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On the origin and propagation of perturbations
that cause shock train inherent unsteadiness
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In constant area back pressured ducts, shock trains exhibit inherent unsteadiness
where the shock system fluctuates about its time-averaged position despite constant
bulk inflow and outflow conditions. In this work, the underlying causes of inherent
unsteadiness are identified and the flow dynamics of the system is studied for a shock
train in a Mach 2.0 ducted flow that is mechanically back pressured. High-speed
schlieren movies and pressure measurements are collected to quantify the shock
system fluctuations. Cross-spectral analysis of this data is used to identify specific
perturbations, i.e. the fluid phenomena that impact the shock train motion. Key
information about each perturbation is also obtained, including where it originates,
what direction it travels and how it impacts each shock. Oil flow visualization and
particle image velocimetry are then used to gain insight into the physical structure
of perturbations and the flow phenomena that generate them. The results identify a
complex, frequency-dependent dynamical system that is influenced by (i) upstream
propagating acoustic waves that emanate from separation bubbles, (ii) vortices that
shed from separation bubbles and convect downstream and (iii) upstream propagating
acoustic waves generated in the diffuser. With this information, a scaling argument
for the shock train inherent unsteadiness is presented.
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1. Introduction
A shock train is a complex system of shock and compression waves that decelerates

a supersonic flow in a duct. If the duct is sufficiently long, the shock train is followed
by a mixing region where a heterogeneous supersonic–subsonic velocity distribution
causes additional static pressure rise. The entire region from the beginning of the
shock train to the end of the mixing region is called the pseudoshock. In high-speed
air-breathing engines, such as dual-mode scramjets, the pseudoshock is housed in a
short duct called the isolator. Its role is to decelerate the incoming supersonic flow
and provide the necessary static pressure rise for efficient combustion downstream.

Pseudoshocks have been studied extensively ever since Crocco (1958) pointed out
that the supersonic-to-subsonic transition in ducted flows is a gradual flow diffusion
process, not a single normal shock as predicted by inviscid theory. In particular,
much has been learned about the steady-state pseudoshock, including its complex
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dependence on the isolator geometry and boundary conditions (i.e. the approach flow
conditions just upstream of the shock train and the downstream combustor conditions).
These dependencies are important to understand because they directly influence the
isolator performance. For example, increasing the pressure ratio (defined as the ratio
of back pressure to the approach flow pressure) makes the compression system longer
by pushing the shock train upstream (Waltrup & Billig 1973). The additional static
pressure gain is beneficial for the combustion process, but the longer pseudoshock
requires a longer (and heavier) isolator. Excessive heat release in the combustor may
also generate a pressure rise that is too large for the pseudoshock to accommodate,
causing the shock train to propagate upstream into the inlet in a transient process
known as engine unstart. In extreme cases, the shock train is disgorged from the inlet,
leading to a loss of engine thrust and increased aerodynamic loads (Rodi, Emami &
Trexler 1996; Wagner et al. 2009).

Several other parameters influence the steady-state pseudoshock in addition to
the pressure ratio. The approach Mach number is a critical parameter, with high
Mach number flows producing long shock trains composed of oblique shock waves
and low Mach number flows producing short shock trains composed of normal
shocks (Ikui, Matsuo & Nagai 1974a; Carroll & Dutton 1990). The degree of flow
confinement just upstream of the shock train (defined as the ratio of a boundary
layer spatial scale to duct half height) has a secondary effect on the pseudoshock
(Nill & Mattick 1996; Sun et al. 2003). A computational study by Fiévet et al.
(2017) shows that reducing the boundary layer thickness leads to stronger shocks,
fewer shocks in the train and a downstream displacement of the leading shock. Other
studies emphasize the importance of the isolator geometry. Low aspect ratio isolators
produce more three-dimensional shock structures with a high degree of symmetry
(Handa, Masuda & Matsuo 2005; Hunt & Gamba 2018). These highly confined
flows have prominent corner effects that lead to a more gradual compression process
(Cox-Stouffer & Hagenmaier 2001; Geerts & Yu 2016). In computational studies,
the three-dimensionality and side wall effects are important factors that influence the
accuracy of models (Morgan, Duraisamy & Lele 2014).

Overall, the steady-state shock train is complex and it depends on a multitude
of parameters, many of which have been summarized by Matsuo, Miyazato & Kim
(1999) and Gnani, Zare-Behtash & Kontis (2016). These dependencies are used
to develop one-dimensional empirical and analytical models for predicting isolator
performance (Ikui, Matsuo & Sasaguchi 1981; Smart 2015). One of the most widely
used empirical models, proposed by Waltrup & Billig (1973), uses the approach flow
properties to describe the pressure distribution along the length of the pseudoshock
as follows:

x(M2
a − 1)Re1/4

θ
√

Dθ
= 50

(
p
pa
− 1
)
+ 170

(
p
pa
− 1
)2

, (1.1)

where Ma is the approach Mach number, Reθ is the approach Reynolds number, θ is
the momentum thickness of the approach boundary layer, D is the duct diameter, pa is
the approach flow pressure and p is the pressure at a streamwise distance x from the
shock train foot. The Waltrup & Billig (1973) model is particularly impactful because
it shows that the pseudoshock is self-similar in some sense, and although the flow field
is complex and not fully understood, its properties scale with the isolator dimensions
and the approach flow conditions. Aspects of this scaling argument are also used in
the current work.

More recently, research has shown how the isolator operability range is impacted by
transient pseudoshock processes induced by changing the isolator boundary conditions.
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Shock train inherent unsteadiness 817

There is a particular focus on understanding, detecting and preventing engine unstart
due to its devastating effects on engine performance (Wagner et al. 2009; Srikant
et al. 2010; Do et al. 2011; Koo & Raman 2012; Valdivia et al. 2014). Wagner et al.
(2009), Wagner, Yuceil & Clemens (2010) demonstrated that separation bubbles at the
foot of the shock train control the unstart progression, with the shock train propagating
upstream through the isolator at an average rate of 0.035 times the free-stream flow
velocity. The shock system propagates faster in regions with high adverse pressure
gradients.

Another transient process, called the forced shock train dynamics, occurs when the
shock train responds to changes in the isolator boundary conditions that are relatively
small and do not induce unstart. As Fiévet et al. (2017) describes, this motion is
non-trivial and depends on the excitation frequency. For high frequencies, the shock
system behaves like an anharmonic oscillator and two physical processes contribute to
a resonance phenomenon: (i) there is a phase lag between the shock train’s foot and
tail; and (ii) shock strength varies with location, thus fewer shocks are present as the
shock train moves downstream. More studies are emerging on this topic because these
changes happen in many practical situations as the vehicle follows its flight trajectory
(Su, Ji & Chen 2016; Xiong et al. 2018).

The subject of the current work is a distinctly different transient process that
we call shock train inherent unsteadiness, which are self-excited fluctuations of the
shock train about its time-averaged position even with constant bulk inflow and
outflow isolator conditions. Few studies have examined this transient phenomenon,
sometimes referred to as self-excited oscillation, leaving the topic mostly unexplored.
To date, the mechanism that causes the inherently unsteady motion is unclear and
cannot be reliably predicted or modelled. Thus, it is not obvious how to mitigate the
unsteadiness. The unsteady movement of the shock train is of practical importance
because it may feed instabilities to the combustor and induce pressure fluctuations that
generate noise and intense fluctuating wall loads. Large fluctuation amplitudes may
also reduce the operating margin of the engine by causing premature engine unstart.
Quantifying and understanding the unsteady shock motion is useful for improving
predictive modelling tools, developing strategies to reduce unsteadiness and validating
computational work.

Despite a general lack of understanding, the existence of shock train inherent
unsteadiness is widely noted in the literature. Some experimental studies of shock
trains in constant area isolators report shock displacements reaching up to a duct
height (Ikui et al. 1974b; Lindstrom et al. 2009). In computational studies, inherent
unsteadiness is widely recognized as an expensive, complicating factor that makes
accurate, time-resolved simulations difficult to achieve (Gawehn et al. 2010). This is
in part because the underlying fundamental flow physics that govern the process are
not well understood, and therefore not easily modelled. To date, only three principal
theories have been presented to explain the unsteady shock motion. These studies
examine a shock train in a constant area isolator model and attribute the unsteadiness
to perturbations (i.e. fluid phenomena) that interact with the shock system as they
travel through the flow. However, the theories are clearly distinguished from one
another because they propose different regions of the flow field where perturbations
are generated.

Ikui et al. (1974b) were among the first to present a theory on shock train
inherent unsteadiness. Using schlieren photography, they observe the leading shock
fluctuating before the second shock in the train. They also measure wall static pressure
fluctuations in the flow upstream of the shock train. Given this experimental data
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and a one-dimensional viscous adiabatic flow model for a single normal shock, they
conjecture that the shock train unsteadiness is due to the interaction of the leading
shock with small perturbations in the upstream supersonic flow. However, the authors
do not show a direct correlation between upstream pressure fluctuations and shock
motion.

Yamane et al. (1984a) conjecture that the shock train fluctuations are caused
by a downstream acoustic resonance. This is based on experimental work using a
variable length blowdown wind tunnel, where the shock train exhibits large position
displacements when the isolator duct is short. The shock position displacements
decrease for long ducts that are choked at the exit, suggesting that the system is
isolated from the downstream influence. In their follow-up study (Yamane, Takahashi
& Saito 1984b), cross-correlations of pressure measurements show both downstream
and upstream propagating perturbations. Given the speed of these perturbations,
the authors hypothesize that pressure waves are generated downstream and travel
upstream through the boundary layer, later inducing the downstream perturbation that
is convected with the flow. This theory has emerging evidence of multiple perturbation
pathways, but the connection to the downstream acoustic resonance does not fully
explain the observed unsteadiness because the shock train still exhibits unsteady
fluctuations in a choked duct.

Sugiyama et al. (1988) suggest that the source of unsteadiness is within the shock
train. Using schlieren images, they find that the boundary layer thickness under
the first shock is weakly correlated with the shock position. The authors describe
an aerodynamic ‘throat’ effect where the low-momentum boundary layers act as a
converging–diverging nozzle. This is a new and plausible theory but with insufficient
evidence because the cross-correlation between boundary layer thickness and shock
position is weak (the maximum cross-correlation amplitude is less than 0.2). The
authors also fail to explain why the boundary layer thickness is changing. A few
investigations have noted that the shock train may sometimes switch between a
symmetric and an asymmetric structure, which impacts the boundary layer shape and
supports the hypothesis that shock train unsteadiness is caused by a local phenomenon
(Gawehn et al. 2010; Xiong et al. 2017). However, this phenomenon only occurs in
select facilities.

In this work, a comprehensive theory explaining the shock train inherent
unsteadiness is constructed by combining some of the previous theory with new
experimental observations. Advanced diagnostic and analysis tools are used to
describe this new theory in terms of the complex, frequency-dependent system
of perturbations that interact with the shock train. The foundation of our theory is
constructed from cross-spectral analysis on high-speed pressure and shock position
measurements. Cross-spectral analysis is a well-established signal-analysis tool used
to investigate the relationship between simultaneously recorded signals and has been
applied to a variety of topics. In our application, cross-spectral analysis is particularly
powerful for identifying and investigating multiple perturbations characterized by
specific frequency ranges. Cross-spectral analysis also provides detailed information
on the perturbation history, including where it originates, the direction it travels
and how it influences the shock motion. Oil flow visualization and PIV are then
used to confirm what fluid phenomena generate the perturbations. By gathering the
above information, we are able to track the evolution of the unsteady shock train
and develop a strong cause-and-effect relationship between the perturbation sources
and the shock motion. Thus, a fundamental understanding of the shock train inherent
unsteadiness is established.
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FIGURE 1. Schematic diagram of the direct-connect isolator facility (side view).

2. Experimental set-up
2.1. Direct-connect isolator model

The current experiments are performed in a low aspect ratio direct-connect isolator
model at the University of Michigan. The isolator is a component of a suction type
wind tunnel facility illustrated schematically in figure 1. Room air passes through
an intake and a flow conditioning section before it is expanded through a one-sided
converging–diverging nozzle to produce a nominal free-stream Mach number of 2.0 in
the isolator. As demonstrated by the figure, the origin of the right-handed coordinate
system is located at the nozzle throat, on the lower right corner of the cross-section
as one looks downstream. The x, y and z coordinate directions are oriented in the
direction of the bulk fluid flow, normal to the side wall and normal to the bottom wall,
respectively. The low aspect ratio isolator begins approximately 5.1H downstream of
the nozzle throat and has a constant, rectangular cross-section measuring 57.2 mm in
width (W) and 69.3 mm in height (H).

