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We consider the distinguished limits of the phase field equations and prove that the corre-

sponding free boundary problem is attained in each case. These include the classical Stefan

model, the surface tension model (with or without kinetics), the surface tension model with

zero specific heat, the two phase Hele–Shaw, or quasi-static, model. The Hele–Shaw model is

also a limit of the Cahn–Hilliard equation, which is itself a limit of the phase field equations.

Also included in the distinguished limits is the motion by mean curvature model that is a limit

of the Allen–Cahn equation, which can in turn be attained from the phase field equations.

1 Introduction

The study of moving boundary problems in recent years can be grouped broadly into two

categories: (i) free boundary problems in which the free boundary is to be determined

and solutions must satisfy certain jump relations across the free boundary, and certain

partial differential equations away from the free boundary; and (ii) systems of evolution

equations, in which the solutions are smooth but experience large gradients and the

interface is specified by a level set of one of the unknowns. Since typically the motion

of the free boundary in the first approach is more visual, more qualitative and appears

simpler than the second approach, it is desirable to connect or characterize the solutions

obtained from the second approach with those obtained from the first approach, so

that the underlying interfacial phenomena can be seen more clearly. On the other hand,

often in the first approach, the free boundaries will develop singularities at a finite time

and, therefore, pose both theoretical and numerical difficulties, whereas in the second

approach, the singularities of the interfaces do not pose either analytical or numerical

difficulty (since the solutions of the relevant evolution equations exist for all time).

Therefore, this approach could provide sufficient information for the possible extensions

of the solutions of the free boundary problems beyond any singularities.

In recent years, there has been a great deal of interest in studying interfacial phenomena

by using and bridging these two approaches. In this paper, we shall rigorously bridge the

dynamics of a phase field model and its sharp interface limits in a general geometric setting.

The connection was shown by Caginalp [1, 2, 3] using formal asymptotic analysis. The

process of rendering formal matched asymptotics intorigorous theorems is mathematically

challenging. For the phase field equations this was first done for the steady state case [4,
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and references therein], then for travelling-wave solutions [5], and the dynamical problem

in the case of one dimension and radial symmetry [6, 7].

The dynamical problem in the absence of symmetry involves complex geometrical

issues. In this direction, de Mottoni & Schatzman [8] carried out an error analysis for

the difference of the formal inner-outer expansion solution and the true solution of the

Allen–Cahn equation [9]

ϕεt − ∆ϕε + ε−2f(ϕε) = 0,

where f is the derivative of a symmetric double equal well potential. More recently,

Alikakos et al. [10] carried out the same estimates for the Cahn–Hilliard equation [11]

ϕεt + ∆(ε∆ϕε − ε−1f(ϕε)) = 0.

In this paper, we shall further develop this theory rigorously to verify the connections

between the phase field model and several sharp interface models.

Using the scaling introduced earlier [2], the phase field equations for solidification

phenomena have the form

CpTt +
l

2
ϕt = K∆T , αεϕt − ε∆ϕ+ ε−1f(ϕ) =

m [s]E
2σ

(T − TE),

where the unknowns T and ϕ are, respectively, the temperature and the phase parameter,

which is scaled so that ϕ ∼= 1 represents the liquid phase and ϕ ∼= −1 the solid phase.

Here Cp, l, K, α, ε, [s]E, σ, TE , are physical parameters representing the specific heat, the

latent heat, the thermal conductivity, the relaxation time, the measure of the interface

thickness, the entropy difference between phases per volume, the interfacial tension and

the equilibrium melting temperature, respectively. Also, f(ϕ) is the derivative of a double-

equal-well potential F(ϕ) with global minimum zero at ϕ = ±1, and

m =

∫ 1

−1

(2F(s))1/2ds (1.1)

is a constant depending only on the choice of the potential F . By introducing a di-

mensionless variable u = T−TE
TE

, dimensionless quantities c(ε) =
CpTE
l
, s(ε) = m[s]E

2σ
TE , and

dimensionless time and spatial length, the phase field equation can be written in the

following dimensionless form:{
εα(ε)ϕεt − ε∆ϕε + ε−1f(ϕε) = s(ε)uε in Ω × (0, T ) =: ΩT ,

c(ε)uεt − ∆uε = −ϕεt in Ω × (0, T )
(1.2)

where we have taken the appropriate time-space scale so that the thermal conductivity is

scaled to unity.

The phase field model (1.2) has its origins in Landau theory [12], Cahn–Hilliard type

equations [11] and the application of mean field theory to critical phenomena [13, 14].

Generally speaking, phase field and mean field theories are based on the idea that each

molecule (or ‘spin’ in magnetic systems) behaves under the influence of all the others which

effectively constitute an averaged ‘field’ of interactions. This is, of course, a tremendous

simplification over the evaluation of the sum of all possible states in the partition function

needed to obtain the free energy. Due to this great reduction, the validity of mean field

theories has been of interest since their first use. The original application and justification
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involved the critical temperature (i.e. the point at which gas and liquid become a single

phase), and the fact that the associated correlation length (i.e. the mean distance at which

molecules become ‘aware’ of each others’ presence) is very large. Thus the use of the

phase field concept for ordinary phase transitions, where correlation lengths are small, is

not immediately justified by its application for critical phenomena. Furthermore, critical

phenomena can rely on universality [13], which states that the critical exponents should

be independent of the details of the system.

The situation is quite different for the dynamics of phase boundaries, where quantitative

discrepancies generally result in qualitative and quantitative differences, since the global

bifurcation diagram depends upon the parameters in the equations. Consequently, the

precise identification of the physical parameters is a prerequisite for a meaningful theory.

Hence, the convergence of the solutions of the phase field equations to those of the

appropriate sharp interface problem (when the latter exists) with precisely the same

parameter is of paramount importance for the physical theory and applications. Although

the formal analyses have indicated that this is the case, these calculations do not account

for the possible interaction of interfacial layers in close proximity. A similar situation

prevails for the rigorous proofs in special symmetry (e.g. one dimensional space or radial

symmetry). The analysis we present confirms the validity of the limits without any a priori

assumption on the nature of the interface and the length scales involved in the initial and

boundary conditions.

In this paper we shall consider the asymptotic limit, as ε → 0, of the solutions of the

phase field equations (1.2). Allowing ε→ 0 rests on the ansatz that the atomic length scale

is not crucial in determining the evolution of the interface, provided that all the other

parameters are appropriately preserved.

To describe our result, let d0, α0, c0 be non-negative constants independent of ε. With

appropriate initial-boundary conditions, let (u, Γ ) be the solution of the following free

boundary problem: 
c0ut − ∆u = 0 in ΩT \ Γ ,

v =
1

2

[∂u
∂n

]
Γ

on Γ ,

u = −d0(κ− α0v) on Γ

(1.3)

where
[
∂u
∂n

]
Γ

is the jump of the normal derivatives of u (from solid to liquid), v is the

normal velocity of Γ (positive of motion is directed towards the liquid), and κ is the sum

of the principal curvatures of the interface (in space).

Let ŝ, α̂, and ĉ be fixed positive constants. With appropriate initial and boundary

conditions for (1.2), we shall consider the following cases:

(1) s(ε) = ŝε−1, α(ε) = O(1), and c(ε) = ĉ + o(1). In this case, we show that the solution

uεof (1.2) tends to the solution u of (1.3) with c0 = ĉ and d0 = 0.

(2) s(ε) = ŝ, α(ε) = α̂, and c(ε) = ĉ. We show that uε tends to the solution of (1.3) with

c0 = ĉ, α0 = α̂, and d0 = m/(2ŝ) (m is as in (1.1)).

(3) s(ε) = ŝ, α(ε) = O(ε), and c(ε) = ĉ. We show that uε tends to the solution of (1.3) with

α0 = 0, c0 = ĉ, and d0 = m/(2ŝ).
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(4) s(ε) = ŝ, α = α̂, and c(ε) = O(ε). Then uε tends to solution of (1.3) with c0 = 0, α0 = α̂,

and d0 = m/(2ŝ).

(5) s(ε) = ŝ, α(ε) = O(ε), and c(ε) = O(ε). Then uε tends to the solution of (1.3) with

α0 = c0 = 0 and d0 = m/(2ŝ).

(6) s(ε) = O(ε), α(ε) = α̂, and c(ε) = O(1). We show that the zero level set of ϕε tends to

the solution of mean curvature equation κ = α̂v.

The corresponding dimensional limits are shown in Figure 1.

The difference between limit (1), the classical Stefan problem, and limits (2)–(5) is quite

profound, since setting the interface temperature to zero in (1.3) eliminates the only length

scale in the problem. Although the capillarity length d0 is often very small compared to

the other length scales in the problem, it is nevertheless very significant as a stabilizing

force [15]. The classical Stefan model’s neglect of surface tension and surface kinetics can

be partially remedied by the imposition of (1.3) with positive d0 and α0. When d0 > 0

and α0 = 0, the equilibrium free boundary condition in (1.3) becomes u = −d0κ, which

is known as the Gibbs–Thomson condition. Although the surface tension and kinetics

model (1.3) with d0 > 0 is superficially similar to the classical Stefan model ((1.3) with

d0 = 0) in this respect, the differences are significant, in the sense that there is no length

scale in the latter and the temperature must play a dual role by determining phases.

In case (5), the limiting free boundary problem is generally known as the Hele–Shaw

model, and involves a fluid between two plates (cf. [16, 17]) separated by a small distance,

where the unknown u is a scaled pressure. Note that, when α(ε) = 0, c(ε) = 0, s(ε) = 1,

the phase field equations are simplified to ϕεt + ∆(ε∆ϕε − 1
ε
f(ϕε) = 0, which is the Cahn–

Hilliard equation [11]. Hence, case (5) is a generalization of the result of [10, 18] for

the convergence of the solution of the Cahn–Hilliard equation to the solution of the

Hele–Shaw model.

Finally, when s(ε) = 0, the two equations in (1.2) decouple, and the first equation

becomes the Allen–Cahn equation. Besides the rigorous convergence result of de Mottoni

& Schatzman [8], there are other proofs based either on energy estimates (Bronsard &

Kohn [19] in the case of radial symmetry), on comparison principles and the construction

of super andsubsolutions (Chen [20] local in time, Evans et al. [21] and Ilmanen [22] global

in time). Among them, Evans et al. and Ilmanen’s global convergence proof considers the

possibility of singularities of the mean curvature flow, as a result of the well-developed

theory of mean curvature flow [23, 24, 25].

