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Literal versus Careful Interpretations
of Scientific Theories: The Vacuum
Approach to the Problem of Motion

in General Relativity
Dennis Lehmkuhl*y

The problem of motion in general relativity is about how exactly the gravitational field
equations, the Einstein equations, are related to the equations of motion of material bod-
ies subject to gravitational fields. This article compares two approaches to derive the geo-
desic motion of (test) matter from the field equations: the ‘T approach’ and the ‘vacuum
approach’. The latter approach has been dismissed by philosophers of physics because it
apparently represents material bodies by singularities. I argue that a careful interpretation
of the approach shows that it does not depend on introducing singularities at all and that
it holds at least as much promise as the T approach.
1. Introduction. It is a bit ironic that one of the most widely embraced def-
initions of what it means to be a scientific realist is due to the arch-anti-realist
Bas van Fraassen. His definition starts by stating that “Science aims to give
us, in its theories, a literally true story of what the world is like” (van Fra-
assen 1980, 8). And indeed, scientific realists often see themselves as com-
*To contact the author, please write to: Einstein Papers Project and HSS Division, Cal-
ifornia Institute of Technology; e-mail: lehmkuhl@caltech.edu.
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mitted to ‘taking scientific theories at face value’: if the best theories of par-
ticle physics say that quarks exist, then we should believe that they exist; if
general relativity tells us that gravity is really just an aspect of space-time
structure, then we should believe it; if quantum mechanics tells us that the
world is at its core nondeterministic, then we should believe that too.

The problem is that scientific theories, or at least the theories of modern
physics, are not that straightforward with us. They may seem so at first, but
if you listen to the details of their respective stories, if you take your time to
look under the surface, what exactly we should take them to tell us about the
world is far from clear. Murray Gell-Mann, the inventor of the concept of
quarks, for a long time did not think that quarks should be interpreted as lit-
erally existing; neither did Richard Feynman. Albert Einstein passionately
resisted the interpretation of general relativity that says that the gravitational
force field of Newtonian theory is ontologically reduced to the geometry of
space-time in general relativity. And of course, there is a long-standing battle
in foundations of physics about whether quantum mechanics really does tell
us that the world is nondeterministic.1

In this article I introduce a new case study that provides further evidence
for the position that, whether you are a realist or not, the literal interpreta-
tion of a scientific theory, especially in physics, can be rather misleading. I
will argue that what we should aim for is a careful interpretation; an inter-
pretation of the theory or model or formalism that engages both with the de-
tails of its mathematical structure and with how it is applied to the natural
world. Philosophy of science must be willing to look under the hood.

The case study I want to look at is the so-called problem of motion in the
general theory of relativity (GR). It asks about the precise relationship be-
tween the two sets of equations that are at the very heart of GR. On the one
hand, there are the Einstein field equations, which give us the dynamics of
the gravitational potential (the metric tensor) gmn:

Rmn 2
1

2
gmn R 5 kETmn: (1)

On the other hand, we have the geodesic equation that determines which
paths through space-time are geodesics of the connection Gn

mj compatible
with the metric gmn:

d2xt
ds2

1 Gt
mn

dxm
ds

dxn
ds

5 0: (2)
1. For a discussion of different interpretations of the quark concept, see Pickering (1999);
for Einstein’s opposition to interpreting general relativity as a geometrization of gravity,
see Lehmkuhl (2014); and for debate on whether quantum mechanics is really indeter-
ministic, see, e.g., Saunders et al. (2010).
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In GR, material bodies subject only to gravitational fields are supposed to
move on the geodesics determined by equation (2). The problem of motion
in GR is the question of whether the equations of motion of matter subject
to gravitational fields (2) can be derived from the gravitational field equa-
tions (1).

