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Abstract

The effect of temporal pulse-shape on the characterization of the longitudinal electric field resulting from the tight-focusing
of an ultrashort few-cycle TM01 laser beam in free space is investigated analytically and numerically. The longitudinal field
is found to be sensitive to the pulse-shape of the driving field. The temporal pulse-shapes considered are Gaussian,
Lorentzian, and hyperbolic secant having identical full width at half maximum of intensity. Analytical calculations are
made beyond the paraxial and slowly varying envelope approximations. From the numerical results we find that due to
finite duration of the signal, the evolution of the pulse envelope before the waist is faster (negative time-delay) but
slowed down (positive time-delay) after the waist. This time-delay, for single-cycle pulses of wavelength λ0, and for
spot-size w0f in the range 0.6λ0>w0f> 0.25λ0, is pulse-shape dependent. The time delay is maximum for the
Gaussian pulse and minimum for the Lorentzian pulse. The carrier frequency shift depends on the temporal profile of
the pulse, beam spot size, axial propagating distance and also on the number of cycles in a pulse. In addition, a
comparative study of the variation of the corrected axial Gouy- phase of the longitudinal electric field of single-cycle
pulse (spot size w0f= 0.5λ0) with normalized retarded time shows that the phase variation is maximum for Gaussian
and minimum for the Lorentzian pulse shape.
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1. INTRODUCTION

The recent progress in the technologies leading to the gener-
ation (Schenkel et al., 2003), phase-measurement (Paulus
et al., 2003; Kröll et al., 2007; Wittmann et al., 2009), and
control of the sub-cycle evolution (Apolonski et al., 2000)
of few-cycle light wave has opened the door to the obser-
vations of atomic-scale electron dynamics (Krausz &
Ivanov, 2009), electron acceleration (Sprangle et al., 2000;
Varin & Piché, 2002; Varin et al., 2005; Esarey et al.,
2009; Malav et al., 2011a) and high-order harmonic gener-
ation (Lichters et al.,1996; Villoresi et al., 2001; Baeva
et al., 2006; Dromey et al., 2007, 2009; Gupta et al., 2007;
Corkum & Krausz 2007; Varro, 2007; Malav et al.,
2011b). These physical processes are dependent on the elec-
tric field, rather than just the intensity envelope of a pulse

(Varin & Piché, 2002). Recent experimental results show
that a radially polarized field can be focused to a spot size
significantly smaller (0.16λ0

2) than for linear polarization
(0.26λ0

2) (Dorn et al., 2003). The effect of the vector proper-
ties of light is shown by a comparison of the focal intensity
distribution for radially and azimuthally polarized input
laser-fields. For strong focusing, a radially polarized field
leads to a longitudinal electric field component at the focus
which is sharp and centered at the optical axis. Since such
laser fields consist of merely a few field oscillations, there-
fore, the actual time variation of the electric field affects all
physical processes driven by the laser. Consequently, the
physical processes such as high-harmonic generation, intense
laser-matter interaction, diffraction effects etc., depend on the
phase of the carrier wave with respect to the envelope, the so
called carrier envelope phase (Porras, 2002, 2009; Nisoli
et al., 2003). Attention is therefore being paid to the charac-
terization of the axial longitudinal electric field of tightly
focused few-cycle pulses in free space.
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Our main concern in this work is to investigate the pulse-
shape effect on the characterization of the axial longitudinal
electric field resulting from the tight focusing of an ultrashort
few-cycle TM01 laser beam in free space. The temporal
pulse-shape effects due to ultrashort pulse duration may
have important implications for several applications such as
acceleration of charge particles (Malav et al., 2011a), high
order harmonic generation (Malav et al., 2011b). The present
numerical study extends the work by Varin et al. (2006) that
includes the effect of temporal profile of the incident laser
pulse on the characterization of the longitudinal electric field.
Following Brabec and Krausz (1997), we express the tem-

