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This paper is concerned with the travelling waves for a class of non-local dispersal
non-cooperative system, which can model the prey-predator and disease-transmission
mechanism. By the Schauder’s fixed-point theorem, we first establish the existence
of travelling waves connecting the semi-trivial equilibrium to non-trivial leftover
concentrations, whose bounds are deduced from a precise analysis. Further, we
characterize the minimal wave speed of travelling waves and obtain the
non-existence of travelling waves with slow speed. Finally, we apply the general
results to an epidemic model with bilinear incidence for its propagation dynamics.
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1. Introduction

As we know, random dispersal operators are often used to describe the diffusion
process of organisms in population dynamics, which can only influence a species’
immediate neighbourhood in ecological and epidemiological models, see Cantrell
and Cosner [7] and Murray [32]. However, in many biological systems, the organisms
can travel for a long distance and the transition probability from one location to
another usually depends on the distance the organisms travelled. Consequently, non-
local dispersal problems in which the diffusion process is described by an integral
operator attract much attention in recent years, and have been used to model
different dispersal phenomena in population ecology, material science, neurology
and so on, one can see Andreu-Vaillo et al. [1], Bates et al. [3], Fife [17], Hutson
et al. [23], Kao et al. [24], Li et al. [27,31] for further understanding.

Travelling wave, as a special solution maintaining its shape and moving at a con-
stant speed, is a very important dynamical issue in the field of reaction-diffusion
equations. Nowadays there are many results regarding the non-local dispersal
problems, mainly focussing on the monotone scalar equations (see, e.g., Chen [8],

c© 2019 The Royal Society of Edinburgh
1965

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press

mailto:wtli@lzu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2019.4&domain=pdf
https://doi.org/10.1017/prm.2019.4


1966 F.Y. Yang, W.T. Li and J.B. Wang

Coville et al. [13], Shen and Zhang [34], Sun et al. [36,37], Zhang et al. [43] and
Zhang et al. [44,46]) and competition/cooperative systems (see, e.g., Bao et al. [2],
Li et al. [30], Li et al. [29], Pan et al. [33], and Wang and Lv [39]). In addition, we
refer the readers to Li and Yang [26], Li et al. [28], and Yang et al. [41,42] con-
cerning the wave phenomena for some special SIR epidemic models with non-local
dispersal. To our knowledge, the understanding of non-local dispersal models for
prey-predator type is still very limited (see, e.g., Sherratt [35]). This motivates us
to consider the following general non-cooperative system with non-local dispersal{

ut = d1(J1 ∗ u− u) + g(u) − f(u, v)v,
vt = d2(J2 ∗ v − v) + αf(u, v)v − δv − γv2,

(1.1)

where u = u(t, x) and v = v(t, x) denote the densities of two populations at time t
and location x, respectively; g(u) is the growth rate of the prey; f(u, v)v describes
predation; the constant coefficients d1, d2, α and δ are all positive and γ is non-
negative; J1 ∗ u and J2 ∗ v are standard spatial convolutions with the kernels Ji(x)
having the properties that

(J) Ji ∈ C1(R), Ji(x) = Ji(−x) � 0,
∫

R
Ji(x)dx = 1 and Ji satisfy the decay

bounds:∫
R

Ji(x)eλxdx <∞ for any λ > 0 and
∫

R

|J ′
i(x)|dx <∞, i = 1, 2.

Note that (1.1) is the non-local counterpart of the following diffusion-reaction
system: {

ut = d1uxx + g(u) − f(u, v)v,
vt = d2vxx + αf(u, v)v − δv − γv2,

(1.2)

which has been studied by Zhang et al. [45]. As mentioned in [45], following the dif-
ferent forms of g(u), system (1.2) can describe the diffusive interaction of prey and
predators (see Fu and Tsai [18]), the evolution of disease transmissions (see Brit-
ton [6]) or autocatalytic chemical reactions (Chen and Qi [10]) and so on. In view
of Schauder’s fixed-point theorem and the persistence theory proposed by Thieme
[38], the authors obtained the existence of weak travelling wave solutions of (1.2).
Also, the non-existence of travelling wave solutions was showed by the negative
one-sided Laplace transform. These results can be applied to prey-predator sys-
tems and disease-transmission models with specific interaction functions, including
Beddington-DeAngelis functional response (see, e.g., Ding and Huang [14], Huang
[20,21], Huang et al. [22] and Li and Wu [25]).

The current paper is devoted to the existence and non-existence of travelling
waves of system (1.1), which can also describe the propagation of predator’s inva-
sion or the spread of epidemic diseases. Usually, the monotonicity theories and
shooting method are very useful to show the existence of travelling waves for sys-
tems. However, since the dynamical system generated by (1.1) is non-monotone, it
follows that the powerful theory of monotone dynamical systems is not suitable to
construct the travelling waves. At the same time, the shooting method is also not
suitable for system (1.1) due to the effect of the convolution operator. In our recent
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works [26,41,42] dealing with some specific SIR models with non-local dispersal,
we applied the method of constructing an invariant cone of initial functions defined
in a large but bounded domain, then using a fixed point theorem on this cone, and
further extending to the unbounded spatial domain R through a limiting argument,
to show the existence of travelling waves. This method was firstly introduced by
Berestycki et al. [4], and has been widely used to study the travelling wave solutions,
see, e.g., Berestycki et al. [5], Ducrot and Magal [15] and Ducrot et al. [16].

In this paper, we will improve a little the previous method to establish the exis-
tence of travelling waves for the general system (1.1), which is different from those
in Zhang et al. [45]. Since (1.1) is a non-monotonic and non-local system, it follows
that the asymptotic behaviour of travelling waves is very difficult and challenging
to estimate, especially the convergence to the positive constant equilibrium. From
a biological point of view, the invasion of predators is successful if the travelling
waves are persistent at the end. Thus, it is enough to study the so-called weak trav-
elling wave solutions if we only want to know whether the invasion is successful and
what the invasion speed is. Compared with the method used in Zhang et al. [45],
the persistence theory suggested by Thieme [38] cannot be applied to discuss the
persistence of travelling wave solutions for our non-local dispersal system (1.1) due
to the deficiency of compactness. Certain ad hoc techniques that fit this non-local
problem itself are necessarily needed. Inspired by Chen et al. [11] considering a
lattice dynamical system, we will study the persistence of travelling waves by some
detailed analysis strongly depending on the properties of the kernels and the wave
equations associated to system (1.1), which leads to an important observation (see
lemma 3.14). In addition, the asymptotic behaviour of travelling waves with criti-
cal speed at −∞ cannot be obtained directly as it was done by Zhang et al. [45],
and hence, we have to reconsider this result. Finally, we prove the non-existence
of travelling waves by contradiction thanks to the detailed analysis, which is much
simpler than the method of negative one-sided Laplace transform.

The rest of this paper is organized as follows. We first give some assumptions
in § 2. Then in §§ 3 and 4, we show the existence and non-existence of travelling
waves, respectively. Finally, we summarize the conclusions of this paper and list
some applications of our main results in § 5.

2. Assumptions

Define

R
2
+ := {(u, v)| u > 0, v > 0}, cl(R2

+) := {(u, v)| u � 0, v � 0},
Furthermore, C1(cl(R2

+)\{(0, 0)} is the continuously differentiable function space
defined from cl(R2

+)\{(0, 0)} to R. We assume that f(u, v) and g(u) satisfy the
following conditions:

(A1) g(·) ∈ C1([0,+∞)). g(0) � 0 and g′(0) > 0 if g(0) = 0. There exists a constant
K such that g(u) > 0 for u ∈ (0,K) and g(u) < 0 for u > K.

(A2) f(·, ·) ∈ C1(cl(R2
+)), f(0, v) = 0, fu(u, v) � 0 and fv(u, v) � 0 for any (u, v) ∈

R
2
+. fv(u, v) � 0, where f(u, v) = f(u, v)v. There are at most finite many
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points in R
2
+ such that fu(u, v) = 0. For any positive constant V 0, there

exists a positive constant K2 such that

sup
0<u�K,0�v�V 0

{
fu(u, v), fv(u, v),

f(u, v)
u

}
� K2.

(A3) γ > 0 or lim
v→+∞ f(u, v) = 0 for any u � 0.

(A4) System (1.1) admits a unique coexistence equilibrium E1(u∗, v∗) ∈ R
2
+.

In fact, many reaction fields satisfy the assumptions (A1)–(A4), for example,
I. Prey-predator system:

{
ut = d1(J1 ∗ u− u) + ru(K − u) − f(u, v)v,
vt = d2(J2 ∗ v − v) + αf(u, v)v − δv − γv2,

in which f(u, v) is the general functional response including:

(i) Holling type I: f(u, v) = u (γ > 0);

(ii) Holling type II: f(u, v) = u/(1 + u) (γ > 0);

(iii) Holling type III: f(u, v) = u2/(1 + u2) (γ > 0);

(iv) Beddington-DeAngelis functional response: f(u, v) = u/(1 + h1u+ h2v)
(γ � 0);

(v) Ivlev type: f(u, v) = 1 − e−nu, n > 0 is constant (γ > 0).

II. Disease-transmission system

{
ut = d1(J1 ∗ u− u) + Λ − μu− f(u, v)v,
vt = d2(J2 ∗ v − v) + αf(u, v)v − δv − γv2,

where f(u, v) is the infection capacity of the disease, for instance, f(u, v) = βu
(which is considered in Yang et al. [41] for Λ = μ = γ = 0), f(u, v) = βu/(1 + hv)
(this case is included in Li et al. [28] for γ = 0), f(u, v) = βu/(u+ v) (see Li and
Yang [26] for Λ = μ = γ = 0) and so on.

From (A1), we find that u∗ < K holds and that E0(K, 0) is also an equilibrium
of (1.1). Moreover, one can get αf(K, 0) > δ under the assumption (A2). Indeed,
since αf(u∗, v∗) − δ = γv∗, we have αf(K, 0) > αf(u∗, v∗) � δ.

