

4. OUTLOOK

There are some natural extensions of the theory developed in Section 2 that can be inves-
tigated, of which we briefly comment on two. The first one is whether the two-dimensional
theory can be extended to arbitrary higher dimensions. At the expense of introducing
additional notation and loss of transparency, Theorem 2.2 can indeed be extended to a
multi-dimensional result. For proving (5), the proof of the lower bound holds true triv-
ially in multiple dimensions. In proving the upper bound, instead of using a single weight
w ∈ [0, 1], one has to consider non-negative weights w1, w2, . . . , wd that add up to unity.
The proof of (7) does not use any specific two-dimensional argument, so is also valid for
multiple dimensions.

The second extension considers a bivariate process for which the two components have
to be larger than u but can do so at different times. Of course, this probability is greater
than the probability of the event which is considered in this paper. A significant difference
also occurs in simulating, because the simulation can now be split in two parts. First, one
simulates under a change-of-measure until one of the components has hit level u. After this
occurred, one can use a different change of measure until the other component hits level u;
under this different change of measure, the first component to have hit level u may now also
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have a negative drift, since it has already hit level u. The efficiency of this algorithm is not
obvious, and is currently under investigation.
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APPENDIX

Proof of Theorem 3.1

Proof: This is shown by proving a number of implications.
◦ “2 ⇒ 1”: Suppose there exist i, j ∈ N (possibly i = j) and c, d ≥ 0 such that crA

i + drA
j > 0

and crB
i + drB

j > 0. Assume without loss of generality that a direct jump of the Markov process
from state i to state j is possible. We may do this, because if this jump is not possible, we can
jump from state i to state j in arbitrarily small time (because we assumed the Markov process is
irreducible). Although this may have a very small probability, of importance is only that is has a
positive probability. Let

T :=
(c + d)u

crA
i + drA

j

∨ (c + d)u

crB
i + drB

j

.

If Xt = i for 0 ≤ t < c
c+dT and Xt = j for c

c+dT ≤ t ≤ T , then

AT =
1

c + d
(crA

i + drA
j )T ≥ u;

BT =
1

c + d
(crB

i + drB
j )T ≥ u.
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◦ “3 ⇒ 2”: This follows from Carathéodory’s theorem for convex cones, see Gallier [5, Theorem
2.4], but we give a direct proof below. Define the sets pp, pm,mp and mm (p stands for plus and
m for minus) as follows: pp := {k ∈ N : rA

k > 0, rB
k > 0}, pm := {k ∈ N : rA

k > 0, rB
k < 0}, etc. If

there exists k ∈ pp, then we are done (choose i = j = k and c = d = 1). Assume now without loss
of generality that each k ∈ N is either in pm or mp. We can do this, because we can change the
entries of �c belonging to states in mm to zero, which makes both inner products even larger. Note
now that neither pm or mp are empty. We let

i := arg max
k∈pm

rA
k

−rB
k

, j := arg max
k∈mp

rB
k

−rA
k

,

that is, i and j are the states which are the “closest” to the first quadrant in a geometrical sense.
We now want to shift “mass” from the entries of �c to ci and cj in such a way that both inner
products do not decrease. A correct way of doing that is by constructing c, d as follows:

c := ci +
∑

k∈pm,k 
=i

ck
rB
k

rB
i

, d := cj +
∑

k∈mp,k 
=j

ck
rA
k

rA
j

.

In this way, the negative contributions stay the same, while the positive contributions do not
decrease. We have thus found i, j ∈ N and c, d ≥ 0 with the desired requirements.
◦ “1 ⇒ 3”: Suppose we have a sample path such that At > u, Bt > u for some t. We can then
write

At =

∫ t

0
rA
Xs

ds =

|N |∑
i=1

cir
A
i , Bt =

∫ t

0
rB
Xs

ds =

|N |∑
i=1

cir
B
i ,

for some ci ≥ 0. Choose �c = (c1, c2, . . . , c|N |). �
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