In all the six cases, we have to assume that the corresponding limit free boundary

problem has a classical smooth solution. The limit of (1) is the classical Stefan problem

and has been very well-studied, both for classical solutions and weak solutions; see, for

example, [26, 27, and the references therein]. The limit of (2) is often referred to as the

Stefan problem with surface tension and kinetic undercooling, the existence (local in time)

of a unique classical solution of which was established by Chen & Reitich [28] and by

Radkevitch [29]. For the limit of (3), known as the Stefan problem with Gibbs–Thomson

law for equilibrium temperature, the existence (local in time) of a unique classical solution

was established by Radkevitch [29], whereas that of global (in time) weak solutions were

established by Luckhaus [30] and Almgren & Wang [31]. For the limit of (5), usually

known as the Hele–Shaw problem, the existence, local in time, of weak solutions in the
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two dimensional case was established by Duchon & Robert [32] (one phase problem)

and by Chen [33] (two phase problem); more recently, Chen et al. [34] established the

existence of a unique classical solution, local in time, for arbitrary space dimensions. For

the limit of (6), known as the mean curvature flow, there are well-developed theories; see,

for example, Brakke [35], Chen et al. [23], Evans & Spruck [24] and Soner [25], and the

references therein. In summary, the existence of classical smooth solutions for the limiting

free boundary problems in all the cases – except possibly case (4) – has been established.

This paper is organized as follows. We state our main theorems in the next section.

In § 3, we give an estimate for the difference between approximate solutions and true

solutions, and a review for the eigenvalue estimates established in [36]. In § 4, we construct

an approximation solution by using asymptotic expansions similar to, but different in

character from, the traditional ones [3]. Finally, we prove the main theorems in § 5.

Remark 1.1 After this paper was submitted, we learned that Soner [37] had proved weak

convergence of solutions of a system of phase field equations to the sharp interface limit

in a completely general setting that is applicable even when the classical solution does

not exist. The result we present involves strong convergence to unique classical solutions.

Neither result implies the other, as the weak limit is more general but may not be unique.

Also, we learned that Omel’yanov et al. [38] studied the convergence of solutions of a

conserved phase field system.

2 Statement of main results

Throughout this paper, we always assume that f is the derivative of a smooth potential F

having global minimum 0 only at ±1; more precisely, we assume that f ∈ C∞(IR1) satisfies

f(±1) = 0, f′(±1) > 0,

∫ u

−1

f(s)ds =

∫ u

1

f(s)ds > 0 ∀ u ∈ (−1, 1).

We denote by m the constant in (1.1), where F(u) :=
∫ u
−1 f(s)ds.

Also, we always assume that Ω is a bounded domain in IRN (N > 1) with smooth

boundary ∂Ω and Γ 0
0 is an N−1 dimensional manifold which is the boundary of an open

set Ω−0 ⊂⊂ Ω. We define Ω+
0 = Ω \ (Γ 0

0 ∪ Ω−0 ). In this paper, we shall prove the following

two theorems.

Theorem 2.1 Let c0, d0, α0 be fixed positive constants. Let g ∈ C∞(Ω±0 × [0, T ]) be any

given function satisfying certain compatibility conditions, with Γ 0
0 such that there is a smooth

solution (u, Γ 0) (Γ 0 = ∪06t6T (Γ 0
t × {t})) to the free boundary problem (1.2) with initial-

boundary condition

u(x, t) = g on ∂pΩT ≡ (Ω × {0}) ∪ (∂Ω × [0, T ]). (2.1)

(Note that the expression of Γ implies the initial condition Γ ∩{t = 0} = Γ 0
0 ×{0}.) Assume

that Γ ⊂ Ω × [0, T ]. Then there exists a family of functions {gε0, ϕε0}06ε61 defined on ∂pΩT
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such that the solution of the phase field equations
εα(ε)ϕεt − ε∆ϕε + ε−1f(ϕε) = s(ε)uε in ΩT ,

c(ε)uεt − ∆uε = −(ϕε)t in ΩT ,

ϕε = ϕε0, uε = gε0 on ∂pΩT ,

(2.2)

with

α(ε) = α0, s(ε) =
m

2d0
, c(ε) = c0

has the property that, as ε→ 0,

‖uε − u‖C0(Ω̄T ) −→ 0,

ϕε −→ ±1 uniformly in any compact subsetof Ω̄T \ Γ 0.

Theorem 2.2 Theorem 2.1 remains valid if one of the following revisions is made:

(1) The Dirichlet boundary conditions for u and uε are replaced by the mixed boundary

conditions  u = uε = g+
0 on S × (0, T ),

∂u

∂n
+ βu =

∂uε

∂n
+ βuε = ḡ0 on (∂Ω \ S)× (0, T )

(2.3)

where S is a smooth open part of ∂Ω, and β and ḡ0 are smooth functions on ∂Ω ×
[0, T ];

(2) d0 = 0 and s(ε) = ε−1/2;

(3) α0 = 0 and α(ε) = εk for any integer k > 1;

(4) c0 = 0 and c(ε) = εk for any integer k > 1;

(5) c0 = α0 = 0, c(ε) = εk, α(ε) = εm for any integers k, m > 1;

(6) s(ε) = εk for some integer k > 1 and replace the equilibrium condition u = −d0(κΓ−α0v)

by κΓ = α0v.

In addition, in cases (2)–(6), the Dirichlet boundary conditions for u and uε can be replaced

by boundary conditions (2.3).

Remark 2.3

(1) If we let d(x) be the signed distance to the manifold Γ 0
0 , then gε(x, 0) in Theorem 2.1

can be taken as

gε(x, 0) = ζ
(
δ−1d(x)

)[
1
2
(g+

0 + g−0 ) + 1
2
(g+

0 − g
−
0 )θ0

(
ε−1d(x)

)]
+
[
1− ζ

(
δ−1d(x)

)][
g+

0 χ{d>0} + g−0 χ{d<0}

]
where δ is any fixed small constant independent of ε, χA is the characteristic function

of A, ζ(s) is a cut-off function satisfying

ζ(s) = 0 if |s| > 1, ζ(s) = 1 if |s| 6 1/2, sζ ′(s) > 0 in IR1, (2.4)

and θ0(z) is the unique solution to

−θ′′0 + f(θ0) = 0 in IR1, θ0(±∞) = ±1, θ0(0) = 0. (2.5)
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In particular, away from a δ-distance of the initial interface Γ 0
0 , one has gε(x, 0) =

g(x, 0). Since ∇xg(x, 0) experiences a jump across Γ 0
0 , it is necessary (for the simplicity

of analysis) to take a specific profile gε(x, 0) near the initial interface Γ 0
0 , as shown.

(2) Since we assume that Γ ⊂ Ω × [0, T ], as we shall see in our proof, we can take

gε = g on ∂Ω × [0, T ].

(3) The function ϕε0(x, 0) in Theorem 2.1 is complicated, but has the structure

ϕε0(x, 0) = ζ
(
δ−1d(x)

)
θ0

(
ε−1d(x)

)
+
[
1− ζ

(
δ−1d(x)

)][
χ{d>0} − χ{d<0}

]
+ O(ε).

In particular, away from the initial interface Γ 0
0 , ϕε(x, 0) is close to ±1 in Ω±0 .

If one insists on assigning an ‘arbitrary’ initial data for ϕε, then generation of the

interface will take place in a very short time, and we expect that our analysis will

apply thereafter.

(4) In the statement of our theorems, the boundary value of ϕε on ∂Ω × [0, T ] is not

arbitrarily given, but depends upon g, the boundary value of u. However, if one

imposes ‘general’ (but compatible with phase) boundary data such as ϕε = 1 or
∂
∂n
ϕε = 0 on∂Ω× [0, T ], then our assertions of the theorems remain true, but in our

proof we need a boundary layer expansion similar to that in [10]. As a compromise

between simplicity and completeness, we shall briefly describe the boundary layer

expansions.

(5) For the second case (i.e. the case where the limit is the classical Stefan problem

(u = 0 on the interface), the expansion is obtained in terms of ε̂ := ε1/2, but we

do not present these expansions in our current paper. When the potential f is of

double obstacle type, i.e.

f(ϕ) = ϕ if ϕ ∈ (−1, 1), f(ϕ) = ±∞ if ± ϕ > 1,

f(1) = [−1,∞), f(−1) = (−∞, 1],

Blowey & Elliott [39] proved that the limit of the phase field model is the weak

solution of the classical Stefan problem, global in time t ∈ (0,∞). The method is

based on an energy estimate, and is totally different from what we present in this

paper.

Theorems 2.1 and 2.2 will be proved in § 5. The basic idea is to construct approximation

solutions by matched asymptotics (which will be done in § 4), to estimate the upper

bound of the eigenvalues of the linearized operator of the phase field equations at the

approximated solutions (which is done in [36]), and then to estimate the difference between

the true solutions and the approximate ones (which will be done in the next section).

Though the approximation obtained by conventional asymptotic expansion techniques [8,

3] may be used in our situation, we prefer to use a new asymptotic expansion technique

developed in [10]. For more detailed discussion on these two asymptotic expansions,

see [10] and § 4 below.
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3 Error estimates

It is convenient to use the variable ϕ and v =
∫ t

0 u, so that the phase field equations in

(1.1) can be written as{
εα(ε)ϕεt − ε∆ϕε + ε−1f(ϕε) = s(ε)vεt in ΩT ,

c(ε) vεt = ∆vε − ϕε + eε0 in ΩT
(3.1)

where eε0 = ϕε(·, 0) + c(ε)uε(·, 0) is the initial enthalpy.

In this section, ‖ · ‖p,Q represents the Lp(Q) norm.

Theorem 3.1 Assume that f ∈ C∞(IR1) satisfies, for some positive C0, sf′′(s) > 0 for all

s ∈ (−∞,−C0] ∪ [C0,∞), and that s(ε) > 0, c(ε) > 0, α(ε) ∈ (0, α0] for all ε ∈ (0, 1]. Define

K1 = 19
5
, K2 = 5, K3 = 7, K4 = 11, and Kn = n2+6n+4

4
for all n > 5. Let (ϕε, vε) be a

C2(Ω̄T ) solution of (3.1) and (ϕεA, v
ε
A) be a kth order (k > KN) approximation of (3.1) in

the following sense:

(i) |ϕεA| is bounded by C0;

(ii) (ϕεA, v
ε
A) satisfies exactly the same initial and boundary condition as (ϕε, vε), i.e.

