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A high-order transition route from inertial to elasticity-dominated turbulence (EDT) in
Taylor–Couette flows of polymeric solutions has been discovered via direct numerical
simulations. This novel two-step transition route is realized by enhancing the extensional
viscosity and hoop stresses of the polymeric solution via increasing the maximum chain
extension at a fixed polymer concentration. Specifically, in the first step inertial turbulence
is stabilized to a laminar flow much like the modulated wavy vortex flow. The second step
destabilizes this laminar flow state to EDT, i.e. a spatially smooth and temporally random
flow with a −3.5 scaling law of the energy spectrum reminiscent of elastic turbulence. The
flow states involved are distinctly different to those observed in the reverse transition route
from inertial turbulence via a relaminarization of the flow to elasto-inertial turbulence
in parallel shear flows, underscoring the importance of polymer-induced hoop stresses in
realizing EDT that are absent in parallel shear flows.
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1. Introduction

Polymeric fluids are used to produce a huge variety of consumer products from household
items to state-of-the-art composites used in applications of critical global needs (Denn
2004; Larson & Desai 2015; Benzi & Ching 2018). The nonlinear viscoelastic response
of this class of fluids gives rise to a new class of instabilities and flow states that
complicate liquid state processing of polymers. In fact, the strong coupling of inertial and
elastic forces commonly quantified by the Reynolds (Re) and Weissenberg (Wi) numbers,
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respectively, leads to various flow transition routes to turbulent flow states that are specific
to polymeric fluids (Morozov & van Saarloos 2007; Muller 2008; Dutcher & Muller 2013).
A fascinating example is the elastically dominated inertialess flow state dubbed ‘elastic
turbulence’ (ET) (Groisman & Steinberg 2000). Elastic turbulence displays large velocity
fluctuations in a wide range of spatial and temporal scales with a power-law decay of
the kinetic energy spectra in a frequency domain E(k) ∼ k−α with the exponent α > 3
(between 3.3 and 3.6 depending on flow geometry) (Fouxon & Lebedev 2003; Steinberg
2019). Thus, due to the steep decay of the velocity spectrum, ET is essentially a spatially
smooth and temporally random flow, dominated by a strong nonlinear interaction of a few
large-scale spatial modes (Groisman & Steinberg 2004; Steinberg 2021).

In parallel shear flows, a full transition road map from inertial turbulence (IT) to a
new turbulent-like regime dubbed elasto-inertial turbulence (EIT) has been discovered
(Samanta et al. 2013; Choueiri, Lopez & Hof 2018; Lopez, Choueiri & Hof 2019; Shekar
et al. 2019). Specifically, a reverse transition route from IT via a laminar base flow state
to EIT is realized in pipe flows at a subcritical Re ∼ O(103) (Choueiri et al. 2018),
whereupon enhancement of elastic forces either by increasing the polymer concentration
and/or increasing Wi to O(10), the flow first relaminarizes as the inertial quasi-streamwise
vortices are gradually weakened and are finally eliminated (Choueiri et al. 2018; Lopez
et al. 2019). This relaminarized state exhibits drag reduction beyond the maximum drag
reduction asymptote (Toms 1948; Lumley 1969; Virk 1975) and subsequently undergoes
a secondary instability, namely, elasto-inertial instability that results in a dominant flow
structure consisting of two-dimensional sheets of highly stretched polymers in channel
flows, and streamwise elongated streaks in pipe flows (Choueiri et al. 2018; Sid, Terrapon
& Dubief 2018; Lopez et al. 2019; Shekar et al. 2019, 2020). The kinetic energy spectrum
in the EIT regime has a −14/3 scaling, which is distinctly different from the Kolmogorov
scaling of −5/3 for IT but close to the −3.5 scaling for ET (Fouxon & Lebedev 2003;
Groisman & Steinberg 2004; Dubief, Terrapon & Soria 2013; Steinberg 2019). It should
also be noted that another transition route towards EIT that bypasses the laminar state has
been realized in pipe flows at a supercritical Re (Choueiri et al. 2018).

