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The recently developed energy conserving semi-implicit method (ECsim) for particle-
in-cell (PIC) simulation is applied to multiple-scale problems where the electron-scale
physics needs to be only partially retained and the interest is on the macroscopic
or ion-scale processes. Unlike hybrid methods, the ECsim is capable of providing
kinetic electron information, such as wave–electron interaction (Landau damping or
cyclotron resonance) and non-Maxwellian electron velocity distributions. However, like
hybrid methods, the ECsim does not need to resolve all electron scales, allowing time
steps and grid spacings orders of magnitude larger than in explicit PIC schemes. The
additional advantage of the ECsim is that the stability at large scale is obtained while
conserving energy exactly. Three examples are presented: ion acoustic waves, electron
acoustic instability and reconnection processes.
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1. Introduction
Kinetic models are based on the description of the velocity distribution function for

electrons and ions. An often-used approach is to describe this distribution statistically,
employing a sample of particles: this is the particle-in-cell (PIC) method (Hockney &
Eastwood 1988; Birdsall & Langdon 2004). A critical distinction within PIC methods
is between explicit and implicit algorithms. Explicit algorithms alternatively move
particles (in the fields known until that time) and advance the fields (with the sources
provided by the particle velocity and position known until that time). This alternative
advancing decouples the field and particle equations resulting in a very simple and
highly computationally efficient technique. However, the explicit method is limited
in what ranges of time steps and grid spacings it can use: the electron scales need
to be resolved down to the smallest scales (Hockney & Eastwood 1988; Birdsall &
Langdon 2004).

If the electron physics does not necessarily need to be resolved with great accuracy,
the explicit method is not appropriate because the attempt to run the simulation with
lower resolution is met first with an excessive numerical heating due to the failure of
energy conservation, followed by numerical instability if the resolution is too coarse
(Hockney & Eastwood 1988; Birdsall & Langdon 2004).
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This limitation is eliminated by the implicit methods (Chen, Chacón & Barnes
2011; Markidis & Lapenta 2011), where particles and fields are advanced together
in a nonlinear iterative scheme. To remove the complexity of the nonlinear coupling
and to reduce the computational cost per time step, semi-implicit methods have been
invented (Brackbill & Cohen 1985). In this case, the coupling between particles and
fields is approximated linearly and a self-consistent equation is solved for the fields
alone without needing to iterate with the particles. Two previous semi-implicit classes
of algorithms have been published: the direct implicit method (DIM) (Langdon, Cohen
& Friedman 1983) based on expressing the particle response to field changes via a
sensitivity matrix, and the implicit moment method (IMM) (Brackbill & Forslund
1982) based on approximating the plasma response using moments of the distribution
function (typically up to the pressure tensor).

While implicit methods conserve energy exactly, semi-implicit methods tend to
either lose or gain energy depending on the specifics of the configuration of the run
(Cohen et al. 1989). This lack of energy conservation results in a limiting of the
range of resolution accessible. For example, in reconnection simulations (Lapenta
2012) such as the one reported as an example here, the grid resolution needs to
resolve the electron skin depth to represent the physics correctly, but it does not
need to resolve the Debye length. Similarly, the particle trajectories need to be well
resolved, a goal reached by resolving well the electron cyclotron motion, but the
plasma frequency does not need to be resolved accurately. For low density, low
temperature plasmas, there is a vast gap between the Debye- and skin-depth-scale. In
these situations, the semi-implicit methods struggle to conserve energy at a sufficiently
good degree to prevent numerical instability.

A new semi-implicit method has been recently developed to conserve energy exactly,
to machine precision (Lapenta 2016). The first published tests confirm exact energy
conservation and suggest that when the method is applied to multiple-scale problems,
the range of resolution where the method remains stable is wider than in previous
semi-implicit schemes.

This possible beneficial effect is put to the test in the present paper, showing that for
three examples of multiple-scale problems, the new method indeed allows us to cover
a wide range of resolution without losing stability or energy conservation. First, we
consider the ion acoustic wave, where both electron and ion physics play a role in the
evolution and the method shows its ability to run resolving only the ion scales without
artificially heating the electrons. Then, the electron acoustic instability is analysed.
Here, the concurrent presence of three species: ions and cold and hot electrons, whose
dynamics is characterized by different temporal and spatial scales, makes the problem
multi-scale. In this case, we show that ECsim is able to capture the correct physics
even when the smallest scales are not resolved. Finally, the well-known problem of
the so-called geospace environmental modeling (GEM) challenge (Birn et al. 2001) is
used to show that the only scales which need to be properly resolved are the electron
skin depth in space and the cyclotron period in time (instead of the electron Debye
length and the inverse of the electron frequency). Stepping over the smaller electron
scales (Debye and plasma scales) does not lead to loss of energy conservation or
stability even for cold rarefied plasmas where these scales are orders of magnitude
smaller than the resolved scales.

