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Summary
This paper proposes an intelligent cooperative collision avoidance approach combining the enhanced potential field
(EPF) with a fuzzy inference system (FIS) to resolve local minima and goal non-reachable with obstacles nearby
issues and provide a near-optimal collision-free trajectory. A genetic algorithm is utilized to optimize parameters
of membership function and rule base of the FISs. This work uses a single scenario containing all issues and
interactions among unmanned aerial vehicles (UAVs) for training. For validating the performance, two scenarios
containing obstacles with different shapes and several UAVs in small airspace are considered. Multiple simulation
results show that the proposed approach outperforms the conventional EPF approach statistically.

1. Introduction
Unmanned aerial vehicles (UAVs) are used to perform numerous missions in areas like military, surveil-
lance, patrolling, monitoring, agriculture, search and rescue, and delivery of essentials because of their
low cost, high reliability, and better flight performance compared to manned aircraft [1–4]. Furthermore,
UAVs are a better alternative in scenarios deemed dangerous for manned aircraft like military opera-
tions in conflict-ridden environments as they do not endanger human life. This has led to an increased
airspace demand which requires improved methods for assisting decision-makers and increasing oper-
ational efficiency in managing congestion. With UAV traffic expected to increase exponentially in the
future [5], deconfliction processes need to be executed in real time to minimize conflicts and assist
airspace managers in optimizing airspace utilization.

Several studies have been conducted, and many methodologies concerning collision avoidance (CA)
have been developed. Hoy et al. [6] presented a survey of the various approaches regarding CA for
mobile robots in complex environments. Diankov and Kuffner [7] presented a randomized statistical path
planning approach based on rapidly exploring random trees (RRTs) for efficiently controlling a robotic
manipulator in a cluttered environment exploring the use of statistical learning methods on randomized
path planning algorithms. Sanchez-Lopez et al. [8] proposed a real-time path planning solution using
an A∗ graph search algorithm to find a raw collision-free path. The use of graph-search algorithms
provides good results but has significant limitations. This approach requires enough sampling space and
a sufficient number of nodes before the start of the algorithm which makes it more suitable for initial path
planning instead of real-time CA. Temizer et al. [9] presented a CA model for unmanned aircraft based on
partially observable Markov decision processes. The proposed approach can identify and generate new
paths that are least deviated from the original flight plan and are free from collisions. It accommodates
flight dynamics, intruder behavior, and sensor characteristics. Due to a large number of parameters,
however, the state space is too large for many solvers, and therefore the solution is only presented for a
two-dimensional (2D) model. Techniques based on geometric approaches are proposed by Strobel et al.
[10] and Park et al. [11]. One of the major issues with geometric techniques is that they depend on
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cooperation from intruder aircraft using sensors such as automatic-dependent surveillance-broadcast,
and therefore they cannot work with non-cooperative obstacles. Furthermore, this makes them more
susceptible to noise. Also, they do not offer good performance in the presence of multiple obstacles.
Zhang et al. [12] demonstrated the use of optimization techniques to find the most suitable trajectory
for CA models where the cost function is specified as the total distance traveled by the vehicle with no
collision. One of the major issues with this approach is selecting the initial guess for optimization and
the dependence of the final solution on these values leading to non-generalized solutions. Elmokadem
and Savkin [13] proposed a trajectory planning method based on constrained multi-objective particle
swarm optimization for robotic manipulators. However, optimization techniques are undesirable for real-
time CA applications because of the high computational burden and therefore are generally preferred
for trajectory pre-planning instead. Mehdi et al. [14] proposed piece-wise Bezier curves for avoiding
collisions during multi-robot mission operations. Techniques such as this offer smoother trajectories but
fail to satisfy assumptions and bounds on dynamic constraints such as position, velocity, and acceleration
changes in some situations reducing the completeness of the approach.