(ϕεA − ϕε)
∂

∂n
(ϕεA − ϕε) = (vεA − vε)

∂

∂n
(vεA − vε) = 0 on ∂ΩT ,

ϕεA − ϕε = vεA − vε = 0 on Ω̄ × {0};

(iii) (ϕεA, v
ε
A) satisfies the approximation equations{

εα(ε)ϕεAt − ε∆ϕεA + ε−1f(ϕεA) = s(ε)vεAt + δεA in ΩT ,

c(ε)vεA = ∆vεA − ϕεA + eε0 in ΩT ,
(3.2)

where δεA is a function which satisfies, for p = min{3, 2 + 4
N
} and some k > KN ,

‖δεA‖ p
p−1 ,ΩT

6 (α(ε))
p−1
p−2 εk;

(iv) For each t ∈ [0, T ], ϕεA(·, t) satisfies the spectral condition

inf
ψ∈H1(Ω), w∈H2(Ω)

∫
Ω
{ε|∇ψ|2 + ε−1f′(ϕεA(·, t))ψ2 + s(ε)

c(ε)
|∆w − ψ|2}∫

Ω
{εα(ε)ψ2 + s(ε)|∇w|2}

> −C0.

Here in the case c(ε) = 0, one assumes that ψ = ∆w and removes the term s(ε)
c(ε)
|∆w−ψ|2. Then

there exists a positive constant ε0 which depends only upon Ω,T , C0, k, and ‖f‖C2([−2C0 ,2C0]

such that, if ε ∈ (0, ε0], then

‖ϕε − ϕεA‖p,ΩT 6 (α(ε))
1
p−2 ε

k+1
p−1 . (3.3)

Proof Set ψ = ϕε − ϕεA and w = vε − vεA. Then (ψ, w) satisfies{
εα(ε)ψt − ε∆ψ + ε−1f′(ϕεA)ψ + ε−1N(ϕεA, ψ) = s(ε)wt + δεA in ΩT ,

c(ε)wt = ∆w − ψ in ΩT
(3.4)

where N(ϕεA, ψ) = f(ϕεA+ψ)−f(ϕεA)−f′(ϕεA)ψ. Since sf′′(s) > 0 in (−∞,−C0]∪[C0,∞) and
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ϕεA is bounded by C0, N(ϕεA, ψ)ψ > −C|ψ|p for every p ∈ [2, 3] and every ψ ∈ (−∞,∞),

where C is a positive constant depending only on C0 and ‖f‖C2([−2C0 ,2C0]) (cf. [10, Lemma

2.3]).

Replacing wt in (3.4a) by the right-hand side of (3.4b) and multiplying the resulting

equation by ψ, adding (3.4b) multiplied by −s(ε)∆w/c(ε), integrating by parts over Ω, and

using the boundary conditions ψ ∂ψ
∂n

= w ∂w
∂n

= 0 on ∂Ω × [0, T ], we obtain after a routine

calculation

1

2

d

dt

∫
Ω

[
εα(ε)ψ2 + s(ε)|∇w|2

]
+

∫
Ω

[
ε|∇ψ|2 + ε−1f′(ϕεA)ψ2 +

s(ε)

c(ε)
|∆w − ψ|2

]
=

∫
Ω

[δεAψ − ε−1N(ϕεA, ψ)ψ] 6 C

∫
Ω

[|δεAψ|+ ε−1|ψ|p], ∀t ∈ (0, T ]. (3.5)

We note that if c(ε) = 0, then one has ∆w = ψ so that the above identity remains true if

one removes the term involving |∆w − ψ|.
Using the spectral condition and Gronwall’s inequality, we then obtain, for all t ∈ (0, T ],

sup
06τ6T

∫
Ω

[εα(ε)ψ2(·, τ) + s(ε)|∇w(·, τ)|2] 6 C(T )

∫ ∫
ΩT

[
ε−1|ψ|p + |δεAψ|

]
≡ C(T )I(T ),

where I(t) ≡
∫∫

Ωt
[ε−1|ψ|p + |δεAψ|].

Integrating (3.5) from 0 to t, we also obtain∫ ∫
Ωt

ε|∇ψ|2 6 −ε−1

∫ ∫
Ωt

f′(ψεA)ψ2 + CI(t) 6 C
[
ε−1‖ψ‖2

2,Ωt
+ I(t)

]
since ϕεA is bounded by C0 and f is smooth. Recall the Sobolev Imbedding Theorem [40,

p. 74]: for every p ∈ [2, 2 + 4
N

] and t ∈ (0, T ],

‖ψ‖2
p,Ωt

= C(Ω,T )
(

sup
06τ6T

‖ψ(·, τ‖2
2,Ω

)1−θ(
‖∇ψ‖2

2,Ωt
+ ‖ψ‖2

2,Ωt

)θ
where θ = N

2
− N

p
and C(Ω,T ) depends only upon Ω and T . The last two estimates then

yield

‖ψ‖2
p,Ωt
6 C

[
ε−1α(ε)−1I(t)

]1−θ[
ε−2‖ψ‖2

p,Ωt
+ ε−1I(t) + ‖ψ‖2

p,Ωt

]θ
. (3.6)

Define Tε = sup{t 6 T ; ‖ψ‖p,Ωt 6 (α(ε))
1
p−2 ε

k+1
p−1 }. Using the assumption on δεA, we have

that I(Tε) 6 ε−1‖ψ‖pp,ΩTε +‖δ
ε
A‖ p

p−1 ,ΩTε
‖ψ‖p,ΩTε 6 2(α(ε))

p
p−2 ε

kp+1
p−1 . Consequently, ε−2‖ψ‖2

p,ΩTε
+

ε−1I(t) + ‖ψ‖2
p,ΩTε

6 Cα(ε)
2
p−2 ε

2(k+1)
p−1 −2, since 2 < p 6 3, 0 < α(ε) 6 C0, and 0 < ε 6 1.

Substituting these estimates into (3.6) then yields

‖ψ‖2
p,Ωt
6 C

[
ε−1α(ε)−1α(ε)

p
p−2 ε

kp+1
p−1

]1−θ[
α(ε)

2
p−2 ε

2(k+1)
p−1 −2

]θ
= C

[
α(ε)

1
p−2 ε

k+1
p−1

]2

ε
p−2
p−1 (1−θ)[k− p+(p−2)θ

(p−2)(1−θ) ].

Since θ = N
2
− N

p
and p = min{3, 2 + 4

N
}, by the definition of KN,

p+(p−2)θ
(p−2)(1−θ)

= KN . It

then follows that ‖ψ‖2
p,Ωt
6 C[α(ε)

1
p−2 ε

k+1
p−1 ]2ε

p−2
p−1 (1−θ)(k−KN ) 6 1

2
(α(ε)

1
p−2 ε

k+1
p−1 )2 if ε is sufficiently

small. Hence by the definition of Tε, we must have T = Tε. This completes the proof of

the theorem. q

https://doi.org/10.1017/S0956792598003520 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003520


Convergence of phase field model 427

Remark 3.2

(1) With the fundamental estimate (3.3), one can use interpolation and a bootstrap

argument for the regularity (depending on ε) of the solution of (3.2) to establish

estimates for ‖ϕε − ϕεA‖Cm(Ω̄T ) and ‖vε − vεA‖Cm(Ω̄T ), provided that ‖δεA‖Cm(Ω̄T ) is

sufficiently small. For more details, see [10, Remark 2.1].

(2) From the proof of the theorem, one sees that adding small perturbations to the

initial and boundary data for ϕε − ϕεA and vε − vεA will not alter the conclusion of

the theorem.

(3) Theorem 2.2 allows for both Dirichlet and Neumann boundary conditions. From

the proof (in particular the derivation of (3.5)), one can verify that it also holds for

mixed boundary conditions.

(4) In Theorem 3.1, we have to assume that α(ε) > 0. Part of the reason that we cannot

let α(ε) = 0 is that if α(ε) = 0, then the equation for ϕε is elliptic and may not have

a unique solution. For the special case α(ε) = c(ε) = 0, namely, the Cahn–Hilliard

equation, see [10].

There are two essential requirements in applying Theorem 3.1. The first is the construc-

tion of asymptotic expansion for the solution up to very high order, and the second is the

verification of the spectral condition. The former will be discussed in detail in subsequent

sections, whereas the latter has already been established by Chen [36]. Here we just cite

the result in Chen [36] for our application.

Let γ be an N − 1 dimensional compact manifold embedded in Ω ⊂ IRN , and let

d(x) be the signed distance from x to γ. Let δ be a small positive constant such that

γ(δ) = {x ∈ IRN ; |d(x)| < δ} is contained in Ω, and that S(x), the projection from x to γ

along the normal of Γ , is well-defined in γ(δ). Set ‖γ‖3 ≡ δ−1 + ‖d‖C3(γ(δ)).

Let θ0(z) be the unique solution to (2.5). Since f is the derivative of a double-equal-well

potential with its global minimum 0 at ±1, θ0 is well-defined, smooth, and monotonic in

z. (In case f = 2θ(θ2 − 1), θ0(z) = tanh z.)

Letθ1(z) be a bounded function in IR1 such that∫ ∞
−∞

f′′(θ0)(θ′0)2θ1dz = 0. (3.7)

In our applications, one can verify that the above ‘orthogonality’ condition is satisfied

(see [10, §6] for a proof).

Let pε(x), qε(x), ϕε±(x) be C1 functions such that |pε(x)|+ |qε(x)|
1 + ε−1|d(x)| + ε|∇γpε(x)|+ ε2|∇γqε(x)| 6 C0 in γ(δ),

f′(ϕε±) > 1/C0 in Ω

(3.8)

where ∇γ ≡ ∇− ∇d(∇d · ∇) is the tangential derivative along γ.

Let ζ(·) ∈ C∞0 (IR1) be a cut-off function satisfying (2.4). We construct ϕε(x) as follows:

ϕε(x) = ζ
(
δ−1d(x)

)[
θ0

(
ε−1d(x)

)
+ εpε(S(x))θ1

(
ε−1d(x)

)
+ ε2qε(x)

]
+
[
1− ζ(δ−1d(x))

][
ϕε+(x)χ{d(x)>0} + ϕε−(x)χ{d(x)<0}

]
. (3.9)
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Proposition 3.1 Let ϕε(x) be constructed as in (3.9) and (3.7), (3.8) hold. Then there exists a

positive constant Ĉ which depends only upon ‖γ‖3, θ0, θ1, f, C0, N and Ω such that, for every

ε ∈ (0, 1], ψ ∈ H1(Ω), w ∈ H2(Ω),∫
Ω

[
ε|∇ψ|2 + ε−1f′(ϕε)ψ2 +

s(ε)

c(ε)
|∆w − ψ|2

]
> −Ĉ

∫
Ω

[
εα(ε)ψ2 + s(ε)|∇w|2

]
provided that one of the following conditions holds:

(1) α(ε) > 1
C0
, s(ε) > 0, c(ε) > 0,

(2) α(ε) > 0, s(ε) > 1/C0,
s(ε)
c(ε)
> 1/C0.

