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Abstract We give a formula relating the order of the Brauer group of a surface fibered over a curve over

a finite field to the order of the Tate–Shafarevich group of the Jacobian of the generic fiber. The formula
implies that the Brauer group of a smooth and proper surface over a finite field is a square if it is finite.
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1. Introduction

Let K be a global field, and let V be the smooth and proper model if K has characteristic

p, or the spectrum of the ring of integers of K in the number field case. Let X be a regular

surface and X → V a projective flat map with geometrically connected fibers such that

X K = X ×V K is smooth over K . For a point v ∈ V , let Kv be the completion of K and

X Kv = X ×V Kv.
It is a classical result of Artin and Grothendieck [5] that the Brauer group of X is finite

if and only if the Tate–Shafarevich group of the Jacobian A = Pic0
X K

of X K is finite.

Grothendieck [5, (4.7)], Milne [10], and Gonzalez-Aviles [2] gave formulas relating the

order of the Brauer group of X to the order of the Tate–Shafarevich group X(A) under

some conditions on the periods of X Kv . We give a general formula without any conditions.

Let δ and δv be the indices of X K and X Kv , respectively, and α and αv be the orders of
the cokernel of the inclusion Pic0(X K )→ H0(K ,Pic0

X K
) and Pic0(X Kv )→ H0(Kv,Pic0

X K
),

respectively. By Lichtenbaum [6, Theorem 3 (proof)], αv is equal to the period δ′v of X Kv .

Theorem 1.1. If K has no real embeddings and if the Brauer group Br(X) is finite, then

|Br(X)|α2δ2
= |X(A)|

∏
v∈V

αvδv. (1)

This generalizes the results of Grothendieck, Milne and Gonzalez-Aviles, and corrects

the formula of Liu, Lorenzini and Raynaud [8] by the factor α2. The problem is that [8]

uses the incorrect [4, Lemma 4.2], which implies that α = 1, see their corrigendum [9]. If

K is a number field with real embeddings, then the same formula holds up to a power
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of 2 (due to the usual problem with duality for Galois cohomology of a number ring with

real places). By [7, Remark 4.5], the right-hand side in Theorem 1.1 is a square, hence

the argument of [8] gives the following.

Corollary 1.2. Let X be a smooth and proper surface over a finite field. If the Brauer

group is finite, then its order is a square.

A key ingredient in the proof is the following local-to-global result for the Brauer group:

Theorem 1.3. If Br(X) is finite and K has no real embeddings, then

0→ Br(X)→ Br(X K )→
⊕
v∈V

Br(X Kv )→ Hom(Pic(X K ),Q/Z)→ 0

is exact.

2. Brauer groups and Tate–Shafarevich groups

We continue to use the notation of the introduction. For a closed point v of V , we let Ov

be the completion of V at v, kv the residue field at v, and Yv = X ×V kv. Let G and Gv

be the Galois groups of K and Kv, respectively.

Denoting the Pontrjagin dual of the abelian group A by A∗ = Hom(A,Q/Z), we have

Lichtenbaum’s duality for the curve X Kv [6]

Pic(X Kv )
∗ ∼= Br(X Kv ). (2)

This duality has been generalized by Saito to include the finite characteristic case in

[12, Theorem 9.2]. Both Lichtenbaum’s and Saito’s pairing are defined by pulling back

elements of Br(X Kv ) along divisors, and checking that the result vanishes on principal

divisors. Composing with the dual of the natural map Pic(X K )→
∏
v∈V Pic(X Kv ), we

obtain a map of discrete torsion groups⊕
v∈V

Br(X Kv )
l
→ Pic(X K )

∗.

Proof of Theorem 1.3. Exactness at the left two terms can be found in [10, Lemma 2.6].

Exactness on the right follows from (2) and injectivity of Pic(X K )→ Pic(X Kv ) for every v.

Indeed, if X K has a point over a finite Galois extension L and w is a place of L above w,

then Pic(X K )→ Pic(X L)→ Pic(X Lw ) is injective, the former by the Hochschild–Serre

spectral sequence and the latter because the Picard functor is representable in the

presence of a rational point. It remains to show the exactness at the sum. Consider

the diagram

Br(X K ) −−−−→
⊕

v∈V Br(X Kv ) −−−−→ Pic(X K )
∗

in j
−−−−→ Pic(X)∗∥∥∥ in j

y ∥∥∥
Br(X K ) −−−−→

⊕
v∈V H3

Yv (X,Gm) −−−−→ H3
et(X,Gm)

ξ
−−−−→ Pic(X)∗.
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The left three terms of the second row arise from the localization sequence for etale

cohomology for X , and the second vertical injection is the sum of the localization

sequences for the XOv
, using the vanishing of Br(XOv

) ([5, Theorem 3.1], see the proof of

[10, Lemma 2.6]), and the fact that H3
Yv (X,Gm) ∼= H3

Yv (XOv
,Gm). A diagram chase shows

that the exactness at the sum follows if we can define an injective map ξ such that the

right rectangle commutes.