Among several CA algorithms, the artificial potential field (APF) approach has been widely used
for various autonomous systems. The concept of the APF was introduced by Khatib [15] in which
autonomous robots are attracted to the target location and repelled by the obstacles in their paths. This
approach has been widely accepted and used for CA applications due to the simplicity of this idea.
However, an agent based on the APF may be trapped in local minima situations and/or fail to reach the
goal because of the algorithm’s limitations. In particular, the latter case is called the goal non-reachable
with obstacles nearby (GNRON) problem. Plenty of studies have been performed for resolving these
drawbacks. Some researchers proposed combining the APF with other algorithms. For example, the
RRT is used as a global planner in the presence of only static obstacles to generate a path that does not
encounter the local minima and GNRON, and then the APF is applied to the prior path [16]. Similarly, a
bug algorithm [17] is proposed to handle such issues for the APF in static obstacles’ existence environ-
ment. Park et al. [18] proposed an obstacle avoidance technique by combining the APF and fuzzy logic.
While the attractive potential field used the existing form as it is, the repulsive potential field of the APF
is replaced with the fuzzy inference system (FIS). However, this work mainly focuses on resolving one of
the local minima issues. Others proposed modifying the attractive and/or repulsive potential functions in
the APF. Some considered appending additional terms to potential functions. One of the examples is that
rational and sinusoidal functions are added to the attractive and repulsive potential functions to resolve
the GNRON and local minima issues, respectively [19]. Also, additional functions by including signum
functions are added to the repulsive potential function to resolve both issues [20]. These two studies
considered static obstacles existence environment only. In other studies, the polynomial potential func-
tions are replaced with the exponential functions [21] and the Gaussian functions [22] in the presence
of static and dynamic obstacles. Zhang et al. [23] and Yang et al. [24] proposed the repulsive poten-
tial function multiplied by the relative distance between the agent and the goal as an additional term.
To resolve the APF’s shortcomings, these papers considered static and non-cooperatively maneuvered
dynamic obstacles. Pan et al. [25] appended the relative distance between the agent and obstacles to the
attractive and repulsive function for resolving the GNRON issue and an additional polynomial equation
to the repulsive potential function that is designed to be activated in the local minima issue. In this case,
only static obstacles are considered. Although avoiding collision among multi-robots for formation con-
trol in this research, it is different from the cooperative CA between an agent and dynamic obstacles. In
addition to those studies, there is one more research that the concept of the APF is utilized for build-
ing FISs [26]. This study resolves the APF’s issues and shows that the proposed approach has better
performance than the APF. However, this method does not guarantee better performance in the pres-
ence of dynamic obstacles. Vadakkepat et al. [27] proposed an evolutionary APF. The parameters of the
APF are optimized with respect to the total path length using a multi-objective evolutionary algorithm.
However, the parameters are optimized for only obstacles of equal size, and the simple environment
with only one static or dynamic obstacle case is considered. Lee et al. [28] proposed a CA approach
that combines the APF and motion primitives (MPs). When a collision checker detects collision risk on
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extracted sample points from the expected trajectory, replanned path candidates were generated. After
rejecting unsafe route candidates, the APF to choose the best route among the remaining candidates was
applied. Then, the MPs generated a locally optimal and dynamically feasible trajectory. Choi et al. [29]
proposed an enhanced potential field (EPF) approach to resolve the local minima by introducing the
concept of curl-free vector fields. This research focuses on generating smooth trajectories for dynamic
obstacles compared to the APF rather than handling all the known issues of the APF. A critical fac-
tor that affects the performance of the APF and APF-based methods (e.g., path length, smoothness of
the path, etc.) is the determination of the proper coefficients for designing the attractive and repulsive
potential functions.

A fuzzy EPF (FEPF) system is proposed in this work to overcome the EPF’s drawbacks as the concept
is intuitive and easy to realize. It comprises FISs that are used to determine the magnitudes of attractive
and repulsive potential fields instead of using the potential function formulation in the EPF method-
ology. FISs allow for a scalable setup as the coefficients required for the magnitude determination for
the potential fields in the conventional methods are not necessary anymore. The FISs are optimized to
generate near-optimal trajectories for UAVs with a performance comparable to traditional methods. A
genetic algorithm (GA) optimizes the parameters of the FISs as its meta-heuristic evolutionary nature
makes it good at avoiding local optima and finding a near-optimal solution that minimizes the cost func-
tion. Combined, the genetic fuzzy system (GFS) is a method that provides results that are explainable
when compared to traditional learning algorithms (e.g., neural networks and random forests) and outper-
forms the EPF approach. Furthermore, a FIS offers traceability in its approach providing a transparent
workflow of the algorithm.

The main contributions of this work include the following:

• Resolve the GNRON and the local minima issues prevalent in traditional algorithms like EPF.
• Avoid the manual selection of coefficients in the EPF formulation for varying scenarios.
• Find a near-optimal trajectory for all UAVs in a specified region in the aspect of the travel distance.
• Offer a robust, scalable, and explainable learning approach that learns from a simple scenario and

can handle complex environments.

