
The Journal of Laryngology and Otology
January 2000, Vol. 114, pp. 6–16

Review Articles

Hearing: cracking the code

C. W. R. J. Cremers

Key words: History of medicine; Hearing loss, sensorineural; Genetics, medical

Prologue
Otology started as a specialty in France, by branch-
ing out from general surgery almost two centuries
ago. Great Britain, Austria and Germany rapidly
followed this trend. The Frenchman, Jean Marie
Gaspard Itard (1774–1838), published his famous
textbook Traité des Maladies de l’Orielle et de
l’Audition after 20 years of medical practice in
Paris.1 In 1834 Jean Pierre Bonnafont (1805–1891)
developed the �rst otoscope, an instrument for
looking into the narrow ear canal.2 It was a
revolutionary design, because light could enter the
instrument from the side. Then, via a combination of
mirrors, it coincided with the direction in which the
physician was looking and lit up the area under
examination. It was not until 1896 that an electric
light source was attached to the side of the
otoscope.2 Very often, progress in medical science
is made possible by technical advances.

The origination of the ear, nose and throat specialty
At the turn of the century ear, nose and throat
surgery, or otorhinolaryngology, originated from a
combination of otology and laryngology, which
themselves had very different backgrounds. The
�rst otologists were surgeons, who were used to
employing scalpel and drill, whereas the �rst
laryngologists were physicians who combined their
knowledge of the larynx with that of the lungs. The
connection between laryngology and otology was
rhinology, initially also part of the domain of the
laryngologists.

In the 19th century otologists and laryngologists
were separate specialists: they had their own clinics
and, in the latter part of the century, they also had
their own scienti�c journals. It was not until the turn
of the century that the two groups joined forces and
became otorhinolaryngologists or, as they are more
popularly known ear, nose and throat specialists.

Pioneers in ENT surgery and hereditary deafness
The pioneers in the �eld of otology showed great
interest in the deaf and the deaf and dumb, and
consequently in the causes of congenital deafness,
which would lead to deaf–mutism if the patient did
not receive special education. One of them was the
Irish otologist Sir William Wilde (1815–1876), the
father of Oscar Wilde. In 1841 he accepted the post
of medical commissioner because a census was being
held in Ireland. He added a question to the census
about the prevalence of deafness in families and, in
the course of his duties, managed to make the
acquaintance of several families with deafness. In
1853 he drew up their pedigrees and indicated the
family members who were deaf. In this way he was
the �rst to describe the direct or dominant pattern of
inheritance.3 In 1858, the famous Berlin ophthalmol-
ogist Albrecht von Graefe (1828–1870)4 published
the �rst description of a syndrome characterized by a
combination of congenital deafness and pigmenta-
tion of the retina, known at that time as retinitis
pigmentosa. In adulthood this disorder leads to
blindness. Another Berlin ophthalmologist, Richard
Liebreich (1830–1917), continued von Graefe’s work
and performed a systematic study on this syndrome.5

He examined 341 deaf people from Berlin, and he
was very surprised to �nd that this syndrome was
very common among deaf people with a Jewish
background. Congenital deafness was four times
more common among Jews (1:368) than among the
remaining population (1:1477). He understood that
the higher percentage of consanguinity among Jews
must be associated with the cause.

In the �rst half of the 19th century reports had
appeared in France on the strikingly high percentage
of consanguinity among the parents of deaf children
at the schools for the deaf in Poiters and Paris.
Owing to the fact that consanguinity between
spouses was not unusual at that time, and moreover
did not always lead to congenital anomalies, the
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meaning of these observations was not properly
understood. The Berlin otologist Arthur Hartmann
(1849–1931) published the �rst description of indir-
ect inheritance, besides the direct inheritance
pattern.6 He based his description of direct inheri-
tance on the autosomal dominant inheritance pattern
and his description of indirect inheritance on the
autosomal recessive inheritance pattern, as they
were de�ned at the beginning of this century
according to the laws formulated by Gregor Johann
Mendel (1822–1884) in 1865. The Viennese otologist
Adam Politzer (1835–1920) is considered to be the
founder of modern scienti�c otology. He organized
and gave courses to 7000 foreign doctors. His
Lehrbuch der Ohrenheilkunde was �rst published in
1876.7 There were �ve editions and it was translated
into English, Italian and Spanish. In the second
German edition, published in 1887,7 Politzer empha-
sized that heredity was a major cause of deafness. He
adopted every detail of the conclusions drawn by
Hartmann about the existence of a direct and an
indirect pattern of inheritance for deafness.