Einstein himself, in his first publication on the topic, a paper cowritten
with Jakob Grommer and published in 1927, compares different classes of
attempts to give such a derivation. In particular, Einstein and Grommer dis-
tinguish between two classes of attempts at deriving the geodesic motion of
matter from thegravitationalfield equations,which Iwill term theT approach
and the vacuum approach, respectively. The T approach starts from the real-
ization that the field equations (1) imply the conservation condition, namely,
that the covariant divergence of the energy-momentum tensor Tmn vanishes:

∇mTmn 5 0: (3)

From this, together with certain conditions on the energy-momentum tensor
Tmn, the T approach derives that material particles move on time-like geode-
sics. It is this kind of approach to the problem of motion that philosophers
have engaged with almost exclusively up to now.2

Einstein and Grommer end up dismissing the T approach and suggest an
alternative path to deriving geodesic motion instead. It is a particular ver-
sion of a vacuum approach to the problem of motion. Einstein and Grommer
start from the vacuum form of the Einstein field equations,

Rmn 5 0, (4)

and attempt to derive that the equations (4) imply that material particles move
on geodesics.

To the extent that philosophers have engaged with this approach at all,
they have quickly dismissed it because it seems to model material bodies by
singularities in space-time, while singularities, by definition, are not even
part of space-time. However, in this article I argue that this dismissal was
far too fast and that indeed the vacuum approach deserves at least as much
attention by philosophers as the T approach. The vacuum approach, despite
first appearances, engages more closely with some of the most major predic-
tions of GR: both the prediction of the perihelion of Mercury and the predic-
tion of light bending by the Sun use the vacuum approach to the derivation
of motion of material systems. Indeed, even the prediction of gravitational
2. For a comprehensive review of the early history of this approach, see Havas (1989)
and Kennefick (2005); for two particularly beautiful exemplars from within this class of
proofs, see Geroch and Jang (1975) and Ehlers and Geroch (2004), which are investi-
gated by Brown (2007), Weatherall (2011, 2017), and Malament (2012).
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waves resulting from a binary black hole merger that was recently confirmed
rests on the vacuum field equations, for black holes are described by vacuum
solutions.3

My argument in this article proceeds in three steps. First, I argue that the
vacuum approach to the problem of motion promises certain advantages that
the T approach lacks. Second, I argue that the problems of the vacuum ap-
proach for which it has been dismissed are artifacts of a too-literal interpre-
tation of the formalism and its application to the problem at hand. Third, I
argue that a careful interpretation makes the problems disappear; I argue that
the approach does not need to interpret singularities as representing material
bodies.

2. A Critical Comparison of the Two Research Programs. I said above
that the T approach to the problem of motion proceeds via the fact that the
Einstein field equations (1) imply the conservation condition (3), which in
turn implies the geodesic motion of matter. However, as Malament (2012)
pointed out, the conservation condition by itself is not sufficient to prove that
the geodesic equation is the equation of motion of material particles. One of
themost general proofs fromwithin the Tapproach, proposed byGeroch and
Jang (1975) and further generalized by Ehlers and Geroch (2004), rests not
only on the conservation condition (3) but also on the strengthened dominant
energy condition (SDEC), which states:
3. Se

4. Fo
Curie

86/6943
Given any time-like covector ym at any point inM, T mnymyn ≥ 0, and either
T mn 5 0 or T mnym is time-like.
The first clause is effectively the weak energy condition, which states that
the mass-energy-momentum density associated with the body in question is
always nonnegative. The second clause states that every observer will judge
the mass energy momentum of the body to propagate along time-like curves
only.4

It would be rather attractive if we did not have to presume that material
particles move on time-like curves to then show that these curves are actu-
ally time-like geodesics, and if we did not have to presume that matter can-
not have nonnegative mass energy. These are weak assumptions about the
nature of matter, but they are assumptions.