Proof In case (1), i.e. α(ε) > 1
C0

, the assertion follows from the following stronger inequality,

which was originally established by de Mottoni & Schatzman [8] for the special case when

f is anti-symmetric, e.g. f(φ) = φ3 − φ, and later by Chen [36] with a slightly simpler

proof and for more general f: For every ψ ∈ H1(Ω),∫
Ω

[
ε|∇ψ|2 + ε−1f′(ϕε)ψ2

]
> −C1ε

∫
Ω

ψ2.

In case (2), i.e. s(ε) > 1
C0
, s(ε)
c(ε)
> 1

C0
, the assertion follows immediately from the following

inequality established by Chen [36]: for every µ ∈ (0,∞], ε ∈ (0, 1], ψ ∈ H1(Ω), and

w ∈ H2(Ω),∫
Ω

[ε|∇ψ|2 + ε−1f′(ϕε)ψ2 + µ|∆w − ψ|2] > −C̄(µ) min
{
ε

∫
Ω

ψ2,

∫
Ω

|∇w|2
}

(3.10)

where C1 is a constant and C(µ) is a monotone decreasing function of µ defined on (0,∞].

q

It is easy to check that in all the six cases in Theorems 2.1 and 2.2, s(ε), c(ε) and α(ε) satisfy

one of the conditions in Proposition 3.1, so that as long as ϕεA has the properties (3.7),

(3.8) and (3.9), the spectral condition required by Theorem 3.1 is satisfied. In the sequel,

we shall construct approximate solutions (ϕεA, v
ε
A) such that for each t ∈ [0, T ], ϕεA(·, t)

satisfies (3.7), (3.8) and (3.9).

4 Construction of approximate solutions

In this section, we shall use matched asymptotic expansions to construct approximate

solutions, up to an arbitrary higher order k in the sense of Theorem 3.1 and in the case

α(ε) = α0 = 1, s(ε) = s0, c(ε) = c0

where α0, s0, and c0 are positive constants. This corresponds to the distinguished limit of

the surface tension and kinetic model (1.3) with d0 > 0 and α0 > 0. The other limits stated

in Theorem 2.2 are constructed in a similar manner and are omitted. We consider here

only Dirichlet boundary conditions. Other types of boundary conditions can be discussed

similarly.

A matched asymptotic expansion has three components: outer expansion, inner expan-

sion and matching; see, for example, Wasow [41].
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The outer expansion is used in the ‘bulk’ regions, i.e. regions of ‘pure’ solid (denoted

by −) and ‘pure’ liquid region (denoted by +). Just by inserting ϕε = ±1 + O(ε) ∼ ±1 +

ε
∑

i>0 ε
iϕi±, uε = O(1) =

∑
i>0 ε

iui± into the phase field equations, one can consecutively

obtain equations for (ϕi±, u
i
±). These equations, which we call outer expansion equations,

can be uniquely solved provided that the regions Qi±, where the equations are to be

solved and certain supplementary conditions such as initial boundary conditions are

given.

In our approach, all (ϕi±.u
i
±) for i > 0 are independent of ε and are defined in an

ε and i independent domain. More precisely, we solve the outer equations, for each

order i > 0, in the domain Q0
±, the leading order approximation of the liquid/solid

region. Nevertheless, one has to realize that the outer expansion and the outer expan-

sion equations could only be valid in Q±0 minus a thin neighbourhood of the interface

Γε := {(x, t) | ϕε(x, t) = 0}.
The inner expansion is used in a thin neighbourhood of the interface Γε. As ϕε has a

large gradient (of order ε−1) in the direction normal to the interface Γε
t := {x | ϕε(x, t) = 0},

one uses the method of stretched coordinates, writing Z := dε(x.t)/ε where dε(x, t) is the

signed distance to the interface Γε
t . Classically, for example, in the paper by Caginalp [3],

a change of variable (x, t) → (S, Z, t) ∈ M × IR × IR+ is used in the inner expansion.

Here M ⊂ Ω is a reference Riemaniann N − 1 manifold differomorphic to Γε
t . (We are

working in local time and in the classical limit, so no topological changes in Γε
t are

considered). The map x→ S is usually the normal projection onto M. Under this change

of variables and under the assumption that ϕε ∼ θ0(Z) + ε
∑

i>0 ε
iϕi(S, Z, t) (θ0 is defined

in (2.5)), uε ∼
∑

i>0 ε
iui(S, Z, t), one can obtain inner expansion equations for (ϕi, ui).

Notice that, since the change of variable x → Z depends upon ε, an ε-power expansion

for the function dε(x, t) is needed.1 Also, a solvability condition for each order of inner

expansion equation provides an equation for the corresponding order of expansion for dε.

The inner equations, usually ordinary differential equations in the Z variable (whereas S is

only treated as a parameter), can be solved uniquely, provided that compatible conditions

at Z = ±∞ are given. (Our inner expansion, as explained later, is different from this

approach.)

The matching is used to obtain the supplementary conditions needed by the outer

and inner expansion equations, in such a way that both inner and outer expansions are

consistent. For this, it is sufficient to ensure that the outer expansion and inner expansion

matches in their overlap domain. A classical way to proceed with this would be as follows.

Let x = Xε(S, Z, t) be the inverse map of x → (S, Z) used in inner expansion. Suppose,

for simplicity, we take M to be Γ 0
t , the leading order approximation of the interface Γε

t ,

which is also the (t cross-section) of the intersection of the boundary of Q0
− and Q0

+.

Then, the definition of Z gives the expansion Xε = X0(S, t) +
∑

i>1 ε
iXi(S, Z, t) where

X0(S, t) ∈ Γ 0
t is independent of Z and Xi is independent of ε. It then follows that we can

1 As pointed out by the referee, one can replace dε by d, the signed distance to the limit

interface Γ 0, so that the change of variables is independent of ε. This will significantly simplify

the calculation. On the other hand, one has to replace the form or inner expansion by ϕε ∼
θ0(Z − h(s)) + εΣi>0ε

iϕi(S, Z, t), where h(s) is a function to be determined; see elsewhere [42] for

more details.
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write the outer expansions as

ϕ ∼ ±1 + ε
∑
i>0

εiϕi±

(
X0 + Σj>1ε

jXj

)
∼ ±1 + ε

∑
i>0

∑
α>0

Dαϕi±(X0)

α!
(
∑
j>1

εjXj)
α

=: ±1 + ε
∑
i>0

εiψi±(S, Z, t)

where ψi± depends upon the derivatives of ϕj± (j 6 i) on Γ 0 and Xj (j 6 i). Thus, for the

inner and outer expansion to match, one needs

lim
Z→±∞

[
ψi±(S, Z, t)− ϕ(S, Z, t)

]
= 0, ∀(S, t).

The above matching conditions, as well as solvability conditions for inner equations, will

lead to exactly the number of supplementary conditions for solving uniquely the inner and

outer equations. In this traditional approach, we find that the computation may be very

tedious. One needs to use many differential geometry tools to perform the calculation.

One notices that, as X1(S, Z, t) grows linearly in Z , ψi± grows in Zi. Hence, the inner

expansion ϕi(S, Z, t) grows in Zi so it is unbounded, and it is very complicated to simplify

the matching conditions.2 Nevertheless, the leading order computation is quite easy.

Here we shall modify this traditional matched asymptotic expansion approach by using

a multiscale expansion technique, another traditional tool frequently used in asymptotic

expansions; see, for example, Lardner [43] in the study of fine structure of shock waves,

and Markowich [44] in the study of semiconductors.

Instead of using the change of variables x → (S, Z) in the inner expansion, we simply

take Z as an extra independent variable, besides the original variables (x, t). More

precisely, writing Z as z to distinguish it from the traditional approach, we look for

functions ϕ̃ε(x, z, t) such that ϕε(x, t) = ϕ̃(x, z, t)|z=dε(x,t)/ε. With this new independent

variable added, the phase field equations can be written as differential equations in

(x, z, t) ∈ Ω × IR × (0,∞). One notices that, for the original phase field equations to be

valid, we only need (ϕ̃ε(x, z, t), ũε(x, z, t)) to satisfy the new differential equations on the

hypersurface {(x, z, t) | z = dε(x, t)/ε} ⊂ IRN+2. That is, we have freedom in defining the

equations satisfied by (ϕ̃ε, ũε) in the complement of the hypersurface.

As ϕε(x, t) = ϕ̃ε(x, z, t)|z=dε/ε in a thin neighbourhood of the interface, for the inner and

outer expansions to match, it is sufficient to require

lim
z→∞

(ϕ+(x, t)− ϕ̃i(x, z, t)) = 0

for all x in Q0
+ and x is in a thin neighbourhood of Γ 0. (An analogous matching is needed

for z → −∞.) In fact, to make our calculation easier and presentation clearer, we extend

the outer expansions into the domain Γ 0(δ), a δ-neighbourhood of Γ 0, and require the

2 In [42], an inner expansion of the formϕε = 1
2
[1 + ζ(Z)]ϕε+ + 1

2
[1 − ζ(Z)]ϕε− + ϕεIn was used,

where φε±is the outer expansion, and ζ is any fixed smooth function having the property that

ζ(±∞) = 1. The matching conditions then become lim|Z |→∞ ϕIn = 0.
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following matching

ϕ̃i(x, z, t) = ϕi±(x, t) + O(e−β|z|) as z → ±∞

for all (x, t) ∈ Γ 0(δ). With this new requirement, restrictions on the definitions of the

inner expansion equations off the hypersurface are imposed. Though they seem more

complicated, all the computations are straightforward.

In summary, the traditional approach leads to a unique expansion but the calculation

may be tedious and involves a great deal of differential geometry tools, whereas our

approach involves a minimum number of differential geometry tools and leads to very

neat matching conditions. Generally speaking, the choice is matter of taste. If one is

concerned only with the leading order expansion, then the traditional one is clearly

preferable.