This paper is organized as follows: Section 2 addresses the preliminaries defining the various concepts
and techniques. Section 3 explains the methodology proposed. Section 4 defines the simulation scenarios
and discusses the results. Conclusions are presented in Section 5.

2. Preliminaries
2.1. Problem statement
A set of simple and untraversable static obstacles defines a 2D environment spanning across an area
of 300 m by 300 m. Other UAVs that travel through the region act as dynamic obstacles. The UAVs
are not allowed to come within the thresholds of any of these obstacles. The safety threshold of these
static and dynamic obstacles is defined in detail in Section 3.1.2. The environment outside the UAVs
and obstacles is considered uniform and easy to traverse. Circular shapes of different radii represent
the UAVs and static obstacles for simplicity. However, various-shaped static obstacles are considered
for testing the proposed approach. Velocity limits are imposed for the UAVs to make the scenario more
realistic. The optimality criterion for the GA is the distance traversed by the UAVs and is described in
detail in Section 3.3.

2.2. Enhanced potential field
One of the most widely used algorithms for path planning and CA is the APF due to a simple principle
and a smooth trajectory. The APF is composed of two potential fields: attractive and repulsive poten-
tial fields. While a goal attracts a UAV in the attractive potential field, obstacles repel the UAV in the
repulsive potential field.
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Since the EPF is designed based on the concept of APF, the attractive and repulsive potential functions
are the same as APF and are defined as [15,29–31]

Ua(q) = kad(q, qg)na , (1)

Ur(q) =
{

kr

(
1

d(q,qo)
− 1

do

)nr

, if d (q, qo) ≤ do,

0, if d (q, qo) > do,
(2)

where ka and kr are the attractive and repulsive gain coefficients, na and nr are the order of attractive and
repulsive potential functions, q is the UAV’s current position vector, qg is the goal position vector, qo is
the obstacle’s position vector, d(a, b) is the relative distance between two arbitrary vectors a and b, and
do is the limit distance of the repulsive potential field influence.

The corresponding attractive and repulsive potential fields are obtained by computing the negative
gradient of each potential function. Unlike the APF, the EPF introduces an additional variable, called a
rotation matrix R, and the potential fields in the EPF are derived as follows [29]:

fa(q) = −∇Ua(q) = kanad(q, qg)
na−1 ∂d(q, qg)

∂q
, (3)

fr(q) = −∇Ur(q) =
⎧⎨
⎩−krnr

(
1

d(q,qo)
− 1

do

)nr−1
R

d(q,qo)2
∂d(q,qo)

∂q
, if d (q, qo) ≤ do,

0, if d (q, qo) > do,
(4)

where ∂d(q,qg)

∂q
is the direction from the UAV to the goal location, and ∂d(q,qo)

∂q
is the direction from the UAV

to the obstacle. Since the repulsive potential field is generated for each obstacle, the total potential field
for n obstacles is expressed as

ft = fa +
n∑
i

fri . (5)

It is important to note that the direction of the repulsive potential field in the EPF is different from the
one in the APF because of the rotation matrix. To determine the direction of the repulsive potential field,
R is selected based on information of the speed (||q̇||) of the UAV and the obstacle(s) and the relative
angle (γ ) between the UAV and the obstacle(s). Note that obstacles can be either static (with zero speed
like buildings) or dynamic (with certain speeds like UAVs). The direction of the repulsive potential field
in the EPF is determined as described in Algorithm 1.

Algorithm 1 Direction determination algorithm
Inputs: q̇i, q̇j, γi, γj

Outputs: R
if ||q̇i|| ≥ ||q̇j|| then else

if γi ≥ 0 then if γj ≥ 0 then

R =
[

cos α − sin α

sin α cos α

]
≡ Ru, α ≡ π

4
R = Ru

else
else R = RT

u

R = RT
u end if

end if end if
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Figure 1. Block diagram of a GFS.

