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Reversed von Kármán streets are responsible for a velocity surplus in the wake of
flapping foils, indicating the onset of thrust generation. However, the wake pattern
cannot be predicted based solely on the flapping peak-to-peak amplitude A and
frequency f because the transition also depends sensitively on other details of the
kinematics. In this work we replace A with the cycle-averaged swept trajectory T of
the foil chordline. Two-dimensional simulations are performed for pure heave, pure
pitch and a variety of heave-to-pitch coupling. In a phase space of dimensionless
T − f we show that the drag-to-thrust wake transition of all tested modes occurs for a
modified Strouhal StT → 1. Physically, the product T f expresses the induced velocity
of the foil and indicates that propulsive jets occur when this velocity exceeds U∞. The
new metric offers a unique insight into the thrust-producing strategies of biological
swimmers and flyers alike, as it directly connects the wake development to the chosen
kinematics, enabling a self-similar characterisation of flapping foil propulsion.
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1. Introduction

Almost all aquatic and flying animals generate thrust via the oscillatory motion of
foil-like body parts (for example, tails, fins, etc.). Moreover, flapping foil systems are
often associated with high efficiency and strong side forces, ideal for manoeuvring
(Read, Hover & Triantafyllou 2003). Thus, many studies have focused on the
analysis and implementation of these biological configurations into man-made designs
(Triantafyllou, Techet & Hover 2004; Wang 2005; Fish & Lauder 2006), although the
underlying physics is still not clearly understood.

Here we aim to determine the drag-to-thrust wake transition of these flapping
mechanisms via the analysis of the vortex pattern development. Assuming foil
undulations above the lock-in frequency (Vial, Bellon & Hernández 2004; Thiria,
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U/U∞(a) (b) (c)U/U∞ U/U∞

FIGURE 1. Drag-to-thrust transition within the wake of a symmetric flapping foil. (a) BvK
street, (b) Neutral line, (c) reversed BvK wake.

Goujon-Durand & Wesfreid 2006) we observe at least three basic wake patterns
(Von Kármán 1935): the classic Bénard von Kármán (Bvk) street, where Uwake <U∞
(figure 1a); the neutral line, where Uwake ∼ U∞ (figure 1b); and the reversed BvK
wake, where Uwake >U∞ (figure 1c). The latter is synonymous with the drag-to-thrust
wake transition, although a lag exists between this phenomenon and the foil’s overall
transition towards thrust. This is due to the fact that a weak velocity surplus cannot
overcome profile drag or velocity fluctuations and pressure differences within the
control volume (Streitlien & Triantafyllou 1998; Ramamurti & Sandberg 2001; Bohl
& Koochesfahani 2009).

As the driving factors of BvK reversal we typically consider the oscillating ampli-
tude and the oscillating frequency f of the kinematics (Koochesfahani 1989). The
former is expressed by the trailing-edge (TE) peak-to-peak amplitude A. In dimension-
less terms it is often normalised by the thickness D or the chord length C of the foil.
In a similar fashion the frequency is often expressed as a reduced frequency k =
U∞/( fC) (Birnbaum 1924), a thickness-based Strouhal number Sr= ( fD)/U∞ (Godoy-
Diana et al. 2009) or a chord-length-based Strouhal number StC = 1/k (Cleaver, Wang
& Gursul 2012). Triantafyllou, Triantafyllou & Gopalkrishnan (1991) suggested a
modified amplitude-based Strouhal number StA = ( fA)/U∞. By including both the
frequency and the amplitude of oscillation, StA can potentially characterise the BvK
reversal by a single factor, as opposed to k, Sr and StC . Studies of Anderson et al.
(1998) and Read et al. (2003) showed that optimal efficiency occurs for a short
range of StA ∼ [0.2, 0.4]. This was also supported by Triantafyllou, Triantafyllou &
Grosenbaugh (1993) and Taylor, Nudds & Thomas (2003), who observed that the
majority of natural fliers and swimmers prefer to cruise within this range. According
to Andersen et al. (2017), BvK reversal occurs at different StA values for pure heave
and pure pitch. Therefore, StA cannot be regarded as an expression of self-similarity.

