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This paper is concerned with the travelling waves for a class of non-local dispersal
non-cooperative system, which can model the prey-predator and disease-transmission
mechanism. By the Schauder’s fixed-point theorem, we first establish the existence
of travelling waves connecting the semi-trivial equilibrium to non-trivial leftover
concentrations, whose bounds are deduced from a precise analysis. Further, we
characterize the minimal wave speed of travelling waves and obtain the
non-existence of travelling waves with slow speed. Finally, we apply the general
results to an epidemic model with bilinear incidence for its propagation dynamics.
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1. Introduction

As we know, random dispersal operators are often used to describe the diffusion
process of organisms in population dynamics, which can only influence a species’
immediate neighbourhood in ecological and epidemiological models, see Cantrell
and Cosner [7] and Murray [32]. However, in many biological systems, the organisms
can travel for a long distance and the transition probability from one location to
another usually depends on the distance the organisms travelled. Consequently, non-
local dispersal problems in which the diffusion process is described by an integral
operator attract much attention in recent years, and have been used to model
different dispersal phenomena in population ecology, material science, neurology
and so on, one can see Andreu-Vaillo et al. [1], Bates et al. [3], Fife [17], Hutson
et al. [23], Kao et al. [24], Li et al. [27,31] for further understanding.

Travelling wave, as a special solution maintaining its shape and moving at a con-
stant speed, is a very important dynamical issue in the field of reaction-diffusion
equations. Nowadays there are many results regarding the non-local dispersal
problems, mainly focussing on the monotone scalar equations (see, e.g., Chen [8],
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Coville et al. [13], Shen and Zhang [34], Sun et al. [36,37], Zhang et al. [43] and
Zhang et al. [44,46]) and competition/cooperative systems (see, e.g., Bao et al. [2],
Li et al. [30], Li et al. [29], Pan et al. [33], and Wang and Lv [39]). In addition, we
refer the readers to Li and Yang [26], Li et al. [28], and Yang et al. [41,42] con-
cerning the wave phenomena for some special SIR epidemic models with non-local
dispersal. To our knowledge, the understanding of non-local dispersal models for
prey-predator type is still very limited (see, e.g., Sherratt [35]). This motivates us
to consider the following general non-cooperative system with non-local dispersal

we = dy(Jy = w) + g(u) — f(u, )0, -
vy = da(Jo % v —v) + af(u,v)v — dv — Y2, '

where u = u(¢t,z) and v = v(¢, z) denote the densities of two populations at time ¢
and location x, respectively; g(u) is the growth rate of the prey; f(u,v)v describes
predation; the constant coefficients dy, d2, @ and § are all positive and + is non-
negative; Ji * u and J * v are standard spatial convolutions with the kernels J;(x)
having the properties that

(J) Ji € C'(R), Ji(z) = Ji(—x) > 0, [ Ji(z)dz =1 and J; satisfy the decay
bounds:

/ Ji(z)eMdr < oo for any A >0 and / |J(z)|de < oo, i=1,2.
R R

Note that (1.1) is the non-local counterpart of the following diffusion-reaction
system:

(1.2)

Up = diUgy + g(u) - f('l.L,’U)'U,
Vg = dovVgy + af(u, ’U)’U —ov— 77}2’

which has been studied by Zhang et al. [45]. As mentioned in [45], following the dif-
ferent forms of g(u), system (1.2) can describe the diffusive interaction of prey and
predators (see Fu and Tsai [18]), the evolution of disease transmissions (see Brit-
ton [6]) or autocatalytic chemical reactions (Chen and Qi [10]) and so on. In view
of Schauder’s fixed-point theorem and the persistence theory proposed by Thieme
[38], the authors obtained the existence of weak travelling wave solutions of (1.2).
Also, the non-existence of travelling wave solutions was showed by the negative
one-sided Laplace transform. These results can be applied to prey-predator sys-
tems and disease-transmission models with specific interaction functions, including
Beddington-DeAngelis functional response (see, e.g., Ding and Huang [14], Huang
[20, 21], Huang et al. [22] and Li and Wu [25]).

The current paper is devoted to the existence and non-existence of travelling
waves of system (1.1), which can also describe the propagation of predator’s inva-
sion or the spread of epidemic diseases. Usually, the monotonicity theories and
shooting method are very useful to show the existence of travelling waves for sys-
tems. However, since the dynamical system generated by (1.1) is non-monotone, it
follows that the powerful theory of monotone dynamical systems is not suitable to
construct the travelling waves. At the same time, the shooting method is also not
suitable for system (1.1) due to the effect of the convolution operator. In our recent
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works [26,41,42] dealing with some specific SIR models with non-local dispersal,
we applied the method of constructing an invariant cone of initial functions defined
in a large but bounded domain, then using a fixed point theorem on this cone, and
further extending to the unbounded spatial domain R through a limiting argument,
to show the existence of travelling waves. This method was firstly introduced by
Berestycki et al. [4], and has been widely used to study the travelling wave solutions,
see, e.g., Berestycki et al. [5], Ducrot and Magal [15] and Ducrot et al. [16].

In this paper, we will improve a little the previous method to establish the exis-
tence of travelling waves for the general system (1.1), which is different from those
in Zhang et al. [45]. Since (1.1) is a non-monotonic and non-local system, it follows
that the asymptotic behaviour of travelling waves is very difficult and challenging
to estimate, especially the convergence to the positive constant equilibrium. From
a biological point of view, the invasion of predators is successful if the travelling
waves are persistent at the end. Thus, it is enough to study the so-called weak trav-
elling wave solutions if we only want to know whether the invasion is successful and
what the invasion speed is. Compared with the method used in Zhang et al. [45],
the persistence theory suggested by Thieme [38] cannot be applied to discuss the
persistence of travelling wave solutions for our non-local dispersal system (1.1) due
to the deficiency of compactness. Certain ad hoc techniques that fit this non-local
problem itself are necessarily needed. Inspired by Chen et al. [11] considering a
lattice dynamical system, we will study the persistence of travelling waves by some
detailed analysis strongly depending on the properties of the kernels and the wave
equations associated to system (1.1), which leads to an important observation (see
lemma 3.14). In addition, the asymptotic behaviour of travelling waves with criti-
cal speed at —oo cannot be obtained directly as it was done by Zhang et al. [45],
and hence, we have to reconsider this result. Finally, we prove the non-existence
of travelling waves by contradiction thanks to the detailed analysis, which is much
simpler than the method of negative one-sided Laplace transform.

The rest of this paper is organized as follows. We first give some assumptions
in §2. Then in §§3 and 4, we show the existence and non-existence of travelling
waves, respectively. Finally, we summarize the conclusions of this paper and list
some applications of our main results in § 5.

2. Assumptions

Define
R2 = {(u,v)] u> 0,0 >0}, cl(RY):= {(u,v)| u>0,v>0},

Furthermore, C*(cl(R%)\{(0,0)} is the continuously differentiable function space
defined from cl(R3)\{(0,0)} to R. We assume that f(u,v) and g(u) satisfy the
following conditions:

(A1) g(-) € C([0,+00)). g(0) = 0 and ¢’(0) > 0if g(0) = 0. There exists a constant
K such that g(u) > 0 for v € (0, K) and g(u) < 0 for u > K.
(

(A2) f(-,-) € Cl(cl(Ri)) f(0,v) =0, fu(u,v) = 0and f,(u,v) <0 for any (u,v) €

R2. f,(u,v) >0, where f(u,v) = f(u,v)v. There are at most finite many
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points in Ri such that f,(u,v) =0. For any positive constant V' there
exists a positive constant Ko such that

{fuw,v), Fulu,v), 100)

sup
0<u< K,0<og< Vo

(A3) v >0or lir_irrl f(u,v) =0 for any u > 0.
(A4) System (1.1) admits a unique coexistence equilibrium Eq (u*,v*) € R3.

In fact, many reaction fields satisfy the assumptions (A1)—(A4), for example,
I. Prey-predator system:

up = dy(J1 xu —u) +ru(K —u) — f(u,v)v,
vy = da(Ja ¥ v —v) + af(u,v)v — 6v — Y2,

in which f(u,v) is the general functional response including:

(i) Holling type It f(u,v) =u (y > 0);

)
(ii) Holling type II: f(u,v) = u/(1 4+ u) (v > 0);
(iii) Holling type IT: f(u,v) = u?/(1 +u?) (y > 0);
(iv) Beddington-DeAngelis functional response: f(u,v) = u/(1+ hiu + hov)
(v = 0);

(v) Ivlev type: f(u,v) =1—e ", n > 0is constant (v > 0).