2.3. Genetic fuzzy system
The GA is an evolutionary search algorithm inspired by Darwin’s theory of natural evolution [32], and
a GFS utilizes the GA to optimize the parameters defining the FISs [33]. The GA aggressively searches
throughout the specified search space for a near-optimal solution. A FIS is a system that maps the inputs
to an output using the fuzzy set theory and a rule base [34]. The FISs used in this study are known as
the Mamdani type of FISs [35], herein referred to as FIS. On feeding numerical inputs to the FIS, the
FIS converts these values into fuzzy inputs by defining a degree of membership to each membership
function (MF) for the numerical value. This process is known as fuzzification. The rule-based inference
is then performed on these fuzzy inputs to obtain an output value that belongs to the output MFs with
varying degrees of membership. After the inference, the fuzzy outputs are converted back into numerical
values based on their membership value for each MF. Since the inputs may belong to multiple MFs, there
can be more than one output with varying memberships. These are aggregated into a single fuzzy set
by overlapping all the individual output fuzzy sets. The fuzzy output data then require defuzzification
into numerical values to obtain proper values of the magnitudes of potential fields. The defuzzification
method used in this study is called the centroid defuzzification method [36], and the numerical result
is the centroid of the combined fuzzy set. However, the tuning of the FIS parameters using the GA is
required, based on some pre-defined evaluation criteria, making the model more responsive to different
kinds of situations that the individual UAV may encounter during a mission.

One of the primary advantages of this approach is that a FIS provides explainability in terms of lin-
guistic description for the decision-making process. In addition to this, the aggressive search capability
of the GA ensures that the solution is near-optimal. Fig. 1 represents a block diagram defining the basic
process flow of a GFS. The tunable parameters of the FISs include the centers and edges of the MFs and
the rule base.

3. Methodology
3.1. Fuzzy EPF model
3.1.1. Model definition
To adopt the FIS for CA, a new compact form of the potential fields that are composed of the magnitude
and the direction is proposed:

fa(q) = ma

∂d(q, qg)

∂q
, (6)

fr(q) = mrR
∂d(q, qo)

∂q
, (7)
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Figure 2. Structure of FISs.

where ma and mr are the magnitude of the attractive and repulsive potential fields, respectively. Equations
(6) and (7) are used as new formulations of the FEPF, and the magnitude for each potential field is
determined by fuzzy logic. Using these compact equations, the number of parameters to be determined
is reduced from five (ka, ka, na, nr, and do) to two (ma and mr), and one can avoid trial and error to
determine such parameters. Note that R is determined using the same criteria defined in Algorithm 1.

In this study, two sets of FISs are defined, and each FIS has two inputs and one output as shown in
Fig. 2. To determine the magnitude of the attractive potential field, “GOALDIST” for the distance from
the UAV to the goal location and “VELDIFF” for the velocity of the UAV relative to the goal location are
used as inputs. In addition, “OBSDIST” for the distance from the obstacle to the UAV and “ANGDIFF”
for the relative angle between the UAV and the obstacle are used as inputs to determine the magnitude
of the repulsive potential field. When the number of obstacles is more than one, the repulsive potential
field for a particular UAV is determined with respect to all the obstacles (see Eq. (5)). The goal distance
is determined as the distance between the goal position and the center of the circular UAV minus the
radius of the UAV since it has a fixed radius. The dynamic obstacles also have their own radii, and the
obstacle distance is calculated as the distance between the centers of the UAV and the dynamic obstacle
minus the radii of both the UAV and the dynamic obstacle. For each static obstacle, the nearest point
on the obstacle from the UAV is selected to compute the obstacle distance. The velocity difference is
determined as the relative velocity between the UAV and the goal, and the angle difference is defined as
the absolute relative angle between the UAV’s velocity vector, and the relative position vector from the
UAV’s position to the obstacle’s position. The range of all the inputs is defined in Fig. 3.

The inputs for the two FISs are chosen based on some knowledge of the existing EPF method. Figure 3
shows all the MFs for the inputs and outputs used in this work. The strength of the attractive potential
field depends on the distance from the goal and the relative velocity difference, as the UAV must move
towards the goal with maximum velocity and slow down as it approaches it. For the repulsive potential
field, the ideal inputs are the relative distance and the relative angle to the obstacles allowing the UAVs
to maneuver around the obstacles as they approach them. Furthermore, if the UAVs pass by the obstacles
at a safe relative angle, they should maintain a safe distance. For simplicity, three MFs represent every
input as the number of rules for a 2-input 1-output FIS is equal to n × m, where n and m are the numbers
of MFs for each input. For three MFs representing both the inputs, there are nine rules. The purpose
of a trapezoid MF (e.g., Far in Fig. 3b, Small in Fig. 3d, etc.) is primarily at the extreme ranges of
the inputs and is generally defined using four parameters. A triangular MF (e.g., Medium in Fig. 3b,
Medium in Fig. 3d, etc.) is more common in the non-extreme numerical range of an input/output, and
three parameters represent such a MF. Note that fine-tuning some of the parameters that define these
MFs (e.g., the centers and/or edges of each MF as shown in Fig. 3) is necessary to obtain better results.
These parameters form the vector (P) used by the GA to find a near-optimal solution.
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Figure 3. MFs for FIS-1 (Attractive) and FIS-2 (Repulsive).