4.1 Asymptotic expansion and matching conditions

Let (ϕε, uε) be the unique solution of the phase field equations (1.1) with smooth initial

and Dirichlet boundary conditions ϕε = ϕε0 and uε = uε0 on ∂pΩT . Let Γε be the zero level

set of ϕε, Qε± bethe set where ±ϕε is positive, and dε(x, t) be the signed distance to Γε so

that ±dε > 0 in Qε±. Using the classical notation for asymptotic expansions [45], we seek

asymptotic expansions for dε, ϕε, and uε as ε→ 0:

dε(x, t) ∼
∞∑
i=0

εidi(x, t) in Γ 0(δ),

ϕε(x, t) ∼ ±1 +

∞∑
i=0

εi+1ϕi±(x, t) in Q0
± \ Γ 0(δ/4),

uε(x, t) ∼
∞∑
i=0

εiui±(x, t) in Q0
± \ Γ 0(δ/4),

ϕε(x, t) ∼ θ0(z) +

∞∑
i=0

εi+1ϕi(z, x, t)|z= dε (x,t)
ε

in Γ 0(δ),

uε(x, t) ∼
∞∑
i=0

εiui(z, x, t)|z= dε (x,t)
ε

in Γ 0(δ),

(4.1)

where δ is a small positive constant independent of ε, Γ 0 ≡ {(x, t) ∈ ΩT |d0(x, t) =

0}, Γ 0(δ) ≡ {(x, t) ∈ ΩT | |d0(x, t)| < δ}, Q0
± ≡ {(x, t) ∈ ΩT | ± d0(x, t) > 0}.

We note that the function d0(x, t) and the constant d0 in (1.3) are totally unrelated.

Though we frequently write d0(x, t) as d0, the meaning is evident from the context. In the

sequel, we denote ϕ−1
± = ±1, ϕ−1 = θ0(·). Also we use the convention that

∑i2
i=i1

= 0 if

i2 < i1, that aib
0 + a0b

i = a0b
0 if i = 0, and that ϕ−2 = u−2

± = u−1
± = u−2 = u−1 = 0.

The prototype ϕε = ±1 + O(ε) in the outer region and ϕε = θ0(dε/ε) in Γ 0(δ) can be

understood as a basic assumption, which can also be derived from the −1 order expansion.

The heuristic rationale for the expansion is that the inner expansion (4.1d),(4.1e) must

match the outer expansion (4.1b), (4.1c) in their overlap region. This is achieved through

the following matching conditions:{
Dmx D

n
t D

l
z(ui(±z, x, t)− ui±(x, t)) = O(e−βz) in Γ 0(δ)

Dmx D
n
t D

l
z(ϕi(±z, x, t)− ϕi±(x, t)) = O(e−βz) in Γ 0(δ)

as z →∞ (4.2)
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for all m, n, l, i > 0, and β = 1
2

min{
√
f′(1),

√
f′(−1)}. Since θ0 is the solution to (2.5), the

matching condition is automatically satisfied for ϕ−1
± and ϕ−1.

Note that the matching condition is imposed in Γ 0(δ). This requires the well-definedness

of the outer expansion terms (ϕi±, u
i
±) in the set larger than its original definition in (4.1b),

(4.1c). Hence, one has to extend (ϕi±, u
i
±) to Γ 0(δ) by artificial smooth extensions. More

details will be given in the next section.

4.2 Expansion equations and solvability conditions

Since dε is a distance function, |∇dε|2 = 1, so that for each nonnegative integer i, di needs

to satisfy the following distance equation:

∇d0∇di =


1 if i = 0

− 1
2

i−1∑
j=1

∇dj−i∇dj if i > 1
in Γ 0(δ). (4.3)

Similarly, substituting the outer expansions (4.1b,c) into the phase field equations (1.2) and

equating the εi terms yields the following outer expansion equations, for each non-negative

integer i: 
(c0∂t − ∆)ui± = Ai−1

± in Q±0 ,

ϕi± = s0ui±/f
′(±1) + Bi−1

± in Q±0 ,

ui± = δi0g on ∂pΩT ∩ Q0
±

(4.4)

where δi0 = 1 if i = 0 and = 0 if i > 1, Ai−1
± = −(ϕi−1

± )t,B
i−1
± = 1

f′(±1)
[∆ϕi−2 − α0ϕi−2

±t −
fi−1(±1, ϕ0

±, · · · , ϕi−1
± )] and fi−1 is defined by the expansion equation

f

(
a−1 +

∞∑
i=0

aiε
i+1

)
= f(a−1) +

∞∑
i=0

[
f′(a−1)ai + fi−1(a−1, a0, · · · , ai−1)

]
εi+1. (4.5)

Also, we have implicitly assumed that Γ 0 is strictly contained in Ω.

Note that, for each i > 0, the outer expansion equations (4.5) form a complete system

provided that the boundary values of ui± on Γ 0 are prescribed. These boundary values will

be obtained, in a coupled manner, through the inner expansion and matching conditions.

Note also that no boundary values of ϕi± on ∂pΩT can be assigned in (4.4). Therefore,

to enforce a particular boundary value ϕε ∼ 1 +
∑∞

i=0 ε
i+1ϕi0(x, t) on ∂Ω × [0, T ], one has

to use boundary layer expansions. We shall briefly discuss this in the last part of this

section.

Once the outer expansion equations have been solved, we obtain the values of (ϕi±, u
i
±)

in Q0
±. The values of (ϕi±, u

i
±) in Γ 0(δ) \ Q0

± can be obtained, for example, as follows.

Define ui±(x, t) =
∑J

j=0 C
±
ij (S0(x, t), t)(d0(x, t))j in Γ 0(δ) \ Q0

±, where J is a large integer

depending on the order of the approximate solution needed, S0(x, t) is the projection

of x onto Γ 0 along the normal of Γ 0, and Cij(s, t), (s, t) ∈ Γ 0, are coefficients uniquely

determined by requiring the extended function to be in CJ(Q±0 ∪Γ 0(δ)). Though there are

other theoretically better methods of extending smooth (but not analytic) functions over

domains having smooth boundaries, for definiteness, we shall use one of these extensions,
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such as that just mentioned. Once we have the extension of ui±, the extension of ϕi± is

then defined by the outer expansion equation (4.4b) in Γ 0(δ) ∪ Q0
±.

Since the extended functions may not satisfy the outer expansion equation (4.4a) in the

domain where extensions are made, we introduce the discrepancy function
Ri±(x, t) ≡ c0ui±,t − ∆ui± + (ϕ±i−1)t

Rε±(x, t) ∼
∞∑
i=0

εiRi±(x, t)
in Γ 0(δ).

Clearly, Ri± ≡ 0 in Q0
±, andRi± is in CJ(Γ 0(δ)), where J can be arbitrarily large.

Before we present the inner expansion equations, we give a brief rationale. If a function

of independent variables z, x, and t is evaluated at z = dε(x,t)
ε

to a function of variables x

and t, then one has ∂t = ε−1dεt∂z +∂/∂t and ∆x = ε−2∂2
zz + ε−1(∆dε∂z +2∇dε∇∂z)+∆, where

∂/∂t and ∆ on the right-hand sides are the partial derivatives which involve fixed z. Hence

substituting the inner expansions (4.1d,e) into the phase field equations and equating the

εi terms leads to second order linear ordinary differential equations, in z, for each ϕi
and ui. As will be seen later, the linear differential operators are independent of i, and

have eigenvectors with zero eigenvalue. This amounts to imposing solvability conditions

for the inhomogeneous term with dependence only on expansions of lower order terms.

The requirements of the solvability conditions for the next order expansion then yields

the extra condition needed to obtain a complete system for inner-outer expansions. For

(x, t) ∈ Γ 0, this provides exactly the number of conditions needed for (4.4) and the

determination of the motion of Γε. However, when (x, t) ^ Γ 0, no extra conditions can be

imposed. (This displays the advantage of taking z as the dependent variable mentioned at

the beginning of this section.) To resolve this dilemma, recall that the ordinary differential

equations for z are only required at a single point z = dε(x,t)
ε

. Hence, we can modify

the equation, for z, off the hypersurface {(z, x, t) ∈ IR1 × Γ 0(δ) ; z = dε(x, t)/ε}, in any

way that we choose. Hence, we shall add terms which vanish on {εz = dε} to the inner

expansion equations. For this purpose, let η(z) be a fixed smooth function having the

following properties:

η(z) = 0 if z < −1, η(z) = 1if z > 1, η′(z) > 0 in (−1, 1),

∫
IR1

zη′(z) dz = 0.

Also, let M1 ≡ ‖d1‖C0(Γ 0(δ)) + 1 be a constant obtained after the first order expansion. We

add a term

gε(x, t)η′(z)(dε − εz) ∼
( ∞∑

i=0

gi(x, t)ε
i

)
η′(z)

( ∞∑
i=0

di(x, t)εi − εz
)

to the ordinary differential equation (in z) for ϕε and a term

ε−2[hε(x, t)η′′(z) + εLε(x, t)η′(z)](dε − εz) + [η(M1 + z)Rε+(x, t) + η(−M1 − z)Rε−(x, t)]

= ε−2

[
η′′(z)

∞∑
i=0

hi(x, t)ε
i + η′(z)

∞∑
i=0

li(x, t)ε
i+1

][ ∞∑
i=0

di(x, t)εi − εz
]

−
∞∑
i=0

εi
[
Ri+(x, t)η(M1 + z) + Ri−(x, t)η(−M1 − z)

]
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to the ordinary differential equation (in z) for uε. Here the functions gi, hi and li are

to be determined along with (ui±, ui, ϕ
i
±, ϕi). Note that the terms Rε± added only affect

the expansions of order no less than 1; in particular, it does not affect d1(x, t), so

that M1 ≡ ‖d1‖C0(Γ 0(δ)) + 2 can be taken arbitrarily. Since Rε± ≡ 0 in Q0
±, the terms

η(M1 + z)Rε+ + η(−M1− z)Rε− vanishes when z = dε/ε, (x, t) ∈ Γ 0(δ). In fact, if (x, t) ∈ Q0
+

and z = dε

ε
, then Rε+ = 0 and d0 > 0 so that z > d1+O(ε), and consequently η(−M1−z) = 0.

A similar analysis also applies to the case when (x, t) ∈ Q0
−.