poral form of the pulsed beam as enveloped carrier oscil-
lations of the averaged carrier frequency ω0. The temporal
pulse-shapes considered are Gaussian, Lorentzian, and hy-
perbolic secant having identical full-width at half maximum
of intensity. Using a complete vectorial description of an ul-
trafast tightly focused TM01 laser beam in free space having
different temporal pulse-shapes, analytical expressions
beyond the paraxial and slowly varying envelope approxi-
mations are obtained for longitudinal electric field. The re-
sults show that due to the finite duration of the signal, the
evolution of the pulse envelope before the waist is faster
(negative time-delay) but slowed down (positive time-delay)
after the waist, and this time-delay is pulse-shape dependent
for single-cycle pulses having spot-size in the range 0.6λ0 >
w0f > 0.25λ0. The magnitude of the time delay is maximum
for the Gaussian pulse- shape and minimum for the Lorent-
zian pulse-shape. With smaller spot size, the laser beam di-
vergence is faster than predicted by the paraxial theory.
There is also a carrier-frequency- shift that depends on the
pulse-shape, beam spot-size, axial propagating distance,
and also on the number of cycles in a pulse. It is also
found that there is a faster evolution of the axial Gouy
phase shift in the vicinity of the focus that depends on the
pulse-shape. However, the Gouy phase at the Rayleigh
range for single-cycle tightly focused laser beam does not
depend on the pulse shape.
The work is organized as follows: In Section 2, we

present the field equations of tightly focused ultrafast
TM01 beam in free space. In Section 3, we present
expressions that exhibit the pulse-shape dependence of
the axial longitudinal electric field of the tightly focused
TM01 laser beam in free space. In Section 4, we analyze
the results and give discussion. Section 5 presents our
conclusions.

2. FIELD EQUATIONS OF TIGHTLY FOCUSED
ULTRAFAST TM01 BEAM IN FREE SPACE

The electric field vector E of electromagnetic wave in free-
space can be expressed as

E = Re Ẽ exp j ω0t − k0z( ){ }[ ]
, (1)

with Ẽ being the complex envelope of electric field vector, ω0

is of center carrier frequency and k0 is free space wave vector.
In terms of the reduced variables t′ = t − z/c, z′ = z, the
vector Ẽ satisfies the perturbed paraxial wave equation
(Porras, 2001; Varin et al., 2006):

∇2
⊥Ẽ − 2j k0 ∂z′ 1− Θ[ ] Ẽ = 0, (2)

with

Θ = j ω−1
0 ∂t′ − 2k0( )−1∂z′

{ }
. (3)

A solution to perturbed paraxial wave equation can be found
by expanding the envelope of the electric field vector as a
power series. The complex envelope of the longitudinal elec-
tric field Ez can be expressed as:

Ẽz =
∑∞
m=0

∑∞
n=0

jm+n ∂t′

ω0
− ∂z′

k0

( )m

×
∂t′

ω0
− ∂z′

2k0

( )n

× ∂n−1
z′

z′n

n!
∂z′ Ẽ

(0)
z

( )
,

(4)

where Ẽz
(0) is the paraxial and slowly varying envelope of the

longitudinal electric field.
Higher order terms follow from elemental operations on

the zeroth order solution. These are the corrections up to the
order of 1/ω0τ

( )n
1/k0zRf
( )m

for n, m≥ 1, are expected to
decrease with growing n and m for 1/ω0τ< 1, 1/k0zRf < 1.
Here, we consider the case of an ultrafast TM01 beam