A positive solution (u(t, x), v(t, x)) of (1.1) is called a travelling wave solution
if it has the form u(t, x) = u(ξ) and v(t, x) = v(ξ) with ξ = x+ ct, where c > 0 is

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.4


Wave propagation for a class of non-local dispersal 1969

wave speed. As described in [45], a travelling wave solution (u(ξ), v(ξ)) is strong
if it satisfies

(u(−∞), v(−∞)) = E0(K, 0), (u(+∞), v(+∞)) = E1(u∗, v∗);

while it is weak or persistent if there exist two positive constants M1 and M2

such that

(u(−∞), v(−∞)) = E0(K, 0),

M1 < lim inf
ξ→+∞

u(ξ) � lim sup
ξ→+∞

u(ξ) < M2,

M1 < lim inf
ξ→+∞

v(ξ) � lim sup
ξ→+∞

v(ξ) < M2.

That is, behind the front, as ξ → +∞, the leftover concentrations of prey and
predator individuals are non-trivial. Note that it is difficult to show the travelling
waves converge to the coexistence equilibrium E1 for general form of g(u) and
f(u, v). However, investigating the persistent or extinction of travelling waves at
the end is enough for us to understand whether the predator’s invasion is successful
or not. Thus, in this work, we mainly focus on the weak travelling waves of (1.1).
It should be pointed out that system (1.1) admits a strong travelling wave solution
for some certain forms of g(u) and f(u, v), see examples in § 5.

3. The existence of travelling waves

In this section, we mainly consider the existence of weak travelling waves of system
(1.1) under the assumptions (A1)–(A4). That is, we intend to find solutions of
system{

cu′(ξ) = d1

∫
R
J1(y)(u(ξ − y) − u(ξ))dy + g(u) − f(u, v)v,

cv′(ξ) = d2

∫
R
J2(y)(v(ξ − y) − v(y))dy + αf(u, v)v − δv − γv2

(3.1)

with boundary conditions (u(−∞), v(−∞)) = (K, 0) and

0 < lim inf
ξ→+∞

u(ξ) � lim sup
ξ→+∞

u(ξ) < K, 0 < lim inf
ξ→+∞

v(ξ) � lim sup
ξ→+∞

v(ξ) < +∞.

Define a function as follows

Δ(λ, c) = d2

[∫
R

J2(y)e−λydy − 1
]
− cλ+ αf(K, 0) − δ.

Note that

Δ(0, c) = αf(K, 0) − δ > 0, lim
λ→+∞

Δ(λ, c) = +∞ for each given c,

∂2Δ(λ, c)
∂λ2

= d2

∫
R

J2(y)y2e−λydy > 0,

∂Δ(λ, c)
∂c

= −λ < 0 and lim
c→+∞Δ(λ, c) = −∞ for all λ > 0,

Δ(λ, 0) = d2

[∫
R

J2(y)e−λydy − 1
]

+ αf(K, 0) − δ > 0.
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Thus, we have the following result.

Lemma 3.1. There must be some λ∗ > 0 and c∗ > 0 such that Δ(λ∗, c∗) = 0. For
c > c∗, there are λ1(c), λ2(c) > 0 satisfying λ1(c) < λ2(c) so that Δ(λi(c), c) = 0
(i = 1, 2) and

Δ(λ, c)

{
> 0, λ ∈ (0, λ1(c)) ∪ (λ2(c),+∞),
< 0, λ ∈ (λ1(c), λ2(c)).

Moreover, Δ(λ, c) > 0 for all 0 < c < c∗ and λ > 0.

3.1. Travelling waves for c > c∗

Below, we always assume c > c∗ and denote λi := λi(c) (i = 1, 2). By (A3), it
follows that lim

v→+∞ f(u, v) = 0 if γ = 0. This implies that there exists v1
0 > 1 such

that δ > αf(K, v1
0). Set

v0 =

{
max

{
1, αf(K,0)−δ

γ

}
if γ > 0,

v1
0 if γ = 0.

Further, define

u(ξ) = K, u(ξ) = max{K − σeβξ, 0},
v(ξ) = min{eλ1ξ, v0}, v(ξ) = max{eλ1ξ(1 −Meεξ), 0},

in which σ, β, ε,M are all positive constants and will be determined later.

Lemma 3.2. The function v(ξ) satisfies

cv′ � d2(J2 ∗ v − v) + αf(K, v)v − δv − γv2, ∀ξ �= 1
λ1

ln v0. (3.2)

Proof. If ξ < (1/λ1) ln v0, then v(ξ) = eλ1ξ. Moreover, (A2) implies that f(K, v) �
f(K, 0). It then follows that

cv′ − d2(J2 ∗ v − v) − αf(K, v)v + δv + γv2

� cλ1eλ1ξ − d2eλ1ξ

(∫
R

J2(y)e−λ1ydy − 1
)
− (αf(K, 0) − δ)eλ1ξ + γe2λ1ξ

= −Δ(λ1, c)v + γv2 = γv2 > 0.

The first inequality has used the fact that

J2 ∗ v � min
{
v0, eλ1ξ

∫
R

J2(y)e−λ1ydy
}
.

When ξ > (1/λ1) ln v0, v = v0. By a direct computation, we have

cv′ − d2(J2 ∗ v − v) − αf(K, v)v + δv + γv2

� (−αf(K, v0) + δ + γv0)v0.
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In the case where γ > 0, we have

(−αf(K, v0) + δ + γv0)v0 � (−αf(K, 0) + δ + γv0)v0 � 0.

In the case where γ = 0, obviously (−αf(K, v0) + δ + γv0)v0 � 0. The proof is
completed. �

Define

Δ1(λ, c) = d1

∫
R

J1(y)(e−λy − 1)dy − cλ.

Noticed that Δ1(0, c) = 0, (∂Δ1(λ, c))/(∂λ)
∣∣
λ=0

= −c < 0 for c > c∗. Thus, for any
λ > 0 small enough, it must be Δ1(λ, c) < 0 for c > c∗. Then, we can show that u
is a lower solution.

Lemma 3.3. Assume that β ∈ (0, λ1) is sufficiently small and σ >max{K, (f(K, 0))/
(−Δ1(β, c))}. Then, the function u(ξ) satisfies

cu′ � d1(J1 ∗ u− u) + g(u) − f(u, v)v, ∀ξ �= 1
β

ln
K

σ
. (3.3)

Proof. If ξ > (1/β) ln(K/σ), u = 0. Then, (3.3) is obvious. If ξ < (1/β) ln(K/σ),
u = K − σeβξ. Additionally, due to the definition of v0, one can get (1/β) ln(K/σ) <
0 � (1/λ1) ln v0, and hence, v = eλ1ξ. Consequently,

cu′ − d1(J1 ∗ u− u) − g(u) + f(u, v)v

� −cβσeβξ + d1σeβξ
(∫

R

J1(y)e−βydy − 1
)

+ f(K, 0)eλ1ξ − g(u)

� eβξ
[
−cσβ + σd1

(∫
R

J1(y)e−βydy − 1
)

+ f(K, 0)
]
− g(u)

= eβξ[σΔ1(β, c) + f(K, 0)] − g(u) � 0.

The first inequality has used the fact that

J1 ∗ u � max
{
K − σeβξ

∫
R

J1(y)e−βydy, 0
}
.

This ends the proof. �

Lemma 3.4. Let ε < min{(1/2)λ1, (λ2 − λ1)/2, β} be small enough and M > 0 large
enough. Then, the function v(ξ) satisfies

cv′ � d2(J2 ∗ v − v) + αf(u, v)v − δv − γv2, ∀ξ �= 1
ε

ln
1
M
. (3.4)

Proof. Take M > (σ/K)ε/β large enough. If ξ > (1/ε) ln(1/M), then v(ξ) = 0
and (3.4) holds naturally. If ξ < 1

ε ln 1
M , we have v(ξ) = eλ1ξ(1 −Meεξ). In
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this case, since

1
ε

ln
1
M

< −1
ε

ln
( σ
K

)ε/β
=

1
β

ln
K

σ
,

it follows that u(ξ) = K − σeβξ. Firstly, by the mean value theorem, we have

f(u, v) − f(K, 0) = fu(p)(u−K) + fv(p)v

= −σfu(p)eβξ + fv(p)eλ1ξ(1 −Meεξ),

where p = (K + θ(u−K), θv) and 0 < θ < 1. Note that u > 0 and 0 < v � eλ1ξ.
Obviously, lim

ξ→−∞
u(ξ) = K and lim

ξ→−∞
v(ξ) = 0. Thus, there exists a positive

constant M0 independent on M such that

(u(ξ), v(ξ)) ∈ B

(
(K, 0),

K

2

)
:=

{
(u, v)

∣∣∣∣∣ (u−K)2 + v2 � K2

4

}

for all ξ � ξ0 := (1/ε) ln(1/M0). In the following, we set M > M0 and ξ � ξ0. Let

K1 = max
(u,v)∈B((K,0),(K/2))

{fu(u, v),−fv(u, v)} .

Then, we have 0 � fu(p) � K1 and 0 � −fv(p) � K1. In addition, since ε <
(1/2)min{λ1, λ2 − λ1}, we have Δ(λ1 + ε, c) < 0 according to the discussion in
lemma 3.1. Now, taking

M > 1 − αK1σ + αK1 + γ

Δ(λ1 + ε, c)

large enough, we have

cv′ − d2(J2 ∗ v − v) − αf(u, v)v + δv + γv2

� c[λ1eλ1ξ −M(λ1 + ε)e(λ1+ε)ξ] − d2eλ1ξ

∫
R

J2(y)e−λ1ydy

+ d2Me(λ1+ε)ξ

∫
R

J2(y)e−(λ1+ε)ydy + d2eλ1ξ − d2Me(λ1+ε)ξ

− α[f(K, 0) − σfu(p)eβξ + fv(p)eλ1ξ(1 −Meεξ)]eλ1ξ(1 −Meεξ)

+ δeλ1ξ − δMe(λ1+ε)ξ + γe2λ1ξ(1 −Meεξ)2

= −Δ(λ1, c)eλ1ξ + Δ(λ1 + ε, c)Me(λ1+ε)ξ + γe2λ1ξ(1 −Meεξ)2

− α[−σfu(p)eβξ + fv(p)eλ1ξ(1 −Meεξ)]eλ1ξ(1 −Meεξ)

= e(λ1+ε)ξ[MΔ(λ1 + ε, c) + αe−εξ(σfu(p)eβξ − fv(p)v(ξ))

−Mα(σfu(p)eβξ − fv(p)v(ξ)) + γe(λ1−ε)ξ(1 −Meεξ)2]

� e(λ1+ε)ξ[MΔ(λ1 + ε, c) + αe−εξ(σfu(p)eβξ − fv(p)v(ξ)) + γ]

� e(λ1+ε)ξ[MΔ(λ1 + ε, c) + ασK1 + αK1 + γ]

� 0.
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This ends the proof. �

Denote Ωa = [−a, a] with a > max{ 1
β ln σ

K ,
1
ε lnM} and define

Γa =

⎧⎪⎨
⎪⎩(ϕ(·), ψ(·)) ∈ C(Ωa,R2)

∣∣∣∣∣∣∣
u(ξ) � ϕ(ξ) � u(ξ),

v(ξ) � ψ(ξ) � v(ξ) for ξ ∈ Ωa,

ϕ(−a) = u(−a), ψ(−a) = v(−a).