II. Disease-transmission system

up =di(Jyxu—u)+ A —pu— flu,v)v,
vy = da(Ja % v —v) + af(u,v)v — 6v — Y2,

where f(u,v) is the infection capacity of the disease, for instance, f(u,v)= fu
(which is considered in Yang et al. [41] for A = p =~ =0), f(u,v) = fu/(1 + hv)
(this case is included in Li et al. [28] for v = 0), f(u,v) = fu/(u+ v) (see Li and
Yang [26] for A = p =+ =0) and so on.

From (A1), we find that v* < K holds and that Eq(K,0) is also an equilibrium
of (1.1). Moreover, one can get af(K,0) > ¢ under the assumption (A2). Indeed,
since af(u*,v*) — 6 = yv*, we have af(K,0) > af(u*,v*) = 4.

A positive solution (u(t,z),v(t,x)) of (1.1) is called a travelling wave solution
if it has the form u(t,z) = u(§) and v(t,z) = v(§) with & = x + ct, where ¢ > 0 is
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wave speed. As described in [45], a travelling wave solution (u(§),v(§)) is strong
if it satisfies

(u(=00),v(=00)) = Eo(K,0), (u(+00),v(+00)) = Eq(u”,v");

while it is weak or persistent if there exist two positive constants M; and M,
such that

(U(—OO),U(—OO)) = EO(Ka 0)7
M, < lgiminfu(g) < limsup u(§) < Mo,

§—+4o0
M, < hminfv(f) < limsupv(§) < Mo.
§—+o0 E—+o0

That is, behind the front, as £ — +o0o, the leftover concentrations of prey and
predator individuals are non-trivial. Note that it is difficult to show the travelling
waves converge to the coexistence equilibrium E; for general form of g(u) and
f(u,v). However, investigating the persistent or extinction of travelling waves at
the end is enough for us to understand whether the predator’s invasion is successful
or not. Thus, in this work, we mainly focus on the weak travelling waves of (1.1).
Tt should be pointed out that system (1.1) admits a strong travelling wave solution
for some certain forms of g(u) and f(u,v), see examples in §5.

3. The existence of travelling waves

In this section, we mainly consider the existence of weak travelling waves of system
(1.1) under the assumptions (A1)—(A4). That is, we intend to find solutions of
system

e/ (§) = dy g Ji(y)(u(€ — y) — w(&))dy + g(u) — f(u,v)v, (3.1)
cv'(§) = da fp J2(y)(v(€ = y) = v(y))dy + o f (u, v)v = ov — yv? '
with boundary conditions (u(—00),v(—c0)) = (K,0) and
0 < liminfu(€) < limsupu(§) < K, 0< hmmfv(f) < limsupwv(€) < 4o0.
§—+oo £—+o0 £—+o0

Define a function as follows
A(N ¢) =d2 [/ Jo(y)e Mdy — 1| — eX + af(K,0) — 4.
R

Note that
A(0,¢) = af(K,0) — 0 > 0, )\lirf A(N, ¢) = +oo for each given c,

2A(N ¢ 2 A
S = e [ Bt a0
AN
% =A< 0and hm A()\ C) —oo for all A > 0,

AN 0) = dy [/R Jo(y)e ™ Mdy — 1| 4+ af(K,0) — 6 > 0.
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Thus, we have the following result.

LEMMA 3.1. There must be some A >0 and c, > 0 such that A(\.,c,) =0. For
¢ > ¢y, there are Ai(c), A2(c) > 0 satisfying A1(c) < Az2(c) so that A(N(c),¢) =0
(t=1,2) and

>0, A€ (0,\(c)) U (Na(c), +00),
A0 ){< 0, A€ (M(c), Az(0)).

Moreover, A(X,¢) >0 for all 0 < ¢ < ¢ and X > 0.

3.1. Travelling waves for ¢ > c.

Below, we always assume ¢ > ¢, and denote \; := \;(¢) (i =1,2). By (A3), it
follows that lirf f(u,v) =0 if v = 0. This implies that there exists v} > 1 such

that 6 > af (K,v}). Set
max{l, M} if v >0,
Vo = v
vy if y=0.
Further, define
u(é) = K, () = max{K — g¢”*,0},
(€) = min{e™*, vo}, v(€) = max{e™*(1 — Me™),0},
in which o, 3,e, M are all positive constants and will be determined later.

LEMMA 3.2. The function T(§) satisfies
1
v = da(Jo %0 —0) + af (K,0)0 — 60 — 402, VE # 1 nvo. (3.2)
1

Proof. If ¢ < (1/A1) Invg, then ©(¢) = e, Moreover, (A2) implies that f(K,v) <
F(K,0). It then follows that

@ — dy(Jo *T —T) — af(K,0)T + 6T + 77°
> cheMd — dyet (/ Jo(y)e ™ M¥dy — 1) — (af(K,0) — §)eMs 4 ye2Mi8
R
= —A(\, 0)T + 7% = 452 > 0.

The first inequality has used the fact that

Jo * 7 < min {vo,e)‘lf/ Jg(y)e_)‘lydy} .
R

When ¢ > (1/M\1)Inwg, 7 = vg. By a direct computation, we have
@ —do(Jy %0 —T) — af (K, )0 + 00 + 70°
2 (—af(K,v) + 6 + yvo)vo.
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In the case where v > 0, we have
(—af(K,vg) + 3+ yvg)vg = (—af (K,0) + 6 + yvg)vg = 0.

In the case where v =0, obviously (—af(K,vg) + d + vyvo)vg = 0. The proof is
completed. 0

Define

A1\ c) =dy /]R J1(y) (e — 1)dy — cA.

Noticed that Aq(0,¢) =0, (8A1()\,c))/(8)\)‘)\:0 = —c < 0 for ¢ > c,. Thus, for any
A > 0 small enough, it must be Aj(A,¢) < 0 for ¢ > ¢,. Then, we can show that u
is a lower solution.

LEMMA 3.3. Assume that 5 € (0, A1) is sufficiently small and o > max{K, (f(K,0))/
(=A1(B,¢))}. Then, the function u(§) satisfies

e <di(Jpxu—u)+glu) — fu,v)v, VE# %ln g. (3.3)

Proof. If € > (1/8)In(K /), u = 0. Then, (3.3) is obvious. If ¢ < (1/8)In(K /o),
u = K — oef¢. Additionally, due to the definition of vy, one can get (1/3) In(K /o) <
0 < (1/A1) Inwg, and hence, v = e*1¢. Consequently,

cu —di(Jyxu—u) = g(u) + fu,0)v

< —650655 + dyoe’t (/ Jl(y)e_ﬁydy — 1> + f(K, O)e/\15 —g(u)
R

< o {—caﬁ +ody ( /]R Ji(y)e~PVdy — 1) + #(K, 0)] ~ g(u)
= e® (oA (B,0) + f(K,0)] — g(u) <O0.

The first inequality has used the fact that
Ji * u > max {K — Jeﬁé/ Jl(y)e_ﬁydyﬁ} .
R

This ends the proof. O

LEMMA 3.4. Lete < min{(1/2)A1, (A2 — \1)/2, 8} be small enough and M > 0 large
enough. Then, the function v(§) satisfies

1 1
v <dy(Jo*xv—v) +af(u,v)v—0v—yv?, VE# gln i (3.4)

Proof. Take M > (J/K)E/ﬁ large enough. If & > (1/¢)In(1/M), then v(§) =0
and (3.4) holds naturally. If £ <1ln4;, we have v(§) =eM¢(1— Mc®). In
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this case, since
11ni < flln (£>E/ﬁ = lln5
e M € K B3 o’
it follows that u(¢) = K — ge. Firstly, by the mean value theorem, we have
flw,v) = f(K,0) = fu(p)(u— K) + fu(p)v
= —0 fulp)e” + fo(p)e™e (1 — Me™),

where p = (K + 60(u — K),0v) and 0 < 6 < 1. Note that u > 0 and 0 < v < eM¢.
Obviously, c lim u(¢) = K and ) lim v(§) =0. Thus, there exists a positive

constant M, independent on M such that

(w(©). () € B (0. ) = {<u,v>

KQ
(U—K)2+’U2 < 4}

for all £ < & := (1/¢)In(1/My). In the following, we set M > My and £ < &. Let
K, = max {fulu,v), —fu(u,v)}.