The fundamental problem is that characterising the motion only by the amplitude
fails to capture the contribution of the other points of the foil. This becomes impor-
tant when the heaving component is significant, resulting in the generation of strong
leading edge vortices (LEV) which travel downstream and blend with the trailing-edge
vortices (TEV). Instead, we need to take into account the length of the entire path
travelled in a period rather than the maximum distance from equilibrium.

In this study, we formulate a novel length scale, which characterises the Bvk
reversal of harmonically flapping foils. Two-dimensional simulations are conducted
at a Reynolds number of Re = 1173 for a rigid NACA0016 profile and three basic
harmonic kinematics: pure heave, pure pitch and heave–pitch coupling. Additional
higher-Reynolds-number simulations (Re= 11 730) are used to quantify the Reynolds
number effects. The influence of different pivot points is examined for pure pitch and
coupled motions. In addition, we analyse the impact of different maximum effective
angles of attack on coupled kinematics. Finally, we develop a new metric based on
the chordwise-averaged path travelled by the foil, in order to determine BvK wake
reversal for a vast range of harmonic motions.
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FIGURE 2. Foil kinematics, geometry and coordinate system. (a) Pure heave, (b) pure
pitch, (c) coupled motion.

1.1. Geometry and kinematics
We consider a rigid NACA0016 with a thickness D= 0.16C. The foil performs simple
harmonic oscillations around a stationary equilibrium position, against a uniform free
stream velocity Ux =U∞. The lateral direction of every point along this chordline is
denoted with y(t, s). Here t is the time and s is the C-normalised coordinate along the
chord, ranging from 0 at LE to 1 at TE. Pure pitch (see figure 2b) is modelled as a
sinusoidal rotation about a specified pivot point along the chordline (s=P , where P is
the non-dimensional distance between the LE and the pivot point along the chordline)
and pure heave (see figure 2a) as a sinusoidal lateral translation of the entire chordline.
Coupled motion (see figure 2c) occurs by the superposition of these pure motions:

yc(t, s)= yh(t, s)+ yθ(t, s) where
yh(t, 1)= h0 sin(2f πt), yθ(t, 1)= (1−P)C sin(θ(t)) and

θ(t)= θ0 sin(2f πt+ψ).

 (1.1)

Here θ(t) is the instantaneous value of pure pitch whilst h0 and θ0 are the
amplitudes of pure heave and pure pitch, respectively. The phase difference between
pitch and heave is expressed as ψ . Here ψ = 90◦, because this value is considered
optimal in terms of propulsive efficiency (Platzer & Jones 2008).

Another important kinematic parameter in coupled motions is the effective angle of
attack αeff (t), which is the summation of the instantaneous pitch angle θ(t) and the
heave-induced angle of attack. Thus, for ψ = 90◦, the amplitude of αeff (t) is

α = arctan
2πfh0

U∞
− θ0. (1.2)

In this study, we differentiate coupled motions by varying P and α while keeping
ψ = 90◦.

1.2. Dimensionless parameters
Three non-dimensional parameters are used to describe the interaction between the
oscillating foil and the free stream: the Reynolds number based on chord length, Re=
U∞C/ν (where ν is the kinematic viscosity), the thickness-based Strouhal number, Sr,
and the non-dimensional TE amplitude (AD):

Sr=
Df
U∞

, AD =
2yc(tmax, 1)

D
. (1.3a,b)
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Grid density Thrust coefficient |1Ct| Relative |1Ct| (%)

064 0.494 9.3E-2 15.84
128 0.555 3.2E-2 5.45
192 0.575 1.2E-2 2.04
256 0.580 0.7E-2 1.19
512 0.587 — —

TABLE 1. Computational statistics of grid convergence for a harmonically flapping foil.

Thus, StA = SrAD and can be understood as the ratio between the speed of the foil
trailing edge and U∞ (Godoy-Diana et al. 2009).

The thrust coefficient Ct is expressed by simply normalising the total force acting
on the x axis by the dynamic pressure of the free stream. Time-averaged quantities are
presented with an overbar to distinguish them from their instantaneous counterparts.