(Bz= Br= Eθ= 0) that is tightly focused by an ideal lens
free of all aberrations.
The waist of the entrance beam Ei is at z′ = 0. A lens of

focal length f is placed at z′ = zl. The waist of the output
beam Ef is located at z′ = zf (Fig. 1 of Varin et al., 2006).
The paraxial and slowly varying envelope of the longitudi-

nal electric field after the lens can be expressed as

Ẽ f (0)
z = − 2

��
2

√
jE0f

k0w0f
exp (1/2)

jzRf
q̃f

( )2

1− jk0r2

2̃qf

( )
× exp − jk0r2

2̃qf

( )
Af (t

′),

(5)

where E0f is the amplitude of the transverse field after the

lens, q̃f= Δz′ + jzRf= z′ − zf+ jzRf is the complex parameter

of the Gaussian beam, zRf = k0w 2
0f

2 is the Rayleigh distance,
w0f is the beam-spot-size at the waist and Af (t′) is the tem-
poral profile of the pulse envelope after the lens.
The temporal profiles of the envelopes for a Gaussian,

Lorentzian, and hyperbolic secant pulses are taken to be
(Brabec & Krausz, 2000)

Afg t′
( ) = exp − 1.17t′

τ

( )2
[ ]

, (6.1)
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Afl t
′( ) = 1+ 1.29t′

τ

( )2
[ ]−1

, (6.2)

and

Afh t′
( ) = sech

1.76t′

τ

( )
, (6.3)

respectively, where τ is full width at half maximum of pulse
intensity.

Ẽz has been expressed as an infinite series in terms of suc-
cessive derivatives of zeroth order solution Ẽz

(0). The series
expansions are converging for on axis longitudinal electric
field of few-cycle ultra-short tightly focused TM01 beams
in free space for 1/ω0τ< 1, 1/k0zRf < 1 (Porras, 2002).
The series expansion truncated to second order in temporal
and spatial parts contains terms proportional to

1/ k0zRf
( )2

, 1/ ω0τ( )2 and 1/ω0τk0zRf .
For the single-cycle pulse, the zeroth, first order, second

order, third order terms compare as 1 : 0.159: 0.025: 0.004
and for two-cycle pulse, the zeroth, first order, second
order, third order terms compare as 1 : 0.079: 0.0061:
0.0005. It is seen that the higher-order terms give insignifi-
cant contribution to the field.

3. PULSE-SHAPE DEPENDENCE OF THE AXIAL
LONGITUDINAL ELECTRIC FIELD OF THE
TIGHTLY FOCUSED TM01 LASER BEAM IN
FREE SPACE

Following Varin et al. (2006), one finds that at the center of
the TM01 tightly focused pulsed laser beam, the longitudi-
nal electric field reaches its maximum amplitude. When
the spot size approaches the wave-length, second order in-
tensity corrections to the paraxial approximation become
important.

The second order electric field Ez
f of a few cycle TM01

beam at r= 0 can be expressed as the real part of the complex
envelope times the carrier wave. Thus,

Ef
z = Re Ẽf

z exp(jω0t
′)

[ ]
= Ẽ f 0

z

∣∣∣ ∣∣∣∣∣∣C̃∣∣∣ cos Φ(Δz′, t′)
[ ]

, (7)

where Ẽz
f = Ẽz

f 0C̃ and Ẽz
f0 is axial zeroth order field.

Φ(Δz′, t′) = ω0t
′ + 2 tan−1 Δz′/zRf

( )
+ fc − π/2, (8)

is total phase of the longitudinal electric fields, where fc=

argument C̃ = tan−1 Im(C̃)
Re(C̃)

( )
. In the following we derive

expressions for the second-order on-axis longitudinal electric
field of a few-cycle ultrashort tightly focused TM01 beam in
free space for the different pulse shapes.