A matrix of if-then statements maps the respective inputs to the corresponding output forming the
rule base of a FIS. Tables I and II show the rule matrices for both FISs. The rules can be represented
linguistically in terms of the MFs using the examples given as follows:

• If GOALDIST is Close and VELDIFF is Small, then Magnitude of Attractive Potential is Small.
• If OBSDIST is Far and ANGDIFF is Large, then Magnitude of Repulsive Potential is Zero.
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Table I. Rule matrix for FIS-1 (attractive).

Velocity difference

Small Medium Large
Goal distance Close Small/1 P(12) P(13)

Medium P(14) P(15) P(16)
Far P(17) P(18) P(19)

Table II. Rule matrix for FIS-2 (repulsive).

Angle difference

Small Medium Large
Obstacle distance Close P(20) P(21) P(22)

Medium P(23) P(24) P(25)
Far Zero/1 Zero/1 Zero/1

Tables I and II contain the rule base of the two FISs. Although the rule base is composed of linguistic
variables, such as Small, Medium, and Large, this work assigns numerical values to each linguistic
variable for simplicity of the optimization process. The numbers 1, 2, and 3 represent the output MFs,
that is, Small, Medium, and Large in the FIS-1 (Table I) and Zero, Medium, and Large in the FIS-2
(Table II), respectively. The vector P contains some of these rules alongside the MF parameters for the
optimization process. The GA tunes the FISs by searching for the optimum value of the parameters in
vector P within the defined search space (see Section 3.3). Figure 2 shows the structure of each FIS.

3.1.2. Uncertainties
Two kinds of uncertainties considered in this study are explained as follows. Using these measures of the
uncertainties, thresholds are defined around the obstacles and UAVs which other UAVs may not enter.
The threshold values are defined differently in both cases.

• Modeling Uncertainty: After training the model, there might be some scenarios where collisions
may occur due to factors like non-optimal models and outliers. A probabilistic value in the range
(0,1] represents the modeling uncertainty to compensate for such situations. In this study, a sub-
stantial stochastic value of 2/3 can accommodate most of the uncertainties. This value then defines
the threshold (τ1) as follows:

τ1 = 2 × Max. Radius of UAV × (1 + Modeling Uncertainty), (8)

where the Max. Radius of UAV is set as 0.6 m.
• Environmental Uncertainty: After compensating the model for training uncertainties, there might

still be a scenario with potential collisions due to environmental factors, such as unexpected gusts of
strong winds and bad weather. The probabilistic value, in this case, is chosen to be 1 to compensate
for worst-case scenarios. The threshold for this model (τ2) depends on both the environmental and
modeling uncertainties as follows:

τ2 = τ1 × (1 + Environmental Uncertainty). (9)

From the above descriptions, the threshold values for the two models are 2 and 4 m, respectively, and
the threshold values are applied to the proposed model in the training process.
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Figure 4. Solution to the local minima problem caused by symmetric blocking.

3.2. Local minima problem caused by symmetric obstacle blocking
Consider a UAV is in a situation as depicted in Fig. 4a. It fails to find a trajectory around the obstacles
as both obstacles have a different repulsive potential field pulling it close enough. In other words, the
attractive potential field strength becomes equal to the net repulsive potential field strength, and they
have opposite directions. Then, it eventually leads the UAV to get stuck. Although the FEPF can resolve
this local minima issue, it is unfavorable in the aspect of the path length. For this reason, an algorithm
to resolve such a situation is explained as follows:

• Get the enclosing points of the two obstacles as shown in Fig. 4b.
• Find the ellipse that fits those points using the least-squares estimation method [37].
• Find an ellipse with slightly greater major and minor axes than the fitting ellipse to properly enclose

the obstacles.

To obtain the set of enclosing points, a line is drawn between the centers of the two obstacles.
The enclosing points are the points lying on the circular obstacles between ±π/4 and ±5π/4 angles,
depending on the side. These angles are chosen concerning the connecting line as shown in Fig. 4b.

When the obstacles are close to the UAV, such that it cannot pass in between the obstacles, the UAV
considers them a single obstacle. The shape of the new obstacle is the smallest ellipse that encloses both
the circular obstacles. Figure 4b shows the result obtained using the suggested methodology.