2. Summary of the energy conserving semi-implicit PIC
Recently a new semi-implicit PIC method has been proposed to conserve energy

exactly to machine precision (Lapenta 2016). The fundamental enabling step that led
to the new method is a new mover that allows for the explicit analytical calculation of
the current generated by the particles during one time step without any approximation.
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2.1. Particle mover
The new mover combines the DIM D1 scheme (Hewett & Langdon 1987) with the
IMM and energy conserving particle in cell (ECPIC) θ -scheme (Brackbill & Forslund
1982). The particle position is advanced as in the D1 scheme, but the velocity is
advanced as in the θ scheme:

xn+1/2
p = xn−1/2

p +1tvn
p,

vn+1
p = vn

p +
qp1t
mp

(En+θ(xn+1/2
p )+ vp ×Bn(xn+1/2

p )),

 (2.1)

where vp = (vn+1
p + vn

p)/2, 1t is the time step, qp (mp) is the particle charge (mass)
and xp (vp) is the particle position (velocity) of particle p at the time level indicated
by the superscript, Ep (Bp) is the electric (magnetic) field computed at the position of
particle p and the time level indicated by the superscript.

We evaluate the fields at the time staggered particle position xn+1/2
p known explicitly

from the time staggering of the leap-frog, but we use the implicit electric field at the
θ time level: En+θ as in the standard IMM. The fields are computed at the known
position xn+1/2

p rather than at the unknown position xp that in the standard IMM
requires the predictor–corrector iteration. These two positions are conceptually similar,
expressing the particle position at the mid-time between the old and new evaluations
of the velocity. But one is computed explicitly while the other is computed as part
of a predictor–corrector iteration. Both are second-order accurate, but the scheme
in (2.1) is simpler to compute. The combined scheme is second-order accurate and
has the same stability properties of the IMM. This property allows one to write the
scheme to be exactly energy conserving.

The equation for the velocity can be solved analytically to express explicitly vp (Vu
& Brackbill 1992). Using vector manipulation, the velocity equation can be rewritten
in the equivalent form:

vp = v̂p + βsÊp, (2.2)
where hatted quantities have been rotated by the magnetic field:

v̂p = αn
pv

n
p,

Êp = αn
pEn+θ

p

}
(2.3)

via a rotation matrix αn
p defined as:

αn
p =

1
1+ (βsBn

p)
2
(I − βsI ×Bn

p + β2
s Bn

pBn
p), (2.4)

where I is the dyadic tensor (matrix with diagonal of 1) and βs = qp1t/2mp
(independent of the particle weight and unique to a given species).

The fields at the particle positions are computed by interpolation:

En+θ
p =

∑
g

En+θ
g W(xn+1/2

p − xg), (2.5)

Bn
p =
∑

g

Bn
gW(xn+1/2

p − xg), (2.6)

where we have assumed that the field equations are discretized on a grid with a
generic index g. For brevity we introduced the notation: Bn

p=Bn+θ(xn+1/2
p ) and En+θ

p =
En+θ(xn+1/2

p ). In the examples below, the interpolation functions W are b-splines of
order `= 1 (De Boor 1978).
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2.2. Field solver
For the Maxwell’s equations we use the same discretization as in the standard IMM
(Markidis, Lapenta & Rizwan-uddin 2010). The two curl Maxwell’s equations are
discretized in time with another θ scheme:

∇g ×En+θ + 1
c

Bn+1
g −Bn

g

1t
= 0,

∇g ×Bn+θ − 1
c

En+1
g −En

g

1t
= 4π

c
Jg,

 (2.7)

where Jg is computed at the mid-temporal location. For each species we use

Jsg = 1
Vg

∑
p

qpvpW(xn+1/2
p − xg), (2.8)

where the summation is over the particles of the same species, labelled by s, and W
is the interpolation function. The total current is obtained summing over the species.

The spatial operators in (2.7) are discretized on a grid, indicating ∇g as a shorthand
for the spatial discretization of the operators. In the examples below the same
discretization as iPic3D is used (Sulsky & Brackbill 1991; Markidis et al. 2010;
Lapenta 2012), however, all the derivations below are not critically dependent on
which spatial discretization is used.

2.3. Current evaluation
The set of Maxwell’s and Newton’s equations are coupled. In the spirit of the
semi-implicit method, we do not want to solve two coupled sets with a single
nonlinear iteration and find instead a way to extract analytically from the equations
of motion the information needed for computing the current without first moving the
particles. In previous semi-implicit methods this is done via a linearization procedure.
The new mover used here allows us, instead, to derive the current rigorously without
any approximation.