Substituting for Gaussian, Lorentzian, and hyperbolic
secant temporal profile pulse-shape i.e Eq. (6) in Eq. (5)

Fig. 1. Shows the temporal distribution of on-axis longitudinal electric field
of a ultrafast, single cycle tightly focused laser beam (beam spot-size w0f=
λ0) having Gaussian pulse-shape at (a) for Δz′ =−zRf, (b) Δz′ = 0, and (c)
Δz′ = zRf. Bold and dashed lines represent the results of paraxial and non-
paraxial approximation, respectively. The absolute value of the fields has
been normalized so that their envelopes are equal to 1 at the centre of the
pulse (t′ = 0) and at the waist (Δz′ = 0).
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and using Eq. (4), the field at the focus of the ideal lens is
given by the following expressions:
(1) Gaussian pulse-shape

Ẽ f
z = Ẽ f 0

z 1+ 3j
k0̃qf

1− Δz′

q̃f

( )
− 2j 1.17( )2t′

ω0τ2

[
× 1− 2Δz′

q̃f

( )
+ 2 1.17( )2

ω2
0τ

2
1− 2 1.17( )2t′2

τ2

( )

× 1− 4
Δz′

q̃f
+ 3

Δz′2

q̃ 2
f

( )
+ 2 1.17( )2t′

k0̃qfω0τ2

× 9− 21
Δz′

q̃f
+ 12

Δz′2

q̃ 2
f

( )
+ 3

2 k0̃qf
( )2

× −11+ 20
Δz′

q̃f
− 10

Δz′2

q̃ 2
f

( )]
, (9)

where Ẽ f 0
z = − 2

��
2

√
jE0f

k0w0f
exp (1/2)

jzRf
q̃f

( )2

Afg(t
′).

Re(C̃) = 1+ 4(1.17)2t′z0
ω0τ2 1+ z20

( )+ 3 1− z20
( )

k0zRf 1+ z20
( )2

+ 2(1.17)2 1− 5z20
( )

ω2
0τ

2 1+ z20
( )2 1− 2(1.17)2(t′)2

τ2

{ }

+ 2(1.17)2t′ 30z0 − 18z30
( )

k0zRfω0τ2 1+ z20
( )3

+ 3 11− 59z20 + 9z40 − z60
( )

2k20z
2
Rf 1+ z20
( )4 , (10)

where z0 = Δz′

zRf
.

Im(C̃) = 6z0

k0zRf 1+ z20
( )2 − 2(1.17)2t′ 1− z20

( )
ω0τ2 1+ z20

( )
+ 2(1.17)2 4z0 − 2z30

( )
ω2
0τ

2 1+ z20
( )2 1− 2(1.17)2(t′)2

τ2

{ }

+ 2(1.17)2t′ −9+ 36z20 − 3z40
( )

k0zRfω0τ2 1+ z20
( )3

+ 3 42z0 − 36z30 + 2z50
( )
2k20z

2
Rf 1+ z20
( )4 (11)

(2) Lorentzian pulse-shape

Ẽ f
z = Ẽ f 0

z 1+ 3j
k0̃qf

1− Δz′

q̃f

( )
− 2j 1.29( )2t′Afl

ω0τ2

[
× 1− 2Δz′

q̃f

( )
+ 2(1.29)2A fl

ω2
0τ

2

× 1− 4(1.29)2t′2Afl

τ2

{ }
1− 4

Δz′

q̃f
+ 3

Δz′2

q̃ 2
f

( )

+ 2 1.29( )2t′Afl

k0̃qfω0τ2
9− 21

Δz′

q̃f
+ 12

Δz′2

q̃ 2
f

( )

+ 3

2 k0̃qf
( )2 −11+ 20

Δz′

q̃f
− 10

Δz′2

q̃ 2
f

( )]
, (12)

where Ẽ f 0
z = −2

��
2

√
jE0f

k0w0f
exp (1/2)

jzRf
q̃f

( )2

A fl(t
′).

Re(C̃) = 1+ 4(1.29)2t A flz0
ω0τ2 1+ z20

( ) + 3(1− z20)

k0zRf (1+ z20)
2

+ 2(1.29)2Afl(1− 5z20)

ω2
0τ

2(1+ z20)
2 1− 4(1.29)2t2Afl

τ2

{ }

+ 2(1.29)2Aflt(30z0 − 18z30)

k0zRfω0τ2(1+ z20)
3

+ 3(11− 59z20 + 9z40 − z60)

2k20Z
2
R(1+ z20)

4 , (13)

where z0 = Δz′

zRf
.