The vacuum approach to the problem of motion, however, aims to make
no assumptions about the nature of matter and its properties at all and to still
derive that matter moves on geodesics. It starts from the question of whether
e Abbott et al. (2016) and references therein.

r more on the interpretation of the SDEC, see Weatherall (2011, 2017) and esp.
l (2017).
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just knowing the exterior gravitational field of a material body, and how this
gravitational field interacts with the gravitational field of its surroundings, is
enough to derive that thebodywillmoveona geodesic of themetric surround-
ing it. Arguably, this program is farmore ambitious than the Tapproach, for it
starts with fewer assumptions.5 And yet, if successful, it would reallyfit much
better the virtues that philosophers have associated with the geodesic theo-
rem(s) in the first place: deriving the inertial motion of matter from knowl-
edge of the dynamics of gravitational fields alone (cf. Brown 2007, 141 and
163).

Einstein was deeply skeptical of the role of the energy-momentum tensor
in GR. Throughout the decades, he emphasized that Tmn provides only a “phe-
nomenological representation of matter.”6 Einstein’s aim is then to instead
start with the vacuum field equations (4), treat material particles as singular-
ities in themetric field, and derive that theymove on geodesics of a metric gmn
that solves the vacuum field equations (4) in the region through which the
particle moves.

To the extent that philosophers have engaged with this approach at all,
they have already dismissed it at this point. Themain criticism is that the very
idea of the approach is flawed: a singularity is not even part of space-time.
How should it be possible to describe its motion in said space-time?

Both Torretti and Earman essentially answer that this is not possible and
that the whole program is ill conceived. Earman (1995, 12), writes: “Singu-
larities in the spacetime metric cannot be regarded as taking place at points
of the spacetime manifold M. Thus, to speak of singularities in gmn as geo-
desics of the spacetime is to speak in oxymorons.”7 The most detailed dis-
cussion of the Einstein-Grommer paper in the philosophical literature is due
to Tamir (2012). After quoting the above statement by Earman, Tamir goes
on to write (142): “The proponent of such a ‘vacuum-cum-singularity’ tech-
nique is faced with the rather paradoxical challenge of explaining in what
sense we can say that a singular curve (ostensibly constituted by themissing
points in the manifold) is actually a geodesic of the spacetime from which it
5. One might be tempted to argue that despite first appearances the vacuum approach
starts with more demanding assumptions than the T approach. For the vacuum Einstein
eqq. (4) logically imply that the SDEC holds for the Ricci tensor Rmn. The opposite is not
true, so that demanding Ricci flatness is clearly a stronger constraint on the Ricci tensor
than demanding that it obeys the SDEC. But the T approach assumes (i) the full Einstein
field eqq. (1) and (ii) that the energy-momentum tensor (and thus the Einstein tensor)
adheres to the SDEC. The vacuum approach only assumes the vacuum Einstein eq. (4),
and thus starts with weaker assumptions than the T approach.

6. See, e.g., Einstein (1922), Einstein to Michele Besso, August 11, 1926 (EA-7-361);
and Einstein (1936).

7. For similar statements, see Torretti (1996), sec. 5.8.
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is absent. Not only is no metric defined at the singularity, but also techni-
cally there are not even spacetime points there: the geodesic does not exist.”

I will argue that by looking at the details of the Einstein-Grommer ap-
proachwe come to a different interpretation of it, one that sheds a completely
different light on the alleged presence of singularities. We will see that a
careful (rather than literal) interpretation of the vacuum approach, and the
Einstein-Grommer paper in particular, does not actually depend on introduc-
ing singularities at all.

3. The Vacuum Approach to the Problem of Motion

3.1. Two Ways of Looking at Einstein’s Model of the Sun-Mercury Sys-
tem. In a way, the story of the vacuum approach to the problem of motion
starts in 1915, with Einstein’s treatment of the orbit of Mercury around the
Sun in the context of GR. It is a two-body problem: a small body (Mercury)
with a comparatively small mass orbits a large body (the Sun). Einstein seems
to postulate (more on the ‘seems’ below) that the Sun be represented by what
would soon be recognized as an approximation to the Schwarzschild metric.
He definitely postulates thatMercurymoves on a geodesic of saidmetric.8 In a
way, the problem ofmotion inGR is about the question of whether this second
postulate is really necessary.