In curvilinear shear flows, our recent simulations (Liu & Khomami 2013a,b; Song et al.
2019) of the viscoelastic Taylor–Couette (TC) flows, i.e. the flows between two concentric,
rotating cylinders (Taylor 1923), taken together with some preliminary experimental
findings (Lee, Sengupta & Wei 1995; Dutcher & Muller 2011), are indicative of the
existence of reverse transitions from IT to a new flow state that is more akin to ET
than EIT. Specifically, at high levels of fluid elasticity, i.e. Wi = 60, the Newtonian
turbulent Taylor vortex flow (TTV) at Re = 3000 and large radius ratio η = Ri/Ro =
0.912 is stabilized to a flow state resembling the Taylor vortex flow (TVF), where Ri
and Ro are the inner and outer cylinder radii, respectively (Dutcher & Muller 2009;
Song et al. 2019). In this transition the inertial small-scale Görtler vortices (GV) (Wei
et al. 1992; Dong 2007) are eliminated; conversely, a similar Newtonian TTV at a
small η (=0.5) transitions directly (without relaminarization) to an elasticity-dominated
turbulence (EDT), as evidenced by destabilization of large-scale Taylor vortices (TV)
via a hoop stress driven elastic/inertio-elastic Görtler instability that results in small
near-wall turbulent vortices (Liu & Khomami 2013b; Song et al. 2019). A drastic drag
enhancement (DE) is observed for these two very different, in fact nearly opposite,
vortical changes. Evidently, the localized small-scale elastic structures in viscoelastic TC
turbulence display streamwise-oriented flow topology, that are in stark contrast to the trains
of weak spanwise-oriented flow structures with inclined sheets of polymer stretch in EIT
of parallel shear flows. Hence, the underlying elasticity-driven physics and in particular
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the role of hoop stresses in the generation of turbulence and vortical structures, DE, and
the realization of a distinct flow state, namely EDT, remain an open question.

To this end, the viscoelastic TC flow is an ideal flow to examine the effects of polymeric
elasticity mainly manifested through hoop stresses on flow transitions, pattern formations
and turbulence dynamics (Groisman & Steinberg 1996, 1997, 1998a,b; Crumeyrolle &
Mutabazi 2002; Dutcher & Muller 2011; Latrache, Crumeyrolle & Mutabazi 2012; Dutcher
& Muller 2013). In what follows, we will demonstrate a novel transition route from IT
to EDT in viscoelastic TC flow. This transition from a Newtonian TTV is facilitated
by increasing the maximum chain extension (L) of the polymer additives that leads
to a significant increase in hoop stresses that play a central role in determining flow
patterns, dynamics and transitions. Specifically, the transition has three distinctive aspects:
(1) dramatic DE; (2) a stabilization step that leads to a laminar flow much like the
modulated wavy vortex flow (MWV); and (3) a subsequent destabilization of the laminar
flow to an EDT regime with the hallmark signature of ET, i.e. a spatially smooth and
temporally random flow with a −3.5 energy spectrum scaling. In turn, the underlying
physical origin of this transition and the commensurate competition between inertial and
elastic body forces are discussed.

2. Problem formulation and computational details

Direct numerical simulations using a fully spectral, three-dimensional parallel algorithm
(Thomas et al. 2006a; Thomas, Khomami & Sureshkumar 2006b, 2009; Liu & Khomami
2013a,b; Song et al. 2019) have been performed to examine the flow dynamics in
viscoelastic TC flow. We have chosen d = Ro − Ri, d/(ΩRi), ΩRi, ρ(ΩRi)

2 and ηpΩRi/d
as scales for length, time, velocity u, pressure P and polymer stress τ , respectively. Here Ω

denotes the inner cylinder angular velocity, and ρ the solution density. The outer cylinder
is considered to be stationary. The polymer stress τ is related to the conformation tensor
C through the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive relation
(Bird et al. 1987). The dimensionless governing equations for the incompressible flow of
FENE-P fluid are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇P + β

Re
∇2u + 1 − β

Re
∇ · τ (2.2)

and
∂C

∂t
+ u · ∇C = C · ∇u + (∇u)T · C − τ + κ∇2C, (2.3)

where polymer molecules are modelled as dumb-bells composed of two beads and a
nonlinear spring, and the polymer stress τ can be related to the stress conformation tensor
C via the relationship

τ = f (C)C − I

Wi
. (2.4)