Animal models for human hereditary deafness and
eugenetic tendencies
In 1942, three Dutch physicians, Van Gilse, Hinnen
and Nieuwenhuijse,8 published a book in English
about the heredity of ENT diseases. The book gives
a good impression of how research was performed
into the heredity of deafness during the �rst half of
the 20th century. The authors also made a mathe-
matically based stand against the detrimental aspects
of the eugenetic movement that had taken root,
particularly in the USA and Germany.9 There were
also extensive descriptions of in-depth histological
studies on deaf animals, especially on deaf species of
mice known at that time. Very few people realized
how important this and later data on these deaf mice
would be in the future. One exception was Deol
from London.10–21,49 It is partly through their insight
and efforts that the present-day study of candidate
genes for hereditary deafness is so successful, but
more about that later.

Incidence of hearing loss
Depending on how it is de�ned, about 10–20 per
cent of the Dutch population suffer from hearing
impairment. It is an invisible and highly invalidating
problem. Hearing impairment is an epidemic
disease.22 ,23 It does not display itself, but literally
withdraws itself, so that others often do not know
that it is there.

Sensorineural hearing loss affects half of the
population of 80-year-olds and one-third of the
population of 70-year-olds.24–26 One in 750 children
is deaf, or becomes deaf in very early childhood.27–32

This handicap generally has a hereditary cause. In
adulthood we do not know how often heredity is
responsible for the development of hearing loss.

First description of hereditary syndromes
Thanks to the invention of the ophthalmoscope by
Hermann von Helmholtz (1821–1894) at the Uni-
versity of Köningsberg in the middle of last century,
it became possible to examine the retina of a
patient’s eye with one’s own eye.2 In contrast, it
has never been possible to examine the inner ear in a
similar way, which strongly hinders the development
of our knowledge about diseases of the inner ear.
However, it was possible for physicians to recognize
a systematic pattern when inner-ear disease occurred
simultaneously with other physical characteristics.
This was particularly valid for the previously men-
tioned example of deafness with a form of blindness
that developed in later life. At present this condition
is called Usher’s syndrome.

Besides studying the causes of hereditary and
acquired deafness at schools for the deaf and in
regions with an increased incidence of hereditary
hearing impairment and deafness, research into
hereditary deafness has concentrated chie�y on
elucidating the many hereditary deafness syndromes.
At present about 450 different, usually rare, heredi-
tary syndromic forms with hearing impairment and
deafness have been described.33 About a dozen of
these forms were �rst observed and described at the
University Hospital Nijmegen.34–51 These syndromes
make up only a small minority of the hearing
impairment and deafness that have a hereditary
cause. In terms of the number of affected adults and
children, the non-syndromic hereditary forms con-
stitute by far the largest group.

In the 1960 and 1970s researchers started to
distinguish between some forms of generally auto-
somal dominant hereditary non-syndromic forms of
hearing impairment. They could do this only on the
basis of the shape of the tone audiogram, combined
with familial examination. Besides recognizing the
pattern of inheritance, it was important to establish
whether the hearing loss was most pronounced in the
low tone, mid-tone or high-tone region.52

Gene linkage, gene isolation and mutation research
To gain more understanding of the inner ear it is
necessary to detect genes which, in a mutated form,
cause hereditary deafness. For this purpose we can
employ gene-linkage studies and gene isolation.
Mutated genes which were responsible for the
development of hereditary hearing loss in species
of deaf mice also appeared to lead to hereditary
forms of deafness in humans.53 Many of these genes
form the building blocks of the inner ear. By means
of analogous studies on animal models, we will be
able to �nd out more about the inner ear on a cell-
biological level. The title of this address refers to
this.