Now substituting the inner expansions (4.1d,e) into the phase field equations, adding

the terms mentioned above, and equating the εi terms, we obtain the following inner

equations, for each i = 0, 1, 2, · · ·,
ui − i∑

j=0

hid
i−jη

′′ = Ai−1 + Âi−2

−ϕ′′i + f′(θ0)ϕi = Bi + B̃i−1

in IR1 × Γ 0(δ) (4.6)

where prime denotes ∂
∂z

and

Ai−1 = di−1
t θ′0 + (c0d0

t − ∆d0)u′i−1 + (c0di−1
t − ∆di−1)u′0 − 2(∇d0∇u′i−1 + ∇di−1∇u′0)

+(li−1d
0 + l0d

i−1)η′ − hi−1zη
′′,

Âi−2 =

i−2∑
j=1

{djtϕ′i−1−j + (c0d
j
t − ∆dj)u′i−1−j − 2∇dj∇u′i−1−j + djli−1−jη

′} − li−2zη
′′

+[c0ui−2,t − ∆ui−2 + ϕi−2,t − η(M + z)Ri−2
+ − η(−M1 − z)Ri−2

− ],

Bi = s0ui + (∆di − α0dit)θ
′
0 + (gid

0 + g0di)η′,

B̂i−1 =

i−1∑
j=0

[(∆dj − α0d
j
t )ϕ
′
i−1−j + 2∇dj∇ϕi−1−j] +

i−1∑
j=1

djgi−jη
′

−fi−1(θ0, ϕ0, · · · , ϕi−1) + ∆ϕi−2 − α0ϕi−2,t − gi−1zη
′

(4.7)

where fi−1(θ0, ϕ0, · · · , ϕi−1) is defined as in (4.5).

Since we assume that the set Γε := {(x, t) : dε(x, t) = 0} is the zero level set of ϕε, we

impose the following sufficient condition:

ϕi(0, x, t) = 0 ∀(x, t) ∈ Γ 0(δ), i = 1, 2, · · · . (4.8)

Clearly, to ensure that (4.6a) has a bounded solution, it is necessary that the lower

order expansions satisfy the condition
∫ ∞
−∞(Ai−1 + Âi−2)(z, x, t)dz = 0. This condition is

also sufficient in the sense that if all the functions up to order i− 1 have the property that

they approach their limits exponentially fast (in order of O(e−βz)) as z → ±∞, then there

exists a bounded solution of ui, unique up to an additive constant, which will also have

the properties that it approaches their limits as z → ±∞ with speed O(e−β(z)). In other

words, in solving the ith order expansion, we need
∫ ∞
−∞(Ai + Âi−1)(z, x, t)dz = 0 so that

the next order expansion equation (i.e. (4.6a) with i replaced by i+ 1) is solvable. Hence,

using the expression of Ai and Âi−1, we need the following compatibility conditions:

2dit + (c0d0
t − ∆d0)[ui] + [c0dit − ∆di][u0]

−2(∇d0[∇ui] + ∇di[∇u0]) + (lid
0 + l0d

i) + hi = ai−1 in Γ 0(δ) (4.9)
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where ai−1 is a function that depends only upon inner expansions of order less than i, and

[ui] = ui(+∞, x, t) − ui(−∞, x, t) (= u+(x, t) − ui−(x, t) if we have the matching condition).

Here we have used the fact that
∫
R1 θ

′
0 = 2,

∫
R1 η

′ = 1,
∫
R1 zη

′′dz = [zη′ − η]|∞−∞ = −1.

Due to the term η(M1 + z)Ri−1
+ + η(−M1 − z)Ri−1

− we added inÂi−1, the function Âi−1

approaches zero exponentially fast (in order of O(e−βt)) as z → ±∞, as long as all

the expansions of order lower than i do so. Hence, ai−1 is bounded and approaches

ai−1(±∞, x, t) exponentially fast (in order of O(e−β(z))) asz → ±∞.

Similarly, since θ′0 is a positive eigenfunction of the operator − d2

dz2 +f′(θ0) corresponding

to the zero eigenvalue, and since f′(θ0) → f′(±1) > 4β2 as z → ±∞, (4.7b) and (4.8) has

a unique solution if and only if
∫
R1 (Bi + B̂i−1)θ′0 = 0. Substituting the expression for Bi

and B̂i−1, one has

ūi = − m

2s0

[
∆di − α0dit

]
+
m1

2

[
gid

0 + g0d
i
]

+ bi−1 in Γ 0(δ) (4.10)

where m =
∫ ∞
−∞(θ′0)2 =

∫ 1

−1(2
∫ 1

−1 f(s)ds)du is the same m as in § 1, m1 =
∫ ∞
−∞ η

′(z)θ′0(z)dz,

bi−1 is a function which depends only on expansions of order less than i, and

ūi =

∫ ∞
−∞ ui(z, x, t)θ

′
0(z)dz∫ ∞

−∞ θ
′
0(z)dz

=
1

2

∫ ∞
−∞

ui(z, x, t)θ
′
0(z)dz.

Note that (4.10) is different from (4.9) in the sense that it is not a condition used for the

next order expansion. If (4.10) is satisfied, then there exists a unique bounded solution ϕi,

and it satisfies

ϕi → lim
z→±∞

1

f′(θ0)
[Bi + B̂i−1]

=
1

f′(±1)
[s0ui± − fi−1(±, ϕ0

±1, · · · , ϕi−1
± ) + ∆ϕi−2

± − α0ϕi−2
± ] = ϕi±(x, t). (4.11)

The limit is exponentially fast (in the order of O(e−β(z))) if all the lower order expansions

and ui are so.

In summary, we define the ith order inner-outer expansion problem as follows:

Definition 4.1 Let i > 0 be an integer. Assume that for all k 6 i − 1 the kth order

expansion Vk ≡ {uk±, uk, ϕk±, ϕk, dk, hk, lk, gk} are all known and they satisfy the matching

conditions in (4.2) and the compatibility condition (4.9) (with i = k). Then the ith order

expansion problem is to find Vi = {ui±, ui, ϕi±, ϕi, di, hi, li, gi} such that the outer-expansion

equations (4.4), the inner expansion equations (4.6) and (4.8), the matching conditions

(4.2), the distance equations (4.3), and the compatibility condition (4.9) are all satisfied.

In the following two subsections, we shall solve the ith expansion problem for i = 0

and i > 1, respectively.

4.3 The zero-th order expansion

Lemma 4.1 Let u0
0(x, t) be given, and assume that the free boundary problem (2.1) with

d0 = m
2s0

and g = u0
0 has a smooth solution (u, Γ 0). Then the zero-th order expansion exists

and the outer expansion u0
± coincides with u in Q0

±.

https://doi.org/10.1017/S0956792598003520 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003520


436 G. Caginalp and X. Chen

Proof Assume that d0(x, t) is known. (For example, one can assume that it is the solution

to the free boundary problem (2.1).)

Since the equation for u0 is (u0 − h0d
0η)′′ = 0, there is a bounded solution and the

general solution is given by

u0(z, x, t) = û(x, t) + h0(x, t)d0(x, t)η(z), z ∈ IR1, (x, t) ∈ Γ 0(δ) (4.12)

where û0 is an additive function. Since d0 = 0 on Γ 0, u0 = û(x, t) on R1 × Γ 0 so that one

has ū0(x, t) = û0(x, t) on Γ 0. For i = 0, equation (4.10) reads ū0 = − m
2s0

[α0d0
t −∆d0] which,

after translating to û and then to u0(z, x, t) yields

u0(z, x, t) =
m

2s0
(α0d0

t − ∆d0) = − m

2s0
(κΓ 0 − vΓ 0 ) on IR1 × Γ 0,

since d0 as a distance function implies that ∆d0 = κΓ 0 is the sum of the principal curva-

tures, dt =: vΓ 0 is the normal velocity of Γ 0. Consequently, u0
±(x, t)|Γ 0 = u0(±∞, x, t) =

− m
2s0

(κΓ 0 − VΓ 0 ). With this boundary value, we can uniquely solve u0
± in Q0

± via the outer

expansion equation. As mentioned earlier, we extend u0
± smoothly over Γ 0(δ).

Using the matching condition for (u0, u
0
±) and the expression of u0 in (4.12), we have

û0(x, t) + h0d0
(

1
2
± 1

2

)
= u0

±(x, t) in Γ 0(δ)

which implies that

û0(x, t) = 1
2
(u0

+(x, t) + u0
−(x, t)), h0d

0 = u+
0 (x, t)− u+

0 (x, t). (4.13)

Since u±0 are smooth and u0
+ = u0

− on Γ 0, h0 is well-defined on Γ 0 and h0|Γ0
=

limd0→0
1
d0 (u+

0 − u0
−) = ∇u0∇d0.

Observe that where i = 0, (4.9) reads 2d0
t = −(c0d0

t − ∆d0)[u0] + 2∇d0[∇u0]− l0d0 − h0.

Since on Γ 0, [u0] = u0
+ − u0

− = 0, d0 = 0, we obtain

d0
t =

1

2
[2∇d0[∇u0]− h0] =

1

2
∇d0[∇u0] = −1

2

(∂u0
+

∂n
− ∂u0

−
∂n

)
since ∇d0 = −n|Γ 0 , the unit normal of Γ 0 pointing to Q0

+.

Now we can go backwards to solve the zero-th order expansion. Let (u, Γ 0) be the

solution to the free boundary problem (2.1), d0(x, t) be the signed distance function to Γ 0,

and δ be a small positive constant such that d0(x, t) is smooth in Γ 0(2δ). Define (û0, h0, u0)

by (4.13) and (4.12), and set u0
± = u|Q0

±
, then the outer expansion equation (4.4a), the inner

expansion equation (4.6a), and the matching condition (4.2a) are satisfied. In addition,

(4.9) and (4.10) are both valid on Γ 0.

Now define ϕ0
± by (4.4b), and define g0 by

g0d
0 =

2

m1
{ū0(x, t)− m

2s0
(∆d0 − α0d0t)} in Γ 0(δ).

(Observe that the right-hand side vanishes on Γ 0, so that g0 is well-defined and is smooth

in Γ 0(δ).) Then (4.10) holds in Γ 0(δ), and consequently, one can solve (4.6b) with i = 0

to obtain a unique solution ϕ0, which, by utilizing (4.11), satisfies the matching condition

(4.2b). Finally, defining l0 in a similar manner as for g0, the compatibility condition (4.9)

can be satisfied in Γ 0(δ). This completes the proof of the lemma. q
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4.4 Higher order expansions

Since V0, along with d0, Q0
±, and δ, has been constructed, by mathematical induction, we

only need to find, for each j > 1, the jth order expansion under the assumption that all

the previous order expansions have been constructed.