Downstream of the isolator is a diffuser leading to a butterfly valve and then a
vacuum chamber. This butterfly valve is referred to as the control valve of the isolator.
By partially closing the control valve, the downstream area for airflow is reduced
leading to an increase in the downstream pressure, called the diffuser pressure. The
elevated diffuser pressure essentially replicates the pressure condition that would exist
in the combustor of a real engine. As a result, a shock train is produced in the isolator.
Further closing the control valve will increase the diffuser pressure and cause the
shock train to move upstream in the isolator. In this study, the valve angle is constant
for the entire duration of the run and is monitored using a high-resolution optical
incremental encoder.

Capacitance manometers (MKS 626C Baratron), located on the centreline of the
top wall, are used to monitor the boundary conditions of the isolator including (i)
the inflow pressure at the beginning of the isolator, pin, (ii) the back pressure at
the end of the isolator and (iii) the diffuser pressure just upstream of the control
valve. The manometers have an accuracy of 0.25 % of the reading and a response
time of 20 ms. Once the angle of the control valve is set, the inflow and diffuser
pressure measurements exhibit minimal fluctuations (less than 1 % of their respective
time-averaged values) and verify that the bulk inflow and outflow conditions of
the isolator are constant. The back pressure exhibits higher fluctuations (up to 5 %
of its time-averaged value) due to turbulence generated in the pseudoshock mixing
region, but it has a sensitive linear relationship with the shock train location (Hunt
& Gamba 2018).

Fourteen runs are used to formulate the results of this work. The experimental
conditions are approximately constant from run to run, and thus the shock train is
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Measurement Run-to-run
Average uncertainty (%) range (%)

Isolator heightb, H 69.3 mm 0.14 0.00
Isolator widthb, W 0.82H 0.17 0.00
Inflow pressureb, pin 11.85 kPa 0.25 1.10
Back pressureb 3.16pin 0.25 3.39
Diffuser pressureb 4.12pin 0.25 1.23
Pseudoshock lengthb, L 21.15H 0.27 2.63
Location of the leading shock footb, xf 8.56H 0.34 6.49
Approach flow speedb, ua 494 m s−1 4.96 1.05
Approach Mach numbera 1.89 8.55 1.79
Stagnation temperatureb, T0 292.3 K 0.62 0.17
Static temperature of the approach flowa 0.59T0 7.13 1.49
Stagnation pressureb 8.18pin 0.25 0.24
Static pressure of the approach flowb 1.15pin 0.28 2.98
Approach flow boundary layer thickness on the
bottom wallb, δa

0.131H 4.17 14.05

Approach flow momentum thickness on the
bottom walla, θa

0.014H 3.82 16.13

Approach flow Reynolds number based on
momentum thicknessa

1.17× 104 15.28 15.31

TABLE 1. Summary of important experimental conditions.
aUncertainty estimated from error propagation rule.

bUncertainty based on measurement accuracy.

positioned at a consistent location in the isolator that is optimal for diagnostic testing.
Given the location of the shock train from schlieren imaging (see § 2.2), the approach
conditions are defined as the flow conditions just upstream of the leading shock foot.
Refer to our previous work (Hunt & Gamba 2018) for a detailed discussion on how
these conditions are quantified. Table 1 summarizes the experimental conditions of
this study, including the measurement uncertainty and the run-to-run range.

2.2. High-speed schlieren imaging
Schlieren imaging is used to visualize the temporal evolution of the shock train.
Borosilicate glass side walls provide optical access along the entire length of the
isolator and a z-type schlieren set-up with a horizontal knife edge captures vertical
density gradients in the flow. A high brightness LED (Luminus SBR-70) is used as
a continuous light source. Images are recorded at a rate of 10 kHz using a Phantom
v711 camera with an exposure time of 1 µs. The image resolution is 800× 240 px.
The camera field of view covers approximately 0.9H in the z-direction and 3.4H in
the x-direction.

An example instantaneous schlieren image of the shock train is shown in figure 2.
The vertical axis is labelled in terms of z/H, the distance from the bottom wall
normalized by the tunnel height. Similarly, the top horizontal axis is labelled in terms
of x/H, the non-dimensional distance from the wind tunnel throat. This coordinate
system is used to describe the pseudoshock position in the isolator and to define the
approach conditions. For comparison, the bottom horizontal axis is labelled in terms
of x∗, the relative distance from the time-averaged location of the leading shock foot,
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FIGURE 2. Instantaneous schlieren image demonstrating the morphological features of the
shock train that are tracked in time.

i.e. x∗ = x − xf . For illustration purposes, the instantaneous schlieren image shown
in the figure is selected so that the instantaneous and time-averaged shock foot
locations are approximately equal. Generally, the instantaneous shock foot location
fluctuates around x∗ = 0 due to the inherent unsteadiness of the system. Also, note
that x∗ is normalized by the pseudoshock length, L, which is defined in this work
as the distance from the leading shock foot to the location of the control valve and
is equal to approximately 21.15H. For the current experimental set-up, the defined
pseudoshock length includes the entire shock train (contained in the isolator), the
portion of the mixing region in the isolator, and the portion of the mixing region
that develops into the diffuser. Alternatively, L can be described as the distance from
the shock foot in the isolator to the downstream choke point. The x∗/L coordinate
system is useful for describing the location of measurements relative to the overall
pseudoshock structure and is used frequently throughout this work.

The instantaneous streamwise locations of 10 shock train morphological features are
marked in figure 2: x1c, the location of the leading shock Mach stem; x1l and x1r, the
location where the leading and trailing legs of the first shock lambda foot intersect the
bottom wall boundary layer, respectively; x2t and x2b, the location where the second
shock intersects the top and bottom wall boundary layer, respectively; x2c, the location
where the left- and right-running components of the second shock intersect; x3t and x3b,
the location where the third shock intersects the top and bottom wall boundary layer,
respectively; x4t and x4b, the location where the fourth shock intersects the top and
bottom wall boundary layer, respectively. By locating these 10 morphological features
in each schlieren image, the time history of the shock position fluctuations, x′i with
i ∈ {1c, 1l, 1r, 2c, 2b, 2t, 3b, 3t, 4b, 4t}, are obtained and used for analysis.

2.3. High-speed pressure measurements
High-speed wall static pressure measurements are taken with five high-sensitivity
absolute pressure transducers (Kulite XCS-062) in order to track the development
of perturbations. The Kulite transducers have a pressure range of 103 kPa and a
diaphragm resonance frequency of approximately 200 kHz. The signals are amplified,
low pass filtered at 50 kHz, then sampled at 200–500 kHz. All five transducers are
simultaneously sampled, which allows the time delay between fluctuations measured
by different transducers to be accurately quantified.
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Each pressure transducer has a diameter of 0.02H and is inserted into cylindrical
housing with a diameter of 0.11H. The transducers are then flush mounted in the
aluminium side or bottom wall of the isolator. Thus, simultaneous side and bottom
wall pressure measurements are possible. Alternatively, glass side walls are used
for simultaneous schlieren imaging and bottom wall pressure measurements. The
aluminium bottom wall contains 46 pressure ports: 40 pressure ports spaced 0.16H
apart along y=W/2 and six pressure ports spaced 0.47H apart along y= 0.89W. This
streamwise transducer spacing corresponds to 0.7 % and 2.2 % of the pseudoshock
length, L, for the centreline and corner ports, respectively. The aluminium side wall
contains 20 pressure ports: 10 pressure ports spaced 0.31H apart along z = 0.09H
and 10 pressure ports spaced 0.31H apart along z = 0.60H. The 0.31H transducer
spacing corresponds to 1.5 % of L. The five Kulite transducers are positioned at any
arbitrary combination of the 66 port choices and the remaining ports are filled with
blank housings.

2.4. Oil flow visualization
Oil flow visualization is used to gain insight into the flow structure on the walls of the
isolator. For this diagnostic, the bottom wall and the y = 0 side wall of the isolator
are replaced with aluminium pieces that have been painted black. For each test, a
thin base coat of Xiameter PMX-200 silicone oil is applied to these walls. Then, a
mixture of oil and titanium dioxide is spattered over the base coat. When the wind
tunnel is started and the valve is partially closed, the oil is pulled in the direction of
the flow field generated by the shock train. Glass is used for the y=W side wall for
optical access. Two cameras recording at 100 Hz are used to simultaneously image
the oil pattern development on the painted walls. The procedure was repeated for oil
viscosities ranging from 20 to 350 cSt and the observed flow pattern was found to be
independent of the oil viscosity used.

2.5. Two-component particle image velocimetry
Two-component PIV is used to quantify the streamwise (u) and vertical (w) flow
velocities on an x–z plane in the isolator. Figure 3 schematically illustrates the
experimental set-up for this diagnostic. A portable Laskin nozzle aerosol generator
(ATI Model TDA-4B) is used to seed the flow with polydispersed submicrometre
particles composed of poly-alpha-olefin oil with a density of 819 kg m−3. The
particle diameter is approximately 0.7 µm, which corresponds to a Stokes number of
0.16 for the flow conditions in the isolator. According to Samimy & Lele (1991), this
Stokes number is low enough that the particles are expected to track the large-scale
motions of the compressible flow. The particle tracking error is most significant
in regions with large velocity gradients. Based on the particle relaxation distance,
the uncertainty in locating the shock front and separation contours is estimated to
be 0.03H. This relatively small uncertainty does not impact the results discussed
later on.

Double-pulse illumination of the particles is provided by a pair of low-repetition-rate
frequency-doubled Nd:YAG lasers. Each laser produces a 532 nm beam with a pulse
duration of approximately 10 ns and a pulse energy of 150–200 mJ. The time delay
between pulses from the two lasers is 600–1800 ns depending on the run conditions.
For each run, this time delay is measured with a fast response photodiode (Thorlabs
DT10A, 1 ns response time) and a digital oscilloscope (LeCroy Waverunner 6030,
350 MHz). Both laser beams are sent through a combination of cylindrical lenses
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FIGURE 3. (Colour online) Schematic diagram of the PIV experimental set-up (top view).

to generate a laser sheet that illuminates a long streamwise section of the isolator.
With reference to figure 3, lens L1 is a plano-convex lens that reduces the laser sheet
thickness. Lens L2 is a plano-concave lens that expands the beam into a diverging
sheet. Directly after lens L2 is a flat mirror that directs the diverging laser sheet
through a glass insert in the bottom wall of the isolator. The particles illuminated
by the laser sheet are imaged using four interline transfer charge-coupled device
cameras (SensiCam PCO) recording at 3.33 Hz. The cameras have a resolution of
1280 × 1024 pixels and are arranged side-by-side to obtain measurements across a
wide field of view.

LaVision DaVis 8 software is used to process the data. Two-component velocity
fields are reduced from the particle images using a multipass scheme. The interrogation
window for each pass has Gaussian weighting and 75 % overlap. The final 32 × 32
pixel window size corresponds to a projected physical size of approximately
0.022H × 0.022H and results in vector spacing of 0.005H × 0.005H. Post-processing
within multiple passes includes deleting a vector if its correlation value is less than
0.8 or the first-to-second correlation peak ratio is less than 1.1. In addition, groups
with less than five vectors are removed. Valid vectors are found more than 95 % of the
time. Missing or rejected vectors are interpolated using the method by Garcia (2010).
No additional smoothing is applied after interpolation. The estimated uncertainty
of the u- and w-velocity components is 24.5 and 13.3 m s−1, respectively. These
uncertainties correspond to 2.7 %–4.9 % of the approach flow velocity.

Finally, the post-processed velocity fields from the four cameras are stitched
together. The resulting field of view extends approximately 3.10H in the x-direction
and 0.68H in the z-direction, starting just 0.03H above the bottom wall. The region
closest to the bottom wall is excluded from the field of view due to the interference
of diffuse surface reflections. In this work, the velocity fields of two x–z planes are
presented. Measurement plane CL is located at y=W/2 and measurement plane SW
is located at y= 0.16W (i.e. near the side wall). The labels ‘CL’ and ‘SW’ stand for
‘centreline’ and ‘side wall’, respectively. Figure 4 schematically illustrates the location
and orientation of these measurement planes in the isolator.

3. Orderly response of shock waves in the train
In this section, the frequency content of the shock position fluctuations is first

presented to characterize the motion of different morphological features. Then, the
order in which shocks fluctuate is determined using cross-spectral analysis. Thus, the
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FIGURE 4. (Colour online) Schematic diagram illustrating the PIV measurement plane
locations.

shock system inherent unsteadiness is described in terms of the shock motion temporal
evolution in relation to the other shocks. While perturbations are not identified in
this section, the information presented here describes the shock system response to
perturbations.