Im(C̃) = 6z0
k0zRf (1+ z20)

2 −
2(1.29)2t A fl(1− z20)

ω0τ2(1+ z20)

+ 2(1.29)2Afl(4z0 − 2z30)

ω2
0τ

2(1+ z20)
2 1− 4(1.29)2t2Afl

τ2

{ }

+ 2(1.29)2Aflt(− 9+ 36z20 − 3z40)

k0zRfω0τ2(1+ z20)
3

+ 3(42z0 − 36z30 + 2z50)

2k20z
2
Rf (1+ z20)

4 (14)

(3) Hyperbolic secant pulse-shape

Ẽ f
z = Ẽ f 0

z 1+ 3j
k0̃qf

1− Δz′

q̃f

( )
− j(1.76) tanh 1.76t′

τ

( )
ω0τ

[

× 1− 2Δz′

q̃f

( )
− (1.76)2(1− 2A2

fh)

ω2
0τ

2

× 1− 4
Δz′

q̃f
+ 3

Δz′2

q̃2f

( )
+ (1.76) tanh 1.76t′

τ

( )
k0̃qfω0τ

× 9− 21
Δz′

q̃f
+ 12

Δz′2

q̃2f

( )
+ 3

2(k0̃qf )2

× −11+ 20
Δz′

q̃f
− 10

Δz′2

q̃2f

( )]
, (15)
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where Ẽ f 0
z = − 2

��
2

√
jE0f

k0w0f
exp (1/2)

jzRf
q̃f

( )2

Afh(t
′).

Re(C̃) = 1+ 2(1.76)z0 tanh 1.76t′
τ

( )
ω0τ(1+ z20)

+ 3(1− z20)

k0zRf (1+ z20)
2

− (1.76)2(1− 2A2
fh)(1− 5z20)

ω2
0τ

2(1+ z20)
2

+ (1.76) tanh 1.76t′
τ

( )
(30z0 − 18z30)

k0zRfω0τ(1+ z20)
3

+ 3(11− 59z20 + 9z40 − z60)

2k20Z
2
R(1+ z20)

4 , (16)

where z0 = Δz′

zRf
.

Im(C̃) = 6z0
k0zRf (1+ z20)

2 −
(1.76)z0 tanh 1.76t′

τ

( )
(1− z20)

ω0τ(1+ z20)

− (1.76)2(1− 2A2
fh)(4z0 − 2z30)

ω2
0τ

2(1+ z20)
2

+ (1.76) tanh 1.76t′
τ

( )
(− 9+ 36z20 − 3z40)

k0zRfω0τ(1+ z20)
3

+ 3(42z0 − 36z30 + 2z50)

2k20z
2
Rf (1+ z20)

4 (17)

For a given axial distance we have a phase correction due to
the corrected field i.e. C̃, which gives a shift in carrier
frequency. The total phase of the field can be expressed as

Φ(Δz′, t′) = ω0t
′ + 2 tan−1 Δz′

zRf

( )
+ fc − π/2

= ω′
0(Δz

′, t′)t′ − π

2
, (18)

where ω′
0 = ω0 + fc(0, t

′)
t′

+ 2(t′)−1 tan−1 Δz′/zRf
( )

.

The carrier frequency shift can be defined as

Δω = ω′
0(Δz

′, t′)− ω0 =
2 tan−1 Δz′

zRf

( )
+ fc

t′
. (19)

Normalized frequency shift at the beam waist can be ex-
pressed as:
For Gaussian pulse shape

ω′
0 − ω0

ω0

( )
Δz′=0

= − 1
ω0t′

tan−1 2(1.17)2 kgt′

ω0τ2

{ }
, (20)

where

kg =
1+ 9

kozRf

1+ 3
kozRf

+ 2(1.17)2

ω2
0τ

2
1− 2(1.17)2(t′)2

τ2

{ }
+ 33

2k20z
2
Rf

.