Ct =
Fx

1
2ρU2

∞
C
. (1.4)

1.3. Computational method
The CFD solver chosen for this study can simulate complex geometries and moving
boundaries for a wide range of Reynolds numbers in two- and three-dimensional
domains, by utilising the boundary data immersion method (BDIM) (Weymouth &
Yue 2011). BDIM solves the viscous time-dependent Navier–Stokes equations and
simulates the entire domain by combining the moving body and the ambient fluid
through a kernel function. This technique has quadratic convergence and has been
validated for flapping foil simulations over a wide range of kinematics (Maertens &
Weymouth 2015; Polet, Rival & Weymouth 2015).

The mesh configuration is a rectangular Cartesian grid with a dense uniform grid
near the body and in the near wake, and exponential grid stretching used in the
far-field, and the numerical domain uses a uniform inflow, zero-gradient outflow and
free-slip conditions on the upper and lower boundaries. Furthermore, no-slip boundary
conditions are used on the oscillating foil. Mesh density is expressed in terms of grid
points per chord. A uniform grid of δx = δy = C/192 is used for the results in this
work, based on the results of the convergence study shown in table 1.

2. Results and discussion

2.1. Wake comparison of different kinematics
According to Godoy-Diana, Aider & Wesfreid (2008), the Reynolds number range of
naturally occurring flapping foils is 100<Re< 10 000. In this study, most simulations
are conducted for Re= 1173 to be within this range and to enable comparison with
the experiments of Godoy-Diana et al. (2009). Additional simulations are conducted
for selected cases at Re= 11 730 to examine the effects of higher Reynolds number.
The pivot points tested for pure pitch and coupling are P = 0 and 0.25. The coupled
motion is also tested for three values of α = 5◦, 10◦ and 20◦.

We analyse the wake patterns and resultant hydrodynamic loads for the above-
mentioned kinematics. Various stages of the wake development can be seen in
figure 3 for pure heave, pure pitch for P = 0.25 and coupled motion for P = 0.25
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(a) (b) (c)
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FIGURE 3. Contour plots of normalised instantaneous vorticity magnitude of the 30th
cycle at Sr= 0.15 and Re= 1173, for (a) pure heave at AD∼ [0.5–0.1], (b) pitch at P = 0
and AD∼ [0.82–1.3] and (c) coupled motion at P = 0, α= 10◦ and AD∼ [1.02–1.4]. Drag
regimes, neutral stateu, thrust-producing flowq.

and α = 10◦. The transition from the BvK (third row) to the neutral wake where
vortices are shed in-line (fourth row) and later the reversed BvK (fifth and sixth
rows) is in agreement with literature (Koochesfahani 1989; Godoy-Diana et al. 2009;
Andersen et al. 2017). At lower Sr–AD combinations, more complicated wake patterns
(for example, 2P wakes (Williamson & Roshko 1988)) at the first row of figure 3 are
in accordance with those observed by Andersen et al. (2017) for wedge-type foils.
At such low Sr–AD combinations, coupled motions are dominated by one of the two
modes – for example, for Sr= 0.01, the heaving contribution to the foil displacement
is less than 35 % for all the coupled cases studied.

Among the three kinematic test cases, significant discrepancies can be seen in close
proximity to the foil, most notably at the LE. The deep stall (high δα/δt across the
chord) experienced by the pure heaving foil generates LEVs of sizes comparable to
the TEVs which travel across the chord and blend with the wake. A closer look at
figure 3(c) reveals that the coupled motion generates the smallest amount of dynamic
separation among the three cases. Finally, as seen in the last row of figure 3, even
when the BvK street is fully reversed, some cases exist within the drag-producing
regime. This lag is expected since a weak propulsive wake is not enough to overcome
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FIGURE 4. AD–Sr wake map for various kinematics at Re = 1173 for (a) pure heave,
(b) pure pitch at P = 0.25, (c) pure pitch at P = 0 and (d) coupled motion at P = 0
and α = 20◦. Black dots: BvK street. Grey dots: reversed BvK wake. White dots: wake
symmetry breaking. The dashed black curves correspond to the best-fit curves of the
neutral line.

the profile drag or to compensate for the velocity fluctuations and pressure differences
that exist within the control volume (Streitlien & Triantafyllou 1998; Ramamurti &
Sandberg 2001; Bohl & Koochesfahani 2009).