Substituting then (2.2) into (2.8), we obtain without any approximation or
linearization:

Jsg = Ĵsg + βs

Vg

∑
p

qpα
n
pEn+θ

p Wpg, (2.9)

where we have shortened the notation Wpg = W(xn+1/2
p − xg) and the summation is

intended over all particles of species s.
The following hatted currents were defined:

Ĵsg =
∑

p

qpv̂pWpg, (2.10)

representing the current based on the hatted velocities.
Computing then the electric field on the particles by interpolation from the grid as

in (2.6), (2.9) becomes:

Jsg = Ĵsg + βs

Vg

∑
p

∑
g′

qpα
n
pEn+θ

g′ Wpg′Wpg. (2.11)
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The formula above is conveniently expressed introducing mass matrices (Burgess,
Sulsky & Brackbill 1992) defined by elements as

M ij
s,gg′ =

∑
p

qpα
ij,n
p Wpg′Wpg. (2.12)

There are 3v such matrices, where v is the dimensionality of the magnetic field and
velocity vector, not to be confused with the dimensionality of the geometry used for
space d. The indices i and j in (2.12) vary in the 3v-space. For example, for full
3-component vectors, i, j = 1, 2, 3 and there are 9 mass matrices. Each matrix is
symmetric and very sparse with just 2d diagonals. In matrix notation the 3v mass
matrices defined above are written as Mgg′ , i.e. without the indices i, j for the vector
directions.

Using the mass matrices, the current becomes:

Jsg = Ĵsg + βs

Vg

∑
g′

Ms,gg′En+θ
g′ . (2.13)

Equation (2.13) is the central ingredient of the ECsim method: it expresses
the advanced current at the mid-point of the time step and the electric field at
the advanced time. This linear relationship can be substituted into the discretized
Maxwell’s equations (2.7) to form a linear set of equations to be solved on the grid:

∇g ×En+θ + 1
c

Bn+1 −Bn

1t
= 0,

∇g ×Bn+θ − 1
c

En+1 −En

1t
= 4π

c

(
Ĵg +

∑
g′

Mgg′En+θ
g′

)
,

 (2.14)

where we have introduced the total current Ĵg=∑s Ĵsg and the species summed mass
matrices that written by elements are:

M ij
gg′ =

∑
s

βs

Vg
M ij

s,gg′, (2.15)

which can be more usefully held in memory, reducing the memory consumption by a
factor equal to the number of species.

2.4. Energy conservation
The method described above, in the specific case θ = 1/2, satisfies an exact energy
conservation principle proven in Lapenta (2016):∑

g

(Bn+1
g )2 − (Bn

g)
2

4π
+
∑

g

(En+1
g )2 − (En

g)
2

4π

=1t
∑

g

Jg ·Eg + c1t
4π

∑
g

∇g · (Eg ×Bg). (2.16)

The left-hand side is recognized as the variation of the magnetic and electric energy.
The first term on the right-hand side is the energy exchange term with the particles
and the last term is the divergence of the Poynting flux. This is the usual equation
for electromagnetic energy conservation.

The examples below will further confirm in practice the validity of the result above,
energy is conserved to machine precision.
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3. Massively parallel implementation
The new ECsim has been implemented in a parallel code, which was built over the

very basic structure of the implicit moment PIC code iPic3D (Markidis et al. 2010).
Despite the differences between the algorithm used in iPic3D and the one presented
here, there are many modules of iPic3D that could be retained in the new code, such
as the particle communications between processors or the input/output procedure. As
with its predecessor, the new code has been written in C and C++ and it uses message
passing interface (MPI) for parallel communication between processes.

Similarly to iPic3D, the new code uses a three-dimensional Cartesian grid to
compute the fields where the particles are immersed. When several processors are
used, the physical domain is divided into subdomains. In order to compute the
derivatives, each process not only owns one subdomain, but also the first cells of its
neighbours (ghost cells). Those ghost values are communicated between processes
through MPI routines. Analogously, each process owns the particles, which belong
to its domain. After every cycle, the particles that have left the subdomain are
communicated to the right process via MPI routines. The results of the simulation
are written on disk using the HDF5 format for fields and particles, and in ASCII for
other additional data (as the energy of the system or the input data used). Except for
that, everything is different in the new code: the moment gathering, the field solver
and the particle mover.