(20.1)

For Lorentzian pulse shape

ω′
0 − ω0

ω0

( )
Δz′=0

= − 1
ω0t′

tan−1 2(1.29)2 klt′A fl

ω0τ2

{ }
, (21)

Fig. 2. Shows the temporal distribution of on-axis longitudinal electric field
of a ultrafast, single cycle tightly-focused laser beam (beam spot-size w0f=
0.5λ0) having Gaussian pulse at (a) Δz′ =−zRf, (b) Δz′ = 0, and (c) Δz′ =
zRf. Bold and dashed lines represent the results of paraxial and non-paraxial
approximation respectively. For normalization see caption of Figure 1.
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Fig. 3. Shows the temporal distribution of on-axis longitudinal electric field
of a ultrafast, single cycle tightly focused beam (beam spot-size w0f= λ0)
having Lorentzian pulse-shape at (a) Δz′ =−zRf, (b) Δz′ = 0, and (c)
Δz′ = zRf. Bold and dashed lines represent the results of paraxial and non-
paraxial approximation respectively. For normalization see caption of
Figure 1.

Fig. 4. Shows the temporal distribution of on-axis longitudinal electric field
of a ultrafast, single cycle tightly-focused laser beam (beam spot-size w0f=
0.5λ0) having Lorentzian pulse at (a) Δz′ =−zRf, (b) Δz′ = 0, and (c) Δz′ =
zRf. Bold and dashed lines represent the results of paraxial and non-paraxial
approximation respectively. For normalization see caption of Figure 1.
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Fig. 5. Shows the temporal distribution of on-axis longitudinal electric field
of a ultrafast, single cycle tightly-focused beam (beam spot-size w0f= λ0)
having hyperbolic secant pulse-shape at (a) Δz′ =−zRf, (b) Δz′ = 0, and
(c) Δz′ = zRf. Bold and dashed lines represent the results of paraxial and non-
paraxial approximation respectively. For normalization see caption of
Figure 1.

Fig. 6. Shows the temporal distribution of on-axis longitudinal electric field
of a ultrafast, single cycle tightly focused beam (beam spot-size w0f= 0.5λ0)
having hyperbolic secant pulse at (a) Δz′ =−zRf, (b) Δz′ = 0, and (c) Δz′ =
zRf. Bold and dashed lines represent the results of paraxial and non-paraxial
approximation respectively. For normalization see caption of Figure 1.
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where

kl =
1+ 9

kozRf

1+ 3
kozRf

+ 2(1.29)2Afl

ω2
0τ

2
1− 4(1.17)2(t′)2Afl

τ2

{ }
+ 33

2k20z
2
Rf

(21.1)

For hyperbolic secant pulse shape

ω′
0 − ω0

ω0

( )
Δz′=0

= − 1
ω0t′

tan−1

×
(1.76)ks tanh 1.76t′/τ

( )
ω0τ

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭, (22)

where

ks =
1+ 9

kozRf

1+ 3
kozRf

− (1.76)2

ω2
0τ

2
1− 2A2

fh

{ }
+ 33

2k20z
2
Rf

. (22.1)

and the phase shift is given by

ΔΦ(Δz′, t′) = ω0t
′ + 2 tan−1 Δz′

zRf

( )
+ fc. (23)

The corrected axial Gouy phase at the centre of the pulse is

fGC = 2 tan−1 Δz′

zRf

( )
+ fc. (24)

4. RESULTS AND DISCUSSION

In Figures 1 and 2, we demonstrate the temporal distribution
of the axial longitudinal electric field of a Gaussian laser

Fig. 7. Shows the temporal distribution of the on-axis longitudinal electric field for different single-cycle pulse envelopes corresponding
to different values of the beam spot size atΔz′ = zRf. The absolute value of the fields have been normalized so that Gaussian envelopes are
equal to 1 at t′ = 0 and Δz′ = 0.