(u,v)eB((K,0),(K/2))

Then, we have 0 < f,(p) < K1 and 0< —f,(p) < K;. In addition, since € <
(1/2) mln{)\l,)\g — A1}, we have A(A\; +¢,¢) <0 according to the discussion in
lemma 3.1. Now, taking

aKjo+ oK+

M>1-
” A(M +¢,0)

large enough, we have

v’ —da(Jo x v —v) — af (u,v)v + dv + y?

cheME = M\ + €)™ H] — dyetss / Ta(y)e M1¥dy
R

4 dyMea+e)s / To()e~ M FOVdy 1 dyeME — dyMePMi+e)E
R

— a[f(K,0) — o fu(p)e” + fo(p)e*E(1 — Me®)]e*¢(1 — Me®®)
+ JerMé — 5Me(>\1+€)§ + 76”\15(1 _ M66§)2

= —A\, )M+ AN + g, ) MeP1FE 4 ~e2ME(1 — Mest)?
— o[ fu(p)e® + £u(p)eME(1 — MeS€)]eME(1 — Me®t)

— e(/\1+s)§[MA(>\l +e, C) + Ckefsﬁ((ffu(p)eﬂg _ fv(p)y(ﬁ))
— Ma(o fu(p)e" — fo(p)u(€)) + e —IE(1 — M)

< et [MA(M +¢,¢) + ae Eg(afu( Je BE _ fo(P)u(€)) +1]

< eMite)E [MA(A +¢,¢) + acKy + aK;y + 7]

< 0.
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This ends the proof. O
Denote Q, = [—a, a] with a > max{3 LInZ, Lin M} and define
u(€) < 9() < T(E).
Lo = 1 (9(),%()) € C(Qa, R?) | 0(€) < $(€) <T(E) for € € Qu,

o(—a) = u(—a), ¥(-a) =v(-a).
Set C* := C(§2,) x C(8,) and define |[(u,v)|[ce = [Jullc(q,) + [[vlc@,). Obviously,

I', is a non-empty bounded closed convex set in (C%, || - ||ca)-
Next, we consider the following truncated problem
=dy ([ 1§ —y)@(y)dy — u(€)) + g(u) — f(u, ), € e Q\{—a},
cv—d(Rbf W)y —v(©)) +af (e W)y —dv— 32, € € Q\{-a},
u(—a) = u(—a), v(-a) =v(-a),
(3.5)
for any given @, € I', and
ela), €>a, (v, £>a,
PE) =), [E<a, (&) = Jv©), [El<a,
Q(i)’ 5 < —a, Q(g)a 5 < —a.
Define the mapping F : 'y, — C* as follows
Flp,v) := (u,v)

for any (¢, 1) € 'y, where (u, v) is the solution of system (3.5), well-defined by the
forthcoming lemma 3.5. Hence, by definition of F, one can see that any fixed point
of F is a solution of system

cu' = dy (fp J1(€ = v)ily)dy — u) + g(u) = f(u,v)v, £ € Q\{—a},
cv =ds (fR J2(€ — y)o(y)dy v) af(u,v)v — v —yv? €€ Q,\{—a},
u(—a) = u(—a), v(—a) = v(-a),

(3.6)
in which
u(a), §>a, v(a), §>a,
a(€) = q u(§), ¢ < a, 0(&) = S v(8), €l <a
u(—a), &< —a, v(—a), &< -—a.

Thus, we only need to verify that the mapping F satisfies the condition of the
Schauder’s fixed-point theorem.

LEMMA 3.5. The mapping F is well-defined. That is, for any given (p,¥) € Ty,
there exists a unique solution (uq,vq) to the Cauchy problem (3.5). Further, u <
U <u and v < v, < on (.
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Proof. Note that (3.5) is not a coupled system. Thus, we can deal with the existence
and uniqueness of u, and v, separately.
First, we show the existence of u,. Define a function as follows

0, s <0,
n(s) =« s, 0<s<K,
K, s>2K

and consider the following initial value problem

{cu’ =di (Ju (€= )eW)dy — u(©)) + g(u) — Flu, ), €€ Q\{—a},

w(—a) = u(—a) (3.7)

for any (p,1)) € I'q, in which g(u) = g on(u) = g(n(u)) and f(u, ) = f on(u,v) =
f(n(uw),v). According to (A1)-(A2), it easily follows that g and f are Lipschitz
continuous on u and bounded on R. Then, the initial value problem (3.7) has a
unique solution u, on Q. By definition of w(£), there is some ag € (—a, a) such that
w(€§) >0 for all £ € (—a,ap) and u(§) =0 for all £ € [agp,a). Thus, the maximum
principle ([12]) implies that u,(£) > 0 over (—a,a).

Next, we intend to show that u, € I',. Following lemma 3.3, one can get

el < dy ( [ e~ utway - u) T g(w) — flu )

<d ( [ e = et - u> T §(w) — Fluw,9)9.

Let

lu(e)) = {ﬁ(u)—é(u)—(i(iﬁlw)—f(uﬂ/J))ﬂ/J if u(€) # u(f),

0 it u(€) = ulé),
and set w(&) = e (uq(€) — u(€)) for some A > 0. A direct calculation can yield that
dy — G(ua(8))

C

(6 > [A - } w(€). (3.8)

Set b(&) :== A — M. In view of the boundedness of G(u4(€)), it follows that
there exists some A > 0 such that 5ilbf b(¢) > 0. Note that w(—a) = 0. Thus, we
€Q,

have w(§) > 0 on Q, according to (3.8), which implies that u,(£) = u(§) on Q4. On
the other hand, for all £ € ),, there holds

a > a ([ e~ utay-w) + 9@ - S@

> d, ( [ e - wstway- u) T 5@ - F@m vy,

Since %(§) = K, the comparison principle ([12]) implies u,(§) < K for all £ € €.
That is, u, € I'y. Hence, g(u,) = g(uq) and f(ug, ) = f(uq, ). Therefore, u, is a
unique solution of the first equation of (3.5).
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Now, we show the existence of v,. Define the following function:

0, 7 <0,
h(r) =< T, 0<T7 <y,

vo, T 2 o,
and let ¢(v) = v?, F = ¢ o h. Then, consider the Cauchy problem

et = dy (i J2(€ = y)d(y)dy — v) + aflp, ) — dv = 1F (), € € Q\{-a},
v(—a) = v(—a).

(3.9)
Consequently, the same discussion as above, we can find a unique v, € I', satisfying
the second equation of (3.5) and v,(—a) = v(—a). We then complete the proof. O
LEMMA 3.6. F is a continuous mapping.
Proof. For any given (p1,¢1), (p2,92) € I'y, let

Flp1,91) i= (ur,v1),  Flpa,2) := (uz,v2).

First, let wy = w3 — ug. Then, wi(—a) = 0 and w; () satisfies

cwl + b (Ewr = @1(¢) in Q\{—a}, (3.10)
where
- Aot oS,
and

B,(¢) = dy / Tu(E — 9)(@1(y) — Ga())dy + (f(uz, ) — Fluzn) )by
+ flug, ) (e — 1n).

Since uy,us € 'y and by the assumptions (A2)-(A3), we have |bi ()| < Iy for some
positive constant lo. Meanwhile,

[ =) - saz(y))dy'

(oo}

_ ‘ | 6= uew) - ety + [ A= n)(er@) - o)y

a

< 2lle1 = v2lle@.)-

Thus, it is easy to verify that there are some constants L; > 0 (i = 1,2) such that

121()llc(@.) < Liller — w2llc@a) + Lallvr — ¥2llo@y)-
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Furthermore, it follows from (3.10) that

1 (S 1n dr .
wi(§) = */ e Jé () ®1(n)dn in Qq.