In order to solve the field equations (2.14), the implicit current and the mass
matrices need to be computed in advance. The calculation of the implicit current is
different from what was done in iPic3D. Here, for each particle it is necessary to
interpolate the magnetic field from the grid to the particle position, then compute the
α matrix and once the implicit current for that particle has been calculated, interpolate
it to the grid. The mass matrices were not present in iPic3D, and their calculation is
the most time consuming part of the code. For each node there are 27 three-by-three
mass matrices (g′ can take the value of g and all the neighbours nodes). However,
due to their symmetry (Mgp ≡ Mpg), only 14 matrices must be stored in memory for
each node, which means that 126 scalar values have to be computed for each node.

In the ECsim algorithm both the electric and the magnetic fields are solved together
whereas in iPic3D, first the electric field is obtained and then the magnetic field is
computed as the curl of the electric field. Thus the linear system is twice as big as
the one in iPic3D. For this reason we decided to use PETSc (Balay et al. 2016) for the
task. PETSc is a suite of libraries which provide several tools to deal with problems
ruled by differential equations. The main advantages of PETSc are that it is specially
intended for parallel calculations, meaning that it should scale well when using many
cores, and it allows the user to change between several linear and nonlinear solvers
very easily.

Finally, once the fields are known, the positions and the velocities of the particles
can be updated. Unlike what happens in iPic3D, here the mover has an explicit
scheme (no iterations are needed). However, for each particle, the α matrix needs
to be computed. Note that this matrix was calculated in the moment gathering, but
due to the high number of particles usually employed in the simulations, it is not
practical to store these matrices in memory. Instead, the α matrix is computed again
for each particle. This implies the interpolation of both the electric and magnetic
fields from the grid to the particles. Despite this fact, the particle mover in this code
is much simpler than it was in iPic3D and it is less time consuming.

In figure 1 the scheme of the main loop and the percentage of the total time
spent in each task are shown. The data correspond to two different simulations of
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FIGURE 1. Main loop of the ECsim and the percentage of the total time spent in each
task in two cases: with 1024 and 256 particles per cell.

magnetic reconnection. In both cases, the domain was discretised in 256× 128 cells
and the time step considered was 1t = 0.1ω−1

pi . A different number of particles per
cell has been employed in the two simulations: 256 and 1024. Both tests have been
carried out with 16 MPI processes in a single node with an Intel Xeon Sandy Bridge
E5-2680 processor. The most time consuming portion of the code is the moment
gathering; in particular, the calculation of the mass matrices is clearly the dominant
part. As the number of particles decreases, we would expect the field solver time to
become more important, however, even with only 256 particles per cell, the moment
gathering is still the most time consuming part of the code. In all the tests performed,
the time required by the particle mover is always negligible when compared with
the moment gathering. Taking this into account, the optimization of the code should
be focused on the moment gathering stage, and in particular on the mass matrix
calculation. For instance, the vectorization of the mass matrix calculation (the field
interpolation between the grid and the particles and the calculation of the elements
of the mass matrices) will dramatically improve the performance. Future work will
address this aspect.

Regarding the computation time required by the new code, if we analyse the time
per cycle (with the same input values) ECsim is more time consuming than iPic3D
(it takes approximately 3 times longer). However, if we look at the big picture, taking
into account the fact that in the new code the time step can be chosen much larger
than in iPic3D, the new code will need less cycles to cover the same physical time
than iPic3D, and hence the total time of the simulation will be considerably reduced.
Moreover, the grid size (i.e. the number of cells) is no longer a constraint. This means
that if we are not interested in the smallest scales of the problem, we can use larger
cells (i.e. less cells) and then reduce the time needed for each cycle.
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4. Results
4.1. Ion acoustic wave

Ion acoustic waves are longitudinal low frequency modes, where both the ion
and the electron dynamics play a role (Gary 2005). Therefore, they represent an
optimum multi-scale test for the ECsim algorithm. The wave is triggered by a
density perturbation in a plasma composed of hot electrons and relatively colder
ions. Considering Maxwellian electrons and ions with temperature Te and Ti � Te
respectively, the wave dispersion relation is (Gary 2005)

ε(ω, k)= 1+ χe(ω, k)+ χi(ω, k), (4.1)

with the susceptibilities χj(ω, k) given by

χj(ω, k)= ω2
pj

k2v2
th,j

[
1+ ω√

2kvth,j

Z

(
ω√

2kvth,j

)]
, (4.2)

where the subscript j has been used to indicate the jth species, ω� ωpe and k are
the wave frequency and the wavenumber respectively, ωpj=

√
4πe2nj/mj is the plasma

frequency of the jth species having density nj and mass mj, e is the elementary charge,
vth,j =

√
Tj/mj is the thermal speed and Z is the plasma dispersion function (Fried &

Conte 1961).
A series of numerical simulations were performed to check the code stability

and accuracy. Similar parameters to those in Chen et al. (2011) have been used. A
homogeneous plasma composed of electrons and ions with a reduced mass-to-charge
ratio of 200 was introduced. Hot electrons with Te= 20 KeV and ions with Ti= 2 eV
were considered. At t = 0, a small sinusoidal perturbation was superimposed on the
equilibrium density n0:

nj(t= 0)= n0

[
1+ 0.2 cos

(
2π

L
x
)]

, (4.3)

where L= 0.14 c/ωpi is the simulation box length, c is the speed of light in vacuum,
ωpi =

√
4πe2n0/mi is the ion plasma frequency and x is the longitudinal coordinate.