In the 1960 and 1970s gene-linkage studies were
sometimes performed on syndromic forms of hearing
impairment.54–56 In the 1980s gene linkage was
accomplished for several dozen syndromic forms of
hereditary deafness. In the 1990s gene-linkage
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studies and gene isolation were also applied to non-
syndromic forms of hereditary hearing impairment.52

For gene-linkage studies about 200 polymorphic
DNA markers are used, spread over chromosomes
1–22. By means of systematic analysis we look for
one or two of these 200 DNA markers that are
inherited with the genetic defect. At present 50
locations in the genome are known to be related to a
hereditary form of hearing loss. These 50 locations
are always the �rst to be investigated with gene-
linkage studies in a new family with hereditary
deafness. If there is no linkage to any of these
locations, then the whole set of DNA markers is
tested. The availability of far-reaching automation
means that an unknown genetic defect can be
localized in a period of �ve to eight weeks. Finding
the affected gene takes at least several months.

I would like to discuss a number of examples of
such studies, in order to demonstrate how much the
outcomes have increased our clinical knowledge of
hereditary deafness.

X-recessive progressive mixed hearing loss with
stapes ankylosis and perilymphatic gusher during
stapes replacement surgery
Conductive hearing loss can be caused by �xation of
one or more of the ossicles, including the stapes. The
transmission of sound vibrations from the air via the
tympanic membrane to the inner ear will be impeded
by �xation of the stapes. Otosclerosis is a bone
disease of the temporal bone which can cause
�xation of the stapes by bone ingrowth. This leads
to conductive hearing loss, which can be treated with
stapes replacement surgery.57 With every operation
there is a risk of complications, in this case persistent
dizziness and exacerbation of the hearing impair-
ment, sometimes even to total deafness and persis-
tent tinnitus.

Perilymph in the cochlea has the same composi-
tion as cerebrospinal �uid (CSF). CSF can enter the
cranial cavity via two channels, the internal auditory
canal and the cochlear aqueduct The latter some-
times becomes blocked as people grow older, but
this does not seem to have any detrimental effect.
However, when the footplate of the stapes is opened
during stapes replacement surgery, CSF can leak via
the perilymph from the middle ear and �ow out-
wards through the auditory canal if the connection
with the inner ear is too wide. This complication is
called a stapes gusher. Fortunately, it is vary rare.

In 1971 the �rst report appeared on a large
pedigree with progressive, mixed hearing loss
which chie�y affected the men and was transmitted
solely by mothers to their sons.58 This pattern of
heredity is linked with the sex chromosome and is
called X-recessive. In three male members of this
family who underwent stapes replacement surgery
the above-described stapes gusher occurred, and was
accompanied by loss of hearing in the operated
ear.59 In the Netherlands we detected three similar
cases. Ultimately we were able to identify a large
family with these symptoms. At two hospitals a
stapes gusher occurred in two second cousins

younger than 20 years as a complication of stapes
replacement surgery. With the assistance of the
family and the records from the Institute for the
Deaf in St Michielsgestel, we were able to trace the
pedigree of this family, which had many hearing-
impaired and deaf males. The pattern of inheritance
agreed with the previously mentioned X-recessive
pattern. Clinical examination showed that in the
internal auditory canal of the sufferers there was
bony widening laterally. This abnormality can be
detected before surgery by polytomography or,
better still, by CT scanning of the internal auditory
canal (Figure 1), so that the operation can be
cancelled and complications avoided.62 Audiometry
revealed other common characteristics, but they
were less speci�c.60–63

Gene-linkage studies were started on this family in
the mid-1980s. It was clear that, in view of the X-
recessive pattern of inheritance, we only needed to
investigate the relatively small X chromosome. At
that time a great many DNA markers for the X
chromosome were known, in contrast with the non-
sex-linked chromosomes. The Institute for Anthro-
pogenetics in Nijmegen is famous for its expertise
with the X chromosome. After successful gene
linkage,64 affected families from all over the world
agreed to participate. In this way it was possible to
indicate POU3F4 as the gene responsible.65–68 ,174