3.3. Model optimization
As mentioned in the previous sections, the GA is utilized to optimize the FISs in this work. The first step
to implement the GA is to define the search space of the various parameters that are to be optimized.
The GA heuristically then searches these spaces for optimal solutions. Table III contains the elements
of P and their respective search regions.

Table IV specifies the operational parameters for the GA. The GA terminates upon reaching the
maximum generations or if the solution remains unchanged for a specified stall number. Here, the stall
number is specified as half the maximum generations.
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Table III. Search space of the FIS parameters.

Category Parameter Minimum Maximum Data
value value type

Membership functions P(1) 0 50 Real
P(2) 5 50
P(3) 0.1 1
P(4) 0.1 10
P(5) 0.2 1
P(6) 5 50
P(7) 5 50
P(8) 0 π

P(9) π/4 π/2
P(10) 0 π

P(11) 0 1
Rule base P(12)–P(25) 1 3 Integer

Table IV. Operational parameters for the GA.

Parameter Value
Population size 16
Selection algorithm Tournament selection
Tournament size 4
Crossover algorithm Single-point crossover
Probability of crossover 0.8
Probability of mutation 0.2
Elitism ratio 0.2
Maximum number of generations 100
Stall number of generations 50

The evaluation criteria, or the fitness function for the GA, are defined as the total distance traveled by
all the UAVs, and the GA aims to find a solution with the minimum fitness value. The fitness function
(F) is formulated as

F =
n∑

i=1

di + ρ, (10)

where di is the distance traveled by i-th UAV, and ρ is the penalty applied for undesired trajectories.
The undesired trajectories include collisions between UAVs, collisions between a UAV and an obstacle,
and the UAV traveling outside the specified region. Under such circumstances, large penalty values are
applied to the fitness value.

4. Simulation study
4.1. Simulation description
4.1.1. Training scenario
To tune the parameters of the proposed model, this work considers the following scenarios that are
popular situations in the CA research field:

• Local Minima
• Aligned Obstacle - An obstacle presents exactly between the start position and the goal position

of the UAV.
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Figure 5. Training scenario with the resulting EPF trajectory.

• Symmetric Blocking - Two obstacles symmetrically block the UAV’s path towards the goal
location.

• GNRON - An obstacle presents really close to the goal location affecting the UAV’s ability to reach
the goal.

• Dynamic Interaction - Multiple UAVs come from various directions and interact with each other
in the presence of static obstacles, imitating a real-life interaction.

The above scenarios are modeled into a single training scenario with circular obstacles as shown in
Fig. 5. UAV1 first encounters the aligned obstacle, one of the local minima cases, and then heads to the
goal position that has the GNRON problem. UAV3 faces the symmetric blocking case, which is the other
case of the local minima. Lastly, UAV2 and UAV4 interact with each other in the middle of their travels.
To define the behavior for the UAVs, the speed and size of all UAVs are pre-defined as fixed values
between some ranges. The radii of the UAVs are randomly selected within 0.2–0.6 m, and the average
speed is also randomly chosen between 6.5 and 7.5 m/s. Note that the commercial drones’ specifications
[38] are referred for determining the UAVs’ radii and average speed. For the information of the dynamic
obstacles (the UAVs operating in the given airspace), the state information of other UAVs is known to
the UAV because one assumes cooperative UAVs. In addition, this research assumes that the information
of each static obstacle is known to the UAVs as a set of points about the outer edge of the obstacle, like
a point cloud.

The trajectories obtained using the EPF methodology are shown in Fig. 5. In this result, UAV1 escapes
the local minima successfully. However, UAV3 and UAV1 fail to reach the goal location because of the
limitations of the EPF. Due to such behavior, the training scenario consists of a combined model based
on the above situations. For this scenario, the threshold values (τ1 and τ2) are 2 and 4 m, as explained in
Section 3.1.2, while the physical collision occurs at 1.2 m.

4.1.2. Testing scenarios
Using the optimized FEPF model, two types of testing simulation studies are defined. First, an envi-
ronment with various shaped obstacles, such as triangular and U-shaped, is modeled for the UAVs to
validate the robustness of the proposed approach.
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Figure 6. Testing environment.

The quick hull algorithm finds a convex hull of extreme points on the obstacle surface and forms
polygons representing the U-shaped obstacles. The following steps define the process of the quickhull
algorithm [39]:

1. Find the points with minimum and maximum x coordinates and generate the line using two points
to divide into two subsets of the given points.