3.1. Frequency content of the shock motion and the definition of characteristic
frequency

The power spectral density of each shock position fluctuation time trace, PSD(x′i),
is plotted as a function of frequency, f , in figure 5. For clarity, panels (a) through
(d) of the figure show the results for shocks 1, 2, 3 and 4, respectively. Each curve
represents the average spectrum across all 14 runs conducted under similar conditions.
The shaded regions in panel (a) of the figure are examples of the run-to-run range,
which is defined at each frequency using the local maximum and minimum values
within the dataset of 14 runs. These examples demonstrate that the results, including
minor modes at high frequencies, are very repeatable.

The data in figure 5 are presented in non-dimensional form. The frequency, f , is
normalized by a characteristic frequency defined as follows:

fc = ua/L, (3.1)

where ua is the approach velocity and L is the length of the pseudoshock. Similarly,
the power spectral density is normalized by fc and the shock position variance, σ 2(xi).
For this work, fc is approximately equal to 337 Hz. In the definition of fc, the
pseudoshock length is chosen as a characteristic scale because it describes the overall
state of the system. Recall from § 1 that a given diffuser pressure is associated with a
specific pseudoshock length such that the approach flow conditions can be processed
by the shock system to match the downstream boundary condition. Thus, L represents
the relationship between the upstream and the downstream boundary conditions. The
free-stream approach velocity is chosen as a characteristic scale in (3.1) because
numerous studies in the literature emphasize that this quantity influences the rates
of many relevant fluid processes (e.g. boundary layer growth, vortex shedding, etc.).
In particular, there is a similar large-scale, low-frequency unsteadiness observed in
many single shock wave boundary layer interactions (SBLI), such as those induced by
compression ramps, reflected shocks and blunt-fin interactions, that has been found
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FIGURE 5. (Colour online) Normalized power spectral density of shock position
fluctuations for the 10 morphological features marked in figure 2.

to depend on the free-stream flow velocity (Dussauge, Dupont & Debieve 2006;
Clemens & Narayanaswamy 2014). Based on the above reasoning, the characteristic
frequency is first introduced in figure 5 to motivate the discussion on how to best
scale the shock train inherent unsteadiness properties. As the results used to develop
the inherent unsteadiness theory are discussed, the fluid phenomena that cause the
unsteadiness become better understood and it is clear that a scaling argument based
on L and ua is a logical choice. The scaling argument is then revisited in § 7.

Consider the frequency content of the leading shock position fluctuations shown in
figure 5(a). The leading shock Mach stem fluctuations, x′1c, are relatively broadband
with the majority of the power confined to low frequencies. There are no significant
local modes that would indicate a preferred frequency in the shock motion. In
comparison, the fluctuations exhibited by legs of the leading shock lambda foot, x′11
and x′1r, have more content at frequencies above 1fc. Additionally, a local mode is
emerging in these spectra at approximately 4fc, indicating that this specific frequency
is more prominent in the shock motion. Many studies in the literature have noted the
dominant low-frequency motion of the shock train. Some studies observe preferred
modes but the frequency ranges of these modes are inconsistent from one study to the
next (Yamane et al. 1984a; Sugiyama et al. 1988; Lindstrom et al. 2009). Differences
in the flow conditions and isolator geometry may contribute to the variation in the
shock position fluctuation content. The above discussion on power spectra also
demonstrates that different parts of a shock may exhibit different fluctuation content
which can contribute to the scatter in observations from different studies.
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Next, consider the frequency content of the second shock position fluctuations.
Similar to the leading shock Mach stem, the spectra of x′2c and x′2b have no significant
local modes. However, the motion of the second shock morphological feature near
the top wall boundary layer, x′2t, exhibits two preferred modes at approximately 5fc

and 9fc (see labels in figure 5b). Once again, the morphological features belonging
to the same shock exhibit different frequency content. This indicates that the shock
feet respond independently to modes fed to them by the boundary layer. For example,
the modes exhibited by x′2t are attributed to the top wall boundary layer. Due to the
one-sided nature of the converging–diverging nozzle used in these experiments, the
bottom wall boundary layer is different, and thus x′2b exhibits different frequency
content. The power spectra of shocks 1 and 2 also suggest that some information fed
to the shock feet from the boundary layer does not reach the centre of the core flow.
Thus, specific modes do not appear in the spectrum of x′1c or x′2c.

Finally, consider the frequency content of the third and fourth shock position
fluctuations. In addition to a new 1.5fc mode, the 5fc and 9fc modes (mentioned
in the above paragraph) persist through these downstream shock fluctuation power
spectra with varying magnitudes. Similar to the upstream shocks, the morphological
features of the third and fourth shocks are physically close to the boundary layer.
Thus, the existence of high-frequency modes further enforces the postulate that the
boundary layer influences the local shock dynamics. With this in mind, note that the
frequency content of x′3t and x′3b are very similar. In subsequent analysis (see § 4.3),
it becomes clear that information propagates from one wall to the next wall through
the boundary layer. The communication increases in the downstream region of the
shock train where the boundary layers are thick, which explains why the top and
bottom features of the third shock have similar power spectra. The same argument is
used to explain why x′4t and x′4b have similar frequency content.

3.2. Cross-spectral analysis of shock position time traces
Cross-spectral analysis is used to evaluate the temporal evolution of the various shock
wave positions in relation to one another. By definition, the cross-spectrum of two
discrete signals is equal to the discrete-time Fourier transform of the cross-correlation
function (Hardin 1986). In general, the cross-spectrum is a complex function. The
normalized magnitude of the cross-spectrum, called the coherence spectrum, is used
to identify significant frequency-domain correlation between the two time series.
The phase delay, defined as the argument of the complex cross-spectrum, is used
to quantify the frequency-dependent narrowband time delay. Together, the coherence
spectrum and narrowband time delay provide a frequency-dependent evaluation of the
correlation between two time-varying signals. In this subsection, the cross-spectrum
is computed using the position fluctuation time traces of two shock morphological
features, x′i and x′j, thus it is referred to as the xi − xj cross-spectrum. Cross-spectrum
calculations are made using the Welch averaging method with a Hamming window
and 50 % overlap, resulting in a spectral resolution of 25 Hz. The coherence describes
how well correlated the two signals are and the narrowband time delay is used to
determine which shock feature fluctuates first. Thus, the order in which shocks
fluctuate is identified.

As an example, the fluctuations of the leading shock morphological features (x1c,
x1l, and x1r) are compared. The coherence spectra, Co(x′i, x′j), are plotted as a function
of the normalized frequency, f /fc, in figure 6(a). The coherence is highest for low
frequencies meaning that the low-frequency fluctuations of all three leading shock
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FIGURE 6. (Colour online) xi − xj cross-spectra computed using position fluctuations of
the leading shock morphological features: (a) coherence; (b) narrowband time delay.

features are well correlated with each other. The fluctuations of the leading leg,
x1l, are also particularly well correlated with the other shock motions in the 2fc–5fc
frequency range as evidenced by the local peak in coherence (see label in figure).
Note that this mode is in the same frequency range as the mode found in the power
spectra of the shock position time traces presented in figure 5. The power spectra
show that there is an elevated amount of the energy in the shock motion at these
specific frequencies, while the high level of coherence shows that the shock motions
at these frequencies are well correlated. Compared to the leading leg of the lambda
foot, the trailing leg motion stays correlated with the Mach stem motion across a
wider range of frequencies (up to 10fc). Beyond 10fc, the fluctuations in all three
shock features are uncorrelated as the coherence drops to zero.

Using figure 6(a), a coherence cutoff value of 0.1 is defined, below which the two
signals are assumed to be uncorrelated. For all frequencies with a coherence above 0.1,
the corresponding narrowband time delays derived from the xi − xj cross-spectra are
plotted in figure 6(b). Once again, the frequency is normalized by the characteristic
frequency, fc. The narrowband time delay, τ(x′i, x′j), is normalized by the characteristic
time scale defined as the reciprocal of the characteristic frequency:

tc = L/ua = 1/fc. (3.2)

For the current set of experimental conditions, tc is equal to 2.9 ms. This time scale
represents the time it takes a fluid element in the free-stream flow to travel a distance
equal to the characteristic length. When normalized in this way, the magnitude of
the time delay in figure 6(b) describes the time between shock motions relative
to the free-stream flow-through time. The sign of the time delay indicates which
morphological feature fluctuates first. Note that the narrowband time delay has an
uncertainty of 0.03tc based on the schlieren image acquisition rate. Accounting for
the measurement uncertainty, it is apparent that the time delays are approximately
zero for frequencies below 1.5fc, which implies that x1c, x1l, and x1r fluctuate
simultaneously. Hence, the leading shock can be considered to move as a rigid
body at low frequencies. For frequencies above 1.5fc, τ(x′1l, x′1c) is negative meaning
the lambda foot leading leg fluctuates before the Mach stem. In addition, τ(x′1c, x′1r)
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FIGURE 7. (Colour online) xi − xj coherence spectra calculated using the position
fluctuations of two consecutive shock morphological features.

is negative for f > 1.5fc meaning that the lambda foot trailing leg fluctuates after the
Mach stem. Thus, for high frequencies, the instantaneous shape of the leading shock
is deformed as the shock moves.

The order in which consecutive shocks fluctuate is determined by computing the
cross-spectrum of x′i and x′i+1. The resulting coherence spectra are shown in figure 7.
Panel (a) of the figure shows the coherence between the leading shock Mach stem
position and the positions of the three features on the second shock; i.e. Co(x′1c, x′2t),
Co(x′1c, x′2c) and Co(x′1c, x′2b). In all of these cases, the coherence spectrum is highest
at low frequencies and drops to zero by 10fc meaning that the frequency content of
the unsteady motion is well correlated for frequencies below approximately 10fc and
uncorrelated for frequencies above 10fc. The coherence spectra involving x′2t and x′2b
have a minor peak at 4fc. Thus, the 4fc fluctuations of the leading shock features
(discussed earlier) are also shared with the features of the second shock.

Figure 7(b) shows the coherence spectra for the downstream sets of consecutive
shocks. The coherence calculated using x′3b and x′4b are nearly identical to the
coherence calculated using x′3t and x′4t, respectively. Thus, these curves are not
included in the plot for clarity. Notice that local peaks centred at 1.5fc, 6fc, and 9fc
start to emerge in some of the coherence spectra plotted in figure 7(b). These modes
are specific to particular regions of the flow field and are at the same frequencies as
the modes found in the power spectra of the shock position time traces. For example,
recall that x2t and x3t have a strong fluctuation component at approximately 9fc that
is evident in the shock position power spectra of figure 5. Figure 7(b) demonstrates
that this mode is well correlated between shocks x2t and x3t. The 9fc mode is not
observed in the motion of the leading shock, which suggests that some forcing is
generated locally in the top wall boundary layer that feeds information to shocks two
and three. The mode dissipates by shock 4 as demonstrated by the low coherence
between the 9fc fluctuations of shocks 3 and 4. Similar arguments apply to the 1.5fc
and 6fc modes.

Figure 8 shows the corresponding normalized time delays (computed from the
cross-spectra of consecutive shock features) as a function of normalized frequency.
Once again, a coherence cutoff of 0.1 is chosen, below which the two signals are
assumed to be uncorrelated. For clarity, panel (a) of the figure shows the narrowband
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FIGURE 8. (Colour online) xi − xj cross-spectral narrowband time delay calculated using
the position fluctuations of two consecutive shock morphological features.

time delays computed using morphological features defined from the first and second
shocks. Panel (b) of the figure shows the same quantity computed between the
downstream consecutive shocks. For the lowest measurable frequencies ( f < 0.1fc),
the time delays approach zero, indicating that the upstream and downstream shocks
are displaced at approximately the same time. Thus, the entire shock train moves
as a rigid body for the lowest range of frequencies. As frequency increases above
0.1fc, the narrowband time delay transitions to large negative values meaning that
the upstream shock fluctuates before the downstream shock. In other words, shocks
respond to a perturbation sequentially with the upstream shock responding before the
downstream shocks.

In addition to the delay between consecutive shock motions, figure 8 also shows
that different morphological features of the same shock may fluctuate asynchronously.
For example, consider the 1.0fc component of motion in figure 8(a). At this frequency,
the core, top, and bottom points of the second shock are displaced 0.13tc, 0.20tc and
0.23tc after the leading shock Mach stem displacement, respectively. That is, the
central portion of the shock responds faster than regions close to the wall. By
considering time delays at other frequencies in figure 8(a), it is clear that the order
in which the second shock morphological features respond is frequency dependent.
Similar observations are made for shocks 3 and 4. In figure 8(b), only the time
delays calculated using x′3t and x′4t are plotted for clarity. The narrowband time delays
calculated using x′3b and x′4b follow the same trend as x′3t and x′4t, respectively, but
have slightly different magnitudes. The difference in response time suggests that the
instantaneous shape of these downstream shocks become deformed during the motion.
This is similar to the deformation of the leading shock for frequencies above 1.5fc
that was discussed earlier.