Figure 4 shows the best-fit curve that isolates the neutral line (where Uwake ∼U∞),
for the different harmonics. These best-fit curves are reproduced in figure 5(a) in
order to compare this neutral line across different kinematics. Although the Sr–AD
phase diagram is suitable to examine a specific kinematics, it is clear that this does
not universally describe wake transitions. This is the result of the unique interactions
between LEVs and TEVs that are specific to the motion type. Consequently, this
demonstrates the need for a self-similar classification of the oscillating amplitude to
accurately determine wake development.

2.2. An alternative length scale
Fundamentally, the foil generates thrust force by displacing and accelerating fluid out
of its path as it moves through its prescribed trajectory. The quantity of fluid displaced
is dependent on the path length travelled by the foil over one period of oscillation.
Thus, a proper indicator of the wake’s drag-to-thrust transition should reflect the length
of this curve.

To quantify the aforementioned distance, we compare different length approximations
of the path length (L) covered by the TE in one non-dimensional period for a heaving
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FIGURE 5. Comparison of neutral line best-fit curves for various kinematics on a Sr–AD
phase space (a) and a Sr–TD phase space (b) at Re = 1173. Here TD is the thickness-
normalised T .

foil. We estimate this length in three different ways: (i) step motion, (ii) square wave
and (iii) sine wave. As shown in figure 6(a) (red curve), the step motion definition
is equivalent to the use of A to capture the covered length. As we see in figure 6(b),
the square wavelength Sq captures A in the vertical direction but also the streamwise
length (U∞/f ) traversed by TE in one period. Finally, the trajectory length Tr of the
sine wave (see figure 6c) captures the exact L traversed by the TE over the entire
period:

Tr =

∫ 1/f

0

√
ẋ2(t, 1)+ ẏ2(t, 1) dt, (2.1)

where ẋ is the horizontal velocity of the foil, which is approximately U∞ for small
amplitude motions.

The utility of these three metrics is estimated via the agreement (collapse) of
the neutral curves for different types of motions in the f − L domain. Here, L
is normalised by D, and this is done so that f can be expressed by Sr at the
same domain. Again, figures 6(a), 6(b) and 6(c) show the neutral lines for different
kinematics in LD − 1/Sr domains for the aforementioned types of LD – namely, AD,
SqD and TrD, respectively. The frequency is represented in the inverse form so that
a power law between amplitude and frequency is depicted by a straight line. Since
previous studies suggest that BvK reversal depends solely on StA, we expect a collapse
of the neutral line curves of different kinematics when plotted on an AD− 1/Sr chart.
However, as seen in figure 6(a), these curves are heavily dependent on kinematics.
On the other hand, as we move towards Tr (which accurately represents the trajectory
length) the collapse of the various neutral line curves is significantly improved (see
figure 6c).

Tr is suitable for characterising heave-dominant kinematics since the motion of the
entire chord can be represented just by the path traversed by the TE. However, Tr fails
to capture the effects of a chordwise gradient A present in pitch-dominated motions,
since most of the lateral motion is downstream of the pivot point for P < 0.5 (see
figure 3b). This means that Tr overestimates the displaced fluid for these particular
cases, and therefore it is still dependent on kinematics (see figure 6c). The effect of
the pitching component can be incorporated into the metric by calculating the average
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FIGURE 6. Best-fit curves of the neutral line of various harmonic kinematics plotted on
AD − 1/Sr (a), SqD − 1/Sr (b), TrD − 1/Sr (c) and TD − 1/Sr (d) at Re = 1173 and
Re = 11 730. Each point on the y axis expresses the thickness-normalised length of the
curve (red) of the corresponding approximation of the path traversed by the foil within
one cycle.

trajectory length covered by the entire foil (chord) over one period:

T = L̄=
∫ 1

0

∫ 1/f

0

√
ẋ2(t, s)+ ẏ2(t, s) dt ds, (2.2)

where s is the coordinate along the chord, with s= 0 at LE and s= 1 at the TE.
The D-normalised chord-averaged trajectory length TD is plotted versus 1/Sr in

figure 6(d). The new metric demonstrates remarkable collapse of different kinematics
on the curve corresponding to the neutral line of pure heave (where TrD = TD).
Interestingly this curve follows the diagonal of a square, and as we move towards
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more inviscid flows it can be expressed as TD · Sr ≈ const → 1. More specifically
for Re = 1173, TDSr ≈ 1.035, while for Re = 11 730, TDSr ≈ 1.015. This product
represents the average speed of the foil over one period. Thus, the area in the lower
right half of the straight line represents the zone where this average speed is less
than U∞, while the upper left is where the speed is larger than U∞. This provides
a very simple physical interpretation of the 1/f − T phase space where, in order for
the foil to produce thrust, the kinematics has to be tuned in such a way that the
chord-averaged speed of the foil along the path over one period must be faster than
the free stream. In other words, a path-length-based Strouhal number (StT = fT /U∞)
should be greater than 1. As the value of StT increases further beyond 1, the wake
of the foil becomes stronger, producing higher and higher values of thrust.

The universality of the new length scale is evaluated by further examining the
agreement of neutral line curves for various kinematic factors such as f , P , α.
Figure 5(b) shows all the kinematic options where a collapse was demonstrated. The
agreement among these curves deteriorates for Sr< 0.15 or Sr> 0.35, perhaps due to
the limitations of using two-dimensional numerical simulations. This is consistent with
the observations of Mittal & Balachandar (1995), who found that two-dimensional
simulations might result in large force fluctuations and erroneous wake patterns.
Additionally non-periodic wakes have been observed for pure pitch motion at P > 0.6
which could also contribute to the poor collapse. As α is essentially an indicator
of the heave to pitch ratio, within a coupled motion case it has no real effect on
periodicity, at least up to α= 20◦, and thus the coupled motions presented here agree
well with the pure pitch and heave test cases. Clearly, the new metric sets a threshold
for the drag-to-thrust wake transition of two-dimensional flapping foils for the entire
range of kinematics, provided that the resultant wake is periodic.

3. Conclusions

Two-dimensional simulations were conducted for a rigid flapping NACA0016 profile
at low- and high-Reynolds-number incompressible flow. The wake development
towards a reversed BvK street was examined for a variety of harmonic motions,
amplitudes and frequencies. At very low amplitudes and frequencies, 2P wake patterns
were observed for the coupled motions, in agreement with either the pure heave or
the pure pitch cases. This is due to the fact that at such low Sr–AD combinations the
coupled motions are dominated by either the heaving or the pitching component.

In dimensionless amplitude–period maps, various length scales were evaluated
with respect to the neutral line of different motion types. It was revealed that the
relationship between AD and the period is nonlinear since the maximum distance
from equilibrium cannot properly characterise the displaced volume (or area) required
to overcome the drag forces. This is solved by calculating the length of the path
traversed by the foil over one period of oscillation.

On a 1/Sr− TrD graph, the neutral line of pure heave forms a linear curve. Since
Ufoil = TrD/(1/Sr), this means that thrust is achieved when Ufoil > U∞. Furthermore,
the dimensionless chord-averaged trajectories per cycle TD of all motion types tested
collapse upon the pure heaving case. In other words, the neutral lines of all test
cases collapse on a trajectory-based Strouhal StT → 1. Thus the new metric can serve
as a universal length scale that captures the BvK reversal for every combination of
harmonic two-dimensional kinematics.

This novel method allows us to parametrise drag-to-thrust wake transition of a
simple two-dimensional harmonically oscillating body via the chosen kinematics

872 R1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

36
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.361


N. S. Lagopoulos, G. D. Weymouth and B. Ganapathisubramani

without the use of complex fluid dynamic equations. Knowing the onset of thrust for
a flapping foil via a single parameter can significantly reduce the effort of designing
sufficient biomimetic propulsors. Moreover, it will enable scientists and engineers to
describe and/or confirm observations regarding the thrust-generating strategies and
evolution of natural flyers and swimmers.
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