With the aid of preoperative CT scanning and
supplementary genetic studies we were able to
prevent several persons with this form of hearing
impairment from undergoing surgery. They all
appeared to belong to the next generation of our
existing pedigree. Scienti�cally, the identi�cation of
the POU3F4 gene was an important step forwards.
For the �rst time, a gene had been recognized that
leads to a progressive form of deafness which has no
syndromic characteristics outside the ear.

Usher’s syndrome
In 1919 De Wilde from Amsterdam obtained his
PhD with a thesis on Kinship and Heredity in
Deaf–Mutism and Retinitis Pigmentosa.69 About

Fig. 1
A too-wide communication between the internal auditory

canal and the inner ear is shown by an arrow.
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half a century earlier similar studies had been
performed, chie�y in German.5 ,6,70 ,71 After the
discovery of this syndrome in 1858 by the ophthal-
mologist Albrecht von Graefe4 and the meticulous
study by Liebreich in 1861,5 several other German
teams performed systematic research and recognized
this syndrome in other deaf populations, in whom
the frequency was lower.6 In his book Deaf–Mutism
and Education for the Deaf and Dumb, published in
1880, Arthur Hartmann, an otologist from Berlin,
spent a whole chapter describing deaf–blindness. His
clinical description of the syndrome, which was
characterized by congenital deafness and retinitis
pigmentosa, is strikingly accurate. Nevertheless, the
subject received little attention in the international
literature.

The syndrome was not given the name Usher’s
syndrome until part-way through the 20th century,
after the Scottish ophthalmologist Charles Usher
from Aberdeen had described it in his Bowman
lecture in 1935.72 Other German and English
contributions were made by Adler70 and Lee.71

Usher’s syndrome is a strongly invalidating condition
with an autosomal recessive pattern of inheritance,
which leads to deaf–blindness. The �rst ophthalmo-
logical symptoms in a deaf or hearing-impaired child
often do not appear until the age of ten years. By
that time the family is usually complete and there is
more than one deaf child that will ultimately become
deaf and blind. In their PhD theses, Annelies van
Aarem31 ,73 and Mariette Wagenaar74,75 have rede-
scribed the clinical symptoms (phenotype) of Usher’s
syndrome type IIA on the basis of the genotype.
They have shown that the hearing loss is progressive,
in contrast to the notion that is generally accepted in
the literature.31,73–75 Early diagnosis is only possible
by gene-linkage studies with �anking markers or by
mutation analysis on the affected gene. In 1922, on
the basis of the severity of the hearing loss and on
whether or not the patient’s sense of balance was
functional, Julia Bell concluded that there were two
clinical types.76 At the end of the 1980s international
collaboration was achieved, with a genetic laboratory
at Boys Town Hospital in Omaha, USA (head:
Professor W. Kimberling), to perform gene-linkage
studies and later gene isolation with subsequent
mutation analysis. This resulted in the two previously
mentioned PhD theses on Usher’s syndrome from
Nijmegen.31 ,74 Blood samples were obtained for
gene-linkage studies. On the basis of these and
other gene-linkage studies it appeared that there
were three clinically distinguishable types of Usher’s
syndrome, namely IA –F, IIA –B and III.71 Types IA –F

and IIA –B have six and two genetically distinguish-
able subtypes, respectively.74,77–83 For types IIA and
IB84,85 – the most common types – the gene has been
identi�ed. The mutations vary fairly widely from one
part of the world to another, but also sometimes
between neighbouring countries.86 This �nding
emphasizes the importance of identifying the muta-
tions present in this country. In this way, early
diagnosis of this devastatingly invalidating syndrome
will soon be within our reach.