4. Identification of perturbations using pressure fluctuations
High-speed wall pressure measurements are analysed in this section to identify the

spatio-temporal properties of potential perturbations that affect the shock train motion.
To this end, the wall pressure frequency content along the length of the shock train is
presented and cross-spectral analysis computed using pairs of wall pressure fluctuation
measurements is discussed.
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FIGURE 9. (Colour online) Pressure fluctuation power spectra throughout the shock train.
Pressures measured along the: (a) side wall at z= 0.60H; (b) side wall at z= 0.09H; (c)
bottom wall y=W/2 centreline; (d) bottom wall at y= 0.89W.

4.1. Frequency content of the wall static pressure
Figure 9 illustrates the pressure fluctuation power spectra, PSD(p′), in the form of
a contour map. The contour map is constructed using the fluctuation component of
wall static pressure, p′, measured at varied normalized axial distances away from the
time-averaged leading shock foot location, x∗/L. Similar to the results presented in
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the previous section, the frequency, f , is normalized by the characteristic frequency,
fc. The magnitude of the power spectra is normalized by fc and the variance of the
pressure fluctuation, σ 2(p). For panels (a) through (d) of the figure, the pressures
are measured along the side wall at z = 0.60H, along the side wall at z = 0.09H,
along the bottom wall centreline (y=W/2), and along the bottom wall at y= 0.89W,
respectively. The diagram at the top of the figure illustrates the pressure measurement
locations relative to a schlieren image projected on one of the side walls.

Generally, the majority of power is contained within the low-frequency range
( f < fc). Notably, the low-frequency pressure fluctuations near the leading shock foot
have significantly more power compared to the rest of the shock system. Downstream
of the leading shock, the power at high frequencies increases and local high-frequency
modes start to appear. For instance, high-frequency modes at approximately 5fc, 9fc,
and 15fc are clearly evident in figure 9(a). The 5fc mode is first evident between
shocks 1 and 2 while the other modes emerge near shock 3. Note that the 5fc and
9fc modes are also present in the shock position fluctuations (see figure 5), indicating
that the unsteadiness of these two features are related.

Compared to the side wall pressures measured along z= 0.60H (see figure 9a), the
bottom wall pressure fluctuations measured along y=W/2 (see figure 9c) exhibit less
power in the high-frequency range. For example, the power of each high-frequency
mode is distinctly smaller. A similar comparison is made for the power spectra of
pressure fluctuations measured near the corner of the duct (see figure 9b,d). That
is, the corner pressure fluctuations have similar frequency content compared to the
pressures measured away from the corner but the power associated with each high-
frequency mode is smaller. In particular, the mode near 5fc has almost completely
dissipated.

4.2. Cross-spectral analysis of pressure time traces: bottom wall centreline
A perturbation induces a fluctuation in the measured pressure as it travels past the
pressure transducer. Thus, the cross-spectrum calculated using pairs of wall pressure
fluctuation measurements collected simultaneously during the same run provides
information on where perturbations originate and the direction in which they travel.
For convenience, this is termed the pi− pj cross-spectrum. As an example, a detailed
discussion is presented in this subsection for the pi− pj cross-spectra computed using
the pressure fluctuation measurements from two transducers spaced 0.007L apart on
the bottom wall y=W/2 centreline. Information along the length of the shock train
is gathered by changing the average location of the two transducers and compiling
the results of multiple cross-spectra. The coherence, Co(p′i, p′j), and normalized
narrowband time delay, τ(p′i, p′j)/tc, derived from these cross-spectra are shown in
figures 10(a) and 10(b), respectively. Both quantities are plotted as a function of f /fc,
the normalized frequency, and x∗/L, the normalized distance between the average
location of the pressure transducer pair and the time-averaged leading shock foot
location.

Consider the coherence results shown in figure 10(a). The coherence plot describes
the frequency-dependent degree of correlation between the two pressure fluctuation
time traces. Upstream of the shock train (i.e. for x∗/L < 0), there is high coherence
for f > 2fc with a local peak in coherence at 30fc. This demonstrates that the high-
frequency fluctuations generated by the turbulent boundary layer are well correlated in
the approach flow. Within the shock train (i.e. for x∗/L> 0), the coherence is highest
for frequencies less than 10fc. A local peak in the coherence at approximately 4fc
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FIGURE 10. (Colour online) Results of the pi− pj cross-spectra calculated using pressure
fluctuation time traces measured along the bottom wall y=W/2 centreline: (a) coherence;
(b) narrowband time delay.

means that this frequency component is highly correlated for the pair of pressure
fluctuations measured within the shock train. Modes at frequencies greater than 10fc
are also evident in the downstream portion of the shock train, however, their level of
correlation is quite low (less than 0.3), and therefore not considered significant.

Figure 10(b) illustrates the corresponding normalized narrowband time delays from
the pi− pj cross-spectra. Regions in the spectrum where the coherence is less than 0.3
are masked out in black because the pressure signals are assumed to be uncorrelated.
Note that this cutoff value is higher than the one used for the xi − xj cross-spectral
analysis due to noise contamination. For regions of figure 10(b) with high coherence,
the sign of the narrowband time delay is of particular interest because it describes
the direction in which the perturbation is propagating. A negative narrowband time
delay indicates that the upstream transducer captures a pressure fluctuation before the
downstream transducer. Thus, the perturbation is traveling downstream. Conversely,
a positive narrowband time delay indicates the perturbation is travelling upstream.
The dotted contour line shows where the narrowband time delay is zero (i.e. the
two pressures fluctuate simultaneously). Note that the potential uncertainty of these
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Shock train inherent unsteadiness 833

time delays is taken to be ±0.007tc, which is the time corresponding to the cutoff
frequency of the low pass filter applied to the pressure measurements.

Consider three distinct regions marked in figure 10(b). Region B includes the
high-frequency (2< f /fc < 60) fluctuations measured upstream of the shock train. For
comparison, the characteristic frequency of the incoming boundary layer, ua/δa (where
δa is the approach boundary layer thickness), is approximately 160fc. This frequency
is significantly higher than the measured frequency range, suggesting that a different
mechanism is responsible for the observed fluctuations. Several studies in the literature
have proposed that single SBLI unsteadiness is in part due to low-frequency boundary
layer superstructures with a length on the order of 1δa–10δa (Ganapathisubramani,
Clemens & Dolling 2007, 2009; Wu & Martín 2008). For the current work, the
superstructure length is computed for the frequency with the highest coherence and
is equal to approximately 6.5δa. Since this length is similar to the values reported
in the literature, we hypothesize that the fluctuations in region B of figure 10(b) are
signatures of coherent superstructures in the turbulent boundary layer. The negative
values of time delay in region B indicate that the perturbation (i.e. the superstructure)
is travelling downstream.

Additional perturbations are evident in region S of figure 10(b). This region
includes the 0.6fc < f < 10fc frequency range of fluctuations measured downstream of
the leading shock foot. Within region S, the narrowband time delay is positive (i.e. a
perturbation travels upstream) in the upstream portion of the shock train but negative
(i.e. a perturbation travels downstream) in the downstream portion of the shock train.
Thus, perturbations travel away from the streamwise location where the sign of the
narrowband time delay switches. This indicates that a source of perturbations is
within the shock train, somewhere between the leading shock Mach stem, x1c, and
the second shock, x2c. Interestingly, the location of the perturbation source varies
across this region depending on the frequency.

Finally, examine region D in figure 10(b) which includes frequencies below 0.6fc.
The narrowband time delays in this region are more difficult to interpret because
the sign of the delay switches multiple times. That is, the direction in which the
perturbation travels changes along the length of the shock train suggesting that there
are multiple independent, superimposed perturbations. Similar to region S, the sign of
the time delay switches from positive to negative at a location between the first and
second shocks indicating that perturbations are generated at this point and propagate
away in both directions. Downstream of this perturbation source (i.e. for x∗ > 0.05L),
there are select regions where a second upstream propagating perturbation is evident.
It is hypothesized that the second perturbation originates in the diffuser. As will
be discussed later, the results of § 5.4 support this hypothesis. At low frequencies
( f < 0.6fc), all three of these perturbations influence the results of the pi − pj
cross-spectral analysis. However, the cross-spectral analysis only distinguishes the
perturbation that induces the strongest correlation in pressure fluctuation measurements
at each spatial location. For example, when the time delay is negative then the
downstream propagating perturbation has a stronger correlation than the upstream
propagating perturbations.

For ease of discussion, each perturbation traveling along the bottom wall y=W/2
centreline is designated a name as follows:

(i) Perturbation D− originates in the diffuser and propagates upstream. This
perturbation is associated with fluctuation frequencies less than 0.6fc.

(ii) Perturbation S− originates within the shock train and propagates upstream. This
perturbation is associated with fluctuation frequencies up to approximately 10fc.
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(iii) Perturbation S+ originates within the shock train and propagates downstream.
This perturbation is associated with fluctuation frequencies up to approximately
10fc.

(iv) Perturbation B+ is associated with the coherent structures in the approach
boundary layer. This perturbation propagates downstream and produces
fluctuations with frequencies greater than 2fc.

The letter designates where the perturbation originates. That is, ‘D’ stands for
‘diffuser’, ‘S’ stands for ‘within the shock train’ and ‘B’ stands for ‘approach
boundary layer’. The superscript designates the direction of travel: positive for a
downstream propagating perturbation or negative for an upstream propagating one.

4.3. Perturbation pathways and insight on the source of perturbations
The cross-spectra calculated using pairs of pressure fluctuations measured on the
bottom wall y = W/2 centreline have been thoroughly discussed. A similar analysis
is conducted for pressure measurements at other available locations (see § 2.3) and
the same type of information is extracted. A discussion on the remaining pi − pj
cross-spectra is not reported for the purpose of brevity and because the process of
extracting information is the same for all locations. Instead, the combined results
of the pi − pj cross-spectral analysis are presented in this subsection to provide a
comprehensive description of how perturbations travel through the isolator. These
perturbation pathways, in conjunction with the flow topology identified using oil flow
visualization, provide insight into the fluid physics that generate perturbations and
direct their motion.

In figure 11, the frequency-dependent perturbation pathways are schematically
drawn over oil flow images, which represent the general flow topology on the bottom
and side walls of the isolator. Panels (a–c) of the figure show results for three distinct
frequency ranges: 2 < f /fc < 60, 0.6 < f /fc < 2, and f /fc < 0.6, respectively. In each
figure, the perturbation pathway is illustrated using arrows connecting the locations
of the pressure transducers used to compute the cross-spectrum. An arrow is only
drawn if the coherence is above the cutoff value of 0.3. The arrow direction indicates
where the perturbation is traveling based on the time delay of the cross-spectrum.

First, consider figure 11(a), which shows the perturbation pathways for the 2fc
to 60fc frequency range. Many of the perturbations labelled in the figure have been
discussed previously, but additional details are identified in this subsection. For
example, perturbations B+ (i.e. the coherent superstructures in the approach boundary
layer) were previously found to generate correlated pressure fluctuations upstream
of the shock train on the bottom wall centreline. Here, there is new evidence of
perturbations B+ in the side wall corner measurements. Also, recall that perturbations
S± were previously found to emanate away from a frequency-dependent point on
the bottom wall (see figure 10). The oil flow visualization image in figure 11(a)
demonstrates that these source points (collectively labelled ‘S±’ in the figure) are
within a separation bubble on the bottom wall of the isolator (labelled ‘1’ in the
figure). The bubble begins upstream of shock 2 and ends near shock 3. The full
length movie of the oil flow visualization provided in the supplemental material
available at https://doi.org/10.1017/jfm.2018.927 shows that the bubble position and
size vary in time. Thus, it is concluded that perturbations S± are generated by the
instabilities of the separation bubble either intrinsic to the bubble itself or externally
induced (e.g. driven by the incoming turbulent boundary layers). For example, a
separation bubble that translates or grows/shrinks will generate perturbations in
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FIGURE 11. Perturbation pathways: (a) 2< f /fc < 60; (b) 0.6< f /fc < 2; (c) f /fc < 0.6.

the form of acoustic waves as the surrounding flow adjusts to its new conditions.
Perturbations can also take the form of vortices that shed off the bubble. These ideas
are explored further in § 6.2.