First we assume that dj(x, t), (x, t) ∈ Γ 0(δ), is known. We shall express all the jth order

unknowns in terms of dj and then solve for dj .

To solve the inner expansion equations (4.6b) and (4.8) uniquely, it is necessary and

sufficient, by (4.10), to take

ūj =
m

2s0
(α0d0

t − ∆dj)−
m1

2
(gjd

0 + g0d
j) + bj−1 in Γ 0(δ). (4.14)

Since, by induction, the solvability condition (4.9) (with i = j − 1) is satisfied, one can

solve (4.6a) with i = j to

uj(z, x, t) = (hjd
0 + h0d

j)(η − η̄) + ū+ cj−1(z, x, t) (4.15)

where η̄ =
∫
R1 ηθ

′
0/
∫
θ′0, and cj−1 is obtained by solving (cj−1)′′ = Aj−1+Ãj−2,

∫
cj−1θ′0 = 0,

so that cj−1 depends only upon the previous order expansions.

Substituting (4.14) into (4.15) and sending z → ±∞, we then obtain

uj(±∞, x, t) = (hjd
0 + h0d

j)(
1

2
± 1

2
− η̄) +

m

2s0
(α0d

j
t − ∆dj)

−m1

2
(gjd

0 + g0d
j) + bj−1 + cj−1(±∞, x, t). (4.16)

In particular, on Γ 0,

uj(±∞, ·) =
(
h0(

1

2
± 1

2
− η̄)− m1

2
g0

)
dj +

m

2s0
(α0d

j
±−∆d

j)+bj−1 +cj−1(±∞, ·) on Γ 0. (4.17)

Noting that the right-hand side depends only upon dj and known quantities, we can use

this as the boundary value of uj± to solve the outer expansion equation (4.2a), using the

matching condition, to obtain uj± in Q0
±. (Then we extend them smoothly into Γ 0(δ).) We

can consider uj± as functional of dj .

Obtaining uj± in this way only satisfies the matching condition for uj and uj± on Γ 0. To

guarantee the matching of uj and u
j
± in the full neighbourhood of Γ 0(δ), it is necessary

and sufficient, by (4.16), to define hj and gj by

d0hj = c
j−1
1 (∞, x, t)− cj−1(−∞, x, t)− h0d

j on Γ 0(δ) \ Γ 0, (4.18)

d0gj = (1− η̄)uj− + η̄u
j
+ +

m

2s0
(α0d

j
± − ∆d

j)− m1

2
g0d

j + bj−1

+(1− η̄)cj−1(−∞, x, t) + η̄cj−1(∞, x, t) on Γ 0(δ) (4.19)

Since both of the right-hand sides vanish on Γ 0 (by the definition of uj±), hj and gj are

smooth functionals of dj in Γ 0(δ). To enforce (4.9), one only needs to take

2djt = −[c0d0
t − ∆d0][uj] + 2∇d0[∇uj] + 2∇dj[∇u0]− l0dj − hj + aj−1 on Γ 0 (4.20)

d0lj = −2djt − [c0d0
t − ∆d0][uj] + 2∇d0[∇uj] + 2∇uj[∇u0]− l0dj − hj + aj−1 in Γ 0(δ)

(4.21)

since [u0]Γ 0 = 0. Clearly, once the first equation is satisfied, lj is a smooth function. Using
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the expression for hj in (4.18), equation (4.20) can be written as

2djt = −[c0d0
t − ∆d0][uj] + 2∇d0[∇uj] + 2∇dj[∇u0]− l0dj

−∇d0[∇uj]− ∇d0∇h0d
j − h0∇d0∇dj + ∇d0[∇cj−1] + aj−1

= −(c0d0
t − ∆d0)(h0dj) + ∇d0[∇uj] + ∇djh0∇d0 − l0dj + âj−1 on Γ 0

since [uj]|Γ 0 = h0d
j + [cj−1] and [∇u0] = h0∇d0. Note that the right-hand side depends

also upon [uj] = u
j
+ − u

j
−. Hence, we have to solve (dj , uj+, u

j
−) together. After replacing

∇d0∇dj = − 1
2

∑j−1
i=1 ∇dj−i∇di, we obtain the following linear system for (dj , uj+, u

j
−):

d
j
t = − 1

2

[
∂

∂n
u
j
+ −

∂

∂n
u
j
−

]
+ e

j−1
1 dj + e

j−1
2 on Γ 0,

c0u
j
±t − ∆u

j
± = e

j−1
3 in Q0

±,

j
± =

m

2s0
(α0d

j
t − ∆dj) + e

j−1
4± d

j + e
j−1
5± on Γ 0,

∇d0∇dj = e
j−1
6 in Γ 0(δ),

u
j
± = 0 on ∂pΩT ,

dj(·, 0) = 0 on Γ 0(δ).

(4.22)

Existence of a unique solution to (4.22) can be proved in a manner similar to (but much

simpler than) that of the existence of the free boundary problem (2.1). For example, one

can show the well-posedness of (4.22) as follows: Given d ∈ C2+α,1+α/2(Γ 0(δ)), solve uj

from (4.22a,b,e) with dj = d. If we denote the solution by u, then from parabolic estimates,

one obtains u ∈ C3+α,(3+α)/2(Γ 0). We then solve dj from (4.15c,d,f) with uj replaced by

u. If we denote the solution by d̃, then by PDE estimates, d̃ ∈ C3+α,(3+α)/2(Γ 0(δ)). One

can easily show that the mapping from d to d̃ is a contraction and maps a certain ball

of the function space C2+α,1+α(Γ (δ) ∩ Ω × [0, T1]) into itself, provided that one takes

T1 sufficiently small. Hence by a fixed point theorem, the mapping from d to d̃ has a

unique fixed point, which yields a solution of (4.22) in time interval [0, T1]. Noting that

problem (4.22) is linear, step-by-step, one can show that (4.15) has a unique solution dj

in time interval [0, T ]. Regularity follows from a boot-strap argument. For more details,

see elsewhere [28], where existence of a solution to (2.1) is proved by first studying the

well-posedness of a linearized problem similar to (4.22).

In summary, we can construct the jth order expansion as follows: First, let (dj , uj±) be the

unique classical solution of (4.22). By the third equation in (4.22), the right-hand sides of

(4.18) and (4.19) vanish on Γ 0 so that we can define unique smooth functions hj and gj by

(4.18) and (4.19), respectively. After that, we define ūj by (4.14) and uj by (4.15). Then the

outer expansion equations for uj±, the inner expansion equations for uj , the matching condi-

tions for uj± and uj , and the compatibility condition (4.9) (with i = j) are all satisfied. Next,

define ϕj± by the outer expansion equations. By (4.14), (4.10) (with i = j) holds, so that we

can solve the inner expansion equation (4.6b) (with i = j) to obtain a unique bounded ϕj .

In addition, by (4.11), (ϕj±, ϕj)satisfies the matching condition. Finally, defining lj by (4.21)

completes the construction of the jth order expansion. Hence we have the following:

Lemma 4.2 Assume that (2.2) has a smooth solution. Then for all non-negative integers j,

there exists a jth order expansion.
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4.5 Approximate solutions

In this subsection we ‘glue’ the inner and outer expansions to construct approximate

solutions. Let K > 2 be an arbitrary fixed integer, and let V 0, · · · , VK be the expansions

up to order K which are given in the previous subsections. In the sequel, all O’s are in

the C0 norm, although estimates on Cm (m > 1) norm can be similarly obtained.

Define

dKε (x, t) =

K∑
i=0

εidi(x, t) ∀ (x, t) ∈ Γ 0(δ),

ΓK
ε = {(x, t) ∈ Γ 0(δ)

∣∣ dKε = 0}.

Then by the equations satisfied by dj in (4.3), dKε is a Kth order approximate distance

function to ΓK
ε , in the sense that dKε vanishes on ΓK

ε and

|∇dKε |2 = 1 +
∑

16i,j6K,i+j>K+1

εi+j∇dj∇di = 1 + O(εK+1). ∀(x, t) ∈ Γ 0(δ).

Next we define the inner approximate solution (uKI , ϕ
K
I ) by

uKI (x, t) =

K∑
i=0

εiui(z, x, t)
∣∣∣
z=

dKε (x,t)
ε

∀ (x, t) ∈ Γ 0(δ),

ϕKI (x, t) =

K∑
i=0

εiϕi(z, x, t)
∣∣∣
z=

dKε (x,t)
ε

∀ (x, t) ∈ Γ 0(δ).

Note that, when ε is small enough, | d
K
ε

ε
− d0+εd1

ε
| = |

∑K
i=2 ε

i−1di| 6 1, and hence the term

η(M1 + z)Rε+ + η(−M1 − z)Rε− vanishes when z = dKε /ε. From the equations satisfied by

(uj , ϕj), j = 0, · · · , K , and the fact that we are evaluating uj and ϕj at z = dKε /ε, it follows

that

c0(uKI )t + ∆uKI + (ϕKI )t = O(εK−1)

α0ε(ϕKI )t − ε∆ϕKI + ε−1f(ϕKI )− s0uKI = O(εK ) ∀(x, t) ∈ Γ (δ).

Define the outer approximate solution (uO, ϕO) by

uKO(x, t) =

K∑
i=0

εiu+
i (x, t)χ

Q+
0

+

K∑
i=0

εiu−i (x, t)χQ−0 ∀ (x, t) ∈ ΩT ,

ϕKO(x, t) =

K∑
i=0

εiϕ+
i (x, t)χ

Q+
0

+

K∑
i=0

εiϕ−i (x, t)χQ−0 ∀ (x, t) ∈ ΩT .

Then by using the outer expansion equations, one can easily show that

c0(uKO)t + ∆uKO + (ϕKO)t = O(εK ), ∀(x, t) ∈ ΩT \ Γ 0,

α0εϕKO − ε∆ϕKO + ε−1f(ϕKO)− s0uKO = O(εK ), ∀(x, t) ∈ ΩT \ Γ 0.