The simulation box was discretised using 32 cells, so that 1x ' 0.3 λD, with
λD =

√
Te/4πe2n0 electron Debye length. All the simulations used 32 000 particles

per species, which were pushed until tend ' 100ω−1
pi .

At first, code results have been compared with theory. In this case, a time
step 1t = 0.0043ω−1

pi was employed. It is important to notice that this time step
corresponds to the maximum value that can be used in an explicit electromagnetic PIC
algorithm for stability reasons (1texplicit <1x/c). Figure 2 shows the Fourier transform
in the frequency domain of the electric field. The field component corresponding to
the excited mode k= 2π/L= 45ωpi/c is displayed. The peaks correspond to a wave
frequency ω = ±0.5ωpi, in perfect agreement with the solution of (4.1). A detailed
study was performed increasing progressively the time step until the semi-implicit
limit 1timplicit <1x/vth,e. Results are summarised in figure 3, where the evolution of
the ion and electron kinetic energy is shown. In all the cases considered here, the
long-term behaviour of the ion acoustic wave is well described. A stronger damping
of the wave is observed when increasing the 1t (Brackbill & Forslund 1982), but
results are overall convergent and the physics of the wave is captured correctly, even
when a big 1t is chosen. In all the simulations, the total energy is conserved down
to round-off precision as demonstrated in § 2.4.

https://doi.org/10.1017/S0022377817000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000137


Multiple-scale kinetic simulations with ECsim 9

FIGURE 2. Frequency domain Fourier transform of the electric field component
corresponding to k = 2π/L = 45ωpi/c. FFT stands for Fourier transform. The peaks are
located at ω=±0.5ωpi, in perfect agreement with the solution of (4.1).

(a) (b)

FIGURE 3. Evolution of the electron (a) and ion (b) kinetic energy for 1t= 0.0043
(black), 0.0089 (green), 0.01 (orange), 0.0133 (blue) and 0.0177 (red) ω−1

pi .

4.2. Electron acoustic instability
In a plasma where ions are at rest and two different populations of electrons with
similar density, but different temperature, are streaming against each other, when the
relative drift is greater than the thermal velocity of the colder species, the electron
acoustic instability may arise. The dispersion relation of the instability is given by
(Gary 2005)

ε(ω, k)= 1+ χc(ω, k)+ χh(ω, k)+ χi(ω, k), (4.4)

where the subscripts c, h and i indicate cold electrons, hot electrons and ions,
respectively. If Maxwellian particles are considered, the ion susceptibility can be
expressed by (4.2), while the electron susceptibilities are

χj(ω, k)= ω2
pj

k2v2
th,j

[
1+ ω+ kv0,j√

2kvth,j

Z

(
ω+ kv0,j√

2kvth,j

)]
, (4.5)

with j= c, h and v0,j the drift velocity.
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(a) (b)

FIGURE 4. (a) Evolution of the electric field component corresponding to k = 153ωpi/c
(black). The over-plotted red line represents the theoretical growth rate as provided by the
solution of (4.4). (b) Evolution of the electric field energy for 1x ' 1 (black), 2 (blue),
3.5 (orange), 7 (red) and 14 (green) λDc.

Since λDc � λDh and Γmax � ωph � ωpc, where Γmax is the maximum growth
rate of the instability, the electron acoustic instability represents a good multi-scale
test for the ECsim algorithm. A simulation box with length L = 0.334 c/ωpi filled
with a homogenous three-species plasma has been considered. Ions with realistic
charge to mass ratio are distributed according to a Maxwellian with zero average
speed and temperature Ti = 0.1 KeV. The cold electrons with density nc = 0.8 ni are
characterised by bulk velocity v0,c = −0.069 c and temperature Tc = Ti. The density
and the speed of the hot electrons are such that nc + nh = ni and ncv0,c + nhv0,h = 0,
while their temperature is Th = 10 KeV. The instability is triggered by an initial
density perturbation ∝ sin[k(Γmax)x], where Γmax = 5.6ωpi is given by the solution of
(4.4) and k(Γmax)= 153ωpi/c is the corresponding wavenumber.