New perturbations are also introduced in figure 11(a). Perturbation M+ is associated
with a narrow band of frequencies (5 < f /fc < 6) and propagates downstream along
the side wall, away from x∗/L= 0.02. This perturbation is first evident in the higher
speed ‘core’ region of the flow between the two large side wall separation bubbles
marked ‘2’ and ‘3’ in the figure. Note that the 5fc to 6fc frequency range associated
with perturbation M+ is identical to the first high-frequency mode evident in the
shock and pressure fluctuation power spectra. The second high-frequency mode
evident in these spectra (at approximately 9fc) is attributed to a similar perturbation
travelling downstream along the side wall, away from x∗/L= 0.12. This perturbation
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is called N+ (see label in figure 11a). In this case, the oil flow does not clearly
indicate what fluid phenomenon creates perturbations M+ and N+. As discussed in
§ 6.3, further analysis is needed to identify the cause of these perturbations.

Figure 11(a) also illustrates that there is communication through the corners
of the duct in the downstream portion of the flow (x∗ > 0.06L). That is, the
pressure fluctuations measured on different walls are correlated with each other. This
suggests that perturbations propagate from the bottom wall to the side wall and vice
versa. Interestingly, at high frequencies (2 < f /fc < 60) there is no communication
through the corners of the duct in the upstream region of the flow. Recall from
§ 3 that the various morphological features of the second shock have different
frequency content and cross-spectra. However, these qualities are nearly identical
for different morphological features of the third and fourth shocks. This is due to
the communication of perturbations through the boundary layer in the downstream
region.

Next, consider figure 11(b), which shows the perturbation pathways associated with
frequencies between 0.6fc and 2fc. The bottom wall separation bubble still generates
perturbations S± in this mid-frequency range but now the communication through the
boundary layer has increased. That is, the side and bottom wall pressure fluctuations
are better correlated along a larger portion of the isolator. Near the centre of the
bottom wall separation bubble (approximately 0.04L < x∗ < 0.08L), the perturbations
tend to emanate from the bottom wall to the side wall. In the other regions of the
flow, perturbations start on the side wall and travel towards the bottom wall.

Finally, consider the low-frequency perturbation pathways shown in figure 11(c).
Once again, the coherence between side- and bottom wall pressure fluctuations has
increased, meaning there is more communication through the corner of the duct.
Some of the communicated information comes from the multiple superimposed
perturbations traveling along the y = W/2 centreline of the bottom wall: (i)
perturbations S±, which emanate away from the bottom wall separation bubble
as discussed previously and (ii) perturbation D−, which is generated in the diffuser
and propagates upstream. Unfortunately, there is no optical access to the diffuser and
oil flow visualization cannot be used to gain insight into what fluid process generates
perturbation D−. The potential sources of this perturbation are discussed in § 6.1.
Other information communicated through the isolator originates on the side wall. In
particular, perturbations T± emanate away from a point on the side wall, near the
corner of the duct (see label in the figure). It is evident from the oil flow visualization
that these perturbations are generated near the foot of the lower separation bubble on
the side wall (labelled ‘2’ in the figure). Similar to perturbations S±, the generation
of these perturbations is attributed to the instabilities of the separation bubble.

5. Causal relationship between perturbations and shock motion
The cause-and-effect relationship between the shock motion and the perturbations

travelling through the isolator is considered in this section. To accomplish this, the
xi − pj cross-spectrum is calculated using one shock position fluctuation signal and
one pressure fluctuation signal. Pressures are measured along the bottom wall y =
W/2 centreline while the shock positions are recorded simultaneously with schlieren
imaging where glass side walls provide the necessary optical access. Since side wall
optical access is required, this analysis is limited to the interaction between the shock
waves and the perturbations traveling along the bottom wall (i.e. perturbations S±, D−
and B+). For each pressure fluctuation signal measured on the bottom wall, the cross-
spectral analysis is repeated for different shock morphological features. To properly
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compute the cross-spectrum, a second-order low-pass Butterworth filter with a cutoff
frequency of 14.8fc (5 kHz) is applied to the pressure measurements and then the
signal is downsampled to 29.7fc (10 kHz) to match the acquisition rate of the schlieren
images.

5.1. The xi − pj coherence spectra
Figure 12 shows how the coherence, Co(x′i, p′j), varies with x∗/L, the normalized
location of the pressure transducer relative to the time-averaged location of the leading
shock foot. Panels (a–d) of the figure are results of the cross-spectra calculated using
x′1c, x′2b, x′3b and x′4b, respectively. The coherence spectra contours found using other
morphological features of the same shock wave are nearly identical (e.g. the coherence
results of x′2t are the same as the results found using x′2b). In all of these cases, the
coherence is highest for pressures measured within the shock train. Specifically, the
shock positions are best correlated with pressure fluctuations for frequencies less than
0.6fc. Additional pockets of high coherence are evident in the downstream region
of the shock train for frequencies between 0.6fc and 10fc. These high-frequency
fluctuations are most strongly correlated with the third and fourth shock position
fluctuations.

Note that the pressure fluctuations measured upstream of the leading shock are
not correlated with the shock motion. This indicates that perturbations B+ (i.e. the
superstructures in the incoming turbulent boundary layer) do not notably influence
the inherent unsteadiness of the shock train. Recall from the pi − pj cross-spectral
analysis in § 4.2 that perturbations B+ are associated with pressure fluctuations in the
2fc–60fc frequency range. The xi − xj cross-spectral analysis presented in this section
only captures part of that frequency range ( f < 15fc). However, the coherence in
figure 12 is low (less than 0.01) within the region of the flow field associated with
perturbation B+, which highly suggests that the pressure fluctuations induced by the
superstructures are uncorrelated with the shock motion across the entire range of
frequencies.

5.2. xi − pj narrowband time delay example
To best illustrate the narrowband time delays of the xi− pj cross-spectra, scatter plots
are presented of the normalized narrowband time delay, τ(x′i, p′j)/tc, as a function of
the normalized pressure transducer location relative to the time-averaged location of
the leading shock foot, x∗/L. Consider the sample of narrowband time delay results
in figure 13, which are computed using the fluctuation time traces of leading shock
position, x′1c, and wall static pressure, p′j. Each point in the figure represents the
normalized time delay at a specific frequency between 1.0fc and 1.4fc. The trendlines
in figure 13 are simply linear fits of the data.

In essence, τ(x′i, p′j) quantifies the time between a fluctuation in the measured
pressure and the corresponding fluctuation in shock position. A positive time delay
means the pressure transducer ‘sees’ the fluctuation before the shock is displaced.
Conversely, a negative time delay means the shock fluctuates before the pressure
transducer ‘sees’ the fluctuation. A time delay of zero means that the shock
fluctuates simultaneously with the pressure. The direction in which a perturbation
travels is identified by comparing the time delays of multiple pressure transducers.
If an upstream transducer exhibits the fluctuation after a downstream transducer
then the slope of the point distribution is positive and the perturbation is clearly
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FIGURE 12. (Colour online) xi − pj coherence spectra throughout the shock train
calculated using: (a) x1c; (b) x2b; (c) x3b; (d) x4b.

travelling upstream. Conversely, a negative slope signifies a downstream propagating
perturbation. In figure 13, a perturbation is travelling upstream for x∗ < 0.06L and a
different perturbation is travelling downstream for x∗ > 0.06L. The magnitude of the
slope is the reciprocal of the perturbation propagation speed. Thus, a shallow slope
indicates a quickly propagating perturbation while a steep slope is associated with
slower propagation speeds.
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FIGURE 13. (Colour online) Narrowband time delay between pressure fluctuations and
leading shock Mach stem position fluctuations. Results are plotted for 1.0 < f /fc < 1.4
only.

5.3. How perturbations S± influence the shock train
With the information from the previous subsection in mind, the impact of perturbations
S± on the motion of shocks in the train is examined. Recall from § 4.2 that
perturbations S± are associated with a broad range of frequencies (up to approximately
10fc). To decouple the impact of perturbations S± from that of perturbation D−, only
frequencies above 0.6fc are considered in this subsection (since perturbation D−
is only associated with low frequencies). Figure 14 shows the scatter plot of the
normalized narrowband time delays, τ(x′i, p′j)/tc, with sufficiently high coherence for
all frequencies between 0.6fc and 10fc. For reference, the shaded region in the figure
corresponds to the location in the isolator where perturbations S± are generated based
on the pi − pj cross-spectral analysis (i.e. a region within the bottom wall separation
bubble). The markers plotted as upwards triangles, downwards triangles, circles and
squares represent the time delays computed using the first, second, third and fourth
shock position time traces, respectively. Results in different narrow frequency bands
are not distinguished from one another because they follow the same trend.

Consider the narrowband time delays calculated using the leading shock position
fluctuations, x′1c (upwards triangle markers in figure 14). The slope of the trendline
is positive, thus the measured fluctuations are a result of upstream propagating
perturbation S−. Perturbation S− is generated upstream of the second shock (i.e. within
the shaded region of the figure) and it travels upstream at approximately 0.1ua
to 0.2ua, inducing pressure fluctuations as it passes each transducer. When the
perturbation reaches the leading shock foot (i.e. at x∗/L= 0), the measured pressure
fluctuates simultaneously with the leading shock (i.e. τ = 0). This is a clear indication
that the upstream propagating perturbation induces a movement in the leading shock
as it passes the shock foot. It is hypothesized that the perturbation causes a locally
significant change in boundary layer properties (e.g. a change in boundary layer
height) which is ultimately responsible for instigating the shock movement.
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FIGURE 14. (Colour online) Narrowband time delay between pressure and shock position
fluctuations for 0.6< f /fc < 10.

Figure 14 also demonstrates that perturbation S− impacts the motion of the
downstream shocks. This is surprising because the perturbation is generated upstream
of these shocks and travels away from them. Consider the time delays calculated
using the downstream shock position fluctuations and the pressure fluctuations
induced by perturbation S−. These are the downwards triangle, circle and square
markers with a positive slope that are labelled ‘S−’ in the figure. The sufficient
coherence of these points is evidence that the downstream shock motion is correlated
with upstream pressure fluctuations. Note that the time delay increases for each
consecutive shock, i.e. τ(x′i+1, p′j)= τ(x

′

i, p′j)+1τ . This means that the time between
the pressure fluctuation and shock fluctuation increases for each downstream shock
by an amount 1τ (see label in figure as an example). Thus, following the leading
shock displacement, the downstream shocks are displaced sequentially after some time
delay. The idea of sequential shock displacement was first introduced in § 3.2 using
the xi − xj cross-spectral analysis. The time between the responses of consecutive
shocks found from the xi − pj cross-spectral analysis (i.e. 1τ ) closely resembles the
time delay found previously with the xi − xj cross-spectral analysis (i.e. τ(x′i, x′i+1)

from figure 8).
To explain this observed sequence of events, consider the following scenario.

Assume that the leading shock moves downstream but the second shock has not
moved. The change in distance between the two shocks implies that there are
changes to the expansion and compression regions that make up the flow structure.
As a result, the Mach number in front of the second shock is reduced and the
pressure rise across the second shock is lower. However, the pressure rise across the
shock must match the downstream condition that is imposed by the control valve. As
such, the new conditions at the second shock are not possible. Therefore, the second
shock must move downstream in order to have a higher inflow Mach number and
larger pressure rise across the shock. The process is then repeated across consecutive
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shock pairs in the train and gives rise to the observed sequential shock displacements.
The time delay between consecutive shock movements is related to how fast the
expansion/compression regions of the flow structure change from one condition to
the next. This flow response time is relatively large (up to 0.25tc). In comparison,
a fluid element in the flow upstream of the shock train travels the same distance in
approximately 0.04tc (i.e. six times faster than the flow response time). The difference
in time scales emphasizes that the movement of consecutive shocks is controlled by
the rate of relaxation of the flow field, and not by an acoustic wave or another type
of perturbation that is convected with the flow. A similar observation is made in the
computational work of Fiévet et al. (2017) to explain the sequential motion of shock
train elements in response to fluctuations in the inflow conditions.

Based on these initial observations and arguments, it is concluded that perturbation
S− influences the shock train in a direct and an indirect way as follows:

(i) Direct influence on the leading shock: as the perturbation propagates upstream
and passes the leading shock foot, it causes a locally significant change in the
boundary layer properties that induces a displacement in the shock position.

(ii) Indirect influence on the downstream shocks: the displacement of an upstream
shock alters the flow structure of the expansion and compression regions between
shocks. Thus, the flow conditions entering the downstream shock have changed.
In order to satisfy the new inflow conditions and required pressure rise, the
downstream shock is displaced accordingly.

Note that the indirect influence occurs as a result of the direct influence. However,
these two influences are considered unique because they impact the shock system
through different fluid processes.

Next, consider the narrowband time delays associated with the downstream
propagating perturbation S+ (i.e. trendlines with a negative slope in figure 14).
After perturbation S+ is generated (within the shaded region) it travels downstream
at approximately 0.3ua to 0.5ua, inducing pressure fluctuations as it passes each
transducer. When the pressure transducer is located near the shock used to compute
the cross-spectrum, the fluctuations in the measurements are almost simultaneous.
Therefore, the perturbation directly influences the shock position as it travels past
the shock foot. It is speculated that the perturbation also indirectly influences the
downstream shocks in the same manner as discussed previously. Both direct and
indirect influences exist but the best correlated of the two will appear as the result
of the cross-spectral analysis that is plotted in figure 14. This may explain some of
the scatter in the data points.