If we now look at Einstein’s Mercury paper and recall the kind of criti-
cism that was launched against the vacuum approach to the problem of mo-
tion, we may find ourselves puzzled. After all, the Schwarzschild metric is a
solution to the vacuum field equations, and it has a singularity at its center.9

If representing material bodies by singular metrics is so problematic, how
does it come about that Einstein (1915) successfully predicted the perihe-
lion motion of Mercury? Why is it not problematic to represent the Sun by
the singular Schwarzschild metric?

The answer lies in denying the premise of the question. Einstein’s treat-
ment of the Sun-Mercury system should not be interpreted as involving him
representing the Sun by (an approximation of) the Schwarzschild metric.
We know that the Sun is a material body with nonvanishing mass energy
and that it does not have a space-time singularity at its center. What Einstein
really does is to convert the two-body problem Sun-Mercury into a one-
body problem, where one body (Mercury) is subject to an external gravita-
tional field. It is the exterior gravitational field of the Sun, not the Sun itself,
8. For a careful analysis of Einstein’s Mercury paper and how it rests on the Einstein-
Besso manuscript, see Earman and Janssen (1993) and Janssen’s editorial note on the
Einstein-Besso manuscript in vol. 4 of the Collected Papers of Albert Einstein.

9. For the history and interpretation of the Schwarzschild metric and its analytic exten-
sions, see Eisenstaedt (1989) and Bonnor (1992).
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that is represented by the Schwarzschild metric. And that is enough to pre-
dict the perihelion of Mercury: we do not need to know what the Sun is
made of or what happens in its interior; all that matters is the exterior grav-
itational field that Mercury is subject to.

Thus, worrying about the singularity at the center of the Schwarzschild
metric just misses the point: we do not have to interpret the interior part of
the Schwarzschild metric literally, at least not in this application.

In what follows, I argue that we should interpret the appearance of sin-
gularities in the Einstein-Grommer vacuum approach to the problem of mo-
tion in a similar vein.

3.2. The Einstein-Grommer Vacuum Approach to the Problem of Mo-
tion. The general scheme of the Einstein-Grommer approach proceeds as
follows.

1. Reformulate the vacuum Einstein equations in terms of a surface in-
tegral over a three-dimensional hypersurface such that we can ask
whether gravitational energy-momentum represented by the pseudoten-
sor tta passes through the surface.

2. Pick a curve that is supposed to represent the path of a material par-
ticle.

3. Impose the linear approximation according to which gmn 5 hmn 1 gmn;
that is, assume that, at least close to the curve, the metric deviates from
Minkowski space-time hmn only slightly.

4. Realize that not all solutions to the linearized field equations will cor-
respond to solutions of the nonlinear field equations that the linearized
field equations approximate. Argue that in the case in which an ‘equi-
librium condition’ for the energy pseudotensor of the gravitational field
holds, the gmn of the linearized field equations will solve the full non-
linear equations reformulated as a surface integral.10

5. Now, split the gmn in the immediate neighborhood of the particle into
the ‘inner metric’ �gmn that the particle itself gives rise to and the ‘outer
metric’ �gmn that is due to other sources (or lack thereof). Observe that
the ‘outer metric’ is entirely regular, even if extended to the point at
which the material particle is supposed to be located.

6. Integrate the surface integral that is equivalent to the vacuum field
equations ‘around’ the curve that is supposed to represent the path of
a material particle. For the case in which the integration surface is a
sphere, the equilibrium condition for tta simplifies to ∂�g44=∂xj 5 0.
10. This step is very intricate, and it would take me a few pages to do it justice; I will
have to do so elsewhere.
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7. Conclude that the curve that represents the path of a material particle
is a geodesic of the outer metric �gmn.