2. Find the point with the maximum distance on one side of the line and make a triangle using the
line and the point.

3. Repeat step 2 on the two lines formed by the triangle except for the initial line.
4. Repeat steps 2 and 3 until no more points are left.

In the second testing study, several UAVs are operated within the same region to highlight the scal-
ability of the proposed approach. The primary metric of comparison is the total path length of all the
UAVs. As a prerequisite, Monte Carlo simulations are conducted with different amounts of UAV traffic
to determine the necessary air traffic in the specified region for testing purposes. Start locations of up to
32 UAVs are generated randomly in a 300 m by 300 m obstacle-free area, depicted by the orange shaded
region in Fig. 6. The UAVs travel to the opposite side of the airspace with a random velocity between
6.5 and 7.5 m/s. The number of UAVs in a specified area is calculated at each time to determine the
number of active interactions. The maximum number of UAVs within a specified threshold of 4 m and
the maximum number of UAVs inside the influence range of repulsive potential fields (defined as 30 m)
are found as 4 and 14, respectively. Based on these results, the number of UAVs in the given airspace
is selected. For a fair comparison between the approaches, the testing scenarios do not include the local
minima and GNRON situations. Furthermore, to increase the number of interactions, the various shapes
of static obstacles, such as triangles, rectangles, and convex shapes, are included. Moreover, both the
EPF and FEPF approaches include the quick hull algorithm for a fair comparison. Simulations are con-
ducted in testing scenarios with 4–14 UAVs (incrementing by 2) to validate the performance of FEPF
against EPF, leading to a total of six different testing simulations. For a precise comparison, 100 ran-
domized simulations for each of these test environments are conducted, leading to a total of 6 × 100 =
600 different scenarios for comparison. These different scenarios have different start and goal positions
located within the highlighted (orange) area in Fig. 6.
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Table V. Total path length and minimum relative distance for each approach.

EPF FEPF1 FEPF2
Total path length 1158.47 m 1152.57 m 1157.72 m
Minimum relative distance 9.40 m 7.00 m 9.13 m

Table VI. Total path length for each approach of 4 and 8 UAVs cases.

EPF FEPF1 FEPF2
4 UAVs 1023.54 m 1017.06 m 1019.90 m
8 UAVs 2245.53 m 2222.39 m 2231.31 m

Figure 7. 2D trajectories of training scenario for the EPF and FEPF.

4.2. Results
The results using the FEPF tuned by the GA are compared to the results using the EPF approach to
validate the performance of the proposed method. The 2D trajectories of UAVs for the training scenario
are described in Figs. 7 and 8, and the trajectories obtained using the EPF and the FEPF approaches
considering uncertainties are overlapped. Note that the FEPF1 and FEPF2 are the FEPF using τ1 and τ2,
respectively. As shown in Fig. 7, the FEPF approach avoids static and dynamic obstacles and reaches
goal locations successfully. In Fig. 8, the detailed trajectories for each approach are described. Since the
FEPF1 is trained using a smaller threshold value than the FEPF2, the FEPF1 performs the avoidance
maneuver closer to obstacles compared to the FEPF2.

To validate the performance of the proposed approach, obstacles with different shapes, such as a
trapezoid, parallelogram, rectangle, and U-shape, are used in the first testing scenario. Both EPF and
FEPF use the quickhull algorithm to model U-shaped obstacles for a fair comparison. Figure 9 shows
the 2D trajectories for each approach. The FEPF1 trajectory maintains a closer relative distance from the
obstacles compared to the EPF and FEPF2 approaches. The total path lengths and the minimum relative
distances for all the approaches given in Table V show that FEPF1 provides the shortest path, and the
UAVs using FEPF1 avoid the obstacles with a smaller relative distance as shown in Fig. 9.
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Figure 8. Detailed trajectories of training scenario.
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Figure 9. Testing results in the presence of various-shaped obstacles.
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Figure 10. Testing results for 4 and 8 UAVs.
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Figure 11. Testing results for FEPF1.

In the second testing scenario, 600 simulations (100 for each case with 4, 6, 8, 10, 12, and 14 UAVs)
with random start and goal positions are performed. As a result of 100 tests for each case, it is found that
no collisions occur for any method. Among the test results, the cases where 4 and 8 UAVs cooperate
are selected to display as shown in Fig. 10 to highlight the path difference. Like the training results, it is
found that the trajectories produced by the EPF are longer than the trajectories of the FEPF1 and FEPF2.
The obtained total path length for the EPF, FEPF1, and FEPF2 is listed in Table VI. As expected, the
FEPF1 has the shortest path length among the approaches.