Code results have been compared with the numerical solution of (4.4). In this case
the domain was discretised with 1024 cells, so that 1x = 3.3 × 10−4 c/ωpi ' λDc,
with λDc the smallest spatial scale in the system. The time step was chosen to be
the maximum time step allowed in an explicit code: 1t ' 1x/c = 3.2 × 10−4 ω−1

pi .
Figure 4(a) shows the growth rate Γ of the field component corresponding to k =
153ωpi/c. The simulation growth rate is measured to be Γ = 5.6ωpi, as predicted by
the theory.

A set of simulations have been carried out to check the code convergence and
stability versus coarser spatial discretization. Results are reported in figure 4(b), which
shows the evolution of the electric field energy for 1x= 3.3× 10−4/5.2× 10−3 c/ωpi'
1/15 λDc. In all the cases analysed, the field energy shows the same trend. The correct
growth rate of the instability can be retrieved by all the simulations and the same
saturation level is reached. The particle phase spaces have been also compared,
to determine whether kinetic effects were properly retained. Figure 5 shows the
longitudinal phase space for cold and hot electrons at the saturation of the instability
(t= 0.7ω−1

pi ), obtained with the finest and the coarsest resolutions. Plots do not show
appreciable differences: particle trapping is well described even when 1x � λDc,
confirming that the results are accurate and the algorithm can reproduce well the
physics with a coarse discretization.
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(b)

(c) (d)

(a)

FIGURE 5. Cold (a,c) and hot (b,d) electron phase space at the saturation of the instability
(t=0.7ω−1

pi ). Results (a) and (b) have been obtained with 1x'λDc, while (c) and (d) with
1x' 7 λDc.

4.3. Reconnection example
Magnetic reconnection (Biskamp 2000) is an important example of electromagnetic
processes with multiple scales. During reconnection, electrons and ions become
separated from the field lines, braking the frozen-in condition. Magnetic energy is
released to particle energy (macroscopic flows and heating). The critical aspect of
interest here is that the reconnection process presents two scales: the ions become
decoupled from the frozen-in flow on a scale comparable with the ion inertial length,
di = c/ωpi, the electrons instead decouple on a much smaller scale, the electron skin
depth, de= c/ωpe (Birn & Priest 2007). The Debye length does not play a significant
role in this specific process, although it does play a role in other aspects, especially
along the separatrices (Lapenta et al. 2010, 2011; Divin et al. 2012; Lapenta et al.
2014). For very cold plasmas the ratio of de/λDe can be very large. Explicit, but even
previous semi-implicit methods, are limited in how far they can exceed the condition
1x/λDe <π. We show here one example, based on the classic GEM challenge (Birn
et al. 2001).

The system is periodic in all directions and the initial state corresponds to a double
Harris equilibrium. In particular the initial magnetic field in the x-direction is given
by (Drake et al. 2005):

Bx(y)= B0

(
−1+ tanh

(
y− yB

δ

)
+ tanh

(
yT − y
δ

))
, (4.6)
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where Lx and Ly are the dimensions of the box, yB = 0.25 Ly and yT = 0.75 Ly the
position of the two current sheets. The magnetic field B0 is computed from the
pressure balance condition n0(Te + Ti) = B2

0/8π, Te and Ti being the temperature of
the electrons and ions. The magnetic field in z and y directions is zero as are all
the components of the electric field. All the particles of the same species are at the
same thermal temperature with a Maxwellian distribution and the drift velocity is set
to ensure force balance.

To trigger the non-stationary reconnection we add a perturbation to the initial
magnetic field. The perturbation chosen in this case is the same as in Lapenta et al.
(2010) and its vector potential is given by

δA(x, y) = A0 cos(2π(x− xT)/δ) cos(π(y− yT)/δ)e−((x−xT )
2+(y−yT )

2)/δ

+A0 cos(2π(x− xB)/δ) cos(π(y− yB)/δ)e−((x−xB)
2+(y−yB)

2)/δ, (4.7)

where xB= 0.25 Lx and xT = 0.75 Lx. The initial charge density of the system is given
by (4.8)

ρ(y)= n0(sech2(y− yT)+ sech2(y− yB))+ n∞, (4.8)

where n0 is the density of particles with drift velocity and n∞ is the density of the
background particles (particles without drift velocity). This perturbation is similar to
that in the standard GEM challenge (Birn et al. 2001), but more localized in space as
in Lapenta et al. (2010). The perturbation is strong, bringing reconnection immediately
to a nonlinear state, avoiding the need for a long linear phase of slow growth. This
is the central feature of the GEM challenge that makes it a widely used benchmark
for new codes.