CJ-qa

Hence, we have

lw1(lle@a) < Ciller — v2lle@.) + Callr — ¥allo@.)

for some constants C7,Cy > 0. Similarly, if we let wy = v; — v9, one can get
[w2()lle@a) < Ciller = e2llo@,) + Callvr — Y2llc@.)
for constants C, Cy>0.In summary, we have proved that

IF(p1,11) — F(p2,2)]|ca
= [[(u1,v1) = (u2,v2)llca = [Jur — u2llc(a,) + lv1 — vallo(a,)

< Csllor — w2llo@a) + Callvr — Yalle.) < Csll(@1,91) — (92, 92)|lca

for any (v1,%1), (p2,12) € I'y and some positive constants C; (i = 3,4,5). This
implies that F is a continuous mapping. The proof is finished. O

LEmMMA 3.7. F is compact.

Proof. By the definition of the operator F and according to lemma 3.5, we know
that the solution (uq, v,) of (3.5) is bounded in C* for any given (¢, 1) € T',. Mean-
while, it follows from (3.5) that [|u.||c1(q,) and ||vallc1 (o, ) are both bounded. Thus,
the mapping F is compact and this ends the proof. O

Finally, following lemmas 3.5-3.7, F has a fixed point by the Schauder’s fixed-
point theorem and this fixed point is a non-negative solution of system (3.6). That
is, we have the following existence result of the truncated problem (3.6).

LEMMA 3.8. System (3.6) admits a solution (uq,v,) on Q.. Moreover,

0<u<u, <u and 0 <v<v, <T on Q.
Further, we have the following result.

THEOREM 3.9. Assume ¢ > c.. Then there is a solution (4,0) of system (3.1)
satisfying w(—o0) = K, 9(—00) = 0 and

O<u< K and 0< v < +4+oc0 inR.

Proof. Let (uq,v,) be the solution of system (3.6). Then, following lemma 3.8,
0<u<u, <K and 0 < v < v, <U. Now, choose some sequence {a,} satisfying
ap > max{% In Z, é InM} and a, — +00 as n — +oo. For any bounded domain
Q,,, we know that (3.6) admits a solution (uq, ,v,,) satisfying u < ug, (§) < K

and v < v,, (§) < 0. Thus, u,, (—o0) = K and v, (—o0) = 0. Meanwhile, it is easy
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to obtain that ) () and v, (§) are all uniformly bounded. Additionally, since
Ji(-) € CYR) (i = 1,2) we note that

£ || v < v

d
‘dg/Jg(E Y)0a,, (y dy’ ‘/ — Jo(& — y)van(y)dy’ <5/R|Jé(y)|dy-

Consequently, u, (£) and v} (&) are all uniformly bounded on €,,. Hence, there
exist some subsequences, denoted by (uak +Va,,, ) With nj, — 400 as k — +00, such
that

and

~ U 1
Uq,, — U and v, — ¥ in Cjy(R) as k — +o0

for some continuously differentiable functions @, @. Moreover, the assumption (J)
gives that

/ Ji(§ — y)ia,, (y)dy — / J1(§ — y)u(y)dy,

/Jgf Y)0a,, (y dy—»/Jgf y)o(y)dy as k — +oo

for any € € R. And (@, ) satisfies
u<u< K and v<0v<7. (3.11)

Following from (3.11), it is obvious that 4(—oc0) = K,¥(—00) = 0. Next, we only
need to prove 0 <4 < K and © >0 in R. Assume there exists some & € R
such that @(&) = 0. Then, @' () = 0. By the first equation of (3.1), we have
Jg J1(€0 — y)u(y)dy = 0 for all y € R. This implies @(y) = 0 for y € R, which contra-
dicts (3.11). Thus, @(£) > 0 in R. Similarly, we can show 9(£) > 0 in R. Meanwhile,
assume some &, € R exists so that 4(&,) = K. Then, @/(£,) = 0. In view of the first
equation of (3.1), there holds

0=d1/RJ1(€*—y)( (y) — u(€.))dy + g(a(é.)) — f(a(és), v(&.))v (&)

This contradicts the fact that 9(¢,) > 0. Hence, 4(§) < K, V¢ € R. This ends the
proof. O

3.2. Asymptotic behaviour

Here, we mainly consider the persistence of travelling waves of system (1.1).
For convenience of the description, we always assume (u,v) is the travelling wave
solution of system (1.1) constructed in §3.1. Then, theorem 3.9 implies that
u(—o00) = K,v(—00) =0,0 < u < K and 0 < v < 400 in R. To get the goal of this
section, we will use repeatedly the following results obtained by Zhang et al. [43].
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LEMMA 3.10 Zhang et al. [43]. Assume ¢ >0 and B(-) is a continuous function
with B(+o0) := 5lirin B(&). Let Z(&) be a measurable function satisfying

cZ(§) = /R Ti(y)els " ZO%dy 1 B(e) inR.

Then, Z is uniformly continuous and bounded. Moreover, u* = lnin Z(€) exist

and are real roots of the characteristic equation

o = / Ji(y)e "dy + B(£o0) (i =1,2).
R

Moreover, to get the persistence of travelling waves, inspired by some ideas in
[9,19], we need the following result.

LEMMA 3.11. Let Z € CY(R) satisfy
7€) > /R T)Z(€ - y)dy +b(E)Z(E) inR, (3.12)

where b(€) is continuous and b(&) > —M on R for some M > 0. Then there exists
some constant C = C(M) > 0 such that

-1 Z(§—y) . .
C </RJi(y)Wdy<CmR, i=1,2.

Proof. Since b(€) > —M on R, it follows from (3.12) that

/J 2( — y)dy — MZ(€).

Let 6(¢) = ZZI((E)) and denote Q(&) = exp{M¢ + fo s)ds}. Thus, a direct compu-

tation gives

Q'(€) = (M +0(£)Q(€) = / Ti(y)els 0% ay0(¢), (3.13)

R

which implies Q(§) is non-decreasing and Q* := ) lim Q&) > 0 exists. Let r; be

the radius of suppJ;, in which suppJ; denotes the support of functions J; (i = 1, 2).
Set r = min{ry, ro }. It follows from (J) that 0 < r < co. Choosing some ry > 0 with
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2rg < r and then integrating both sides of (3.13) from —oo to &, we get

/ / y)els ™ 0 gy (2)da
:/RJZ-(y)eMy /_OO Q(z —y)dzdy

- 13
> / Ji)e™ [ Qx - y)dedy
R 577’0

> 16 /R Ti(y)e™ Q€ — ro — y)dy.

The non-negativity of @* implies that

Q) = 7o / ()" Q(E — o — y)dy. (3.14)

Moreover, integrating the two sides of (3.13) from & — r¢ to £ yields

5 3
Q) — QE—10) > / L™ [ Qe — y)dady

R 677’0

—2ro 5
> 7“0/ Ji()eMYQ(€ — ro — y)dy

o0

—2rg .
> 1 / Ti()e TV dyQ(E + o).

—00

Since —2rg > —r, it holds that f:f(:o Ji(y)eMvdy > 0. Let oy = {ro [ 2ro
Ji(y)eMydy}~!. Thus, according to the non-negativity of @, we have

Q(§ +10) < 00Q(E), VEER. (3.15)
Note that
ZE—y) . o ay@E—Y)
/R )= = /R B L5 5 ay.

Thus, it follows from (3.14) and (3.15) that

/J fyd_/J Myé“yd+/
</_OO Ji(y)eMyQ(é(g)ydy—k/o
)

0 7, QE—T0—y > Y
o f My f My
< 0/ Ji(y)e —oe W /0 Ji(y)e™dy

— 00

QE—v)
o v

Ji(y

Ti(y)eMvdy
dy +
<2 " T tvay,
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Additionally,

Z(¢ - y) 0 Ty
/}RJi(y)Wdy > [m Ji(y)eMvdy.

This completes the proof. O
The following two lemmas describe the persistence of travelling waves.