⎫⎪⎬
⎪⎭

Set Ca := C(Ωa) × C(Ωa) and define ‖(u, v)‖Ca = ‖u‖C(Ωa) + ‖v‖C(Ωa). Obviously,
Γa is a non-empty bounded closed convex set in (Ca, ‖ · ‖Ca).

Next, we consider the following truncated problem⎧⎪⎪⎨
⎪⎪⎩
cu′ = d1

(∫
R
J1(ξ − y)ϕ̂(y)dy − u(ξ)

)
+ g(u) − f(u, ψ)ψ, ξ ∈ Ωa\{−a},

cv′ = d2

(∫
R
J2(ξ − y)ψ̂(y)dy − v(ξ)

)
+ αf(ϕ,ψ)ψ − δv − γv2, ξ ∈ Ωa\{−a},

u(−a) = u(−a), v(−a) = v(−a),
(3.5)

for any given ϕ,ψ ∈ Γa and

ϕ̂(ξ) =

⎧⎪⎨
⎪⎩
ϕ(a), ξ > a,

ϕ(ξ), |ξ| � a,

u(ξ), ξ < −a,
ψ̂(ξ) =

⎧⎪⎨
⎪⎩
ψ(a), ξ > a,

ψ(ξ), |ξ| � a,

v(ξ), ξ < −a.
Define the mapping F : Γa → Ca as follows

F(ϕ,ψ) := (u, v)

for any (ϕ,ψ) ∈ Γa, where (u, v) is the solution of system (3.5), well-defined by the
forthcoming lemma 3.5. Hence, by definition of F , one can see that any fixed point
of F is a solution of system⎧⎪⎨

⎪⎩
cu′ = d1

(∫
R
J1(ξ − y)û(y)dy − u

)
+ g(u) − f(u, v)v, ξ ∈ Ωa\{−a},

cv′ = d2

(∫
R
J2(ξ − y)v̂(y)dy − v

)
+ αf(u, v)v − δv − γv2, ξ ∈ Ωa\{−a},

u(−a) = u(−a), v(−a) = v(−a),
(3.6)

in which

û(ξ) =

⎧⎪⎨
⎪⎩
u(a), ξ > a,

u(ξ), |ξ| � a,

u(−a), ξ < −a,
v̂(ξ) =

⎧⎪⎨
⎪⎩
v(a), ξ > a,

v(ξ), |ξ| � a,

v(−a), ξ < −a.
Thus, we only need to verify that the mapping F satisfies the condition of the
Schauder’s fixed-point theorem.

Lemma 3.5. The mapping F is well-defined. That is, for any given (ϕ,ψ) ∈ Γa,
there exists a unique solution (ua, va) to the Cauchy problem (3.5). Further, u �
ua � u and v � va � v on Ωa.
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Proof. Note that (3.5) is not a coupled system. Thus, we can deal with the existence
and uniqueness of ua and va separately.

First, we show the existence of ua. Define a function as follows

η(s) =

⎧⎪⎨
⎪⎩

0, s � 0,
s, 0 < s < K,

K, s � K

and consider the following initial value problem{
cu′ = d1

(∫
R
J1(ξ − y)ϕ̂(y)dy − u(ξ)

)
+ g̃(u) − f̃(u, ψ)ψ, ξ ∈ Ωa\{−a},

u(−a) = u(−a) (3.7)

for any (ϕ,ψ) ∈ Γa, in which g̃(u) = g ◦ η(u) = g(η(u)) and f̃(u, ψ) = f ◦ η(u, ψ) =
f(η(u), ψ). According to (A1)-(A2), it easily follows that g̃ and f̃ are Lipschitz
continuous on u and bounded on R. Then, the initial value problem (3.7) has a
unique solution ua on Ωa. By definition of u(ξ), there is some a0 ∈ (−a, a) such that
u(ξ) > 0 for all ξ ∈ (−a, a0) and u(ξ) = 0 for all ξ ∈ [a0, a). Thus, the maximum
principle ([12]) implies that ua(ξ) > 0 over (−a, a).

Next, we intend to show that ua ∈ Γa. Following lemma 3.3, one can get

cu′ � d1

(∫
R

J1(ξ − y)u(y)dy − u

)
+ g(u) − f(u, v)v

� d1

(∫
R

J1(ξ − y)ϕ̂(y)dy − u

)
+ g̃(u) − f̃(u, ψ)ψ.

Let

G(u(ξ)) =

{
g̃(u)−g̃(u)−(f̃(u,ψ)−f̃(u,ψ))ψ

u−u if u(ξ) �= u(ξ),
0 if u(ξ) = u(ξ),

and set ω(ξ) = eΛξ(ua(ξ) − u(ξ)) for some Λ > 0. A direct calculation can yield that

ω′(ξ) �
[
Λ − d1 −G(ua(ξ))

c

]
ω(ξ). (3.8)

Set b(ξ) := Λ − d1−G(ua(ξ))
c . In view of the boundedness of G(ua(ξ)), it follows that

there exists some Λ > 0 such that inf
ξ∈Ωa

b(ξ) > 0. Note that ω(−a) = 0. Thus, we

have ω(ξ) � 0 on Ωa according to (3.8), which implies that ua(ξ) � u(ξ) on Ωa. On
the other hand, for all ξ ∈ Ωa, there holds

cu′ � d1

(∫
R

J1(ξ − y)u(y)dy − u

)
+ g(u) − f(u, v)v

� d1

(∫
R

J1(ξ − y)ϕ̂(y)dy − u

)
+ g̃(u) − f̃(u, ψ)ψ.

Since u(ξ) = K, the comparison principle ([12]) implies ua(ξ) � K for all ξ ∈ Ωa.
That is, ua ∈ Γa. Hence, g̃(ua) = g(ua) and f̃(ua, ψ) = f(ua, ψ). Therefore, ua is a
unique solution of the first equation of (3.5).
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Now, we show the existence of va. Define the following function:

h(τ) =

⎧⎪⎨
⎪⎩

0, τ � 0,
τ, 0 < τ < v0,

v0, τ � v0,

and let φ(v) = v2, F = φ ◦ h. Then, consider the Cauchy problem

{
cv′ = d2

(∫
R
J2(ξ − y)ψ̂(y)dy − v

)
+ αf(ϕ,ψ)ψ − δv − γF (v), ξ ∈ Ωa\{−a},

v(−a) = v(−a).
(3.9)

Consequently, the same discussion as above, we can find a unique va ∈ Γa satisfying
the second equation of (3.5) and va(−a) = v(−a). We then complete the proof. �

Lemma 3.6. F is a continuous mapping.

Proof. For any given (ϕ1, ψ1), (ϕ2, ψ2) ∈ Γa, let

F(ϕ1, ψ1) := (u1, v1), F(ϕ2, ψ2) := (u2, v2).

First, let ω1 = u1 − u2. Then, ω1(−a) = 0 and ω1(ξ) satisfies

cω′
1 + b1(ξ)ω1 = Φ1(ξ) in Ωa\{−a}, (3.10)

where

b1(ξ) = d1 − g(u1) − g(u2)
u1 − u2

+
f(u1, ψ1) − f(u2, ψ1)

u1 − u2
ψ1

and

Φ1(ξ) = d1

∫
R

J1(ξ − y)(ϕ̂1(y) − ϕ̂2(y))dy + (f(u2, ψ2) − f(u2, ψ1))ψ1

+ f(u2, ψ2)(ψ2 − ψ1).

Since u1, u2 ∈ Γa and by the assumptions (A2)-(A3), we have |b1(ξ)| � l0 for some
positive constant l0. Meanwhile,∣∣∣∣

∫
R

J1(ξ − y)(ϕ̂1(y) − ϕ̂2(y))dy
∣∣∣∣

=
∣∣∣∣
∫ a

−a
J1(ξ − y)(ϕ1(y) − ϕ2(y))dy +

∫ ∞

a

J1(ξ − y)(ϕ1(a) − ϕ2(a))dy
∣∣∣∣

� 2‖ϕ1 − ϕ2‖C(Ωa).

Thus, it is easy to verify that there are some constants Li > 0 (i = 1, 2) such that

‖Φ1(·)‖C(Ωa) � L1‖ϕ1 − ϕ2‖C(Ωa) + L2‖ψ1 − ψ2‖C(Ωa).
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Furthermore, it follows from (3.10) that

ω1(ξ) =
1
c

∫ ξ

−a
e

1
c

∫ η
ξ
b1(τ)dτΦ1(η)dη in Ωa.

Hence, we have

‖ω1(·)‖C(Ωa) � C1‖ϕ1 − ϕ2‖C(Ωa) + C2‖ψ1 − ψ2‖C(Ωa)

for some constants C1, C2 > 0. Similarly, if we let ω2 = v1 − v2, one can get

‖ω2(·)‖C(Ωa) � Ĉ1‖ϕ1 − ϕ2‖C(Ωa) + Ĉ2‖ψ1 − ψ2‖C(Ωa)

for constants Ĉ1, Ĉ2 > 0. In summary, we have proved that

‖F(ϕ1, ψ1) −F(ϕ2, ψ2)‖Ca

= ‖(u1, v1) − (u2, v2)‖Ca = ‖u1 − u2‖C(Ωa) + ‖v1 − v2‖C(Ωa)

� C3‖ϕ1 − ϕ2‖C(Ωa) + C4‖ψ1 − ψ2‖C(Ωa) � C5‖(ϕ1, ψ1) − (ϕ2, ψ2)‖Ca

for any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Γa and some positive constants Ci (i = 3, 4, 5). This
implies that F is a continuous mapping. The proof is finished. �

Lemma 3.7. F is compact.