We have carried out two sets of simulations, in both we use mi/me= 25, Ti/Te= 5,
n0/n∞ = 1, δ = 0.5, Lx = 25 c/ωpi and Ly = 12.5 c/ωpi. The number of cells in each
direction are 256× 128× 1. In the case of high temperature the thermal velocity of
the electrons is vth,e = 0.1 c which leads to B0 = 0.0693 micωpi/e and in the case of
low temperature vth,e = 0.001 c with B0 = 000693 micωpi/e.

For the high temperature case we use two values of the time step 1t = 0.1ω−1
pi

and 1t = 0.4ω−1
pi . In the simulations performed with iPic3D the damping parameter

used is θ = 1, otherwise the energy dramatically increases and the code crashes. With
ECsim we use θ = 0.5 (in which case the energy is exactly conserved) and θ = 1,
which damps out the high frequencies and hence prevents energy conservation. It is
important to note that conversely to what happens in iPic3D, when the energy is not
conserved in ECsim, it is because some frequencies are damped, which means that
the energy associated with them is lost. Therefore, the energy will always decrease
and the system is stable.

In figure 6 we see the magnetic field out of plane (z-component) from three different
simulations, iPic3D (θ = 1), ECsim with θ = 1 and ECsim with θ = 0.5. All the results
are in good agreement and the only difference is that in the case with θ = 0.5 there
is more noise, which is due to the high frequencies damped in the other cases.

In figure 7 the variation of the total energy is shown and, as we expected, the total
energy is conserved up to the tolerance of the field solver (in all cases 10−12) in the
results from ECsim with θ = 0.5. The evolution of the magnetic energy (figure 8),
which gives us an idea of the reconnection rate, is very similar in all cases.

The situation in the low temperature case is completely different. If in the high
temperature case we needed to simulate up to t ≈ 600ω−1

pi , here we will need t ≈
60 000ω−1

pi . If we use the same time step the simulation would be 100 times more
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FIGURE 6. High temperature. Cases with 1t = 0.4ω−1
pi , out of plane magnetic field (Bz)

at t= 240ω−1
pi . In the top panel, the result from iPic3D with θ = 1.0; in the bottom panel,

from ECsim with θ = 1.0 (left) and θ = 0.5 (right)

FIGURE 7. High temperature. Absolute value of the variation of the total energy (in
logarithmic scale) for different values of the time step.

expensive, and even in that case, iPic3D is not capable of dealing with this situation:
after a given number of cycles the energy dramatically increases (see figure 9) and
the simulation has no physical meaning. On the other hand, in ECsim the energy
is exactly conserved and hence we are able to use a larger time step without any
problems. But even with θ = 1 (which no longer guarantees energy conservation), the
energy remains stable, it changes, but the variation is small enough to not distort the
results. This can be seen in figure 10 where the variation of the magnetic energy from
ECsim with θ = 1 and θ = 0.5 is shown.

The new method can capture the kinetic level of description for both species. While
some aspects of reconnection can be captured accurately by fluid models (see Birn &
Priest (2007) for a review), to obtain the phase space distribution of electron and ions,
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FIGURE 8. High temperature. Variation of the magnetic energy for different values of the
time step.

FIGURE 9. Low temperature. Variation of the total energy in linear scale and its absolute
value in logarithmic scale (inner figure).

FIGURE 10. Low temperature. Variation of the magnetic energy.
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FIGURE 11. Electron and ion longitudinal phase space (vx versus x). Only particles
located in the band 3.0di< y< 3.1di are considered. Colours are proportional to the charge
density. The scale of the ion charge density is shown on the right top side and the one
of the electrons on the right bottom part.

FIGURE 12. Electron and ion transversal phase space (vz versus x). Only particles located
in the band 3.0di< y< 3.1di are considered. Colours are proportional to the charge density.
The scale of the ion charge density is shown on the right top side and the one of the
electrons on the right bottom part.

a full kinetic description is needed. As reconnection develops, the average electron
flows determine the electric and magnetic field structure. The most typical feature
is the formation of the Hall magnetic field, seen in figure 6. These effects can be
captured also by fluid models, but the results reported in figures 11 and 12 are typical
of kinetic approaches.

In figure 11, the electron and ion phase space is reported in the cross-section
(x, vx). The four panels compare ions and electrons and the cold and hot cases (note
the different velocity axis). Ions are accelerated at the reconnection site (located
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near x/di = 6). We are showing here the distribution function for particles located
in the range y/di = [3, 3.1] and are integrated in the two velocities not reported.
Figure 12 reports the distribution function for the same y range but in the plane
(x, vz) (integrated in the other two velocities).