Now we ‘glue’ the inner approximate solution (uKI , ϕ
k
I ) and the outer approximate
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solution (uKO , v
K
O ). To do this,let ζ(s) ∈ C∞0 (IR) be a cut-off function as in (2.4) and define

uKA =


uKO in ΩT \ Γ 0(δ),

uKI ζ(d
0/δ) + (1− ζ(d0/δ))uKO in Γ (δ) \ Γ 0(δ/2),

uKI in Γ 0(δ/2).

and similarly define ϕKA . By the properties of the cut-off function ζ, we know that (uKA , ϕ
K
A )

is smooth in ΩT . When z ∈ Γ 0(δ) \ Γ 0(δ/2), |d0| ∈ [δ/2, δ), so that dKε ≡ d0 +
∑K

i=1 ε
idi

satisfies, when ε is small enough, |dKε | > δ/4 for all (x, t) ∈ Γ 0(δ) \Γ 0(δ/2). Consequently,

by the matching conditions, we get

‖uKA − uKO‖C2(Γ 0(δ)\Γ 0(δ/2)) = O(ε−2e−αδ/(4ε))

and a similar relation also holds for ϕKA and ϕKO.

Hence, by the equations satisfied by (uKI , ϕ
K
I ) and (uKO , ϕ

K
O), we have

c0(uKA )t − ∆uKA + (ϕKA )t =: eK(x, t) = O(εK−1), in ΩT ,

α0εϕKA − ε∆ϕKA + ε−1f(ϕKA )0
s u
K
A = O(εK−1) in ΩT .

Finally, making a modification on uKA , of order O(εK−1), we can have that c0(uεK )t −
∆uεK + (ϕKA )t = 0 in ΩT , whereasthe equation for ϕKA remains unchanged. In summary, we

have the following lemma:

Lemma 4.3 Assume that (2.2) admits a smooth solution. Then, for every positive integer K ,

there exists (ϕεA, u
ε
A) such that

α0εϕεAt − ε∆ϕεA + ε−1f(ϕεA) = s0uεA + δεA in ΩT ,

c0uεAt − ∆uεA = −(ϕεA)t in ΩT in ΩT ,

ϕεA = ±1 + O(ε), uεA = g + O(ε) on ∂pΩT ∩ (Ω±0 × [0, T ])

(4.23)

where δεA satisfies

‖δεA‖C0(Ω̄T ) 6 ε
K.

In addition, for every t ∈ [0, T ], ϕεA(·, t) is uniformly bounded and satisfies the assumption in

Proposition 3.1.

4.6 Boundary layer expansion

From (4.4c), we see that we can let uεA = g on ∂Ω × [0, T ]. However, just using the inner-

outer expansion, we have ϕεA = 1+O(ε) on ∂Ω× [0, T ], where the O(ε) term depends upon

g and other known data. To ensure arbitrary ‘compatible’ boundary data, for example,

ϕεA = 1 on ∂Ω × [0, T ], we need to use a boundary layer expansion. Here we provide the

main idea, and consider only the Dirichlet boundary condition

uε = g, ϕε = 1 on ∂Ω × [0, T ].

For more details, see [10].

Let dB(x) be the distance from x to ∂Ω. In a δ-neighbourhood of ∂Ω × [0, T ], we seek
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solutions of the form

uε = uεB(z, x, t)
∣∣∣
z=

dB (x)

ε

, ϕε(x, t) = ϕεB(z, x, t)
∣∣∣
z=

dB (x)

ε

where

uεB(z, x, t) ∼ 1 +

∞∑
i=0

εiuiB(z, x, t),

ϕεB(z, x, t) ∼
∞∑
i=0

εi+1ϕiB(z, x, t)

where z ∈ [0,∞), t ∈ [0, T ], and x ∈ ∂Ω(δ) := {x ∈ Ω̄ : dB(x) ∈ [0, δ)}. The outer-

boundary matching conditions are, for all x ∈ ∂Ω(δ), t ∈ [0, T ],{
DnxD

m
t D

l
z(u

i
B(z, x, t)− ui+(x, t)) = O(e−βz), as z →∞,

DnxD
m
t D

l
z(ϕ

i
B(z, x, t)− ϕi+(x, t)) = O(e−βz), as z →∞.

(4.24)

Similar to the inner expansion, the boundary layer equations are, for i = 0, 1, · · ·,{
uiB,zz = Ai−1

B ,

−ϕiB,zz + f′(1)ϕik = s0uiB + Bi−1
B

(4.25)

where z ∈ (0,∞), x ∈ ∂Ω(δ), t ∈ [0, T ], and Ai−1
B = Ai−1(z, x, t) and Bi−1

B = Bi−1
B (z, x, t) are

functions depending only on the expansions of order not bigger than i− 1.

Let the zero-th order inner-outer expansion be constructed as in § 4.3. We define

u0
B(z, x, t) = u0

+(x, t), ϕ0(z, x, t) = ϕ0
+(x, t).

for all z ∈ [0,∞), x ∈ ∂Ω(δ), t ∈ [0, T ].

Assume that all the inner, outer and boundary expansions of order less than i (i > 1)

have been constructed. Assume also that as z → ∞, Ai−1
B (z, x, t) and Bi−1

B (z, x, t), together

with all its partial derivatives, exponentially approach Ai−1
B (∞, x, t) ≡ 0 and Bi−1(∞, x, t),

respectively. We construct the ith order boundary, inner and outer expansion as follows:

Step 1. For each x ∈ ∂Ω, t ∈ [0, T ], solve (4.25) with boundary condition

uiB(0, x, t) = 0, ϕiB(0, x, t) = 0. (4.26)

It is easy to see that there exists a unique bounded solution uiB(z, x, t) and ϕiB(z, x, t).

Step 2. Take uiB(∞, x, t), x ∈ ∂Ω, t ∈ [0, T ], as the boundary value of ui+. Proceeding with

the inner-outer expansion process, we can obtain the ith order inner-outer expansion. In

addition, since

ϕiB(∞, x, t) = s0uiB(∞, x, t)/f′(1) + Bi−1
B (∞, x, t)/f′(1),

by the actual expression of Bi−1
+ and Bi−1

B , one can show that the outer-boundary matching

condition (4.24) is satisfied for x ∈ ∂Ω, t ∈ [0, T ].

Step 3. For all x ∈ ∂Ω(δ) \ ∂Ω, t ∈ [0, T ], let uiB(z, x, t) and ϕiB be the solution of (4.25)

with the boundary condition

uiB(∞, x, t) = ui+(x, t), ϕi(0, x, t) = 0,
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one can obtain a unique bounded solution uiB and ϕiB . In addition, one can show that the

solution satisfies the outer-boundary matching condition. This completes the construction

of the i-the expansion.

The ‘glue’ of inner, outer and boundary layer expansions is similar to that presented in

the previous subsection, and is omitted. For more details, see [10].

Remark 4.2

(1) In step 3 (i.e. for x ∈ ∂Ω(δ) \ ∂Ω, t ∈ [0, T ]), the boundary condition uiB(∞, x, t) =

ui+(x, t) is mandatary, whereas the condition ϕiB(0, x, t) = 0 is not necessary. In

fact, we can let ϕiB(0, x, t) be any given smooth function ϕi0(x, t) which satisfies

ϕi0(x, t) = 0 on ∂Ω × [0, T ]. Although this appears to create non-uniqueness, it will

not interfere with the sum 1 + ΣKi=1ε
i+1ϕiB( dB (x)

ε
, x, t) in O(εK+1) order, since all the

arbitrariness will cancel in the later expansions, at the hypersurface z = dB (x)
ε

. This

is the same idea as making smooth extension for the function ui± into Γ 0(δ)\Q±(δ).

(2) The reason that we cannot restrict ourself to considering only x ∈ ∂Ω for the

boundary expansion is that in the expression of Ai−1
B and Bi−1

B , there are terms

involving the spatial derivatives of the boundary layer expansion terms.

(3) Our analysis extends to the case when the boundary data uε = g and ϕε = ϕ0 have

the expansion

g =

∞∑
i=0

εigi(x, t), h = 1 +

∞∑
i=0

εi+1ϕi0(x, t).

In fact, we need only modify the boundary condition for uiB and ϕiB in Step 1 and

the boundary condition for ϕiB in Step 3.

(4) For Neumann or mixed boundary conditions, one can use the fact that ∂n|∂Ω =

− 1
ε
∂
∂z
−∇dB ·∇x and follow the same step to obtain boundary-inner-outer expansions,

though it is more subtle and a little bit more complicated (see [10]).

5 Proof of the main theorems

Proof of Theorem 2.1 The convergence of ϕεA to ϕε in Lp follows from Theorem 3.1,

Proposition 3.1 and Lemma 4.3. By Remark 3.1, ϕεA → ϕε in C1 if we construct higher

order approximate solutions. Using the differential equations, we also know that uεA → uε

in C1. Since the leading order expansion of (uεA, ϕ
ε
A) coincides with the solution of the free

boundary problem, we obtain the assertion of Theorem 2.1.

Proof of Theorem 2.2 (1) Changing the boundary conditions will not affect the essential

conclusions of Theorem 3.1, Proposition 3.1, and the construction of approximate solutions

in § 4, so that the assertion of Theorem 2.1 holds if one replaces the boundary conditions.

(2)–(6). With the new α(ε), s(ε), and c(ε), Theorem 3.1 and Proposition 3.1 remain valid,

whereas in the construction of the approximation solutions, one only equates the terms

of εi for the new system, which leads to the revised conclusion. The existence of a system

similar to (4.22) can be proved in a manner similar to (but simpler than) the corresponding

free boundary problem. In fact, (4.22) is a linearization of the corresponding free boundary

problem.
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6 Conclusion

We have proved that the solutions to the phase field equations converge to those of the

corresponding sharp interface problems in each of the distinguished limits. Since there

are no symmetry or other geometric assumptions on the domain other than regularity of

the boundary, this general proof completes the rigorous foundation for the asymptotic

analysis of the phase field equations. The sharp interface problems are defined within

the context of classical (smooth) interfaces so that our basic assumption of the existence

of such solutions is logically a natural limitation. When there is no smooth solution to

the limiting sharp interface problem, the numerical studies confirm that the phase field

equations still provide a reasonable physical description. However, the physically correct

sharp interface problems have not been formulated in the case of self-intersections, and

while the equilibrium conditions for intersections between the interface and external

boundary are well understood, the dynamical conditions are a current research topic.

When Γ is not smooth, the sharp interface problems can be defined within the context

of a particular mathematical regularization procedure that may or may not be the correct

one physically. A more complete sharp interface problem can perhaps be obtained by a

systematic derivation of interface conditions in each of the topological possibilities for the

particular spatial dimension. Derivations from distinct perspectives including the phase

field approach would be useful in understanding the range of validity of each avenue.

Remaining theoretical issues related to the convergence include the rate of the con-

vergence and comparisons in convergence rates between different phase field models.

These questions are particularly important to numerical studies where ε must be made

significantly larger than its physically realistic (atomic) scale.
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