H. Malav et al.82

https://doi.org/10.1017/S026303461100070X Published online by Cambridge University Press

https://doi.org/10.1017/S026303461100070X


pulse at various positions along the z′ axis for beam spot-size
w0f= λ0 and w0f= 0.5λ0, respectively. The absolute value of
the fields has been normalized so that their envelopes are
equal to 1 at the center of the pulse (t′ = 0) and at the waist
(Δz′ = 0). The dotted curve is obtained in the paraxial
approximation (zeroth –order), while the solid line curve
has been obtained incorporating second order fields. We
note that the distribution of the field differs from what is
expected from the paraxial wave theory. Although pulses
emitted from many lasers can be approximated by a Gaussian
shape, it is also important to consider the effect of other
pulse-shapes viz. Lorentzian and the hyperbolic-secant on
the axial longitudinal electric field. Figures 3 and 4, depict
the temporal distribution of the longitudinal electric field
for a TM01 Lorentzian pulse along the z′ axis at the beam
center for spot size w0f= λ0 and w0f= 0.5λ0, respectively.
Figures 5 and 6, represent the temporal distribution of the
longitudinal electric field of a hyperbolic secant laser pulse
along the z′ axis at the beam centre for spot size w0f= λ0
and w0f= 0.5λ0, respectively. From these results it is seen

that in the non-paraxial approximation the pulse envelope at-
tains its maximum faster as compared to paraxial approxi-
mation for Δz′ < 0 and slower for Δz′ > 0. Figure 7 shows
the temporal distribution of the longitudinal electric field
for different single-cycle pulse shapes at Δz′ = zRf

Fig. 8. (a) Shows the variation of the axial frequency shift of a single-cycle
ultrafast tightly focused TM01 beam (w0f= λ0) at the beam waist as a func-
tion of retarded time. (b) Shows the variation of the axial frequency shift of
an single-cycle ultrafast tightly focused TM01 beam at far from the waist
(Δz′ =∞) as a function of retarded time.

Fig. 9. Shows the variation of the axial frequency shift of a single-cycle ul-
trafast tightly focused TM01 beam as a function of retarded time, correspond-
ing to different values of the beam spot size at the beam waist. (a) Gaussian,
(b) Lorentzian, and (c) Hyperbolic secant pulse-shape.
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corresponding to different values of the beam spot size. It de-
picts that for 0.6λ0> w0λ> 0.25λ0 the time delay is sensitive
to the pulse-shape of the single cycle laser beam. As a com-
parison, the magnitude of the time delay for Gaussian pulse-
shape is maximum and minimum for Lorentzian pulse-shape.
For bigger beam-spot-size e.g., w0λ> 0.6λ0, we note that
these time delays are almost the same for all the temporal

profiles of the pulse. We also observe that for spot size at
the waist comparable to the wavelength, the beam of single-
cycle pulse diverges more rapidly than expected from the
paraxial theory.
In addition, it is also found that the frequency-shift de-

pends on the temporal profile of the pulse, beam spot size,
axial propagating distance, and also on the number of
cycles in a pulse. Figure 8a, shows the variation of the
axial frequency shift of an ultrafast tightly focused TM01

beam at the waist (τ= 2π/ω0 and w0f= λ0) as a function
of time. Figure 8b, represents the frequency-shift at far
from the waist (Δz′ =∞). The frequency-shift at Δz′ =∞
is independent of beam-spot-size; however, it depends on
the pulse-shape. It is observed from Figure 8a, that the fre-
quency is red shifted for Gaussian, Lorentzian, and hyper-
bolic secant pulses. The amount of the red shift increases
with time for Gaussian pulse, while it decreases for Lorent-
zian and hyperbolic secant pulse. The rate of decrease of

Fig. 10. Shows the temporal variation of the axial frequency-shift of an ul-
trafast tightly focused (w0f= λ0) TM01 beam, corresponding to single and
double cycle in a pulse at the beam waist. (a) Gaussian, (b) Lorentzian,
and (c) Hyperbolic secant pulse-shape.