Recall that perturbations T± that are generated by the side wall separation bubble.
The cause-and-effect relationship between the shock motion and perturbations traveling
along the side wall cannot be directly studied because of diagnostic limitations.
However, the source, direction and speed of T± are similar to those of S±. Thus, it
is assumed that T± are analogous to perturbations S± and impact the shock train in
the same way through both direct and indirect influences.

5.4. How perturbation D− influences the shock train
In this subsection, the narrowband time delay results of the xi − pj cross-spectra
are analysed for frequencies less than 0.6fc. Perturbations S± and D− all induce
fluctuations at these low frequencies. Therefore, the time delays are influenced by
multiple perturbations and need to be carefully analysed to distinguish the effects of
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FIGURE 15. (Colour online) Narrowband time delay between pressure and shock position
fluctuations for f /fc < 0.6.

each perturbation individually. It is assumed that perturbations S± act in the same
way for all frequencies, and thus the results here are no different than those discussed
previously. This assumption allows for the development of a better understanding of
perturbation D−.

Figure 15 shows the low-frequency normalized narrowband time delays, τ(x′i, p′j),
with sufficiently high coherence as a function of x∗/L. Once again, the markers
plotted as upwards triangles, downwards triangles, circles and squares represent
the time delays computed using the first, second, third and fourth shock position
time traces, respectively. Unlike previous plots, the coordinate axis of this figure is
extended to view a large portion of the region downstream of the shock train. For
x∗ > 0.06L, all four trendlines have a positive slope meaning that a perturbation
is travelling upstream, inducing fluctuations in the pressure measurements as it
passes the pressure transducers. Based on the slope of the trendline, the speed of
the perturbation is approximately 0.1ua–0.2ua. In § 4.2, the results of the pi − pj

cross-spectral analysis showed evidence of both downstream (S+) and upstream (D−)
propagating perturbations in this region of the flow. The xi − pj time delays shown
here provide clear additional evidence of upstream propagating perturbation D− and
emphasize that the shock motion is better correlated with pressure fluctuations caused
by perturbation D− compared to those created by S+ for low frequencies. In addition,
the results illustrated in figure 15 clarify where perturbation D− originates. Specifically,
note the results of the pressures measured far downstream in the mixing region but
just upstream of the diffuser (at approximately x∗= 0.25L). These pressure fluctuations
are correlated with the motion of all four shocks and the narrowband time delay is
positive, meaning that the pressure fluctuation occurs before the corresponding shock
displacement. Thus, it is concluded that perturbation D− originates far downstream
of the shock train, in the diffuser section of the wind tunnel.
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Next, note that the magnitude of the time delay is large for pressures measured
near shocks 2, 3 and 4. This means that a long period of time elapses between the
pressure fluctuations and the position fluctuations of the downstream shocks. In other
words, the perturbation travels upstream without directly influencing the position
of shocks 2, 3 and 4 as it passes them. In contrast, the leading shock fluctuates
simultaneously with the pressures measured near the leading shock foot (i.e. τ = 0).
This means that perturbation D− directly influences the position of the leading shock
as it passes the shock foot. The magnitude of the time delays and the slope of the
trendlines suggest that the displacement of the leading shock ultimately causes the
sequential displacement of the downstream shocks. Thus, perturbation D− does not
have a direct influence on shocks 2, 3 and 4 but it does have an indirect influence
on them. In this scenario, the measured time delay is equal to the amount of time
it takes the perturbation to travel at 0.1ua–0.2ua from the pressure transducer to the
leading shock foot plus the amount of time required for the flow structure between
consecutive shocks to readjust due to the indirect influence of the perturbation.
Therefore, it is expected that τ(x′i+1, p′j)= τ(x

′

i, p′j)+1τ where 1τ is the relaxation
time of the flow between consecutive shocks. Figure 15 shows that the magnitude of
1τ is small but the accuracy in determining this value is limited due to scatter in the
results and the lack of pressure measurements for 0.13L< x∗ < 0.23L. However, the
xi − xj cross-spectral analysis confirms the small value of 1τ . Specifically, figure 8
demonstrates that the time delay between consecutive shock motions goes to zero
as the frequency approaches 0.1fc. Given the negligible magnitude of 1τ for this
frequency range, the xi − pj narrowband time delay in figure 15 is approximately
equal to the time it takes the perturbation to propagate from the transducer to the
leading shock foot. This verifies that perturbation D− directly influences the leading
shock and indirectly influences shocks 2, 3 and 4.

In figure 15, the magnitude and slope of the time delay suddenly change at
approximately x∗ = 0.05L. This location is within the bottom wall separation bubble
and corresponds to where perturbation S− is generated for low frequencies. Thus,
for x∗ < 0.05L the time delays derived from cross-spectral analysis are influenced by
multiple upstream propagating perturbations (S− and D−). The spatial and temporal
overlap is responsible for the observed discontinuity in time delay and suggests that
the two perturbations cannot be distinguished from one another.

6. Insight from PIV and additional discussion on the perturbations
6.1. Perturbation D−: an upstream propagating acoustic wave

The results of the cross-spectral analysis clearly illustrate that perturbation D− is
generated in the diffuser and propagates upstream, along the bottom wall of the
isolator, at approximately 0.1ua–0.2ua. Given the low-speed nature of perturbation D−
and the fact that it propagates against the (mostly) supersonic flow, it is hypothesized
that this perturbation is an acoustic wave traveling upstream through the subsonic
portion of the boundary layer. Such a wave must travel at a speed of u − a, where
u and a are the local flow speed and the speed of sound, respectively, at a given
distance from the wall in the subsonic portion of the boundary layer. That is, the
measured perturbation speed found from cross-spectral analysis (0.1ua–0.2ua) should
equal u − a. To check if this is a reasonable conclusion, u − a is computed for
the isolator flow field using the streamwise velocity found from PIV, the measured
stagnation temperature (i.e. the room temperature), and the assumption of adiabatic
flow. Figure 16 shows the probability of u− a being within the range of −0.2ua to
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FIGURE 16. (Colour online) Probability map of −0.2ua < u − a < −0.1ua demonstrates
where perturbation D− propagates in the boundary layer. Time-averaged velocity contours
from 0.8ua to 1.0ua (in increments of 0.02ua) are plotted as solid grey lines to illustrate
the shock positions. The dotted line follows the sonic line.

−0.1ua for every point of PIV measurement plane CL (see figure 4 for measurement
plane location). For clarity, the time-averaged velocity contours from 0.8ua to 1.0ua

are overlaid in the figure as solid grey lines to illustrate the shock locations. Given
the propagation speed specified by the cross-spectral analysis, this figure illustrates
that the acoustic wave most likely travels within the upper portion of the boundary
layer, just below the sonic line.

Surprisingly, the xi − pj cross-spectral analysis does not indicate that the upstream
propagating acoustic wave directly influences the motion of the downstream shocks as
it propagates past them. From schlieren images (see figure 2) and PIV vector fields
(see figure 16) it is known that the boundary layer rapidly grows after the leading
shock foot. This leads to the hypothesis that the thick, turbulent downstream boundary
layer is less sensitive to the local changes caused by the acoustic perturbations. In
comparison, the boundary layer at the leading shock foot is thin. Thus, when the
acoustic wave reaches the leading shock foot, it imparts a locally significant change
to the boundary layer properties (e.g. by changing the boundary layer height) enough
to displace the leading shock. This explains why the xi − pj cross-spectral analysis
only shows the acoustic wave directly influencing the leading shock position. The
displacement of the leading shock then instigates the sequential displacement of the
downstream shocks; i.e. the perturbation indirectly influences their motion.

While the cross-spectral analysis and PIV clearly show the path of the acoustic
wave through the isolator boundary layer, the lack of downstream measurement
capabilities prevents the study of the perturbation source in the diffuser. To identify
the physical fluid phenomenon responsible for generating upstream propagating
acoustic waves, theories presented in the literature are evaluated. As discussed in
§ 1, Yamane et al. (1984a,b) also see evidence of a perturbation propagating slowly
upstream, leading them to hypothesize that upstream propagating acoustic waves
induce shock train unsteadiness. They conjecture that the acoustics are created by
the oscillation of the air column in the diffuser. If this were the case, the power
spectra would show a narrowband low-frequency mode associated with the natural
frequency of the pipe resonance (expected to be less than 0.3fc for the conditions
of these experiments). The results of the current experiment (see figures 5 and 9)
are relatively broadband in the low-frequency regime, meaning that the flow is not
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pulsating at a distinctive frequency as would be expected if the acoustic wave were
generated by pipe resonance.

More fitting explanations for the generation of upstream propagating acoustic waves
are obtained through previous studies of single normal shock fluctuations in a diffuser.
For instance, Chen, Sajben & Kroutil (1979) used space–time correlations of pressure
measurements to determine that flow separation along the walls of the diverging
duct generates upstream propagating waves with significant spectral content at low
frequencies. These waves are related to the movement of an upstream separation
point and are ultimately responsible for the normal shock unsteadiness. Handa,
Masuda & Matsuo (2003) also investigated single normal shocks in diffusers and
their results suggest that high turbulence levels on the curved wall are responsible for
the generation of the pressure perturbations. Both phenomena described above may
occur in the diffuser section of the current experiment and generate acoustic waves
that propagate upstream into the constant area isolator. However, further research is
needed to verify the source of these upstream propagating acoustic waves.

Now that the details of perturbation D− have been thoroughly discussed, it is
important to note the practical implications of this perturbation’s influence on the
shock system. Start by recalling that perturbation D− originates from the part of
the facility used to replicate the combustor. Thus, it is analogous to disturbances
generated by the combustion process in a real high-speed air-breathing engine. This
study verifies that the isolator and combustor dynamics are coupled by explaining
the mechanism by which downstream information is communicated upstream via
acoustic waves. The acoustic waves from the combustor should be mitigated in order
to reduce noise and detrimental wall loads in the isolator of a real engine. The
same communication mechanism may also be responsible for transmitting larger
downstream disturbances, for example, if there is a change in the bulk downstream
combustor conditions. Understanding this mechanism is important for predicting
the shock train response to changes in combustor conditions, implementing control
mechanisms and avoiding unstart.

6.2. Perturbations S±, T±: acoustic waves and vortices generated by separation
bubbles

In this subsection, the perturbations generated by two separation bubbles are discussed:
perturbations S± generated by the separation bubble on the bottom wall (‘separation
bubble 1’ in figure 11) and perturbations T± generated by the side wall separation
bubble located under the bottom lambda foot (‘separation bubble 2’ in figure 11). The
existence of boundary layer separation along the shock train is generally an accepted
or assumed feature of shock trains. However, its properties, such as the point of
separation, length, and thickness, are not well defined from works in the literature.
For the current experimental configuration, ‘bubble 2’ is investigated in our companion
work (Hunt & Gamba 2018) using stereoscopic particle image velocimetry (SPIV) on
cross-sectional planes. The SPIV vector fields demonstrate that this rapidly enlarging
separation bubble pushes the flow towards the centre of the duct, creating a highly
three-dimensional shock structure. In the current work, both bottom and side wall
separation bubbles are examined using two-component PIV on streamwise vertical
planes. Specifically, ‘bubble 1’ and ‘bubble 2’ are captured in PIV measurement
planes CL and SW, respectively. Recall that the locations of these PIV measurement
planes are illustrated in figure 4.

Figures 17(a) and 17(b) illustrate the probability of reverse flow along the shock
train for measurement planes CL and SW, respectively. Time-averaged velocity
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FIGURE 17. (Colour online) Probability of separated flow on measurement plane: (a) CL;
(b) SW. The thin dashed line around each separation bubble represents the 10 % separation
probability contour. Time-averaged velocity contours from 0.8ua to 1.0ua (in increments
of 0.02ua) are plotted as solid grey lines to illustrate the shock positions. The dotted line
follows the sonic line.

contours from 0.8ua to 1.0ua are plotted as solid grey lines to illustrate the shock
locations. In addition, the dashed line in each figure represents the contour where
the probability of separation is 10 %. Based on the contour lines in figure 17(a),
it is evident that the bottom wall separation is under the second shock (in the
region 0.04< x∗/L< 0.11). For this PIV measurement plane, reverse flow is evident
in approximately 80 % of the instantaneous vector fields, which indicates that the
bottom wall is intermittently separated. It is also clear that the location and size of
the separation bubble change in time. Thus, the probability of seeing separation at a
particular point in the flow is less than 80 %.