4. Interpreting the Einstein-Grommer Approach to the Problem of
Motion. The reader might think that the argument presented in the last sec-
tion cannot be a faithful representation of the Einstein-Grommer approach;
after all, where is the claim that the material particle is represented by a sin-
gularity, the reason the approach was dismissed by Earman and Tamir? In-
deed, I have omitted that after step 5 of the argument Einstein and Grommer
do say that one could assume that the inner metric �gmn is given by what is
effectively the Schwarzschild metric: it is spherically symmetric and has a
singularity at the center. And yet, Einstein and Grommer never use this as-
sumption in their argument. They call the material particle ‘the singularity’
all the time, but their argument does not depend on assuming any particular
form for the inner metric, let alone one that is necessarily singular. As a mat-
ter of fact, they do not even mention a concrete candidate metric for the outer
metric �gmn; all they need is that gmn is split into the inner metric �gmn and the
outer metric �gmn in such a way that �gmn is nonsingular everywhere.

Note that this does not mean that we know that the inner metric �gmn is
nonsingular. We do not know anything about the inner metric, for the argu-
ment is independent of �gmn having any particular form, just like the deriva-
tion of Mercury’s perihelion was independent of whether there is a singular-
ity at the center of the Schwarzschild metric that represented the exterior
field of the Sun.

With regard to the Sun-Mercury system I argued that we should not in-
terpret the Schwarzschild metric as representing the Sun but as representing
its exterior gravitational field. The part of the Sun that is within the event ho-
rizon, including the singularity at the center, should not be taken as a repre-
sentation of the actual interior of the Sun but as a placeholder or a blind spot
within the current description of the Sun-Mercury system: a docking station
for a theoretical model of the Sun not included in Einstein’s Sun-Mercury
model.11

Likewise, we should interpret the inner metric �gmn in the Einstein-
Grommer approach as a placeholder for a representation of matter not in-
cluded in the current theoretical approach. Sure, you can set �gmn to be a
Schwarzschild-like metric with a singularity at the center. But you do not
have to do that to make the Einstein-Grommer argument work, and even if
you do make that assumption, you should still take this particular inner met-
ric with a singularity at its center as a placeholder for a representation or the-
11. Note that there are interior extensions of the Schwarzschild metric that model the
interior of the Sun by solutions of the nonvacuum field eqq. (1), e.g., by an incompress-
ible perfect fluid. See Bonnor (1992), sec. 5.
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ory of matter not yet provided. But now wait a minute. You might have dis-
liked the occurrence of singularities as representations of particles, but at
least the singularity (in lieu of a nonvanishing energy-momentum tensor)
gave you an idea of where in space-time the particle was supposed to be.
True, Earman and Tamir rightly pointed out that the singularity is not actu-
ally part of space-time, and so it can hardly serve to localize the particle in
space-time. Still, you might think that we are throwing the baby out with the
bath water by not choosing any inner metric. After all, is it not the case then
that the curve we have been focusing on is just any curve, without any rea-
son to think of this curve as the curve of a material particle?12

Again, I think we can counter this criticism by comparing the Einstein-
Grommer approach to Einstein’s (1915) treatment of the Sun-Mercury sys-
tem. What Einstein did there was to assume that Mercury would move on
some geodesic of the exterior gravitational field produced by the Sun. He
calculated an approximation to the external gravitational field of a static,
spherically symmetric body, whose metric is asymptotically flat; this gravita-
tionalfieldhe saw as represented by the connection components Gn

mj of a met-
ric gmn, which deviated only slightly from the flat Minkowski metric. He then
inserted these gravitational field componentsGn

mj into the geodesic equation (2).
He showed that this law contained Newton’s first law and Newton’s second
lawwith a gravitational potential giving rise to a force as a limiting case, and he
showed how the resulting Keplerian laws for orbits differ in his theory as com-
pared to its Newtonian limit. In the end, he obtained that according to the new
theory the perihelion ε of any geodesic orbit around the Sun is given by

ε 5 24p3 a2

T 2c2 1 2 e2ð Þ : (5)

Here a denotes the length of the semimajor axis of the orbit in question, e its
eccentricity, c the speed of light, and T the orbital period of the planet in ques-
tion. Einstein then takes the astronomically known values for Mercury, plugs
them into equation (5), and thereby predicts thatMercury’s perihelion changes
by 43" per century.