For the distribution in vx, at each x the distribution is fairly Maxwellian, as can be
observed by its symmetry with respect with the peak. This effect is due to the nature
of the particle acceleration along x that is caused by the Lorentz force associated with
the vertical magnetic field (Goldman et al. 2011). Instead, the distribution changes
strongly in space, being much narrower at the reconnection site and broadening away
from it.

The distribution in vz, is highly non-Maxwellian. The acceleration along the
z-direction is caused by the reconnection electric field active effectively in the
electron diffusion region where the electrons become demagnetized and instead of
E × B drifting are accelerated (Moses, Finn & Ling 1993; Divin et al. 2010). A
consequence if this mechanism is the strong distortion of the particle distribution in
the vicinity of the x-point. Moving away from the x-point the distribution remains
strongly non-Maxwellian, especially for the ions, with a distinct asymmetry between
positive and negative vz, the negative side having a much wider width.

In summary, we have shown that, in the situations where iPic3D can be used, the
new code gives the same result, and in those set-ups in which iPic3D is limited, the
new code is able to give good results, and even more, to speed up the simulation
time by using a larger time step. The new method is capable not only of capturing
the nonlinear macroscopic effects of reconnection, such as the production of the Hall
magnetic field, but also the detailed microphysics of particle acceleration at the kinetic
level.

5. Conclusions

We presented the ECsim algorithm and tested its ability to handle multiple scales.
The ECsim is based on two innovations. First, a new mover is presented, a hybrid
of the θ -scheme and the leap-frog algorithm. The new mover is still implicit and
unconditionally stable but it allows us to more readily compute the interpolation
between particles and cells. Second, we use a new method to compute the current
needed for Maxwell equations. The new method introduces a number of mass
matrices that produce an exact representation of the current. The relationship between
the electric field and the current mediated by the mass matrix is an exact consequence
of the mover without any linearization and it is naturally linear. These two innovations
lead to one critical consequence: the new ECsim is exactly energy conserving. This
point is important in two aspects. First, energy conservation is a desirable property
because energy is of course conserved in reality and missing this aspect, as most PIC
method do, is unsatisfactory. Second, the existence of energy conservation is in itself
a proof on nonlinear stability in the L2-norm. The fact that an energy integral exist
to limit the energy error eliminates the tendency of PIC methods to numerically heat.

Compared with explicit PIC (Birdsall & Langdon 2004), the new method eliminates
all instabilities and in particular the finite grid instability. This numerical instability
leads to numerical exponential growth of the total energy and destroys the simulations
when the grid spacing far exceeds the Debye length. In the simplest explicit PIC
method, this condition requires 1x/λDe<π, a condition that can be somewhat relaxed
using higher-order interpolation. The ECsim eliminates this completely, allowing the
grid spacing to be several orders of magnitude larger than the Debye length, we
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reported recently a case where the grid spacing was 16 orders of magnitude larger
(Lapenta 2016).

Compared with fully implicit methods (Chen et al. 2011; Lapenta & Markidis 2011;
Markidis & Lapenta 2011) that also conserve energy exactly and are stable for any
grid spacing, the ECsim differs in its linear formulation of the field equations that
removes the need for the Newton nonlinear iteration.

Compared with previous semi-implicit methods, such as the moment implicit
(Brackbill & Forslund 1982; Lapenta, Brackbill & Ricci 2006; Markidis et al. 2010)
and the direct implicit (Langdon et al. 1983) methods, ECsim does not require any
linearization step. The linearization used in the previous semi-implicit methods breaks
energy conservation and L2 stability, reintroducing the finite grid instability and a
limitation to the size of the cells allowed. Practice and experience ensures that in the
implicit moment method, the condition 1x< vth,e1t ensures no finite grid instability.
This condition allows for much larger cells than in the explicit PIC, but still prevents
the method from exceeding the Debye scales by too large a factor. This factor,
unfortunately, is empirical and problem dependent. Practice shows that a plasma with
low temperature electrons where the skin depth is much larger than the Debye length,
de� λDe, is very hard to model without resolving very small scales. ECsim, instead,
allows the user to completely ignore this limitation and set the grid spacing entirely
on accuracy considerations without worrying about stability.

The results section highlights the advantages in three practical cases. First, the ion
acoustic wave shows the ability of ECsim to resolve accurately the ion scales without
needing to resolve the electron scales unnecessarily. Second, the electron acoustic
instability is used to show how ECsim can resolve one subpopulation of electrons
without needing to resolve the smallest scales of the cold electrons. Finally, for a
classic reconnection problem, the GEM challenge, ECsim shows the ability described
above to resolve the electron scale at the skin depth level without suffering any finite
grid instability even for very cold plasmas where de� λDe.
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