The function f (C), known as the Peterlin function, is defined as

f (C) = L2 − 3
L2 − trace(C)

, (2.5)

where Re = ρΩRid/ηt, with the total zero-shear viscosity ηt being the sum of the
solvent (ηs) and polymeric (ηp) contributions; Wi = λΩRi/d, with λ being the elastic
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relaxation time; and β = ηs/ηt. Here L is the maximum chain extensibility, in particular,
the polymeric shear stress and normal stress (hoop stress) tend to increase at higher
extensibilities, corresponding to the shear-thinning behaviour in both the shear viscosity
and first normal stress coefficient (Ghanbari & Khomami 2014). The governing equations
are supplemented by no-slip boundary conditions at walls, as well as periodic boundary
conditions in the axial direction with a periodicity length of 4πd. A small diffusive term
κ∇2C is added in the bulk flow region for numerical stabilization (Sureshkumar, Beris
& Avgousti 1995, 1997). The original constitutive equation without the diffusive term is
applied at the cylinder walls, hence, where boundary conditions for C are not imposed.

Inspired by previous simulations of EIT (Sid et al. 2018; Lopez et al. 2019; Shekar et al.
2019) and viscoelastic TC flow (Liu & Khomami 2013a,b; Song et al. 2019), we pursue
a transition route from IT to EDT in a small gap viscoelastic TC flow system of η =
Ri/Ro = 0.912, Re = 3000, Wi = 60 and β = 0.8, by enhancing the extensional viscosity
and hoop stresses via increasing L from 30 to 240. The L values considered correspond to
an extensibility number (Ex = 2L2(1 − β)/3β) ranging from 150 to 9600 (Xi & Graham
2010; Lopez et al. 2019). Based on our previous calculations (Song et al. 2019), for L �
120 a Schmidt number Sc [≡ (Reκ)−1] of 0.42 is used with a mesh size of 128 × 256 ×
256 in the r × θ × z directions and a time step of 0.005; in order to reliably capture the
polymer stress field at L � 130 a larger Sc (=0.83) is used along with a larger mesh size of
128 × 256 × 512 and a smaller time step of 0.001. Simulation with finite Sc could modify
the reported flow transitions; however, the spatial resolution and the Sc number used in
this study are large enough to nearly quantitatively capture the essential flow features.
Evidently, the choice of β affects the critical L for transition to elasticity-dominated flow
as well as the onset of numerical instability. Nevertheless, the reported results not only
capture the essential flow dynamics but also provide mechanistic insight for the novel
reverse flow transitions observed in the viscoelastic TC flow. All the simulations for the
viscoelastic TC flow are initiated from the Newtonian TTV state (Dutcher & Muller 2009).
Sufficiently long simulations [typically of ∼300T , T = d/(ΩRi)] are executed to ensure
that statistically steady flow states have been realized. Moreover, ensemble averages are
obtained over a time period of ∼120T .

3. Results and discussion

Our results indicate a novel flow transition route from IT to EDT that contains a
stabilization step (L = 30 ∼ 120) and a subsequent destabilization step (L = 130 ∼ 240),
as evidenced by the vortical changes depicted in figures 1 and 2. Similar to our previous
findings (Liu & Khomami 2013b; Song et al. 2019), these transitions lead to a dramatic
DE, namely, from 24 % to 81 % in the stabilization step and from 50 % to 138 % in the
destabilization step, as shown in table 1. The angular momentum current Jω in viscoelastic
turbulent TC flow is defined as (Song et al. 2019)

Jω = r3[〈urω〉 − β∂r〈ω〉/Re − (1 − β)〈τrθ 〉/r/Re]. (3.1)

Hereafter, 〈 〉 denotes ensemble averaging in time, the θ - and z-directions. Here ω = uθ /r
denotes the angular velocity. The right-hand terms of (3.1) represent in sequence the
contributions of convective flux (Jω

c ), the diffusive flux (Jω
d ) and the elastic source/sink

term (Jω
p ) to the angular momentum (Song et al. 2019). The Nusselt number is calculated

as Nuω = Jω/Jω
lam, with Jω

lam being the Newtonian laminar value; hence, Jω
c /Jω represents

the inertia contribution to Nuω, i.e. convection mainly arising from the large-scale
TV, and Jω

p /Jω represents the elastic contribution. As shown in figures 1(a) and 2(a),
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L 0 30 60 100 120 130 140 160 200 240