We define the map ξ by using a divisor D on X to pull back cohomology classes

in H3
et(X,Gm) to the normalization H3

et(D̃,Gm), which is isomorphic to (Q/Z)c, c the

number of irreducible components of D [11, II Remark 2.2 (b)], and then summing up.

Then the right rectangle commutes because both compositions are defined by pulling back

cohomology classes along divisors. Saito defines a map φ1
: H3

et(X,Gm)→ Pic(X)∗ and

shows in [13, Theorem 5.5(2)] that it is a surjection whose kernel vanishes if Br(X) is finite.

It suffices to show that φ1
= ξ . In the proof of loc. cit., one chooses a divisor Y whose

components generate Pic(X), pulls back cohomology classes H3
et(X,Gm) to H3

et(Y, i∗Gm),

and uses the duality between H3
et(Y, i∗Gm) ∼= (Q/Z)c and H1

Y (X,Gm) ∼= Zc, where c is

the number of components of Y [13, Proposition 4.6]. Now it suffices to observe that

under the given hypothesis, the map H3
et(X,Gm) to H3

et(Y, i∗Gm) is injective, the map

Zc ∼= H1
Y (X,Gm)→ Pic(X) sends a generator corresponding to a component of Y to its

divisor class, and

H3
et(Y, i∗Gm) ∼= H3

et(Y,Gm) ∼= H3
et(Ỹ ,Gm) ∼= (Q/Z)c,

which follows from the proof of [13, (4–11)].

Remark 2.1. (1) In the function field case one can show that the sequence is exact

except at the sum, where its cohomology is (T Br(X))∗ up to p-groups.

(2) The hypothesis on 2-torsion in case of real embeddings is used to apply Saito’s

result, see [13, §5].

The following generalization of the Cassels–Tate exact sequence by Gonzalez-Aviles

and Tan [3] can be thought of as the analog of Theorem 1.3 for the Tate–Shafarevich

group. The results on flat cohomology that are used have been corrected in [1].

Theorem 2.2. Let A be an abelian variety over K with dual At , and assume that the

Tate–Shafarevich group X(At ) is finite. Then the sequence

0→X(A)→ H1(K , A)
β1

→

⊕
v

H1(Kv, A)
γ 1

→ H0(K , At )∗→ 0

is exact.

Here the map γ 1 is the dual of the injection

β0
: H0(K , At )∧→

∏
v

H0(Kv, At )∧ ∼=

(⊕
v

H1(Kv, A)
)∗
,

where G∧ = limm G/m denotes the completion of an abelian group G.
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3. Comparison

We complete the proof of Theorem 1.1 by comparing the sequences of Theorem 1.3 and

of Theorem 2.2 applied to Pic0
X via their maps to

H1(K ,PicX K )→
⊕
v

H1(Kv,PicX K ).

The long exact sequence of Galois cohomology groups associated to the degree map

over the separable closure K s of K

0→ Pic(X K s)0 → Pic(X K s)
deg
−→ Z→ 0

induces the middle two exact rows of the following diagram:

X(Pic0
X K
) −−−−→ 8y y

0 −−−−→ Z/δ′ −−−−→ H1(K ,Pic0
X K
) −−−−→ H1(K ,PicX K ) −−−−→ 0y β1

y τ

y
0 −−−−→ ⊕Z/δ′v −−−−→

⊕
v H1(Kv,Pic0

X K
) −−−−→

⊕
v H1(Kv,PicX K ) −−−−→ 0

γ 1
y ρ

y
H0(K ,Pic0

X K
)∗

ω
−−−−→ 9

(3)

The upper and lower rows are the kernels and cokernels of the vertical maps. Finiteness

of X(Pic0
X K
) and of ⊕Z/δ′v implies finiteness of 8. Counting orders we obtain the formula

|8| =
|X(Pic0

X K
)| ·
∏
v δ
′
v

|kerω| · δ′
.