LEMMA 3.12. inf u(§) > 0.
€E€R

Proof. Assume, on the contrary, that 5in]fR u(§) = 0. Tt follows that there exists some
€

real number sequence {,, } such that u(¢,) — 0 asn — +oo. Let u,(§) := u(€ + &)
and v, () ;== v(€ +&,) in R. Then, 0 < u,(§) < K in R, glim un(§) = K for each
——00

given n and 0 < v, (§) < 400 in R. Since u, (&) and v, (§) satisfy

culy (€) = d ( [ e~ vy - u) + g(tn) = £t 0},

there exists some subsequence, still denoted by {u,} and {v,}, such that u, — us
and v,, — vy locally uniformly in C'(R) for some functions uu., vee as n — +oc.
Note that 1. (0) = 0 and u, satisfies

el () = dy ( [ e = )iy - uoo> T gltioe) — Flusorvmo)ine.  (3.16)
In view of 0 < u,, < K in R, we have u’_(0) = 0. Thus, (3.16) gives that
d / T () ttoo (~y)dy + 91100 (0)) = 0. (3.17)
R

Note that (3.17) is impossible if g(0) > 0.
If g(0) = 0, the equation (3.17) gives that us(y) =0 in R. Then, applying the
second equation of (3.1) yields that

el (&) = da < /R Jo () Vo (€ — y)dy — voo> — 0o — W2, in R. (3.18)

For any z, z € R, integrating both sides of the above equation from « to z, we have
cfonc(2) ~ v =z [ [ Taw)(wnel€ ~ 1) = vl€)) e
z JR

—5/ voodg—'y/ v2 dE.

(3.19)
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Note that

/Z/RJz(y)(voo(g—y)—voo(ﬁ))dydf
_ /}R (1) / (Voo (€ — ) — Voo (€))dédy

= [t [ / (.(§ — By)dededy
~ [ 2t-v) / [V (= — O) — oo — Oy)]d0Cly.

Since v is bounded in R, some constant M > 0 exists such that sup v (§) < M.
R

Thus, applying (3.19), we have

5/ voodf—kv/ v dé < ZdQM/Jg(y)|y\dy+20M.
x T R

This gives that v, € L'(R). Further, in view of (3.18), v/(£) is bounded in R.
Therefore, v (£00) = 0. Now, integrating (3.18) over R, we obtain

6/ vood§+'y/ v2.dé =0,

which gives that vy () = 0 in R. Now, define

ARG s TN
=)= e~ p{/ uls) }

n

Since u(§) satisfies
u'(§) _ w—y) ., g(u)  flu,v)v
S o ([ gt -] 4 £ - L

it follows from (A1), (A2) and lemma 3.11 that |(v/(£))/(u(€))] is bounded in R.
Since Z,,(§) satisfy

u(én) un)

one can get that Z,,(£) is locally uniformly bounded in C*(R). Up to extraction of
a subsequence, there is some function E4(§) such that =, (£) — ZEx (&) in Cloc(R)
as n — +oo. Thus, letting n — 400, we have

=, (&) = du (/]R J1(Y)En (€ —y)dy — En(g)) + g(un(§)  flun,vn)vn(§)

=6 = dy ( [ =t -y - Em@) L0ER©). (320

We then claim that 2, (£) > 0 in R. In fact, if some &, exists so that Z. (&) = 0,
it follows from (3.20) that [, J1(y)Zec (&« — y)dy = 0. This implies that Zo(y) =0
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in R and contradicts the fact that 2 (0) = 1. Let II(§) = (£ (£))/(Exc(&)). Then
I1(¢) satisfies

() = dy / Ti(y)e IOy gy 4 g(0).
R

According to lemma 3.10, TI(+o00) exist and satisfy
A(+o0) = dy / Ti(y)e TEAy — dy 4 g'(0),
R

Since ¢’(0) > 0, we have II(+00) > 0. By the definition of TI(£), some &, < 0 exists
such that =._(&) > 0 for any & < &. However, since 0 < u,, < K in R and u,,(—c0) =
K, for each given n, some & < 0 exists so that u/,(£) < 0 for any £ < & . Thus, we
can obtain a contradiction by taking & < min{p,&;}. The proof is completed. O

LEMMA 3.13. lgimjnfv(g) > 0.

The above lemma is a straightforward consequence of the following important
observation.

LEMMA 3.14. Let 0 < ¢1 < ¢g be given and (u,v) be a solution of system (3.1) with
speed ¢ € [c1, o] satisfying 0 < u < K and v > 0. Then there exists some T > 0 such
that v'(§) > 0 provided that v(§) < 7 for £ € R.

Proof. On the contrary, assume that there is no such 7. Choose a sequence {cj}
of real numbers such that ¢ € [c1, 2] for each k € N and let {(ux,vr)} be the
associated solutions of system (3.1) with 0 < u, < K and vy > 0. Thus, there is a
sequence {&} so that v(§x) — 0 as k — +oo and v}, (&) < 0 for all £k € N. Up to
extraction of a subsequence, one can assume without loss of generality that & = 0
for all k € N and ¢ — ¢ € [c1, 2] as k — +o0.

Since v5(0) — 0% as k — +oo, it follows that

v — 0 locally uniformly in R as k — +o0.

By the second equation of (3.1), we have

O] < 2 [ Baw)unle )y + - (da + af(K,0) +5-+ 70)un(e),
k JR Ck

and then v}, (¢) — 0 locally uniformly in R as k — +o00. Additionally, there exists a
function us such that up — use in Clloc(R) as k — 400 and 0 < us < K solving

Coollly, = dy </R J1(€ — Y)uso (y)dy — uoo> +g(uso) in R.

Let ag = i%fuoo and {(,} be sequence of real numbers so that e (Grn) — a0

as m — +oo. Up to extraction of a subsequence, the functions & — us (€ + ()
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converge as m — +oo in CL _(R) to a function ®., solving

loc

Coo® = dy (/R J1(€ — y)Poo(y)dy — <I>Oo> + g(Ps) inR.

Notice that ag < Poo < K in R and ®(0) = ap. Consequently, ®’_(0) = 0 and

/R 1 (—) @ (5)dy — Do (0) >0,

hence g(®(0)) < 0 and then ap > K. Since g = i%f Uso and use < K, we conclude

that use = K in R.

Now, set Uy (&) = (v£(§))/(vk(0)) for k € N and & € R. Since v (§) is bounded
and positive in R, by the similar analysis as in lemma 3.11, we can get that
(v1.(£))/(vi(§)) is uniformly bounded in R. Noting that

v Sl (s
w219 e [ 00).

we know Uy () is locally uniformly bounded in R. Therefore, the functions

w(6) = Hw, g)

are also locally unifomly bounded in R. Moreover, since W (&) satisfies

V() = dy ( /R Ta(€ — y) Wi (y)dy — ws)) (g, 0) U (€)
— 0L (&) — yur(&)Wr(8),

we know W (€) is bounded in C2_(R). Then, the Arzela-Ascoli theorem gives that,

up to extraction of a subsequence, the positive functions ¥, converge in Cl._(R) to
a non-negative solution ¥, of equation

V(€)= dy ( [ et vt - wf)) T (@f(K.0) — 8)Un(e) (321)

in R. Thus, U, () > 0 in R. In fact, if there is some &, € R so that ¥, (&) =0,
then W/ _(&) = 0. It follows from (3.21) that

/R Ta(€o — ¥)Was (y)dy = 0,

and this implies ¥ (y) = 0 in R, which contradicts the fact that ¥, (0) = 1.

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.4

1984 F.Y. Yang, W.T. Li and J.B. Wang
Below, define z := (V/_/¥ ). Thus, z(&) satisfies

Coo2(€) = do / Jo(y)els " FOqy 4 0 F(K,0) — 6 — do. (3.22)
R
According to lemma 3.10, z(£) has finite limits z(+00) as £ — Foo satisfying
Cooz(£00) = dy / Jo(y)e*EXAy + af (K,0) — 6 — dy.
R

From lemma 3.1, z(£o00) are necessarily positive. Indeed, by definition of z, ¥’ is
also positive at +oo. Further, differentiating both sides of (3.22) on &, one gives

Coo? (&) = d2/ Jo(y)(z(€ —y) — Z(f))eféfy 2(s)ds gy,

R

4 / B =) =)= =5

dy in R.

Therefore, if z has a minimum or maximum point &, in R, then 2/(£) =0. It
follows that z(&. —y) = z(&) for all y € R. That is, z(£) = z(&,) for all £ € R.
Hence, following (3.22) and lemma 3.1, there are two different positive roots of
(3.22) if (&) is a constant. Consequently, we have

i%fz > min{z(—00), z(+00)} > 0.