Nuω 4.57 5.66 6.93 7.88 8.28 6.85 7.76 8.49 9.89 10.88
Jω

c /Jω 98 % 85 % 94 % 126 % 116 % 107 % 91 % 78 % 46 % 31 %
Jω

p /Jω 0 % 15 % 8 % −22 % −14 % −6 % 9 % 24 % 54 % 68 %
DE 0 % 24 % 52 % 72 % 81 % 50 % 70 % 86 % 116 % 138 %

Table 1. Nusselt number Nuω = Jω/Jω
lam where Jω is the angular momentum current defined in (3.1) and

Jω
lam is its Newtonian laminar flow counterpart, convective flux (Jω

c ) and polymeric elastic source/sink (Jω
p )

contribution to the angular momentum Jω of TC flows at the middle of the gap for various L. Here L = 0
corresponds to the Newtonian TTV flow; DE is calculated as (Nuω − NuL=0

ω )/NuL=0
ω .

the Newtonian TTV regime can be viewed as a superimposition of near-wall small-scale
GV on the large-scale TV that occupy the entire gap (Dutcher & Muller 2009). To be more
specific, as fluid inertia is enhanced gradually, the TTV is realized via a sequence of flow
transitions from circular Couette flow, to axially periodic TVF, and then subsequently
to wavy vortex flow (known as WVF), MWV, chaotic wavy vortex (CWV) flow, wavy
turbulent vortex (WTV) flow and finally to TTV flow (Dutcher & Muller 2009). In the
TTV regime, the large-scale TV are highly oscillatory in time, as evidenced by their
fluctuating boundaries, i.e. the inflow (blue) and outflow (red) stripes (see figure 1a). The
spatial small-scale fluid motions are ascribed to the inertial small-scale GV that lead to
high-intermittency oscillations of the large-scale TV (see figure 2a). The dominant spatial
mode for this flow regime is k0 = 5 and the energy spectrum has a −5/3 scaling signifying
its IT origin (see figure 3a).

Evidently, the stabilized flow is characterized by a gradual elimination of the
inertial small-scale GV and stabilization of the large-scale TV. Specifically, when
polymer additives with L = 30 are introduced, the small-scale GV are greatly weakened
(see figure 2b) and consequently, the large-scale TV exhibit temporally random wavy
oscillations (see figure 1b) resulting in a weakly turbulent flow, namely, the WTV flow
regime (Dutcher & Muller 2009). For L = 60, the disordered wavy oscillations of the
large-scale TV become weaker (see figure 1c) as the near-wall small-scale GV are almost
eliminated (see figure 2c). This is reminiscent of the Newtonian CWV flow regime
(Dutcher & Muller 2009). Further increase in L to 120 relaminarizes the viscoelastic TC
flow to a MWV-like laminar flow that has trivial interactions between two neighbouring
stabilized large-scale TV, as evidenced by the small temporal variations of large-scale TV
boundaries (see figures 1d and 2d). This stabilization step is qualitatively opposite to the
classic inertially driven transition sequence, namely, from TVF to MWV, CWV, WTV
and finally to TTV (Dutcher & Muller 2009). Spectral changes as L is enhanced are shown
in figure 3(a), namely, drastic decrease of small scales by several orders and increased
dominance of the primary spatial mode (k0 = 5) and its superharmonics.

The subsequent destabilized flows result from the nonlinear interactions of the
large-scale TV which become unstable as L is increased over 130. These interactions
are manifested as a complex combination of merging and splitting along with oscillating
of the large-scale TV (see figures 1 and 2), much like the experimental observations
of the so-called merge–split transition to EIT in viscoelastic TC flow of Re ∼ O(102)
(Cagney, Lacassagne & Balabani 2020; Lacassagne et al. 2020). Specifically, vortex
merging and splitting events (VMSE) trigger a nonlinear transition to a chaotic regime
dubbed elasticity-dominated chaotic flow (EDC) for L = 130 and 160 (see figures 1e, f
and 2e, f ). In the EDC, the large-scale TV are stable with a lifetime of >30T , and have
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Figure 1. Space–time plots of radial velocity ur obtained along the axial line at r = (Ri + Ro)/2 and θ = π for
(a) Newtonian TTV, (b) L = 30, (c) L = 60, (d) L = 120, (e) L = 130, ( f ) L = 160, (g) L = 200, (h) L = 240.
The blue and red contour regions correspond to the radial inflows (ur < 0) and outflows (ur > 0), respectively.