Now we use the (functorial) Hochschild–Serre spectral sequence

0→ Pic(X K )→ H0(K ,PicX K )→ Br(K )→ Br(X K )→ H1(K ,PicX K )→ 0 (4)

for X and X Kv to obtain the middle two exact rows of the following diagram:

0 −−−−→ Br(X) −−−−→ 8y y y
0→ P −−−−→ Br(K ) −−−−→ Br(X K ) −−−−→ H1(K ,PicX K ) → 0y y y τ

y
0→

⊕
Z/δv −−−−→

⊕
Br(Kv) −−−−→

⊕
Br(X Kv ) −−−−→

⊕
H1(Kv,PicX K )→ 0∑y y ρ

y
Q/Z

deg∗
−−−−→ Pic(X K )

∗ σ
−−−−→ 9 → 0

(5)
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The upper and lower rows are the kernels and cokernels of the vertical maps. The

kernel of Br(Kv)→ Br(X Kv ) is isomorphic to Z/δv by the Lichtenbaum–Roquette theorem

[6, Theorem 3]. Lichtenbaum’s result is stated in characteristic 0, but the proof works

in characteristic p as soon as duality for Galois cohomology of abelian varieties holds

[12, Theorems 9.2, 9.3]. The lower middle square is commutative by the definition of the

pairing (2), see [6, p. 125], and functoriality of the degree map:

Br(Kv) Q/Z Q/Zy deg∗
y deg∗

y
Br(X Kv ) −−−−→ Pic(X Kv )

∗
−−−−→ Pic(X K )

∗.

We have |ker deg∗| = δ, and Pic0(X K )
∗ ∼= coker deg∗

σ
∼= 9. Counting orders, we obtain the

formula

|8| =
|Br(X)| · |P| · δ∏

v δv
.

To relate ω to the canonical injection f : Pic0(X K )→ H0(K ,Pic0
X K
), we consider the

following diagram, in which the horizontal maps are surjective and all maps except the

named ones are the canonical maps:

Br(X Kv ) −−−−→ H1(Kv,PicX K ) ←−−−− H1(Kv,Pic0
X K
)∥∥∥ ∥∥∥ ∥∥∥

Pic(X Kv )
∗
−−−−→ Pic0(X Kv )

∗
←−−−− H0(Kv,Pic0

X K
)∗y y γ 1

y
Pic(X K )

∗
−−−−→ Pic0(X K )

∗
f ∗

←−−−− H0(K ,Pic0
X K
)∗∥∥∥ ∼=

y ∥∥∥
Pic(X K )

∗ σ
−−−−→ 9

ω
←−−−− H0(K ,Pic0

X K
)∗

If we replace the middle composition by ρ, then the diagram defines the maps σ of (5) in

the left half and ω of (3) in the right half. The upper two squares are commutative

by compatibility of Lichtenbaum’s perfect pairings [6, §4], and the middle squares

are obviously commutative. Then the left half of the diagram shows that the middle

composition as indicated agrees with the map ρ, and the right half of the diagram shows

that ω = f ∗ so that |kerω| = |ker f ∗|.
Finally, the diagram

0 −−−−→ Pic0(X K ) −−−−→ Pic(X K ) −−−−→ δZ −−−−→ 0

f
y y y

0 −−−−→ H0(K ,Pic0
X K
) −−−−→ H0(K ,PicX K ) −−−−→ δ′Z −−−−→ 0

(6)

shows that |ker f ∗| · δ = |P| · δ′. Since α = |ker f ∗|, we obtain Theorem 1.1 by equating

the two formulas for |8|.
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Remark 3.1. The following example that for a curve C over a global field K , the l-rank of

coker Pic0(C)→ H0(K ,Pic0
C ) can be arbitrary large for any l was communicated to us by

Starr. By the sequence (4) and the diagram (6), it suffices to find C such that the l-rank of

the kernel of Br(K )→ Br(C) is arbitrary large. Let a0, . . . , ar be Z/ l-linearly independent

classes in Br(K )[l], and let P0, . . . , Pr be the associated Severi–Brauer K -schemes. Now let

C be a general complete intersection curve in the product variety P = P0×K · · · ×K Pr .

Then the kernel of the pullback map Br(K )→ Br(P) contains the classes a0, . . . , ar , hence

so does the kernel of Br(K )→ Br(C).

Acknowledgements. We thank T. Szamuely and C. Gonzalez-Aviles for comments on

an earlier version of this paper, and the referee for his careful reading.
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