Pendred’s syndrome
More than 100 years ago, in 1896, the Englishman
Vaughan Pendred87 described an Irish family with
�ve sons and �ve daughters. Two of the girls had
profound childhood deafness. In addition, at the
beginning of puberty they developed a visibly
enlarged thyroid gland (Figure 2). In 1927 four
further families were described.88 It had been known
for many years that a lack of iodine in the diet could
lead to thyroid enlargement and deafness. At the
end of the 1950s it became clear that Pendred’s
syndrome had an autosomal recessive pattern
inheritance.89 In the same period it was found that
a metabolic disturbance in the thyroid gland formed
the basis of the thyroid abnormality.90 Free iodine
did not bind directly and fully with the thyroid
protein thyroglobulin. A new diagnostic test, the
perchlorate test, was developed based on this
de�cient iodine (iodide),-binding capacity. An ava-
lanche of publications with many hundreds of
descriptions of Pendred’s syndrome followed.51 ,91

The full description of Pendred’s syndrome is
based on this. Making a diagnosis of Pendred’s
syndrome is not usually possible until puberty or
even later, because hypothyroidism is only occasion-
ally recognized at a younger age.92 ,93 By the

Fig. 2
Girl with an enlarged thyroid gland and impaired hearing

having Pendred’s syndrome.
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beginning of the 1990s the gene-linkage techniques
had become so powerful that it was believed possible
to achieve gene linkage and subsequent isolation. In
collaboration with the Department of Medical
Genetics of Antwerp University, we started gene-
linkage studies on Pendred’s syndrome.94 ,95 Blood
samples were obtained from about 20 families with
Pendred’s syndrome, chie�y in the Netherlands.
However, in Europe we lack large families, each
with different blood relationships, and we also lack
large families with several affected children. With
the aid of families from Islamic populations, other
centres successfully accomplished gene linkage.
Then various genetic centres were soon able to
shorten the portion of chromosome with the affected
gene.94 ,96–98

In December 1997 the PDS gene was recognized
in Bethesda.99 In view of the existing collaboration,
we were able to perform mutation analysis on our
Pendred patients95 ,100 ,101 and make a start on
rewriting the clinical symptoms.100,101 With the
certainty of mutation analysis, we were able to
demonstrate that the hearing loss in nearly all of our
patients was strongly progressive in very early
childhood, with a deterioration of 7.dB per year
and a subsequent slow decline. New computed
tomography techniques and magnetic resonance
imaging showed that the vestibular aqueduct was
widened in the temporal bones of about 30
cases100–102 (Figures 3, 4).

The vestibular aqueduct is not an open canal but a
closed one that connects the inner ear to the
subarachnoid cavity. In this aqueduct there is a
thin membrane that separates the perilymph in the
cochlea from the CSF. During the past 20 years the
widened vestibular aqueduct has been recognized.
This is characterized by progressive hearing loss,

particularly in early childhood. Previously the cause
of this syndrome was totally unknown. In these
usually isolated cases, mutation analysis of the
Pendred gene and the perchlorate test should be
able to demonstrate whether the patient has
Pendred’s syndrome. In the meantime, we have
found that children with a widened vestibular
aqueduct and Pendred’s syndrome do indeed
become deaf in the short or long term.100 ,101 If they
are too deaf for rehabilitation with a powerful
hearing aid, it has proved possible to treat them
successfully with a cochlear implant. This seems to
be the result of their good language acquisition in
early childhood before they became hearing
impaired. After it has become possible to make an
early diagnosis by means of mutation analysis and
imaging techniques of the temporal bones, we hope
that an effective and reliable surgical technique can
be developed to narrow down the widened vestib-
ular aqueduct and consequently prevent the
progression in hearing loss. Once again this is an
example of how, on the basis of mutation analysis on
the affected gene, the clinical picture of a syndrome
can be rewritten, with new insights into effective
treatment methods.