This gives that W/ _ > 0 in R. Thus,

0<W_(0)= lim W,0) = lim 20
i k—4o00 k k—4o00 ”Uk(O)

and v5,(0) > 0 for k large enough. This contradicts the fact that v}, (0) < 0 for all
k € N and then the proof is completed. O

REMARK 3.15. Note that lemma 3.14 applied with ¢; = ¢, and ¢y = ¢, + 1 yields
the existence of 7 > 0 such that v/(§) > 0 provided that v(§) < 7 for £ € R. This
will be used to show the persistence of travelling waves with ¢ = ¢, below.

LEMMA 3.16. limsupu(§) < K.
£—+o0

Proof. Assume there exists a sequence {,} converging to 400 as n — 400 such
that u(&,) — K as n — +oo. Denote 1, (§) := u(§ + &) and v, (&) 1= v, (€ + &n).
Thus, up to extraction of a subsequence, u,(§) — ux(§) and v,(§) — v (§) in
C’lloc(R) for some non-negative functions u., and vo. Furthermore, 0 < us < K
and ve, > 0 according to theorem 3.9 and lemmas 3.12, 3.13. Since 1 (0) = K, we

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.4

Wave propagation for a class of non-local dispersal 1985

have u/_(0) = 0. Thus, following the first equation of (3.1), there holds

0=d; </]R J1(y) oo (—y)dy K) — J(K, vo0) Voo

This is impossible because
/Jl(y)uoo(—y)dy — K <0 and f(K,v00)000 > 0.
R

The proof is finished. O

Denote u(+00) :=lime_. 1o u(§) and v(+00) :=lime_ 4o v(§). Then, the fol-
lowing result states the convergence to the positive equilibrium under certain
conditions.

LEMMA 3.17. Ifu(4+00) (or v(400)) exists, then both v(+00) and u(+00) exist, and
u(+00) = u*, v(4o00) = v*.

Proof. First, suppose c liIJ'?El (&) = ug. Obviously, ug > 0 according to lemma 3.12.
——+o00

Assume on the contrary that

0 := liminf v(§) < limsupv(§) := .
§—+o0 £—+o0

Then, some sequences {£L} and {€2} exist satisfying £ — 400 and €2 — +o0 as
n — 400 such that

lim_v(eh) =2, v'(€h) =0 and T o(€2) =7, v/(€) =0,

Applying the first equation of (3.1), we have
g(ug) — f(ug,2)0 =0 and g(ug) — f(uo,?)0 = 0.

On the other hand, since

{0 = (&) = di g () (& — y) — v(ER))dy + auf (u,v)v(ER) — Sv(Eh) — 02 (
0=cv'(62) = da [ J2(y) (v(ER — y) — v(ER))dy + af (u,v)v(ER) — Sv(ER) — Y02 (€3),

it follows that

af(uo,g)ﬁf(ﬁffﬁz >0 > af(ug,0) — 60 — y*

as n — +o0o. In view of the fact that af(ug, )0 = af(ug, )0, we have
0> 65 +70 — 08 —7° = (T - D)6 +7(F+1)] >0,

which is a contradiction. Consequently, we have © = @. That is, v(+o00) exists.
Following the assumption (A4) and lemma 3.13, there hold lim wu(¢) = u* and

£—+o0
lim v(&) = v*.
§—+o0 (©)
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On the other hand, assume . lirf v(€) = vg. According to lemma 3.13, we know

vg > 0. For any sequence {,}52 satisfying &, — 400 as n — +o00, let u,(§) :=
u(&y, + &) and v, (§) := v(&, + ). Thus, some function u (§) exists such that

Un (&) = Uoo(€) and v, (€) — o in CL(R) as n — +oo.

Since (uy, v,,) satisfy

CU;(O = d (/R J2(y)vn(§ - y)dy - Un) + af(un’vn)vn — 0vp — 'Y'UrQw

letting n — 400, we have
0 = af (oo, vo)vo — Vg — 'yvg.
That is

1 .
J oo (€),00) = = (8 -+ 70p) in R
Now, following the assumption (A2) and lemma 3.13, there is some constant g > 0
so that us(§) = in R. Thus, by arbitrariness of the sequence {&,}, we have

) lirll u(§) = ug. Consequently, the same arguments as above can get @y = v* and
— 100

vg = v*. This ends the proof. O
In summary, the main result of this section is the following.

THEOREM 3.18. For any c > c,., there exist travelling waves of system (1.1)

satisfying
O<u< K, v>0 mR
and
i u(©) =K, lim_o(€) =0 (3.23)

together with
0 < liminfu(¢) < limsupu(§) < K,

§—+o0 £—+o0
(3.24)
0 < liminfv(§) < limsup v(§) < +oo.
E——+o0 £—~+o00

3.3. Travelling waves for ¢ = c,

This subsection is devoted to the existence of travelling wave solution (u,v)
for system (1.1) satisfying the asymptotic behaviour (3.23) and (3.24) with the
critical wave speed c,. This proof depends on a limiting argument. That is, choose
a sequence {c,} firstly, and then pass to the limit ¢, — ¢f. Noting that the lower
solutions u and v depend on ¢, they will be degenerate as ¢, — ¢}. Thus, we need
to find a new method to prove the asymptotic behaviour (3.23).
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THEOREM 3.19. When ¢ = ¢, system (1.1) admits a positive bounded travelling
wave solution (u(€),v(€)) satisfying the asymptotic behaviour (3.23) and (3.24).

Proof. Choose some sequence {c, } of real numbers such that ¢, € (c., ¢, + 1] with
¢n > cpy for all n € N and lim,, 1 oo ¢, = ¢i. Let (uy, v,,) be the solutions of (3.1)
associated with ¢,. It then follows from theorem 3.18 that 0 < u, < K,0 < v, <
+oo and (uy,v,) satisfy (3.23)-(3.24).

To complete the proof, we first claim that nglilg lvn o ®) > 0. Otherwise, up to

extraction of a subsequence, assume 1irJ£1 |vn ]| Lo (r) = O without loss of generality.
n—-—+oo

Denote v, := |[vp| o). Hence, there exist some 79 > 0 small enough and ny > 0
large enough such that v, < 7y for all n > ng. Now, the same arguments as in
lemma 3.14 give that v,(£) > 0 for n > ng (see also remark 3.15). This implies that
c liril v (€) exists for n > ng . Thus, following lemma 3.17, we know

— 100

lim v =0 >0,

Jim_un(©
for all n > ng, which contradicts the fact that ||v, ||~ ®) — 0 as n — +o00. There-
fore, due to the fact that v,(—o0) =0 and v, > 0 for each n € N, there is some
&, € R so that v, (&,) = 7. for some sufficiently small 0 < 7, < v*. Let

Un(§) == un(§+ &) and 9,(8) = va(§ + &)

for all £ € R. Without loss of generality, one can assume 0, (§) < 7. for all £ < 0.
Note that both ,(-) and ©,(-) are all uniformly bounded in C?(R). Thus, up
to extracting a subsequence for necessary, (uy,(+), 0, (+)) converge to (u(-),v(+)) in
CL.(R) x CL.(R) as n — +oo. Here, (u(£),v(€)) satisfies (3.1) with wave speed c.
Meanwhile, 0 < u(§) < K, v(§) = 0 and v(0) = 7.

Below, we prove that 0 < u(§) < K and v(§) > 0 in R. Assume there is some
&0 € R so that v(&y) = 0. Then v'(&p) = 0. Applying the second equation of system

(3.1), we have

ds /R Ja(€o — y)o(y)dy = 0.

Thus, v(y) = 0 in R. This contradicts the fact v(0) = 7. > 0. Additionally, if some
&« € R exists so that u(&,) = 0, then /(&) = 0. The first equation of system (3.1)
gives that

0=cu'(€.) = dy / T (yyu(e, — y)dy + g(0). (3.25)

Seen from (3.25), a direct contradiction happens if g(0) > 0. On the other hand, if
g(0) = 0, then (3.25) implies that u(y) =0 in R. In this case, it follows from the
second equation of system (3.1) that

(€)= da | R)(E )~ u(€)dy v = 0, (3.26)
Analogous arguments to those presented in lemma 3.12, we know v € L*(R). Then,

integrating (3.26) on R, one can get v = 0 in R. This contradicts the fact that v > 0
in R and it then follows that u > 0 in R. Moreover, we also can get u < K in R.
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Finally, we show the asymptotic behaviour. The similar discussion as lemmas 3.12
and 3.13 can show that

liminfu(§) >0 and liminfo(£) > 0.