The side wall separation bubble exhibited in figure 17(b) is larger than the
bottom wall separation bubble discussed previously. On measurement plane SW, the
probability of reverse flow is greater than 10 % within a region −0.01< x∗/L< 0.07
and the most probable region for flow separation is at x∗/L = 0.02. However, these
quantities are underestimated because measurement plane SW is positioned 0.16W
away from the side wall. Effectively, only the tallest portions of the separation
bubble are measured; analogous to viewing the tip of an iceberg. From previous
SPIV measurements on cross-sectional planes (Hunt & Gamba 2018), it is known
that the side wall separation bubble is present in 100 % of the instantaneous velocity
fields, but its height is sometimes less than 0.16W. Despite this restriction, the
position and extent of the flow separation shown in figure 17(b) roughly agree with
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the observations from the oil flow visualization. The time-averaged velocity contours
from PIV also demonstrate that the side wall separation is under the leading shock
lambda foot and that there is an upstream influence on the shock structure near the
wall. That is, the leading shock is curved such that the portion of the shock near
the wall is positioned further upstream. This is consistent with our previous SPIV
measurements on cross-sectional planes (Hunt & Gamba 2018) that revealed the
highly three-dimensional and curved nature of the leading shock.

In the literature, the point of separation is often assumed to be at the leading
shock foot. However, the above results for the bottom wall separation bubble show
that separation may start further downstream or there may not be separate at all.
Benek, Suchyta & Babinsky (2016) studied the effects of duct width and boundary
layer thickness on a single oblique shock reflection and hypothesized that thick
boundary layers in the duct corners produce weak compression waves that influence
the separation region. If compression waves from opposite corners interact upstream
of the shock impingement then the adverse pressure gradient is spread over a larger
distance and it is easier for the flow to stay attached. This can occur if the duct
aspect ratio is small or the corner blockage is large, which generates compression
waves at large angles away from the wall. In the current experiment, the thick side
wall separation bubble in conjunction with the low aspect ratio duct suggest that the
theory of Benek et al. (2016) holds for the resulting shock train and explains why
the bottom wall boundary layer only has a small, intermittent separation bubble.

Now the perturbations created by these separation bubbles are discussed. Separation
bubbles in turbulent flows are known to exhibit two unsteady phenomena: (i)
the roll-up of vortices in the shear layer above the recirculating region and their
subsequent shedding downstream of the bubble, and (ii) separation bubble breathing,
i.e. contraction/expansion (Kiya & Sasaki 1983; Driver, Seegmiller & Marvin 1987;
Weiss, Mohammed-Taifour & Schwaab 2015). These separation bubble instabilities are
either intrinsic to the bubble itself or externally induced (e.g. driven by the incoming
turbulent boundary layers) as observed in some single SBLI studies (Clemens &
Narayanaswamy 2014).

Given the speed and direction in which perturbations S− and T− travel, it is
proposed that these perturbations are acoustic waves generated by the separation
bubble breathing mode. The acoustic waves are created as the surrounding boundary
layer flow adjusts to the new separation bubble size or position. Similar to acoustic
wave D−, the acoustic waves generated by the separation bubble instabilities propagate
upstream at 0.1ua–0.2ua and follow the same path through the upper portion of the
boundary layer (see figure 16). The acoustic waves change the local flow properties
and thus induce a displacement of the leading shock as they pass the shock foot. It is
also hypothesized that downstream propagating acoustic waves are generated by the
separation bubble breathing mode. However, these acoustic waves have a negligible
impact on the downstream shock positions for the same reason that acoustic wave D−
does not impact shocks 2, 3 and 4 as it travels upstream. That is, the thick turbulent
boundary layer under the downstream shocks is less sensitive to the local changes
imparted on the flow from the acoustic wave.

The downstream propagating perturbations S+ and T+ are thought to be streamwise
vortical structures generated by the separation bubble shear layer. These vortices
periodically shed from the shear layer and propagate downstream where they
affect the position and structure of the shocks. Computations by Varadarajan &
Roe (2011) verify that vortices convected across a shock wave are capable of
traveling considerable distances and are therefore capable of impacting the motion of
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downstream shocks. The existence of vortical structures is investigated by applying
the vortex detection method proposed by Graftieaux, Michard & Grosjean (2001) to
the instantaneous PIV velocity fields. This method has been utilized in several single
SBLI studies (Dupont et al. 2008; Souverein et al. 2010; Oudheusden et al. 2011).
The detection method defines a dimensionless scalar, Γ , at every discrete point in
the measurement domain, P, as follows:

Γ (P)=
1
N

∑
S

sin(θM), (6.1)

where S is a two-dimensional area surrounding the point P, N is the number of points
inside S and θM is the angle between the local velocity at a point M within the area
of integration S and the vector connecting points P and M. The dimensionless scalar
result, Γ , has values between −1 and 1, with its sign related to the direction of the
vortex rotation. Graftieaux et al. (2001) showed that the flow is locally dominated by
rotation when |Γ |> 2/π. Based on this definition, the vortex identifier is applied to
the instantaneous velocity fields using a 0.06H × 0.06H interrogation window size.
Note that the interrogation window size does not impact the conclusions drawn here
because it is essentially a spatial filter that only weakly affects the location of the
vortex centre. This was verified by parametrically changing the size of S.

Figure 18 shows examples of the vortex identifier magnitude, |Γ |, for instantaneous
velocity fields with reverse flow. For reference, the dashed lines outline regions of
reverse flow and the solid grey lines are velocity contours from 0.8ua to 1.0ua, which
are plotted to illustrate the shock locations. Panels (a) and (b) of the figure are results
from PIV measurement planes CL and SW, respectively. For both measurement planes,
the existence of vortices in the separation bubble shear layer and downstream of the
separation bubble is made evident by the large magnitude of the vortex identifier. The
centre of each identified vortex, with |Γ | > 2/π, is circled in the figure. Generally,
the vortices located downstream of the separation bubble are harder to detect. This
is attributed to the difficulty in defining geometrical properties of a large-scale vortex
superimposed on a small-scale turbulent velocity field, which is a common problem in
vortex identification schemes. Far away from the separation bubble and its wake, the
magnitude of Γ is less than 0.2 and thus, there are no vortices in the other regions of
the flow field. Figure 18 only shows two instantaneous vortex identifier fields, but the
results are representative examples of all flow fields with separation. To demonstrate
this, figure 19 shows that the number of identified vortices increases linearly with the
size of the separated area. The lack of vortex centres in instantaneous velocity fields
without reverse flow signifies that Γ is a marker of separation.

The speed at which perturbations S+ and T+ propagate downstream further supports
the hypothesis that these perturbations are vortices. From the cross-spectral analysis,
it is known that these perturbations travel at approximately 0.2ua–0.5ua. Single
SBLI experiments have shown that vortices shed away from the separation bubble
at a convective speed of 0.3–0.7ua (Dupont et al. 2008; Humble, Scarano & van
Oudheusden 2009; Souverein et al. 2009; Oudheusden et al. 2011). In diffuser flows,
the separation bubble associated with an unsteady shock wave also produces vortices
that propagate downstream at approximately 0.5ua (Bogar 1983). Thus, the expected
convective velocity of vortical structures is similar to the measured propagation speed
of the perturbations in the shock train.

In a realistic application, a thorough understanding of both separation bubble
perturbations (i.e. the acoustic waves and the vortices) is important because they
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FIGURE 18. (Colour online) Magnitude of the vortex identifier, |Γ |, for instantaneous
velocity fields with separation: (a) measurement plane CL; (b) measurement plane SW.
Vortex centres are circled. The thin dashed line represents the extent of reverse flow.
Velocity contours from 0.8ua to 1.0ua (in increments of 0.02ua) are plotted as solid grey
lines to illustrate the shock positions.

can feed instabilities to the combustor. It is also possible that these perturbations
interact with or amplify the acoustic waves generated in the combustor. Unlike the
combustor’s acoustic waves, the separation bubble perturbations are created locally
in the shock train and therefore, mitigation strategies can be applied to the isolator
itself.

6.3. Perturbations M+ and N+

The pi − pj cross-spectral analysis in § 4.3 indicates that two perturbations propagate
downstream along the side wall of the isolator: M+ and N+ associated with a
narrow band of frequencies centred at 5fc and 9fc, respectively. Given the spacing
between pressure transducers and the narrowband time delay from the cross-spectral
analysis, it is evident that these perturbations propagate at 0.1ua–0.3ua; far too
slow to be an acoustic wave convected downstream at a speed u + a. In addition,
the vortex identification algorithm described earlier does not show any vortices in
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FIGURE 19. Average number of vortex centres (with |Γ | > 2/π) versus the size of the
separated area in the instantaneous PIV velocity field.

the PIV velocity fields where these perturbations exist. Thus, the data suggest that
perturbations M+ and N+ are not acoustic waves or flow-separation-induced vortices.

Details about these perturbations are difficult to obtain because (i) simultaneous
side wall pressure and schlieren measurements are not possible, hence the xi − pj
cross-spectral analysis cannot be conducted, and (ii) no distinctive flow feature
is evident in the PIV or oil flow visualizations that would suggest what fluid
phenomenon creates the perturbations. Therefore, the origin of the perturbations
and information on how they interact with the shock train is unknown. One possible
explanation is provided. Consider a scenario where the two side wall separation
bubbles change size, effectively creating an aerodynamic nozzle. If the bubble size
grows then the available area for core flow to pass through is reduced and perturbation
M+ is the resulting hydrodynamic change to the flow structure. As evidence, the oil
flow visualizations show that perturbation M+ originates between the two separation
bubbles. Similarly, perturbation N+ originates near the third shock in a region where
the flow is confined by thick boundary layer bulges. Thus, the strong high-frequency
modes evident in the shock motion and pressure fluctuations are possibly due to the
successive expansions and contractions of the core flow area. This explanation is
similar to the theory of Sugiyama et al. (1988) as discussed in § 1. However, further
analysis is needed to clearly identify the cause of these perturbations.

7. Discussion on the scaling of unsteadiness properties
In this section, we consider how the shock train unsteadiness properties may

depend on the various flow conditions. The development of a scaling argument is
difficult for three reasons. The first reason is that the shock train unsteadiness is
caused by multiple fluid processes that influence the shock train through different
physical mechanisms. Each mechanism introduces fluctuations associated with a
range of frequencies that depend on the characteristic quantities of that process. Thus,
a single set of scaling parameters may not adequately describe the entire system.
The second reason is that the perturbations may be coupled to each other, causing
the unsteadiness properties to scale with parameters that are seemingly irrelevant
to the individual phenomena. For instance, an upstream propagating acoustic wave
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from the diffuser may perturb the bottom wall separation bubble, thus generating a
downstream propagating vortex which directly influences the motions of downstream
shocks. In this scenario, the vortex and the resulting shock motion depend on a fluid
phenomenon in the diffuser. Coupling effects may also result in nonlinear responses.
The third problem stems from the lack of research that adequately describes the
entire set of flow parameters and the shock train unsteadiness properties, both of
which are needed to construct and compare scaled quantities from different facilities.
Nevertheless, here we attempt to unify some of the observations introduced in the
current work by discussing different scaling approaches.

7.1. Definitions of three length scales: L, Lsep, and Lθ
Thus far, the pseudoshock length, L, and the free-stream approach velocity, ua, have
been used to scale the shock train unsteadiness properties. As prefaced in § 3.1, these
scaling parameters are global metrics. The pseudoshock length describes the overall
state of the system because it is a function of the isolator geometry and boundary
conditions. Similarly, the free-stream velocity globally influences the rates of many
relevant fluid processes. Choosing global metrics as scaling parameters is an attempt
to resolve the first problem discussed in the previous paragraph. That is, a single set of
scaling parameters is used to describe multiple fluid processes that create perturbations.
While the individual sources of perturbations are dependent on local fluid properties
and processes, the entire system is ultimately governed by these global metrics. Some
characteristics of the local fluid physics might even directly depend on the global
parameters of the system. However, due to a lack of well-documented shock train
measurements under different conditions, the validity of this scaling argument cannot
be proven unequivocally and additional work is required.