Note that there is nothing in the theoretical description that singles out
any particular path as that of Mercury. There is no theoretical representation
of Mercury, no model. All that is there is the assumption that Mercury will
move on one of the geodesics of the affine connection determined by the
spherically symmetric field of the Sun. A general equation that all possible
geodesic orbits have to fulfill is derived. And then external knowledge is used
to single out one of these orbits as that of Mercury. Einstein trusts that the
astronomers have measured the orbital period, the semimajor axis, and the
12. I thank Jim Weatherall for putting this question to me.
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eccentricity of Mercury correctly. It is this external knowledge, plugged into
his theoretical model, which does not in itself contain a representation of
Mercury or its path, that produces the prediction.

In many ways, the whole vacuum approach to the problem of motion is
about the question whether in this kind of scenario we really have to assume
the geodesic equation as the equation of motion of matter over and above the
gravitational field equations. Indeed, let us look at the Sun-Mercury system
within the 1927 Einstein-Grommer approach. The problem of motion, then,
is the questionwhether Einstein really had to introduce the gravitational field
equations (to describe the exterior gravitational field of the Sun) and the geo-
desic equation (to describe the path of Mercury subject to this gravitational
field) as separate assumptions.13 Could he have only assumed the gravita-
tional field equations and derived that Mercury moves on a geodesic of the
exterior field of the Sun? My point is that, just like in Einstein’s 1915 treat-
ment, the 1927 Einstein-Grommer approach does not need to commit to a
theoretical model that allows us to localize Mercury internally. It is fine to
ask whether the exterior gravitational field around a given curve ‘forces’ that
curve to be a geodesic. Just like in the 1915 treatment, Einstein andGrommer
could then use external knowledge about whether that particular curve is ac-
tually the curve of a material object, or of Mercury in particular. No inner
metric, no singularity to represent the material body, is actually needed.

Let us take a step back though, for there is an important difference be-
tween the structure of Einstein’s 1915 treatment of Mercury on the one hand
and the 1927 Einstein-Grommer approach on the other. In the Mercury case,
Einstein had assumed that Mercury moves on a geodesic (i.e., a special kind
of curve), and model-external knowledge about the period, eccentricity, and
semimajor axis of Mercury could then be used to determine which of the
many geodesics of the Schwarzschild metric corresponded to the path of
Mercury. But in the case of the Einstein-Grommer argument, what is in ques-
tion is whether we can prove that the path of Mercury, say, is a geodesic.
Thus, at first sight it looks as if while the 1915 argument only needed exter-
nal knowledge to determine which geodesic is that of Mercury, appeal to ex-
ternal knowledge in the Einstein-Grommer case would have to determine
(a) that this curve is a geodesic and (b) that it is the curve of a material body.

Einstein and Grommer did not aim to derive both a and b. Instead, while
Einstein in 1915 used external knowledge at the end of his argument, Ein-
stein and Grommer in 1927 use it at the beginning. They start out by assum-
13. Interestingly, Einstein did not yet have the final gravitational field equations in the
Mercury paper; he found them a week later, in his fourth paper of November 1915.
However, the approximation of the Schwarzschild metric that he uses in the Mercury
paper is an approximative solution of both the field equations from the Mercury paper
and the final Einstein field equations.
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ing that a given curve is the curve of a material particle and then ask whether
having a regular outer metric (which solves the vacuum field equations)
around the curve means that the curve of this material particle, given the fur-
ther conditions summarized in section 3.2, must be a geodesic. Rather than
finishing the argument by appeal to external knowledge (as in Einstein 1915),
the Einstein-Grommer argument starts with an appeal to external knowledge,
which singles out a particular curve as that of a material body.