E—+o00 £—+o00

On the other hand, by the choice of 7. and v(0) = 7., we have v'(§) >0 for
¢ < 0. Thus, 5lirn v(&) exists, denoted by v(—o00) := glim v(€). If v(—o0) > 0,
then lemma 3.17 gives that v(—o0) =v* > 7, and u(—oc0) = u*. A contradiction

happens because v(—o00) < 7,. This implies that v(—o0) = 0. Further, assume

Uinf := hm infu(€) < limsup u(§) =: ugyp < K

—0oo £——o00

for contradiction. Thus, there is some real number sequence {fn} satisfying
hrf £, = —oo such that hm u(&,) = uint and ' (€,) = 0. We then have
n—-1+0oo

0= cu'(&) dl/Jl —y)dy — diu(Gn) + g(u(€a)) — fu(én) v(6n))v(En).-

Since hrf v(fn) =0, letting n — 400 on both sides of the above equation, it
n—-1+0oo

follows that

dytiing — g(uing) = dy lim | Jy(y)u(En — y)dy > diting.

n—oo R

Hence, g(uin) < 0. In view of uins > 0, (A1) implies that uine > K. Therefore, we
get ) lim w(§) = K. The proof is completed. O

4. The non-existence of travelling waves

Now, we are concerned with the non-existence of travelling waves of system (1.1)
when the wave speed is below its critical value.

THEOREM 4.1. For any 0 < ¢ < ¢y, there exist no bounded non-negative travelling
waves of system (1.1) with 6lim u(§) = K and . lim v(§) =0.
——00 §——00

Proof. From the second equation of system (3.1), we have

! —y v/ (s
v (f)) = dg/ JQ(y)efs§ c Sqy — dy + af(u,v) — 8§ —~yv
R
& Y g
Zdy | Ja(y)e's O Tdy —dy — (0 +v|[v] e (w))-
R

Then, it follows from lemma 3.11 that v((g)) is bounded in R. Take some point

sequence {&,}>2 , with &, — —o0 as n — +oo and define

v(én +8)

un(&) = u(gn + f)a Un(g) = 'U(fn)
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o vE e [ e
T p{/ v(s)d}'

n

Note that

Then v, (&) is locally uniformly bounded in R. Moreover, (u,(§),v,(§)) satisty

vy (§) = da /R J2(y)(vn(§ — y) — va(§))dy + af (un(€), v(&n + §))vn ()
= 0vn (&) — yv(§n + Evn(§).

It is noticed that v/, (£) and v/ () are also locally uniformly bounded in R. Thus,
some Vs (€) exists such that

(4.1)

vn(€) = Voo (€) in Cioe(R) as n — +oo.

Since f1irn u(§) = K and 5lim v(€) =0, it follows that lim wu,({) =K and
— —00 ——00

n—-+oo

1irj_1 Un (& + &) = 0 locally uniformly in R. Now, letting n — +oo on both sides
n—-+oo
of (4.1), we have

g (§) = do /R J2(y) (V00 (§ = y) = Voo (§))dy + (af (K, 0) = 6)ve(§).  (4.2)
Since v (0) = 1 by the definition of v, (&), it follows from (4.2) that v (£) > 0 in
R. Set z(§) = (v, (£))/(veo(&)). Then, applying (4.2) yields that z(§) satisfies

cz(§) = dy / Jo(y)els " # O ay — dy + af(K,0) — 6.
R

According to lemma 3.10, we know lim z(§) exist and satisfy the equation

E—+oo

A = dQ/ Jo(y)e ™dy — da + af(K,0) — 4.
R
This gives ¢ > ¢, and one contradiction happens. The proof is completed. O

5. Conclusions and applications

In this paper, we mainly consider the wave propagation for a class of non-
cooperative system with non-local dispersal, which can be applied to some
prey-predator models as well as disease-transmission models. The existence of trav-
elling waves is obtained by using the upper-lower solutions and combining with
the Schauder’s fixed-point theorem, and the non-existence of travelling waves can
also be shown by skilled analysis. theorems 3.18, 3.19 and 4.1 combined provide a
threshold condition for the existence and non-existence of travelling wave solutions
in terms of the minimal wave speed c,.

Compared with the work in Zhang et al. [45], we must overcome the difficulties
brought both by the non-compactness of solution maps due to the appearance of
the convolution operator and by the non-preservation of system (1.1). In this work,
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we exploit a different method to show the existence of travelling waves, which is
also effective for system (1.2). Moreover, one of the important issues is that of
the estimation of the eventual states of travelling waves. That is the problem of
the persistence of travelling waves. The method applied in Zhang et al. [45] is not
suitable for our non-local system (3.1) and we overcome this difficulty by some
skilled analysis. It should be pointed out that we can further confirm that the
travelling waves should connect two equilibria (strong travelling waves) in some
certain cases. As an application, we consider the following disease-transmission
model:

(5.1)

St:dl(Jl*S—S)'Fb(K—S)—ﬂSI,
I = dy(Jo = I —I) + BST — 61 — 12,

in which dy,ds,b, K, 3,6, are all positive constants. By the simple calculations,
we can obtain that (5.1) admits a unique positive constant equilibrium denoted by
(S*,I*) if BK > 6. Let £ = x4 ¢t and (S(£), I(§)) satisfies

{cS’@ = di(fy 11 ()S(E ~)dy = S) +b(K — 5) — BSI, 52)

cl'(§) = do(fy J2() (€ — y)dy — I) + BST — 61 —~I*.
Thus, we have the following result.

THEOREM 5.1. Assume BK > 6 and 36 < by. Suppose (J) holds. Then, there is
some ¢, > 0 such that system (5.1) admits a travelling wave solution (S(€),I1(£))

with
lim S(¢) =K, lim I(¢) =0,
{——o0 £{——o0 (5 3)
li =5 lim I(¢)=1I* '
Jm S(§) =57 lim I(¢)

for any ¢ > c., and admits no travelling waves satisfying (5.3) when 0 < ¢ < ¢,.

Proof. The existence and non-existence of travelling waves are straightforward con-
sequences of theorems 3.18, 3.19 and 4.1. It only needs us to verify the asymptotic
behaviour at +oo if the travelling waves exist.

Consider the following problem

wp = dy(Jy xu—u)(x,t) + b(K —u) — Buv  in R x RT,
vy = do(Jo * v —v)(z,t) + fuv — dv —yv?  in R x RT, (5.4)
u(z,0) = S(x), v(z,0) =1I(x) in R.

Thus, (u(z,1),v(z,t))

= (S(z+ct),I(x+ct)) is the unique solution of problem
(5.4). Note that u(x t) =

S(x+ct) < K for all z€R and t > 0. So, we know
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v(x,t) = I(x + ct) satisfies

v < do(Jaxv—v)(z,t)+ (BK — 0 —yv)v  in RxRT,
v(x,0) = I(x) in R.

The comparison principle [36, theorem 2.2] gives that v(z,t) < (8K — §)/v for all
x € R and ¢ > 0. Consequently, u(x,t) = S(x + ct) satisfies

ug = di(Jy *u—u)(x,t) + b(K —u) — WU in R x RT,
u(x,0) = S(x) in R.

Therefore, we have

bK~y

w(r,t) > —————————— >0in R x RT,
02 b B GK —0)
Now, define
Sa = liminf S(¢), S* :=limsup S(¢),
§—+o0 £—+o0
Ia :=liminf I(¢), I® :=limsup ().
§—+o0 £—+o0

Obviously, it follows from the above discussion that

bRy )<SA<SA

by + BBK —5 K.

0<

N

Assume that Sx < S and In < I® without loss of the generality, and the other
cases can be obtained similarly. Then, there exist some sequences {¢1} and {£2},
satisfying £ — 400 and €2 — 400 as n — +o0, such that

S'(&,) =0, S(&,) — Sa asn — oo,
S'(&2) =0, S(&2) — 5% asn — oo.
Hence, following the first equation of (5.2), we have
{0 = di Jp Ji(m)(S(&h —y) — S(E))dy + b(K — S(£1)) — BS(E)T (),
0=di [ i(y)(S(€2 —y) — S(E2))dy + b(K — S(£2)) — BS(E2)1(£2)-
Letting n — oo on both sides of the above equations, we have

0> b(K — Sa) — BSATA,
0<bK —

(K — §2) — BSAIA. (5:5)

Similarly, some sequences {n.} and {n2} exist, satisfying nl — oo and 72 — oo as
n — oo, such that

0=ds [ J2(y)(I(n}, —y) — L(ny))dy + BS(n,)I(n)) — 61(ny) —vI*(ny,),
0=ds [ J2(y)I(n —y) — I(n3))dy + BS () I(n7) — 61(n3,) — I (n7).