For the case where 14 UAVs cooperate, one of the results that have the closest relative distance
between the UAV and obstacles is displayed in Figs. 11 and 12. The red line in Figs. 11a and 12a high-
lights the trajectory of the UAV that has the closest relative distance from the obstacles. Although UAV9
in Fig. 11a and UAV14 in Fig. 12a detour near the static and dynamic obstacles, both UAVs success-
fully avoid collision and reach the goal position. In Figs. 11b and 12b, the relative distances between the
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Figure 12. Testing results for FEPF2.

obstacles and the UAV with the red line in Figs. 11a and 12a are displayed as 1.31 and 3.41 m, respec-
tively. Note that the blue and red dotted lines indicate the threshold and physical collision, respectively.
If the relative distance is larger than the threshold, the UAV performs the CA maneuver safely, and the
UAV collides with an obstacle when the UAV has a smaller relative distance than the red dotted line. If
the UAV has a relative distance between the blue and red dotted lines, there is a possibility for the UAV
to have potential collision risk because of uncertainties, but it still avoids obstacles successfully. Since
both cases keep the relative distance larger than the physical collision value, it confirms that all UAVs
avoid obstacles without collision. Although the FEPF2 has a large threshold value for considering two
kinds of uncertainties, it may have potential collision risk in the complex environment that there are a
greater number of static obstacles and UAVs in airspace than one considering in this research.

To validate the performance of the proposed approach, the path length ratio between the EPF and the
FEPF is considered, and the results are shown in Figs. 13, 14, 15, and 16. Note that the path length ratio
is calculated by

Path length ratio = Total path length of UAVs generated by the FEPF
Total path length of UAVs generated by the EPF

. (11)

This equation means that the path length ratio is under 1 when the FEPF has a shorter path length
than the EPF. Also, the average path length ratio differences in Fig. 15 are the average value of the
differences from 1. Here, an approach with a larger path length ratio has a shorter path length. In Fig. 16,
a comparison of the number of cases that have better performance (i.e., a shorter path length) for each
approach is displayed. As shown in the results, the FEPF approaches have a shorter path length than the
EPF overall. Between the FEPF1 and FEPF2, the FEPF1 has more cases that have a better performance
than the FEPF2 as shown in Fig. 16. In addition, the FEPF1 provides a shorter path length compared to
the FEPF2 because the threshold value of the FEPF1 is smaller than that of the FEPF2.

5. Conclusion
This research proposes a novel approach to provide shorter, local-minima-free, and GNRON-free CA
trajectories. The proposed approach is named the fuzzy EPF, simply called FEPF, since it combines a
FIS and the EPF. The magnitudes of attractive and repulsive potential fields are determined using the
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Figure 13. Path length ratio for EPF and FEPF1.

FIS, while their directions are determined by the determination criteria of the EPF. Two FISs are utilized
for the FEPF, and the MFs and the rule base of the FEPF are optimized by a GA to find the near-optimal
solution in the aspect of the total path length of the UAVs. In the training process for optimizing the
FEPF, the training scenario is selected by containing local minima, GNRON, and interactions between
UAVs in one scene. For the consideration of safety, modeling and environmental uncertainties using a
probabilistic value are additionally considered, and two kinds of FEPF models are defined with respect
to the degree of uncertainties. Consequently, it is shown that both FEPF models outperform the EPF
in the aspect of the average path length and the number of cases that have shorter paths. Also, it is
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Figure 14. Path length ratio for EPF and FEPF2.

confirmed that the FEPF model trained with the smaller threshold value provides a relatively shorter
path. This indicates that lesser uncertainties guarantee a shorter path. More importantly, in addition
to the good performance demonstrated by the proposed approach, it also offers explainability using a
rules-based inference system, scalability by offering to not select parameters manually as the problem
changes, and robustness by performing better than traditional techniques in a number of different sce-
narios that include uncertainties. Currently, the proposed algorithm is developed in 2D environments
without considering UAV dynamics. Future works will include 3D environmental simulations with com-
plete dynamic modeling of UAVs as well as experimental validation. Furthermore, the training process
will take into account irregular obstacles and sensing constraints.
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Figure 15. Average path length ratio differences for FEPF1 and FEPF2.
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