Proof. By the definition of the operator F and according to lemma 3.5, we know
that the solution (ua, va) of (3.5) is bounded in Ca for any given (ϕ,ψ) ∈ Γa. Mean-
while, it follows from (3.5) that ‖ua‖C1(Ωa) and ‖va‖C1(Ωa) are both bounded. Thus,
the mapping F is compact and this ends the proof. �

Finally, following lemmas 3.5–3.7, F has a fixed point by the Schauder’s fixed-
point theorem and this fixed point is a non-negative solution of system (3.6). That
is, we have the following existence result of the truncated problem (3.6).

Lemma 3.8. System (3.6) admits a solution (ua, va) on Ωa. Moreover,

0 � u � ua � u and 0 � v � va � v on Ωa.

Further, we have the following result.

Theorem 3.9. Assume c > c∗. Then there is a solution (ũ, ṽ) of system (3.1)
satisfying ũ(−∞) = K, ṽ(−∞) = 0 and

0 < ũ < K and 0 < ṽ < +∞ in R.

Proof. Let (ua, va) be the solution of system (3.6). Then, following lemma 3.8,
0 � u � ua � K and 0 � v � va � v. Now, choose some sequence {an} satisfying
an > max{ 1

β ln σ
K ,

1
ε lnM} and an → +∞ as n→ +∞. For any bounded domain

Ωan
, we know that (3.6) admits a solution (uan

, van
) satisfying u � uan

(ξ) � K
and v � van

(ξ) � v. Thus, uan
(−∞) = K and van

(−∞) = 0. Meanwhile, it is easy
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to obtain that u′an
(ξ) and v′an

(ξ) are all uniformly bounded. Additionally, since
Ji(·) ∈ C1(R) (i = 1, 2), we note that∣∣∣∣ ddξ

∫
R

J1(ξ − y)ûan
(y)dy

∣∣∣∣ =
∣∣∣∣
∫

R

d

dξ
J1(ξ − y)ûan

(y)dy
∣∣∣∣ � K

∫
R

|J ′
1(y)|dy,

and ∣∣∣∣ ddξ
∫

R

J2(ξ − y)v̂an
(y)dy

∣∣∣∣ =
∣∣∣∣
∫

R

d

dξ
J2(ξ − y)v̂an

(y)dy
∣∣∣∣ � v

∫
R

|J ′
2(y)|dy.

Consequently, u′′an
(ξ) and v′′an

(ξ) are all uniformly bounded on Ωan
. Hence, there

exist some subsequences, denoted by (uank
, vank

) with nk → +∞ as k → +∞, such
that

uank
→ ũ and vank

→ ṽ in C1
loc(R) as k → +∞

for some continuously differentiable functions ũ, ṽ. Moreover, the assumption (J)
gives that ∫

R

J1(ξ − y)ûank
(y)dy →

∫
R

J1(ξ − y)ũ(y)dy,
∫

R

J2(ξ − y)v̂ank
(y)dy →

∫
R

J2(ξ − y)ṽ(y)dy as k → +∞

for any ξ ∈ R. And (ũ, ṽ) satisfies

u � ũ � K and v � ṽ � v. (3.11)

Following from (3.11), it is obvious that ũ(−∞) = K, ṽ(−∞) = 0. Next, we only
need to prove 0 < ũ < K and ṽ > 0 in R. Assume there exists some ξ0 ∈ R

such that ũ(ξ0) = 0. Then, ũ′(ξ0) = 0. By the first equation of (3.1), we have∫
R
J1(ξ0 − y)ũ(y)dy = 0 for all y ∈ R. This implies ũ(y) ≡ 0 for y ∈ R, which contra-

dicts (3.11). Thus, ũ(ξ) > 0 in R. Similarly, we can show ṽ(ξ) > 0 in R. Meanwhile,
assume some ξ∗ ∈ R exists so that ũ(ξ∗) = K. Then, ũ′(ξ∗) = 0. In view of the first
equation of (3.1), there holds

0 = d1

∫
R

J1(ξ∗ − y)(ũ(y) − ũ(ξ∗))dy + g(ũ(ξ∗)) − f(ũ(ξ∗), ṽ(ξ∗))ṽ(ξ∗)

� −f(K, ṽ(ξ∗))ṽ(ξ∗).

This contradicts the fact that ṽ(ξ∗) > 0. Hence, ũ(ξ) < K, ∀ξ ∈ R. This ends the
proof. �

3.2. Asymptotic behaviour

Here, we mainly consider the persistence of travelling waves of system (1.1).
For convenience of the description, we always assume (u, v) is the travelling wave
solution of system (1.1) constructed in § 3.1. Then, theorem 3.9 implies that
u(−∞) = K, v(−∞) = 0, 0 < u < K and 0 < v < +∞ in R. To get the goal of this
section, we will use repeatedly the following results obtained by Zhang et al. [43].
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Lemma 3.10 Zhang et al. [43]. Assume c > 0 and B(·) is a continuous function
with B(±∞) := lim

ξ→±∞
B(ξ). Let Z(ξ) be a measurable function satisfying

cZ(ξ) =
∫

R

Ji(y)e
∫ ξ−y

ξ
Z(s)dsdy +B(ξ) in R.

Then, Z is uniformly continuous and bounded. Moreover, μ± := lim
ξ→±∞

Z(ξ) exist

and are real roots of the characteristic equation

cμ =
∫

R

Ji(y)e−μydy +B(±∞) (i = 1, 2).

Moreover, to get the persistence of travelling waves, inspired by some ideas in
[9,19], we need the following result.

Lemma 3.11. Let Z ∈ C1(R) satisfy

Z ′(ξ) �
∫

R

Ji(y)Z(ξ − y)dy + b(ξ)Z(ξ) in R, (3.12)

where b(ξ) is continuous and b(ξ) � −M̃ on R for some M̃ > 0. Then there exists
some constant C = C(M̃) > 0 such that

C−1 <

∫
R

Ji(y)
Z(ξ − y)
Z(ξ)

dy < C in R, i = 1, 2.

Proof. Since b(ξ) � −M̃ on R, it follows from (3.12) that

Z ′(ξ) �
∫

R

Ji(y)Z(ξ − y)dy − M̃Z(ξ).

Let θ(ξ) = Z′(ξ)
Z(ξ) and denote Q(ξ) = exp{M̃ξ +

∫ ξ
0
θ(s)ds}. Thus, a direct compu-

tation gives

Q′(ξ) = (M̃ + θ(ξ))Q(ξ) �
∫

R

Ji(y)e
∫ ξ−y

ξ
θ(s)dsdyQ(ξ), (3.13)

which implies Q(ξ) is non-decreasing and Q∗ := lim
ξ→−∞

Q(ξ) � 0 exists. Let ri be

the radius of suppJi, in which suppJi denotes the support of functions Ji (i = 1, 2).
Set r = min{r1, r2}. It follows from (J) that 0 < r � ∞. Choosing some r0 > 0 with
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2r0 < r and then integrating both sides of (3.13) from −∞ to ξ, we get

Q(ξ) −Q∗ �
∫ ξ

−∞

∫
R

Ji(y)e
∫ x−y

x
θ(s)dsdyQ(x)dx

=
∫

R

Ji(y)eM̃y

∫ ξ

−∞
Q(x− y)dxdy

�
∫

R

Ji(y)eM̃y

∫ ξ

ξ−r0
Q(x− y)dxdy

� r0

∫
R

Ji(y)eM̃yQ(ξ − r0 − y)dy.

The non-negativity of Q∗ implies that

Q(ξ) � r0

∫
R

Ji(y)eM̃yQ(ξ − r0 − y)dy. (3.14)

Moreover, integrating the two sides of (3.13) from ξ − r0 to ξ yields

Q(ξ) −Q(ξ − r0) �
∫

R

Ji(y)eM̃y

∫ ξ

ξ−r0
Q(x− y)dxdy

� r0

∫ −2r0

−∞
Ji(y)eM̃yQ(ξ − r0 − y)dy

� r0

∫ −2r0

−∞
Ji(y)eM̃ydyQ(ξ + r0).

Since −2r0 > −r, it holds that
∫ −2r0
−∞ Ji(y)eM̃ydy > 0. Let σ0 = {r0

∫ −2r0
−∞

Ji(y)eM̃ydy}−1. Thus, according to the non-negativity of Q, we have

Q(ξ + r0) � σ0Q(ξ), ∀ξ ∈ R. (3.15)

Note that ∫
R

Ji(y)
Z(ξ − y)
Z(ξ)

dy =
∫

R

Ji(y)eM̃yQ(ξ − y)
Q(ξ)

dy.

Thus, it follows from (3.14) and (3.15) that∫
R

Ji(y)
Z(ξ − y)
Z(ξ)

dy =
∫ 0

−∞
Ji(y)eM̃yQ(ξ − y)

Q(ξ)
dy +

∫ ∞

0

Ji(y)eM̃yQ(ξ − y)
Q(ξ)

dy

�
∫ 0

−∞
Ji(y)eM̃yQ(ξ − y)

Q(ξ)
dy +

∫ ∞

0

Ji(y)eM̃ydy

� σ0

∫ 0

−∞
Ji(y)eM̃yQ(ξ − r0 − y)

Q(ξ)
dy +

∫ ∞

0

Ji(y)eM̃ydy

� σ0

r0
+

∫ ∞

0

Ji(y)eM̃ydy.

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.4


1980 F.Y. Yang, W.T. Li and J.B. Wang

Additionally,

∫
R

Ji(y)
Z(ξ − y)
Z(ξ)

dy �
∫ 0

−∞
Ji(y)eM̃ydy.

This completes the proof. �

The following two lemmas describe the persistence of travelling waves.

Lemma 3.12. inf
ξ∈R

u(ξ) > 0.