Driven by the lack of previous research on shock train unsteadiness, consider the
findings on a similar large-scale, low-frequency unsteadiness observed in single SBLI
studies (Clemens & Narayanaswamy 2014; Gaitonde 2015). These interactions are the
subject of many research studies and provide inspiration for alternative shock train
unsteadiness scaling arguments. First, note the obvious differences in these flow fields:
(i) single SBLI experiments only have a single incident shock and the associated
reflected shock while shock trains are composed of numerous shocks; (ii) the geometry
of the duct is different because single SBLI experiments have a physical structure in
the flow creating and stabilizing the incident shock, while shock train experiments do
not have this structure. The key similarity between the single SBLI case and the shock
train is the existence of an unstable separation bubble that can influence the shock
position. In single SBLI experiments, the characteristic frequencies of the unsteadiness
are typically scaled in terms of a dimensionless Strouhal number defined as follows:

St=
fLsep

ua
, (7.1)

where Lsep is the length of the separation bubble. Other definitions for Lsep have been
used when the separation bubble length cannot be directly measured. For example,
in reflected shock interactions, Lsep is often approximated as the distance between
extrapolated intersection points of the incident and reflected shocks with the wall.
Defining Lsep is less straightforward for a shock train because there are multiple
separation bubbles with different lengths. For this work, Lsep is the average length
of the instantaneous side and bottom wall separation bubbles (quantified using PIV)
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and is equal to 0.035L. The chosen definition of Lsep may seem fairly arbitrary, but
nevertheless considered here.

Generally, Lsep represents the effects on the boundary layer caused by the shock
impingement. Thus, Lsep should ultimately depend on a characteristic length of the
boundary layer. In addition, the boundary layer properties are potentially appropriate
scaling parameters for the shock train unsteadiness because, similar to single SBLI,
the phenomena that generate perturbations are associated with the boundary layer
itself. Given these reasons, an alternative length scale for the shock train unsteadiness
properties is defined as follows:

Lθ =
√
θaDH, (7.2)

where θa is the momentum thickness of the approach boundary layer and DH is the
hydraulic diameter of the isolator. In this work, the momentum thickness is only
measured on the bottom wall and it is assumed that the other walls have similar
boundary layer properties. Thus, Lθ is essentially a one-dimensional estimate and is
equal to 0.005L for the current experiment.

The approach momentum thickness is used in the definition of Lθ despite the
fact that momentum thickness varies through the shock train. This is important to
note because local fluctuations are driven by their respective boundary layer, which
might be strongly distorted by preceding shock/boundary layer interactions. However,
invoking traditional boundary layer scaling arguments, even the local boundary layer
properties should scale with the initial approach conditions. For simplicity, it is
assumed that a θa dependence is sufficiently representative of the boundary layer
evolution through the shock train. Therefore, θa is proposed as a relevant scaling
quantity in (7.2) and is expected to adequately represent the shock train dynamics to
a first approximation.

The hydraulic diameter is included in the definition of Lθ as a one-dimensional
way of accounting for the effects of the duct cross-sectional size. At the very least,
the cross-sectional size of the isolator is geometrically similar to the overall size of
the shock train structure. Previous works in the literature have also found that DH is
an appropriate length scale for several important pseudoshock features, such as the
overall pressure rise and pressure gradient. Notably, Waltrup & Billig (1973) use Lθ
to normalize the pseudoshock length in a simple quadratic relationship that scales the
pseudoshock pressure profiles at different flow conditions.

An alternative interpretation of Lθ is developed using a one-dimensional
representation of confinement ratio, Cθ = 2θa/DH . By substituting the definition
of confinement ratio into (7.2), Lθ is rewritten as follows:

Lθ = θa

√
2

Cθ

. (7.3)

Typically, Cθ is much less than one and the term C−1/2
θ augments the impact of θa.

As an example, Cθ is equal to approximately 0.03 for the conditions of the current
experiment, and thus Lθ is eight times greater than θa. The example demonstrates how
Lθ can be interpreted as an adjusted boundary layer momentum thickness that accounts
for the effects of confinement. This emphasizes that the corrected momentum thickness
drives the shock train inherent unsteadiness, an idea that is consistent with the initial
discussion explaining why θa is an important scaling parameter.
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FIGURE 20. (Colour online) Evolution of the normalized pressure fluctuation power
spectrum as a function of Strouhal number. Pressure measured on the: (a) bottom wall;
(b) side wall.

7.2. Evaluation of the Lsep and Lθ length scales
The relevance of two length scales, Lsep and Lθ , are evaluated by analysing the power
spectra of the shock train fluctuations. Figures 20(a) and 20(b) show the evolution
of the pressure fluctuation power spectra through the shock train for measurements
on the bottom and side walls, respectively. Results of pressures measured away from
the corner (solid lines) and near the corner (dotted lines) are shown. The results
are presented in the typical single SBLI fashion, where the power spectra, PSD(p′),
are non-dimensionalized by frequency, f , and the pressure variance, σ 2(p′), and then
plotted as a function of Strouhal number, St. The top and bottom horizontal axes
show the Strouhal numbers computed using Lsep and Lθ , respectively.

Consider the spectra of the bottom wall pressures shown in figure 20(a). Ahead
of the shock train, the power spectrum is dominated by high Strouhal numbers
associated with superstructures in the approach boundary layer. Near x∗/L = 0, the
power transitions to low Strouhal numbers due to the motion of the leading shock foot.
Then, a local mode in the power spectrum emerges near the bottom wall separation
bubble. For pressures measured in the corner, this mode is broad and centred at
StLθ = 0.08 (StLsep = 0.56). For pressures measured on the y = W/2 centreline, the
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mode is narrow and centred at StLθ = 0.02 (StLsep = 0.15). In all cases, the separation
bubble mode broadens and shifts towards a higher Strouhal number as x∗/L increases.
A similar trend occurs in single SBLI experiments, where pressures first exhibit a
mode at a Strouhal number in the range of 0.02–0.05, which then broadens through
the separation bubble (Dupont, Haddad & Debiève 2006; Dussauge et al. 2006; Grilli
et al. 2012; Poggie et al. 2015). When scaled using Lθ , the shock train separation
bubble mode is centred at a Strouhal number similar to those found in single SBLI
experiments. This indicates that Lθ is potentially an appropriate length scale for
the shock train when comparing to single SBLI unsteadiness. However, the shock
train motion is influenced by many perturbations; the effects of which become more
prominent in the downstream portion of the flow as information is communicated
through the boundary layer. Thus, the shock train power spectra exhibit several
high-frequency modes at the end of the bottom wall separation bubble that are not
characteristic of a single SBLI. This difference emphasizes that the local unsteadiness
properties of the shock train are influenced by phenomena that are not local.

Next, consider the power spectra of the side wall pressure measurements shown
in figure 20. The pressures measured near the corner of the duct pass through a
separation bubble and exhibit a power spectrum evolution similar to the bottom wall
measurements. That is, the power at low Strouhal numbers rises near the shock foot
and then a local mode develops through the separation bubble. Thus, both shock
train separation bubbles influence the pressure power spectra in a similar manner
as a separation bubble generated by a single SBLI. However, the Strouhal numbers
associated with the side and bottom wall separation bubble modes differ due to
contrasting bubble sizes and general characteristics. Funderburk & Narayanaswamy
(2016) note a similar difference in Strouhal number for the large primary separation
and small corner separation generated by a single SBLI. In contrast, the spectra of the
side wall pressures measured away from the corner do not pass through a separation
bubble and therefore the spectral modes are not caused by a local separation. Instead,
the multiple well-defined modes are signatures of perturbations M+ and N+, as well
as perturbations generated elsewhere in the isolator that influence the flow on the
side wall due to communication through the boundary layer.

The normalized power spectra of the shock train position fluctuations are shown in
figure 21. Only the results of x′1c, x′2t, x′3t, and x′4t are plotted for clarity, but similar
results are obtained for the other morphological features. The figure demonstrates
that the shock train morphological features exhibit broadband motion and some
have high-frequency modes. In contrast, a single SBLI fluctuates predominantly at a
specific frequency corresponding to a Strouhal number of approximately 0.02–0.07
(Piponniau et al. 2009; Oudheusden et al. 2011). The difference in spectral content
is not surprising because there is a physical structure in single SBLI experiments
that creates the shock wave and provides stability to the system. No such structure
exists for a shock train in a constant area duct. Instead, the shock train position is
dictated by the isolator geometry and boundary conditions. The shock train is also
influenced by a variety of perturbations and, as a result, its motion is expected to be
very different than that of a single SBLI.

8. Summary and conclusions

Even with constant bulk inflow and outflow conditions, a shock train in a constant
area duct exhibits inherent unsteadiness where it fluctuates about its time-averaged
position. Shock train inherent unsteadiness has been observed in previous studies
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FIGURE 21. (Colour online) Normalized shock position fluctuation power spectra as a
function of Strouhal number.

but the underlying mechanisms responsible for the unsteadiness have not been fully
explored. This work specifically investigates the fluid phenomena that cause the
inherent unsteadiness and links them to a complex, frequency-dependent dynamical
system of perturbations that are present in the flow field and interact with the shock
train.

Experiments are performed in a mechanically back-pressured direct-connect
isolator model that simulates the isolator flow field of a high-speed air-breathing
engine, such as a dual-mode scramjet. The isolator model has a nominal inflow
Mach number of 2.0 and a constant area cross-section with an aspect ratio of
approximately 1. Perturbations and their effects on the shock train are primarily
studied using cross-spectral analysis of shock position and wall static pressure
fluctuation measurements. Additional insight is gained through oil flow visualization
and PIV. Several perturbations are identified, but some are found to have a negligible
impact on the shock train motion, such as the superstructures in the approach
boundary layer. The following perturbations are found to notably contribute to the
shock train inherent unsteadiness:

(i) Acoustic waves generated by separation bubble instabilities: acoustic waves are
created as the surrounding flow adjusts to a change in separation bubble size
or position. In the current experiment, the acoustic waves form near the second
shock and propagate upstream through the subsonic portion of the boundary layer
at approximately 0.1ua–0.2ua. The passage of the acoustic waves is associated
with broadband wall static pressure fluctuations ( f < 10fc). As the acoustic waves
pass the leading shock foot, they induce a displacement in the shock position.
Downstream propagating acoustic waves may also be generated by the separation
bubble instabilities, but they have a negligible impact on the shock system.

(ii) Vortices generated by the shear layer of the separation bubble: these vortices
shed off separation bubbles and convect downstream at approximately 0.2ua–
0.5ua. They are associated with broadband wall static pressure fluctuations
( f < 10fc). The vortices persist for a significant distance and are able to influence
the positions of downstream shocks as they convect past each shock foot.
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(iii) Acoustic waves generated in the diffuser: these acoustic waves propagate
upstream through the subsonic portion of the boundary layer at approximately
0.1ua–0.2ua and are associated with low-frequency ( f < 0.6fc) wall static pressure
fluctuations. The acoustic waves do not influence the motion of the downstream
shocks but do impact the leading shock position as they pass the shock foot.

Each of the perturbations described above has a direct and indirect influence on the
unsteady motion of the shock train. A direct influence occurs when the perturbation
causes a locally significant change in flow properties, and as a result, the perturbation
induces a shock displacement as it passes the shock foot. For example, the vortices
generated by the separation bubble shear layer travel downstream and have a direct
influence on the motion of all the downstream shocks. The acoustic waves (either
generated in the diffuser or by the separation bubbles) only have a direct influence
on the leading shock. The local effects of the acoustic waves are negligible in the
downstream flow and thus do not impact the motion of the downstream shocks. This
is attributed to the thick, distorted boundary layer that grows along the length of the
shock train. In comparison, the thin boundary layer at the leading shock foot is more
receptive to the disturbances created by the acoustic waves.

The shock motion due to the direct influence of the perturbation instigates a
sequential displacement of the downstream shocks, referred to as the indirect influence
of the perturbation. This process begins when the displacement of an upstream shock
changes the flow structure of the expansion–compression region between shocks. In
response, the downstream shock moves to satisfy the new inflow conditions and the
required downstream pressure rise. The time delay between sequential shock motions
is relatively long and corresponds to the response time of the flow structure. Note
that the indirect influence is a consequence of the direct influence of the perturbation.
Thus, without a direct influence, there will be no indirect influence. Overall, the
shock train inherent unsteadiness results from the superposition of the direct and
indirect influences of each perturbation. This superposition might not necessarily be
linear since coupling between different perturbations may occur and lead to complex
shock train dynamics.

While the unsteadiness characteristics detailed in this work are specific to the
flow conditions and isolator geometry of the University of Michigan direct-connect
isolator model, similar perturbation sources and mechanisms are expected under other
conditions. A scaling argument for the shock train unsteadiness characteristics is
attempted. The approach velocity and pseudoshock length are chosen as characteristic
velocity and length scales, respectively, because they are global metrics that describe
the overall state of the system. It is argued that the different fluid processes that
generate perturbations are all related to these global quantities. Unfortunately, the
proposed scaling argument cannot be verified because there are no other studies with
well-documented measurements of the flow conditions and shock train unsteadiness.
However, this work introduces the scaling discussion by determining what fluid
processes impact the shock motion. Ultimately, understanding the underlying
phenomena that cause shock train inherent unsteadiness provides insight on the
true scaling argument.
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