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.4

1992 F.Y. Yang, W.T. Li and J.B. Wang

Therefore,
02> (BSa — 6 —7Ia)la,
A AN TA (5.6)
0< (B2 — 5 —4T2)I2,
which gives that
<O+ vla,
FS s 0+7la (5.7)
BS2 =6 +~1

It then follows that B(SAI® — S2IA) < §(I2 — Ia). On the other hand, we can
conclude from (5.5) that B(SAT® — S2IA) = b(S® — Sa). Hence, we have

(I* —IA) <

S

(I* —Ip).

12

That is, (86 — by)(I® — Ia) > 0. Since 36 < by, we get In = I® and it is easy to
obtain that Sx = S* according to (5.5). Now, due to the fact that (5.2) admits a
unique positive constant equilibrium (S*, I*), there are

SA=8%=5% and In=1"=1T"
This ends the proof. O

Note that the results and the methods in § 3 strongly depend on the assumption
(A3). That is, when v = 0, it must be required that lirf flu,v) =0 for any u > 0.

However, for system (5.1), (A3) does not hold when v = 0, and this leads to the
fact that system (5.1) has no bounded super solution. Therefore, we must discuss
the boundedness of 1(&). Below, we always assume v = 0 and K > §. Additionally,
assume that J, is compactly supported on R. Define

FOne) = dy / Jay)edy — dy — eA + BK — 6.
R

Similarly, we can show lemma 3.1 holds for f(A,c). Meanwhile, the functions

S(¢) =K, S(¢) =max{K — e’ 0},
(&) = M8, I(€) = max{eME(1 — Me™),0}

are super and lower solutions of system (5.2), in which o, 3,e, M are all positive
constants. Hence, we have the following results by the analogous arguments as in § 3.

~il
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THEOREM 5.2. Assume 8K > 6 and ¢ > c.. Then (5.2) admits a travelling wave
solution (S(§),1(£)) satisfying

S(—o0) =K, I(-x)=0, 0<SE) <K and I(§)>0 inR.

In the rest of this section, we always assume (S(§),1(§)) is the solution of (5.2)
satisfying theorem 5.2 without other description.

THEOREM 5.3. () is bounded in R. Moreover, (S(§),1(£)) satisfies

liminf S(€) >0 and lgim inf I(¢) > 0. (5.8)

§—+o0 —+00

Before showing this theorem, we prove some technical results, see also [11,40]
for the discrete endemic model.

LEMMA 5.4. If some sequence {£,} exists so that I(§,) — oo as n — +o0, then
S(&,) — 0 as n — 4o0.

Proof. On the contrary, assume there is some subsequence of {, },en, still denoted
by {&.}, such that S(&,) > o for some positive constant g and all n € N. For the
first equation of (5.2), there is ¢S’(§) < (2d; + b)K in R. Hence, some positive
constant g exists so that S(§) > eg/2 for £ € [§, — 0o, &,] and all n € N. Following
lemma 3.11 and the second equation of (5.2), there is some constant Cy > 0 such
that

')
1(€)

‘<00 in R.

Thus, we have

En T/

This gives that

min I > 1(&, e~ C0% 5o asn — 4oo.
fe[fn—lso,ﬁn] (5) (g )

Additionally, applying the first equation of (5.2), one can get

Beo
max ¢S (€) < (2dy +b)K — ==  min
Ee[gn_é()agn] (6) ( ! ) 2 fe[fn_(s()ygn]

I(¢) — —o0 as n — +o0.
Thus, taking M = 2K /dg, there is some ng > 0 such that

S'(€) < =M for all £ € [&, — &y, &nl,
provided n > ng. Integrating this inequality from &,, — dp to &,, one can get

S(&n) < S(&n — 60) — 6oM < K — 6oM = —K,

which contradicts the fact that S(£) > 0 for all £ € R. The proof is completed. [J
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LEMMA 5.5. If limsup I(§) = oo, then 5lim 1(€) = oo.

§—o0

Proof. Assume [j,f := ligm inf I(§) < oo for the contrary. Then, there exists some
— 00

sequence {&} such that limy_,o0 I(&) = Tins with & — oo as k — oo. Without loss
of generality, we can assume I(§x) < Ling + 1 for all k € N,

For each k € N, choose a point 1y € [k, &k+1] such that I(ny) = [gmgax ]I(f).
ksSk+1
Since limsup I(£) = co, we have klim I(ng) = co. Thus, following lemma 5.4,
£—o0 0

S(nk) — 0 as k — oco. Denote mg =sup|(I'(§))/(I1(€))| and assume I(ng) >
ER

(Lint + 1)e™0" without loss of generality, in which r is the radius of suppJs. Note
that

I(ny)
1(§)

This gives I(§) > Lins + 1 for all & € [mx —r,nr +7]. Hence, [ng —ryme + 1] C
(&ky €k+1). Now, in view of the second equation of (5.2), it follows that

nk I'(s) 4, o
= oJ¢" TErds < gmolé—ml ¢ gmor g € —me| < -

0= cl'(m) = ds / Ta () (I — y) — T(mi))dy + BS () I(mi) — 01 (1)

< (BS (k) = )1 (nk),
which contradicts the fact that —01(n;) < 0 for all & € N. The proof is finished. O

The proof of theorem 5.3. Since I(—o0) =0 and I(£) is continuous in R, we only
need to prove the case that limsup I(£) < +o0o. On the contrary, assume that this
§—+o0
is not true. Thus, lemma 5.5 implies that ) lim I(§) = +o0. Meanwhile, lemma 5.4
— 400
gives c lim S(§) =0.Letw(§) = (I'(£))/(1(£)). It follows from the second equation
— 400

of (5.2) that w(§) satisfies
cw' (€) = dg/ Jg(y)ef&&iyw(s)dsdy —dy +3S(€) — 46 inR.
R

Since lim S(¢§) =K and lim S(§) =0, applying lemma 3.10, we know some
£>—00 g—+oo

vy € R exists satisfying lim w(§) = vy and
£—+oo

Cry = dg/ Jz(y)eiyoydy - dg — 0.
R
Since I(§) — 400 as £ — 400 and I(£) > 0 in R, there is vy > 0. Additionally, due
to the fact that
f(l/o,C) = BK > Oa
we have vy > max{A;, A2}. Thus, some &, > 0 exists such that for any £ > &,

A1+
e

I(§) = Ce
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with some constant C' > 0 large enough. However, this contradicts the fact that
I(¢) < ¢ in R and then I(€) is bounded in R. Once this fact holds, one can get the
later results by the arguments analogous to those of § 3. The proof is completed. [

THEOREM 5.6. Suppose SK >§. If ¢ =c., then system (5.2) admits travelling
waves with (5.8).

Proof. Choose some sequence ¢, € (cx,cx + 1] and ¢, satisfies ¢, > ¢,y for all
n €N and lim, ;o ¢y = ci. Let (Sn(€), I,(£)) be the solutions of system (5.2)
associated with ¢,.

Here, seen from the proof of theorem 3.19, we only need to prove that I,,(€) is
uniformly bounded in R. That is, there is some constant C' > 0 independent on n so
that |[1,(-)|| Lo ®) < C'. On the contrary, assume some sequence {&, },en exist such
that I,(&,) — +00 asn — 400, and it then follows from lemma 5.4 that S, (§,) — 0
as n — +oo. Without loss of generality, we may assume that I,,(&,) = max I,(¢)

for each n. Hence, we have I/, (§,) = 0 and

(5.9)
However, since S,(&,) — 0 as n — 400, there is some ng > 0 large enough so
that £5,(&,) <6 and I,(&,) > 0 for all n > ng. Thus, applying (5.9) yields a
contradiction and the proof is completed. O

As a direct application of theorem 4.1, we have the following non-existence result.

THEOREM 5.7. Suppose BK >0 and 0 < c<c.. Then there are no bounded
travelling waves of system (5.2) with (5.8).
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