relatively larger axial sizes corresponding to a dominant spatial mode k0 = 3 and 4 for
L = 130 and 160, respectively (see figure 3b). The flow approaches the EDT regime
for L = 200 and 240, which is characterized by a highly intermittent occurrence of the
VMSE and the notably distorted large-scale TV (see figures 1g,h and 2g,h). In contrast,
no dominant spatial mode is identified for the EDT (see figure 3b), and remarkably, a
−3.5 spectral scaling is observed for these two regimes, thus justifying the designation
of EDC and EDT. Recently, experimental studies on the elasto-inertial transitions in TC
flow of viscoelastic polymer solutions have shown that shear-thinning acts to suppress
elastic instabilities in the viscoelastic TC flows (Lacassagne, Cagney & Balabani 2021).
The simulation results here support this argument, i.e. elasticity-dominated turbulent
flow occurs at high L values where shear thinning effects are minimal but the driving
force for instability and flow transition, namely hoop stresses and elongational viscosity,
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Figure 2. Instantaneous vectors of radial (ur) and axial (uz) velocities and contour plots of streamwise
vorticity ωθ in (r, z) plane with θ = π/2, 0 � z � 2πd and Ri � r � Ro.
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2k0 3k0 4k0

k0 = 3

k0 = 4

Eθθ
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(b)

Figure 3. One-dimensional spectra of the streamwise turbulent kinetic energy (〈u′
θ u′

θ 〉) for (a) the stabilization
step and (b) the destabilization step, where the azimuthal velocity fluctuation u′

θ is sampled at the middle of
the gap. Hereafter, the fluctuating velocity u′ is obtained as u′ = u − 〈u〉.

are large. Similar to inertialess ET (Groisman & Steinberg 2000, 2004; Steinberg 2021),
these two flow regimes are spatially smooth and temporally random and the flow dynamics
are dominated by the VMSE of oscillating large-scale TV. This points to the universality
of flow-microstructure coupling and energy spectra in elastically dominated flows over a
broad range of Re. Hence, the spatial small-scale fluid motions are originated by VMSE
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E
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Figure 4. Total turbulent kinetic energy Et and elastic potential energy Ep of viscoelastic TC flow for various
L; L = 0 corresponds to the Newtonian TTV flow. Here Et = 8π2 d

∫ Ro
Ri

〈u′2〉/2r dr and Ep = 8π2 d
∫ Ro

Ri
(1 −

β)(L2 − 3)〈ln( f (C))〉/(2ReWi)r dr.

via the resulting chaotic variations of polymer stresses at smaller scales (Groisman &
Steinberg 2000, 2004; Steinberg 2021).

The intricate competition between inertial and elastic nonlinearities underlying this
transition route is substantiated in figure 4 via the changes in total turbulent kinetic
energy (Et) and elastic potential energy (Ep). Note that, Et is calculated by the fluctuating
velocity u′ that results from the large-scale TV oscillations and the small-scale turbulent
motions, and thus can be viewed as a proper dynamical measure of inertial nonlinearity.
Evidently, the stabilization step has a slight increase in Et followed by a more pronounced
decrease in the destabilization step. For L < 130, Et is much larger than Ep. However, Ep
becomes larger than Et after the onset of EDC at L = 130 and increases continuously
as L is increased. This clearly demonstrates that the nonlinear flow dynamics are
inertia-dominated and then elasticity-dominated in the stabilized and destabilized flows,
respectively. This is consistent with the above findings that the EDC and EDT are
essentially of elastic origin as the inertial small-scale GV are fully eliminated.