Proof. Assume, on the contrary, that inf
ξ∈R

u(ξ) = 0. It follows that there exists some

real number sequence {ξn} such that u(ξn) → 0 as n→ +∞. Let un(ξ) := u(ξ + ξn)
and vn(ξ) := v(ξ + ξn) in R. Then, 0 < un(ξ) < K in R, lim

ξ→−∞
un(ξ) = K for each

given n and 0 < vn(ξ) < +∞ in R. Since un(ξ) and vn(ξ) satisfy

cu′n(ξ) = d1

(∫
R

J1(y)un(ξ − y)dy − un

)
+ g(un) − f(un, vn)vn,

there exists some subsequence, still denoted by {un} and {vn}, such that un → u∞
and vn → v∞ locally uniformly in C1(R) for some functions u∞, v∞ as n→ +∞.
Note that u∞(0) = 0 and u∞ satisfies

cu′∞(ξ) = d1

(∫
R

J1(y)u∞(ξ − y)dy − u∞

)
+ g(u∞) − f(u∞, v∞)v∞. (3.16)

In view of 0 < un < K in R, we have u′∞(0) = 0. Thus, (3.16) gives that

d1

∫
R

J1(y)u∞(−y)dy + g(u∞(0)) = 0. (3.17)

Note that (3.17) is impossible if g(0) > 0.
If g(0) = 0, the equation (3.17) gives that u∞(y) ≡ 0 in R. Then, applying the

second equation of (3.1) yields that

cv′∞(ξ) = d2

(∫
R

J2(y)v∞(ξ − y)dy − v∞

)
− δv∞ − γv2

∞ in R. (3.18)

For any x, z ∈ R, integrating both sides of the above equation from x to z, we have

c[v∞(z) − v∞(x)] = d2

∫ z

x

∫
R

J2(y)(v∞(ξ − y) − v∞(ξ))dydξ

− δ

∫ z

x

v∞dξ − γ

∫ z

x

v2
∞dξ.

(3.19)
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Note that ∫ z

x

∫
R

J2(y)(v∞(ξ − y) − v∞(ξ))dydξ

=
∫

R

J2(y)
∫ z

x

(v∞(ξ − y) − v∞(ξ))dξdy

=
∫

R

J2(y)(−y)
∫ z

x

∫ 1

0

v′∞(ξ − θy)dθdξdy

=
∫

R

J2(y)(−y)
∫ 1

0

[v∞(z − θy) − v∞(x− θy)]dθdy.

Since v∞ is bounded in R, some constant M > 0 exists such that sup
R

v∞(ξ) < M .

Thus, applying (3.19), we have

δ

∫ z

x

v∞dξ + γ

∫ z

x

v2
∞dξ � 2d2M

∫
R

J2(y)|y|dy + 2cM.

This gives that v∞ ∈ L1(R). Further, in view of (3.18), v′(ξ) is bounded in R.
Therefore, v∞(±∞) = 0. Now, integrating (3.18) over R, we obtain

δ

∫ z

x

v∞dξ + γ

∫ z

x

v2
∞dξ = 0,

which gives that v∞(ξ) = 0 in R. Now, define

Ξn(ξ) :=
un(ξ)
u(ξn)

= exp

{∫ ξ+ξn

ξn

u′(s)
u(s)

ds

}
.

Since u(ξ) satisfies

c
u′(ξ)
u(ξ)

= d1

(∫
R

J1(y)
u(ξ − y)
u(ξ)

dy − 1
)

+
g(u)
u

− f(u, v)v
u

,

it follows from (A1), (A2) and lemma 3.11 that |(u′(ξ))/(u(ξ))| is bounded in R.
Since Ξn(ξ) satisfy

cΞ′
n(ξ) = d1

(∫
R

J1(y)Ξn(ξ − y)dy − Ξn(ξ)
)

+
g(un(ξ))
u(ξn)

− f(un, vn)vn(ξ)
u(ξn)

,

one can get that Ξn(ξ) is locally uniformly bounded in C1(R). Up to extraction of
a subsequence, there is some function Ξ∞(ξ) such that Ξn(ξ) → Ξ∞(ξ) in Cloc(R)
as n→ +∞. Thus, letting n→ +∞, we have

cΞ′
∞(ξ) = d1

(∫
R

J1(y)Ξ∞(ξ − y)dy − Ξ∞(ξ)
)

+ g′(0)Ξ∞(ξ). (3.20)

We then claim that Ξ∞(ξ) > 0 in R. In fact, if some ξ∗ exists so that Ξ∞(ξ∗) = 0,
it follows from (3.20) that

∫
R
J1(y)Ξ∞(ξ∗ − y)dy = 0. This implies that Ξ∞(y) = 0

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.4


1982 F.Y. Yang, W.T. Li and J.B. Wang

in R and contradicts the fact that Ξ∞(0) = 1. Let Π(ξ) = (Ξ′
∞(ξ))/(Ξ∞(ξ)). Then

Π(ξ) satisfies

cΠ(ξ) = d1

∫
R

J1(y)e
∫ ξ−y

ξ
Π(s)dsdy − d1 + g′(0).

According to lemma 3.10, Π(±∞) exist and satisfy

cΠ(±∞) = d1

∫
R

J1(y)e−Π(±∞)ydy − d1 + g′(0).

Since g′(0) > 0, we have Π(±∞) > 0. By the definition of Π(ξ), some ξ0 < 0 exists
such that Ξ′

∞(ξ) > 0 for any ξ � ξ0. However, since 0 < un < K in R and un(−∞) =
K, for each given n, some ξ1 < 0 exists so that u′n(ξ) � 0 for any ξ � ξ1. Thus, we
can obtain a contradiction by taking ξ � min{ξ0, ξ1}. The proof is completed. �

Lemma 3.13. lim inf
ξ→+∞

v(ξ) > 0.

The above lemma is a straightforward consequence of the following important
observation.

Lemma 3.14. Let 0 < c1 � c2 be given and (u, v) be a solution of system (3.1) with
speed c ∈ [c1, c2] satisfying 0 < u < K and v > 0. Then there exists some τ > 0 such
that v′(ξ) > 0 provided that v(ξ) � τ for ξ ∈ R.

Proof. On the contrary, assume that there is no such τ . Choose a sequence {ck}
of real numbers such that ck ∈ [c1, c2] for each k ∈ N and let {(uk, vk)} be the
associated solutions of system (3.1) with 0 < uk < K and vk > 0. Thus, there is a
sequence {ξk} so that vk(ξk) → 0 as k → +∞ and v′k(ξk) � 0 for all k ∈ N. Up to
extraction of a subsequence, one can assume without loss of generality that ξk = 0
for all k ∈ N and ck → c∞ ∈ [c1, c2] as k → +∞.

Since vk(0) → 0+ as k → +∞, it follows that

vk → 0 locally uniformly in R as k → +∞.

By the second equation of (3.1), we have

|v′k(ξ)| � d2

ck

∫
R

J2(y)vk(ξ − y)dy +
1
ck

(d2 + αf(K, 0) + δ + γv)vk(ξ),

and then v′k(ξ) → 0 locally uniformly in R as k → +∞. Additionally, there exists a
function u∞ such that uk → u∞ in C1

loc(R) as k → +∞ and 0 � u∞ � K solving

c∞u′∞ = d1

(∫
R

J1(ξ − y)u∞(y)dy − u∞

)
+ g(u∞) in R.

Let α0 = inf
R

u∞ and {ζm} be sequence of real numbers so that u∞(ζm) → α0

as m→ +∞. Up to extraction of a subsequence, the functions ξ �→ u∞(ξ + ζm)
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converge as m→ +∞ in C1
loc(R) to a function Φ∞ solving

c∞Φ′
∞ = d1

(∫
R

J1(ξ − y)Φ∞(y)dy − Φ∞

)
+ g(Φ∞) in R.

Notice that α0 � Φ∞ � K in R and Φ∞(0) = α0. Consequently, Φ′
∞(0) = 0 and

∫
R

J1(−y)Φ∞(y)dy − Φ∞(0) � 0,

hence g(Φ∞(0)) � 0 and then α0 � K. Since α0 = inf
R

u∞ and u∞ � K, we conclude

that u∞ = K in R.
Now, set Ψk(ξ) = (vk(ξ))/(vk(0)) for k ∈ N and ξ ∈ R. Since vk(ξ) is bounded

and positive in R, by the similar analysis as in lemma 3.11, we can get that
(v′k(ξ))/(vk(ξ)) is uniformly bounded in R. Noting that

Ψk(ξ) =
vk(ξ)
vk(0)

= exp

{∫ ξ

0

v′k(s)
vk(s)

ds

}
,

we know Ψk(ξ) is locally uniformly bounded in R. Therefore, the functions

Ψ′
k(ξ) =

v′k(ξ)
vk(ξ)

Ψk(ξ)

are also locally unifomly bounded in R. Moreover, since Ψk(ξ) satisfies

ckΨ′
k(ξ) = d2

(∫
R

J2(ξ − y)Ψk(y)dy − Ψk(ξ)
)

+ αf(uk, vk)Ψk(ξ)

− δΨk(ξ) − γvk(ξ)Ψk(ξ),

we know Ψk(ξ) is bounded in C2
loc(R). Then, the Arzela-Ascoli theorem gives that,

up to extraction of a subsequence, the positive functions Ψk converge in C1
loc(R) to

a non-negative solution Ψ∞ of equation

c∞Ψ′
∞(ξ) = d2

(∫
R

J2(ξ − y)Ψ∞(y)dy − Ψ∞(ξ)
)

+ (αf(K, 0) − δ)Ψ∞(ξ) (3.21)

in R. Thus, Ψ∞(ξ) > 0 in R. In fact, if there is some ξ0 ∈ R so that Ψ∞(ξ0) = 0,
then Ψ′

∞(ξ0) = 0. It follows from (3.21) that

∫
R

J2(ξ0 − y)Ψ∞(y)dy = 0,

and this implies Ψ∞(y) ≡ 0 in R, which contradicts the fact that Ψ∞(0) = 1.
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Below, define z := (Ψ′
∞/Ψ∞). Thus, z(ξ) satisfies

c∞z(ξ) = d2

∫
R

J2(y)e
∫ ξ−y

ξ
z(s)dsdy + αf(K, 0) − δ − d2. (3.22)

According to lemma 3.10, z(ξ) has finite limits z(±∞) as ξ → ±∞ satisfying

c∞z(±∞) = d2

∫
R

J2(y)e−z(±∞)ydy + αf(K, 0) − δ − d2.

From lemma 3.1, z(±∞) are necessarily positive. Indeed, by definition of z, Ψ′
∞ is

also positive at ±∞. Further, differentiating both sides of (3.22) on ξ, one gives

c∞z′(ξ) = d2

∫
R

J2(y)(z(ξ − y) − z(ξ))e
∫ ξ−y

ξ
z(s)dsdy

= d2

∫
R

J2(y)(z(ξ − y) − z(ξ))
Ψ∞(ξ − y)

Ψ∞(ξ)
dy in R.