Fig. 12. Shows a comparative study of the variation of the corrected axial
Gouy-phase fGC of the longitudinal electric field of an ultrafast, single-
cycle, tightly focused (w0f= 0.5λ0) TM01 beam with normalized axial
distance Δz′/zRf

( )
at retarded time t′ = τ.

Fig. 11. Shows the pulse-shape dependence of the frequency-shift of the
on-axis longitudinal electric field of a ultrafast, single-cycle tightly focused
beam as a function of axial coordinate for spot size w0f= 0.5λ0, and at re-
tarded time t′ = τ.
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the magnitude of red shift is more in case of the Lorentzian
pulse as compared to hyperbolic secant and Gaussian
pulses. It may be remarked that the variation of the red
shift in case of the Gaussian pulse is found to be different
from the Figure 7a of Varin et al. (2006). This is because
an additional term 2(1.17)2/ω2

0τ
2 1− 2(1.17)2(t′)2/τ2
{ }

ap-
pears in the Eq. (20.1) because of the inclusion of the pulse-
shape effect. In the absence of this term, the results agree
with Varin et al. (2006). The effect of variation of the spot
size on the frequency shift with retarded time is shown in
Figure 9. We note that for the spot-size in the range w0λ≥
0.6λ0, the amount of red frequency shift increases with re-
tarded time for the Gaussian shape, whereas for the range
0.6λ0> w0λ> 0.25λ0, it decreases. The effect of the
number of cycles in a pulse, on the frequency shift is
shown in Figure 10. It is found that in the case of single-cycle
pulse, the shift in frequency is enhanced as compared to the
double-cycle pulse. Figure 11, depicts the variation of the fre-
quency shift as a function of the axial coordinate for all the

three single-cycle pulses for spot size w0f= 0.5λ0 and at re-
tarded time t′ = τ. It is observed from the figure that at
Δz′/zRf ≈ 1.1, the frequency shift is approximately same.
For lower values of the axial coordinates, we get red shift
whereas blue shift at higher values.

Figure 12, shows a comparative study of the variation of
the corrected axial Gouy-phase fGC of the longitudinal elec-
tric field of Gaussian, Lorentzian, and hyperbolic secant
single-cycle pulses with normalized axial distance
Δz′/zRf
( )

. From our results we observe that the Gouy
phase at the Rayleigh range is independent of the pulse-
shape. At a specific axial distance Δz′ ≈−zRf we get an in-
flexion point, and in the range −2zRf ≤ Δz′ ≤ 0 there is a
rapid change in phase which is maximum for the Gaussian
pulse-shape and minimum for the Lorentzian pulse-shape.

Figure 13, represent a comparative study of the variation of
the corrected axial Gouy- phase of the longitudinal electric
field of Gaussian, Lorentzian, and hyperbolic secant single-
cycle pulse (spot size w0f= 0.5λ0) with normalized retarded
time. We see that the phase variation is maximum for
Gaussian and minimum for the Lorentzian pulse shape.

5. CONCLUSION

While estimating the strength of the longitudinal electric field
of tightly focused TM01 laser beam in non-paraxial approxi-
mation, it is important to include the effect of the pulse-shape
in addition to the number of cycles, size of the beam-spot.
The evolution of the pulse envelope before the waist is
faster (negative time-delay) but slowed down (positive
time-delay) after the waist. This time-delay, for single-cycle
pulses and for beam-spot size w0f in the range 0.6λ0>
w0f > 0.25λ0, is pulse-shape dependent for single-cycle
pulses. The carrier frequency shift and the corrected axial
Gouy- phase depend on the temporal profile of the pulse,
beam spot size, axial propagating distance and also on the
number of cycles in a pulse.
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