The classic Pakdel–McKinley (PM) criterion (McKinley, Pakdel & Oeztekin 1996;
Pakdel & McKinley 1996) for identification of the primary elastic instability in curvilinear
flows (Larson, Shaqfeh & Muller 1990; Larson 1992; Sureshkumar, Beris & Avgousti
1994; Shaqfeh 1996; Groisman & Steinberg 1998b; Al-Mubaiyedh, Sureshkumar &
Khomami 1999, 2000, 2002) should provide insight on flow destabilization observed in
this study. The extended version of this criterion for viscoelastic TC flow with negligible
inertia is given by (Schäfer, Morozov & Wagner 2018)

√
εWirheo � Mcrit√

2

√
1 − β

√
1 + 3

2
ε + ε2

2(ε + 2)
, (3.2)

where ε = d/Ri is the curvature, Wirheo = N1/(2|Σrθ |) is the rheological Weissenberg
number defined by the ratio of first normal stress difference N1 = τθθ − τrr and the total
shear stress Σrθ that herein has an inertial part across the gap, i.e. the Reynolds stress
〈u′

ru′
θ 〉 (Song et al. 2019), since high-Re viscoelastic TC flows are considered in the present

study; Mcrit ≈ 1.8 is the instability threshold obtained experimentally that corresponds
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L 30 60 100 120 130 140 160 200 240
√

εWirheo 0.2 0.49 1.07 1.34 1.36 1.52 1.62 2.20 2.53√
εWieff 0.064 0.170 0.361 0.545 0.669 0.741 0.793 1.064 1.284

Table 2. Minimum values of ensemble-averaged instability onset condition across the gap for various L.

to the instability condition
√

εWirheo ≈ 0.61 for onset of the elastic instability (Schäfer
et al. 2018). Evidently,

√
εWirheo is flow and geometry dependent and thus can serve as a

dynamic indicator for the coupled inertial and elastic nonlinearities in curvilinear flows.
However, this criterion does not explicitly take into account finite extensibility of the
polymer chain, quantified by L in the FENE-P model. It is clear that the value of L plays an
important role in both polymer induced flow transitions and drag modifications. Motivated
by this fact, Li, Sureshkumar & Khomami (2015), in their study of polymer induced drag
reduction in channel flows, developed an effective Weissenberg number for the FENE-P
model (Wieff = Wirheo[1 − tr(C)/L2]) to more accurately capture flow microstructure
coupling in the extensionally dominated regions of the flow, i.e. the biaxial extensional
flow between streaks. To this end, we have changed the ‘rheological Weissenberg number’
Wirheo as the effective Weissenberg number Wieff in the extended PM criterion. In turn,
the instability onset condition, i.e.

√
εWieff , has been determined based on this criterion

(see table 2). It should be noted that Wirheo and Wieff are functions of the radial position.
Specifically, they have nearly equivalent maximum values near both cylinder walls and
their respective minimum values occur at the middle of the gap. Hence, values at the
middle of the gap are used to determine the critical onset condition for the instability.
Using this new criterion, i.e.

√
εWieff , the onset condition for instability monotonically

increases as L is increased and becomes larger than the critical value of 0.61 suggested
by Schäfer et al. (2018) at L = 130, which corresponds to direct numerical simulation
predictions of the onset of elasticity-dominated flows. Thus, this new PM criterion not only
provides much more reasonable values for the onset condition of the elastic instability, but
also correctly captures the changes in this condition as L is enhanced, even at relatively
high Re.

4. Conclusions

In summary, a complete transition route from IT to EDT has been numerically realized
for the first time in the viscoelastic TC flow. This transition route that leads to significant
DE is composed of a first stabilization step that gives rise to a MWV-like laminar regime,
followed by a destabilization step that gives rise to EDT that has the hallmark signatures
of ET. Taken together with another L-driven transition in a large gap viscoelastic TC flow
with η = 0.5 (Liu & Khomami 2013b) from IT to EDT where the laminar state is bypassed,
it paves the way for developing a full transition road map from IT to EDT in curvilinear
wall bounded shear flows. Despite distinct differences in coherent structures and turbulent
friction drag between EDT in TC flow and EIT in parallel shear flows, they have similar
turbulent energy spectra. This points to the universality of elastically driven turbulent flow
of dilute polymeric solutions, irrespective of the origin of elastic body forces. To this end,
a solid foundation for research on polymer-induced transitions in high and low Re shear
flows focused on detailed mechanistic understanding of EDT and ET and existence of
spectral universality in this class of flows has been developed.
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