Therefore, if z has a minimum or maximum point ξ∗ in R, then z′(ξ∗) = 0. It
follows that z(ξ∗ − y) = z(ξ∗) for all y ∈ R. That is, z(ξ) = z(ξ∗) for all ξ ∈ R.
Hence, following (3.22) and lemma 3.1, there are two different positive roots of
(3.22) if z(ξ) is a constant. Consequently, we have

inf
R

z � min{z(−∞), z(+∞)} > 0.

This gives that Ψ′
∞ > 0 in R. Thus,

0 < Ψ′
∞(0) = lim

k→+∞
Ψ′
k(0) = lim

k→+∞
v′k(0)
vk(0)

and v′k(0) > 0 for k large enough. This contradicts the fact that v′k(0) � 0 for all
k ∈ N and then the proof is completed. �

Remark 3.15. Note that lemma 3.14 applied with c1 = c∗ and c2 = c∗ + 1 yields
the existence of τ > 0 such that v′(ξ) > 0 provided that v(ξ) � τ for ξ ∈ R. This
will be used to show the persistence of travelling waves with c = c∗ below.

Lemma 3.16. lim sup
ξ→+∞

u(ξ) < K.

Proof. Assume there exists a sequence {ξn} converging to +∞ as n→ +∞ such
that u(ξn) → K as n→ +∞. Denote un(ξ) := u(ξ + ξn) and vn(ξ) := vn(ξ + ξn).
Thus, up to extraction of a subsequence, un(ξ) → u∞(ξ) and vn(ξ) → v∞(ξ) in
C1

loc(R) for some non-negative functions u∞ and v∞. Furthermore, 0 < u∞ � K
and v∞ > 0 according to theorem 3.9 and lemmas 3.12, 3.13. Since u∞(0) = K, we
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have u′∞(0) = 0. Thus, following the first equation of (3.1), there holds

0 = d1

(∫
R

J1(y)u∞(−y)dy −K

)
− f(K, v∞)v∞.

This is impossible because∫
R

J1(y)u∞(−y)dy −K � 0 and f(K, v∞)v∞ > 0.

The proof is finished. �

Denote u(+∞) := limξ→+∞ u(ξ) and v(+∞) := limξ→+∞ v(ξ). Then, the fol-
lowing result states the convergence to the positive equilibrium under certain
conditions.

Lemma 3.17. If u(+∞) (or v(+∞)) exists, then both v(+∞) and u(+∞) exist, and
u(+∞) = u∗, v(+∞) = v∗.

Proof. First, suppose lim
ξ→+∞

u(ξ) = u0. Obviously, u0 > 0 according to lemma 3.12.

Assume on the contrary that

ṽ := lim inf
ξ→+∞

v(ξ) < lim sup
ξ→+∞

v(ξ) := ṽ.

Then, some sequences {ξ1n} and {ξ2n} exist satisfying ξ1n → +∞ and ξ2n → +∞ as
n→ +∞ such that

lim
n→+∞ v(ξ1n) = ṽ, v′(ξ1n) = 0 and lim

n→+∞ v(ξ2n) = ṽ, v′(ξ2n) = 0.

Applying the first equation of (3.1), we have

g(u0) − f(u0, ṽ)ṽ = 0 and g(u0) − f(u0, ṽ)ṽ = 0.

On the other hand, since{
0 = cv′(ξ1

n) = d1
∫

R
J1(y)(v(ξ1

n − y) − v(ξ1
n))dy + αf(u, v)v(ξ1

n) − δv(ξ1
n) − γv2(ξ1

n),

0 = cv′(ξ2
n) = d2

∫
R

J2(y)(v(ξ2
n − y) − v(ξ2

n))dy + αf(u, v)v(ξ2
n) − δv(ξ2

n) − γv2(ξ2
n),

it follows that

αf(u0, ṽ)ṽ − δṽ − γṽ
2 � 0 � αf(u0, ṽ)ṽ − δṽ − γṽ2

as n→ +∞. In view of the fact that αf(u0, ṽ)ṽ = αf(u0, ṽ)ṽ, we have

0 � δṽ + γṽ
2 − δṽ − γṽ2 = (ṽ − ṽ)[δ + γ(ṽ + ṽ)] > 0,

which is a contradiction. Consequently, we have ṽ = ṽ. That is, v(+∞) exists.
Following the assumption (A4) and lemma 3.13, there hold lim

ξ→+∞
u(ξ) = u∗ and

lim
ξ→+∞

v(ξ) = v∗.

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.4


1986 F.Y. Yang, W.T. Li and J.B. Wang

On the other hand, assume lim
ξ→+∞

v(ξ) = v0. According to lemma 3.13, we know

v0 > 0. For any sequence {ξn}∞n=1 satisfying ξn → +∞ as n→ +∞, let un(ξ) :=
u(ξn + ξ) and vn(ξ) := v(ξn + ξ). Thus, some function u∞(ξ) exists such that

un(ξ) → u∞(ξ) and vn(ξ) → v0 in C1
loc(R) as n→ +∞.

Since (un, vn) satisfy

cv′n(ξ) = d2

(∫
R

J2(y)vn(ξ − y)dy − vn

)
+ αf(un, vn)vn − δvn − γv2

n,

letting n→ +∞, we have

0 = αf(u∞, v0)v0 − δv0 − γv2
0 .

That is

f(u∞(ξ), v0) =
1
α

(δ + γv0) in R.

Now, following the assumption (A2) and lemma 3.13, there is some constant ũ0 > 0
so that u∞(ξ) ≡ ũ0 in R. Thus, by arbitrariness of the sequence {ξn}, we have
lim

ξ→+∞
u(ξ) = ũ0. Consequently, the same arguments as above can get ũ0 = u∗ and

v0 = v∗. This ends the proof. �

In summary, the main result of this section is the following.

Theorem 3.18. For any c > c∗, there exist travelling waves of system (1.1)
satisfying

0 < u < K, v > 0 in R

and

lim
ξ→−∞

u(ξ) = K, lim
ξ→−∞

v(ξ) = 0 (3.23)

together with

0 < lim inf
ξ→+∞

u(ξ) � lim sup
ξ→+∞

u(ξ) < K,

0 < lim inf
ξ→+∞

v(ξ) � lim sup
ξ→+∞

v(ξ) < +∞.
(3.24)

3.3. Travelling waves for c = c∗

This subsection is devoted to the existence of travelling wave solution (u, v)
for system (1.1) satisfying the asymptotic behaviour (3.23) and (3.24) with the
critical wave speed c∗. This proof depends on a limiting argument. That is, choose
a sequence {cn} firstly, and then pass to the limit cn → c+∗ . Noting that the lower
solutions u and v depend on cn, they will be degenerate as cn → c+∗ . Thus, we need
to find a new method to prove the asymptotic behaviour (3.23).
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Theorem 3.19. When c = c∗, system (1.1) admits a positive bounded travelling
wave solution (u(ξ), v(ξ)) satisfying the asymptotic behaviour (3.23) and (3.24).

Proof. Choose some sequence {cn} of real numbers such that cn ∈ (c∗, c∗ + 1] with
cn > cn+1 for all n ∈ N and limn→+∞ cn = c∗. Let (un, vn) be the solutions of (3.1)
associated with cn. It then follows from theorem 3.18 that 0 < un < K, 0 < vn <
+∞ and (un, vn) satisfy (3.23)-(3.24).

To complete the proof, we first claim that lim inf
n→+∞ ‖vn‖L∞(R) > 0. Otherwise, up to

extraction of a subsequence, assume lim
n→+∞ ‖vn‖L∞(R) = 0 without loss of generality.

Denote νn := ‖vn‖L∞(R). Hence, there exist some τ0 > 0 small enough and n0 > 0
large enough such that νn < τ0 for all n � n0. Now, the same arguments as in
lemma 3.14 give that v′n(ξ) > 0 for n � n0 (see also remark 3.15). This implies that
lim

ξ→+∞
vn(ξ) exists for n � n0 . Thus, following lemma 3.17, we know

lim
ξ→+∞

vn(ξ) = v∗ > 0,

for all n � n0, which contradicts the fact that ‖vn‖L∞(R) → 0 as n→ +∞. There-
fore, due to the fact that vn(−∞) = 0 and vn > 0 for each n ∈ N, there is some
ξn ∈ R so that vn(ξn) = τ∗ for some sufficiently small 0 < τ∗ � v∗. Let

ũn(ξ) := un(ξ + ξn) and ṽn(ξ) := vn(ξ + ξn)

for all ξ ∈ R. Without loss of generality, one can assume ṽn(ξ) � τ∗ for all ξ < 0.
Note that both ũn(·) and ṽn(·) are all uniformly bounded in C2(R). Thus, up
to extracting a subsequence for necessary, (ũn(·), ṽn(·)) converge to (u(·), v(·)) in
C1

loc(R) × C1
loc(R) as n→ +∞. Here, (u(ξ), v(ξ)) satisfies (3.1) with wave speed c∗.

Meanwhile, 0 � u(ξ) � K, v(ξ) � 0 and v(0) = τ∗.
Below, we prove that 0 < u(ξ) < K and v(ξ) > 0 in R. Assume there is some

ξ0 ∈ R so that v(ξ0) = 0. Then v′(ξ0) = 0. Applying the second equation of system
(3.1), we have

d2

∫
R

J2(ξ0 − y)v(y)dy = 0.

Thus, v(y) ≡ 0 in R. This contradicts the fact v(0) = τ∗ > 0. Additionally, if some
ξ∗ ∈ R exists so that u(ξ∗) = 0, then u′(ξ∗) = 0. The first equation of system (3.1)
gives that

0 = cu′(ξ∗) = d1

∫
R

J1(y)u(ξ∗ − y)dy + g(0). (3.25)

Seen from (3.25), a direct contradiction happens if g(0) > 0. On the other hand, if
g(0) = 0, then (3.25) implies that u(y) ≡ 0 in R. In this case, it follows from the
second equation of system (3.1) that

c∗v′(ξ) = d2

∫
R

J2(y)(v(ξ − y) − v(ξ))dy − δv − γv2. (3.26)

Analogous arguments to those presented in lemma 3.12, we know v ∈ L1(R). Then,
integrating (3.26) on R, one can get v ≡ 0 in R. This contradicts the fact that v > 0
in R and it then follows that u > 0 in R. Moreover, we also can get u < K in R.
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Finally, we show the asymptotic behaviour. The similar discussion as lemmas 3.12
and 3.13 can show that

lim inf
ξ→+∞

u(ξ) > 0 and lim inf
ξ→+∞

v(ξ) > 0.