Eitherway, both inEinstein’s 1915 treatment and in theEinstein-Grommer
approach there is no reason to interpret the singularity (appearing in the
Schwarzschildmetric or the innermetric, respectively) literally. In both cases,
the singularity should be interpreted to signify a placeholder or a blind spot
of the theoretical treatment, rather than something that should be interpreted
literally, as referring and approximately true. Indeed, both Einstein’s 1915
treatment of the Sun-Mercury system and Einstein and Grommer’s treatment
of an arbitrarymaterial particle subject to an external gravitational field work
just as well if, in the former case, no interior metric (to describe the interior
of the Sun) or, in the latter case, no inner metric (to represent the location of
the particle on the curve) is ever specified.

5. Conclusion. I started out by saying that whether we are realists or anti-
realists, we should aim for a careful interpretation, rather than a literal inter-
pretation, of the scientific theory that we want to be realists or antirealists
about. Using a case study, I argued that the vacuum approach to the problem
of motion in GR, and the Einstein-Grommer approach in particular, is far
more sensible and promising if we interpret the singularities not as repre-
senting material bodies but as placeholders for a representation of material
bodies that is not included in the model. Indeed, I argued that the approach
does not even need the introduction of singularities to represent material
bodies; their introduction does not do any work in answering the question
at hand.14
14. The argument that we should thus not see a realist as committed to being a realist
about the singularities appearing in the Einstein-Grommer paper resonates well with se-
lective or posit realism as introduced by Vickers (2013). The idea there is that we should
only be realists with respect to components of a prediction that ‘fuel the success’ of the
prediction, i.e., that are indispensable in the derivation of what is predicted. Using Vick-
ers’s distinction, the introduction of a singular inner metric in the Einstein-Grommer ap-
proach is an idle rather than a working posit. However, note that the call for careful rather
than literal interpretations with which I started is independent of/complementary to aim-
ing for identification of the idle posits in a derivation. For even if we had found that the
introduction of the singular inner metric did dowork in the derivation of geodesic motion,
could we have argued (with less force) that the singularity should be interpreted as a
placeholder for a future theory of matter, as a temporary measure within an effective the-
ory, and thus not as something that we should interpret as possessing as much ‘reality’ or
‘referring power’ as the regular outer metric governed by the field equations.
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Given that in their paper Einstein and Grommer seem to take the singu-
larities as representing material bodies, one might wonder whether this al-
legedly more careful interpretation does not fall prey to the criticism that
the careful interpreter presumes to understand the theory/formalism in ques-
tion better than its originators. This might seem at odds with the realist tenet
of taking scientists and science ‘seriously’. I do indeed think that putting
the Einstein-Grommer paper into its proper historical context by analyzing
Einstein’s correspondence leading up to the paper and by relating it to his
overarching research project at the time would convincingly show that he
subscribed to something very much like the ‘placeholder interpretation’ I de-
fended above. Showing this in detail will have to wait for a much longer pa-
per, and I do not ask the reader to just takemyword for it. So let us say, for the
sake of the argument, that Einstein and Grommer did indeed intend the sin-
gularities as representatives of material objects in a rather straightforward
way. I believe that we should not take their word for it either. And neither
did Einstein. Just a few years after the Einstein-Grommer paper, in his famed
1933 Spencer lectures at the University of Oxford, Einstein (1934, 163) told
us in his opening words: “If you wish to learn from the theoretical physicist
anything about the methods which he uses, I would give you the following
advice: Do not listen to his words, examine his achievements.”15

In philosophy of science, I believe there is no better way of examining a
scientist’s achievements than by looking for the best possible interpretation
of his or her theories. To do that, we have to not just listen to the words of the
scientist who created or discovered it; we have to see what the theory does in
practice, how it is used, which of its parts really do the work.
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