On the other hand, by the choice of τ∗ and v(0) = τ∗, we have v′(ξ) > 0 for
ξ < 0. Thus, lim

ξ→−∞
v(ξ) exists, denoted by v(−∞) := lim

ξ→−∞
v(ξ). If v(−∞) > 0,

then lemma 3.17 gives that v(−∞) = v∗ � τ∗ and u(−∞) = u∗. A contradiction
happens because v(−∞) < τ∗. This implies that v(−∞) = 0. Further, assume

uinf := lim inf
ξ→−∞

u(ξ) < lim sup
ξ→−∞

u(ξ) =: usup � K

for contradiction. Thus, there is some real number sequence {ξ̃n} satisfying
lim

n→+∞ ξ̃n = −∞ such that lim
n→+∞u(ξ̃n) = uinf and u′(ξ̃n) = 0. We then have

0 = c∗u′(ξ̃n)= d1

∫
R

J1(y)u(ξ̃n − y)dy − d1u(ξ̃n) + g(u(ξ̃n)) − f(u(ξ̃n), v(ξ̃n))v(ξ̃n).

Since lim
n→+∞ v(ξ̃n) = 0, letting n→ +∞ on both sides of the above equation, it

follows that

d1uinf − g(uinf) = d1 lim
n→∞

∫
R

J1(y)u(ξ̃n − y)dy � d1uinf .

Hence, g(uinf) � 0. In view of uinf � 0, (A1) implies that uinf � K. Therefore, we
get lim

ξ→−∞
u(ξ) = K. The proof is completed. �

4. The non-existence of travelling waves

Now, we are concerned with the non-existence of travelling waves of system (1.1)
when the wave speed is below its critical value.

Theorem 4.1. For any 0 < c < c∗, there exist no bounded non-negative travelling
waves of system (1.1) with lim

ξ→−∞
u(ξ) = K and lim

ξ→−∞
v(ξ) = 0.

Proof. From the second equation of system (3.1), we have

c
v′(ξ)
v(ξ)

= d2

∫
R

J2(y)e
∫ ξ−y

ξ
v′(s)
v(s) dsdy − d2 + αf(u, v) − δ − γv

� d2

∫
R

J2(y)e
∫ ξ−y

ξ
v′(s)
v(s) dsdy − d2 − (δ + γ‖v‖L∞(R)).

Then, it follows from lemma 3.11 that v′(ξ)
v(ξ) is bounded in R. Take some point

sequence {ξn}∞n=1 with ξn → −∞ as n→ +∞ and define

un(ξ) := u(ξn + ξ), vn(ξ) :=
v(ξn + ξ)
v(ξn)

.
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Note that

vn(ξ) :=
v(ξn + ξ)
v(ξn)

= exp

{∫ ξn+ξ

ξn

v′(s)
v(s)

ds

}
.

Then vn(ξ) is locally uniformly bounded in R. Moreover, (un(ξ), vn(ξ)) satisfy

cv′n(ξ) = d2

∫
R

J2(y)(vn(ξ − y) − vn(ξ))dy + αf(un(ξ), v(ξn + ξ))vn(ξ)

− δvn(ξ) − γv(ξn + ξ)vn(ξ).
(4.1)

It is noticed that v′n(ξ) and v′′n(ξ) are also locally uniformly bounded in R. Thus,
some v∞(ξ) exists such that

vn(ξ) → v∞(ξ) in C1
loc(R) as n→ +∞.

Since lim
ξ→−∞

u(ξ) = K and lim
ξ→−∞

v(ξ) = 0, it follows that lim
n→+∞un(ξ) = K and

lim
n→+∞ vn(ξn + ξ) = 0 locally uniformly in R. Now, letting n→ +∞ on both sides

of (4.1), we have

cv′∞(ξ) = d2

∫
R

J2(y)(v∞(ξ − y) − v∞(ξ))dy + (αf(K, 0) − δ)v∞(ξ). (4.2)

Since v∞(0) = 1 by the definition of vn(ξ), it follows from (4.2) that v∞(ξ) > 0 in
R. Set z(ξ) = (v′∞(ξ))/(v∞(ξ)). Then, applying (4.2) yields that z(ξ) satisfies

cz(ξ) = d2

∫
R

J2(y)e
∫ ξ−y

ξ
z(s)dsdy − d2 + αf(K, 0) − δ.

According to lemma 3.10, we know lim
ξ→±∞

z(ξ) exist and satisfy the equation

cλ = d2

∫
R

J2(y)e−λydy − d2 + αf(K, 0) − δ.

This gives c > c∗ and one contradiction happens. The proof is completed. �

5. Conclusions and applications

In this paper, we mainly consider the wave propagation for a class of non-
cooperative system with non-local dispersal, which can be applied to some
prey-predator models as well as disease-transmission models. The existence of trav-
elling waves is obtained by using the upper-lower solutions and combining with
the Schauder’s fixed-point theorem, and the non-existence of travelling waves can
also be shown by skilled analysis. theorems 3.18, 3.19 and 4.1 combined provide a
threshold condition for the existence and non-existence of travelling wave solutions
in terms of the minimal wave speed c∗.

Compared with the work in Zhang et al. [45], we must overcome the difficulties
brought both by the non-compactness of solution maps due to the appearance of
the convolution operator and by the non-preservation of system (1.1). In this work,

https://doi.org/10.1017/prm.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.4


1990 F.Y. Yang, W.T. Li and J.B. Wang

we exploit a different method to show the existence of travelling waves, which is
also effective for system (1.2). Moreover, one of the important issues is that of
the estimation of the eventual states of travelling waves. That is the problem of
the persistence of travelling waves. The method applied in Zhang et al. [45] is not
suitable for our non-local system (3.1) and we overcome this difficulty by some
skilled analysis. It should be pointed out that we can further confirm that the
travelling waves should connect two equilibria (strong travelling waves) in some
certain cases. As an application, we consider the following disease-transmission
model:

{
St = d1(J1 ∗ S − S) + b(K − S) − βSI,

It = d2(J2 ∗ I − I) + βSI − δI − γI2,
(5.1)

in which d1, d2, b,K, β, δ, γ are all positive constants. By the simple calculations,
we can obtain that (5.1) admits a unique positive constant equilibrium denoted by
(S∗, I∗) if βK > δ. Let ξ = x+ ct and (S(ξ), I(ξ)) satisfies

{
cS′(ξ) = d1(

∫
R
J1(y)S(ξ − y)dy − S) + b(K − S) − βSI,

cI ′(ξ) = d2(
∫

R
J2(y)I(ξ − y)dy − I) + βSI − δI − γI2.

(5.2)

Thus, we have the following result.

Theorem 5.1. Assume βK > δ and βδ < bγ. Suppose (J) holds. Then, there is
some c∗ > 0 such that system (5.1) admits a travelling wave solution (S(ξ), I(ξ))
with

lim
ξ→−∞

S(ξ) = K, lim
ξ→−∞

I(ξ) = 0,

lim
ξ→+∞

S(ξ) = S∗, lim
ξ→+∞

I(ξ) = I∗
(5.3)

for any c � c∗, and admits no travelling waves satisfying (5.3) when 0 < c < c∗.

Proof. The existence and non-existence of travelling waves are straightforward con-
sequences of theorems 3.18, 3.19 and 4.1. It only needs us to verify the asymptotic
behaviour at +∞ if the travelling waves exist.

Consider the following problem

⎧⎪⎨
⎪⎩
ut = d1(J1 ∗ u− u)(x, t) + b(K − u) − βuv in R × R

+,

vt = d2(J2 ∗ v − v)(x, t) + βuv − δv − γv2 in R × R
+,

u(x, 0) = S(x), v(x, 0) = I(x) in R.

(5.4)

Thus, (u(x, t), v(x, t)) = (S(x+ ct), I(x+ ct)) is the unique solution of problem
(5.4). Note that u(x, t) = S(x+ ct) � K for all x ∈ R and t � 0. So, we know
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v(x, t) = I(x+ ct) satisfies{
vt � d2(J2 ∗ v − v)(x, t) + (βK − δ − γv)v in R × R

+,

v(x, 0) = I(x) in R.

The comparison principle [36, theorem 2.2] gives that v(x, t) � (βK − δ)/γ for all
x ∈ R and t � 0. Consequently, u(x, t) = S(x+ ct) satisfies{

ut � d1(J1 ∗ u− u)(x, t) + b(K − u) − β(βK−δ)
γ u in R × R

+,

u(x, 0) = S(x) in R.

Therefore, we have

u(x, t) � bKγ

bγ + β(βK − δ)
> 0 in R × R

+.

Now, define

SΔ := lim inf
ξ→+∞

S(ξ), SΔ := lim sup
ξ→+∞

S(ξ),

IΔ := lim inf
ξ→+∞

I(ξ), IΔ := lim sup
ξ→+∞

I(ξ).

Obviously, it follows from the above discussion that

0 <
bKγ

bγ + β(βK − δ)
� SΔ � SΔ � K.

Assume that SΔ < SΔ and IΔ < IΔ without loss of the generality, and the other
cases can be obtained similarly. Then, there exist some sequences {ξ1n} and {ξ2n},
satisfying ξ1n → +∞ and ξ2n → +∞ as n→ +∞, such that

S′(ξ1n) = 0, S(ξ1n) → SΔ as n→ ∞,

S′(ξ2n) = 0, S(ξ2n) → SΔ as n→ ∞.

Hence, following the first equation of (5.2), we have{
0 = d1

∫
R
J1(y)(S(ξ1n − y) − S(ξ1n))dy + b(K − S(ξ1n)) − βS(ξ1n)I(ξ

1
n),

0 = d1

∫
R
J1(y)(S(ξ2n − y) − S(ξ2n))dy + b(K − S(ξ2n)) − βS(ξ2n)I(ξ

2
n).

Letting n→ ∞ on both sides of the above equations, we have{
0 � b(K − SΔ) − βSΔI

Δ,

0 � b(K − SΔ) − βSΔIΔ.
(5.5)

Similarly, some sequences {η1
n} and {η2

n} exist, satisfying η1
n → ∞ and η2

n → ∞ as
n→ ∞, such that{

0 = d2

∫
R
J2(y)(I(η1

n − y) − I(η1
n))dy + βS(η1

n)I(η
1
n) − δI(η1

n) − γI2(η1
n),

0 = d2

∫
R
J2(y)(I(η2

n − y) − I(η2
n))dy + βS(η2

n)I(η
2
n) − δI(η2

n) − γI2(η2
n).
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Therefore, {
0 � (βSΔ − δ − γIΔ)IΔ,
0 � (βSΔ − δ − γIΔ)IΔ,

(5.6)

which gives that {
βSΔ � δ + γIΔ,

βSΔ � δ + γIΔ.
(5.7)

This shows that β(SΔ − SΔ) � γ(IΔ − IΔ). At the same time, by (5.7), we have

{
βSΔI

Δ � δIΔ + γIΔI
Δ,

βSΔIΔ � δIΔ + γIΔIΔ.

It then follows that β(SΔI
Δ − SΔIΔ) � δ(IΔ − IΔ). On the other hand, we can

conclude from (5.5) that β(SΔI
Δ − SΔIΔ) � b(SΔ − SΔ). Hence, we have

γ

β
(IΔ − IΔ) � δ

b
(IΔ − IΔ).

That is, (βδ − bγ)(IΔ − IΔ) � 0. Since βδ < bγ, we get IΔ = IΔ and it is easy to
obtain that SΔ = SΔ according to (5.5). Now, due to the fact that (5.2) admits a
unique positive constant equilibrium (S∗, I∗), there are

SΔ = SΔ = S∗ and IΔ = IΔ = I∗.

This ends the proof. �

Note that the results and the methods in § 3 strongly depend on the assumption
(A3). That is, when γ = 0, it must be required that lim

v→+∞ f(u, v) = 0 for any u � 0.

However, for system (5.1), (A3) does not hold when γ = 0, and this leads to the
fact that system (5.1) has no bounded super solution. Therefore, we must discuss
the boundedness of I(ξ). Below, we always assume γ = 0 and βK > δ. Additionally,
assume that J2 is compactly supported on R. Define

f(λ, c) = d2

∫
R

J2(y)e−λydy − d2 − cλ+ βK − δ.

Similarly, we can show lemma 3.1 holds for f(λ, c). Meanwhile, the functions

S(ξ) = K, S(ξ) = max{K − σeβξ, 0},
I(ξ) = eλ1ξ, I(ξ) = max{eλ1ξ(1 −Meεξ), 0}

are super and lower solutions of system (5.2), in which σ, β, ε,M are all positive
constants. Hence, we have the following results by the analogous arguments as in § 3.
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Theorem 5.2. Assume βK > δ and c > c∗. Then (5.2) admits a travelling wave
solution (S(ξ), I(ξ)) satisfying

S(−∞) = K, I(−∞) = 0, 0 < S(ξ) < K and I(ξ) > 0 in R.

In the rest of this section, we always assume (S(ξ), I(ξ)) is the solution of (5.2)
satisfying theorem 5.2 without other description.

Theorem 5.3. I(ξ) is bounded in R. Moreover, (S(ξ), I(ξ)) satisfies

lim inf
ξ→+∞

S(ξ) > 0 and lim inf
ξ→+∞

I(ξ) > 0. (5.8)

Before showing this theorem, we prove some technical results, see also [11,40]
for the discrete endemic model.

Lemma 5.4. If some sequence {ξn} exists so that I(ξn) → ∞ as n→ +∞, then
S(ξn) → 0 as n→ +∞.

Proof. On the contrary, assume there is some subsequence of {ξn}n∈N, still denoted
by {ξn}, such that S(ξn) � ε0 for some positive constant ε0 and all n ∈ N. For the
first equation of (5.2), there is cS′(ξ) � (2d1 + b)K in R. Hence, some positive
constant δ0 exists so that S(ξ) � ε0/2 for ξ ∈ [ξn − δ0, ξn] and all n ∈ N. Following
lemma 3.11 and the second equation of (5.2), there is some constant C0 > 0 such
that ∣∣∣∣I ′(ξ)I(ξ)

∣∣∣∣ � C0 in R.

Thus, we have

I(ξn)
I(ξ)

= exp

{∫ ξn

ξ

I ′(s)
I(s)

ds

}
� eC0δ0 for all ξ ∈ [ξn − δ0, ξn].

This gives that

min
ξ∈[ξn−δ0,ξn]

I(ξ) � I(ξn)e−C0δ0 → ∞ as n→ +∞.

Additionally, applying the first equation of (5.2), one can get

max
ξ∈[ξn−δ0,ξn]

cS′(ξ) � (2d1 + b)K − βε0
2

min
ξ∈[ξn−δ0,ξn]

I(ξ) → −∞ as n→ +∞.

Thus, taking M̃ = 2K/δ0, there is some n0 > 0 such that

S′(ξ) < −M̃ for all ξ ∈ [ξn − δ0, ξn],

provided n � n0. Integrating this inequality from ξn − δ0 to ξn, one can get

S(ξn) < S(ξn − δ0) − δ0M̃ � K − δ0M̃ = −K,
which contradicts the fact that S(ξ) > 0 for all ξ ∈ R. The proof is completed. �
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Lemma 5.5. If lim sup
ξ→∞

I(ξ) = ∞, then lim
ξ→∞

I(ξ) = ∞.

Proof. Assume Iinf := lim inf
ξ→∞

I(ξ) <∞ for the contrary. Then, there exists some

sequence {ξk} such that limk→∞ I(ξk) = Iinf with ξk → ∞ as k → ∞. Without loss
of generality, we can assume I(ξk) � Iinf + 1 for all k ∈ N.

For each k ∈ N, choose a point ηk ∈ [ξk, ξk+1] such that I(ηk) = max
[ξk,ξk+1]

I(ξ).

Since lim sup
ξ→∞

I(ξ) = ∞, we have lim
k→∞

I(ηk) = ∞. Thus, following lemma 5.4,

S(ηk) → 0 as k → ∞. Denote m0 = sup
ξ∈R

|(I ′(ξ))/(I(ξ))| and assume I(ηk) >

(Iinf + 1)em0r without loss of generality, in which r is the radius of suppJ2. Note
that

I(ηk)
I(ξ)

= e
∫ ηk

ξ
I′(s)
I(s) ds � em0|ξ−ηk| � em0r if |ξ − ηk| � r.

This gives I(ξ) > Iinf + 1 for all ξ ∈ [ηk − r, ηk + r]. Hence, [ηk − r, ηk + r] ⊂
(ξk, ξk+1). Now, in view of the second equation of (5.2), it follows that

0 = cI ′(ηk) = d2

∫
R

J2(y)(I(ηk − y) − I(ηk))dy + βS(ηk)I(ηk) − δI(ηk)

� (βS(ηk) − δ)I(ηk),

which contradicts the fact that −δI(ηk) < 0 for all k ∈ N. The proof is finished. �

The proof of theorem 5.3. Since I(−∞) = 0 and I(ξ) is continuous in R, we only
need to prove the case that lim sup

ξ→+∞
I(ξ) < +∞. On the contrary, assume that this

is not true. Thus, lemma 5.5 implies that lim
ξ→+∞

I(ξ) = +∞. Meanwhile, lemma 5.4

gives lim
ξ→+∞

S(ξ) = 0. Let w(ξ) = (I ′(ξ))/(I(ξ)). It follows from the second equation

of (5.2) that w(ξ) satisfies

cw′(ξ) = d2

∫
R

J2(y)e
∫ ξ−y

ξ
w(s)dsdy − d2 + βS(ξ) − δ in R.

Since lim
ξ→−∞

S(ξ) = K and lim
ξ→+∞

S(ξ) = 0, applying lemma 3.10, we know some

ν0 ∈ R exists satisfying lim
ξ→+∞

w(ξ) = ν0 and

cν0 = d2

∫
R

J2(y)e−ν0ydy − d2 − δ.

Since I(ξ) → +∞ as ξ → +∞ and I(ξ) > 0 in R, there is ν0 > 0. Additionally, due
to the fact that

f(ν0, c) = βK > 0,

we have ν0 > max{λ1, λ2}. Thus, some ξ0 > 0 exists such that for any ξ � ξ0

I(ξ) � Ce
λ1+λ2

2 ξ
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with some constant C > 0 large enough. However, this contradicts the fact that
I(ξ) � eλ1ξ in R and then I(ξ) is bounded in R. Once this fact holds, one can get the
later results by the arguments analogous to those of § 3. The proof is completed. �

Theorem 5.6. Suppose βK > δ. If c = c∗, then system (5.2) admits travelling
waves with (5.8).

Proof. Choose some sequence cn ∈ (c∗, c∗ + 1] and cn satisfies cn > cn+1 for all
n ∈ N and limn→+∞ cn = c∗. Let (Sn(ξ), In(ξ)) be the solutions of system (5.2)
associated with cn.

Here, seen from the proof of theorem 3.19, we only need to prove that In(ξ) is
uniformly bounded in R. That is, there is some constant C̃ > 0 independent on n so
that ‖In(·)‖L∞(R) < C̃. On the contrary, assume some sequence {ξn}n∈N exist such
that In(ξn) → +∞ as n→ +∞, and it then follows from lemma 5.4 that Sn(ξn) → 0
as n→ +∞. Without loss of generality, we may assume that In(ξn) = max

R

In(ξ)

for each n. Hence, we have I ′n(ξn) = 0 and

0 = cnI
′
n(ξn) = d2

∫
R

J2(y)(In(ξn − y) − In(ξn))dy + βSn(ξn)In(ξn) − δIn(ξn)

� (βSn(ξn) − δ)In(ξn).
(5.9)

However, since Sn(ξn) → 0 as n→ +∞, there is some n0 > 0 large enough so
that βSn(ξn) < δ and In(ξn) > 0 for all n � n0. Thus, applying (5.9) yields a
contradiction and the proof is completed. �

As a direct application of theorem 4.1, we have the following non-existence result.

Theorem 5.7. Suppose βK > δ and 0 < c < c∗. Then there are no bounded
travelling waves of system (5.2) with (5.8).
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