Non-syndromic autosomal dominant and autosomal
recessive hereditary hearing impairment
As gene-linkage techniques became more powerful
at the beginning of the 1990s, it also became possible
to perform gene-linkage studies on non-syndromic
forms of hereditary hearing loss in a worthwhile
manner.52 ,103–109 These forms of hearing loss could
not be recognized as forming part of a syndrome
because there were no other accompanying features.
This group of non-syndromic forms of hearing loss

Fig. 3 Fig. 4

Figs. 3 and 4
Enlarged vestibular aqueduct (white arrow) in Pendred’s syndrome.
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and deafness affect far more people with hearing
impairment than the group with a syndromic form.
The forms of hereditary deafness that were distin-
guished on the basis of gene linkage received a
letter/number code in chronological order. DFNA
stands for autosomal dominant (Table I), DFNB
stands for autosomal recessive (Table II) and DFN

stands for X- or Y-linked hereditary forms (Table
III) of non-syndromic hearing loss. About one dozen
hereditary mitochondrial syndromic and non-syn-
dromic forms of hereditary hearing loss have been
identi�ed.52,163 Over a period of �ve years we have
discovered about 50 new and different non-syndro-
mic forms of hearing loss. Owing to the rapidity of

TABLE I
non-syndromic autosomal dominant hereditary hearing loss

Locus Chromosomal localization Year Gene cloned Year

DFNA1 5q31 1992117 HDIA1 19971 18

DFNA2 1p34 1994119 GJB3(C 3 31),KCNQ4 ,00 019991 20,121

DFNA3 13q12 1994122 GBJ2(C 3 26) 19981 23

DFNA4 19q13 1995124 – –
DFNA5 7p15 1995125 DFNA5 19981 26

DFNA6 4p16.3 1995127 – –
DFNA7 1q21-q23 1995128 – –
DFNA8/DFNA12 11q22-24 00 0,1995129 ,1 30 TECTA 19981 31

DFNA9 14q12-q13 1996132 COCH 19981 33

DFNA10 6q22-q23 1996134 – –
DFNA11 11q12.3-q21 1996135 MYO7A 19971 36

DFNA13 6p21-p22 1997137 COL11A2 19991 38

DFNA14 4p16 1997139 – –
DFNA15 5q31 1998140 POU4F3 19981 40

DFNA16 2q24 1998141 – –
DFNA17 22q 1998142 – –
DFNA18 3q22 1998143 – –
DFNA19 10 1998144 – –
DFNA20 reserved – – –
DFNA21 6p21 1999145 – –
DFNA22 reserved – – –
DFNA23 reserved – – –
DFNA24 reserved – – –
DFNA25 reserved – – –
DFNA26a 5p11 – – –
DFNA27 reserved – – –
DFNA28 reserved – – –
aUnpublished (Smith et al.)

TABLE II
non-syndromic autosomal recessive hereditary hearing loss dfnb1-26

Locus Chromosomal localization Year Gene cloned Year

DFNB1 13q12 199414 6 GJB2 (C 3 26) 19971 47

DFNB2 11q13.5 199414 8 MYO7A 000,19971 49,150

DFNB3 17p11.2-q12 199515 1 MYO15A 19981 52

DFNB4 7q31 199515 3 PDS 19981 54

DFNB5 14q12 199515 5 – –
DFNB6 3p14-p21 199515 6 – –
DFNB7 9q13-q21 199515 7 – –
DFNB8 21q22 199615 8 – –
DFNB9 2p22-p23 199615 9 OTOF 19991 60

DFNB10 21q22.3 199616 1 – –
DFNB11 9q13-q21 199616 2 – –
DFNB12 10q21-q22 199616 3 – –
DFNB13 7q34-36 199816 4 – –
DFNB14 7q31 199816 5 – –
DFNB15 3q21-q25 and 19p13 199716 6 – –
DFNB16 15q21-q22 199716 7 – –
DFNB17 7q31 199816 8 – –
DFNB18 11p14-15.1 199816 9 – –
DFNB19 18p11 199800 0 – –
DFNB20 11q25 199817 0 – –
DFNB21 11q 199917 1 TECTA 19991 71

DFNB22 reserved – – –
DFNB23a 10p11.2-q21 – – –
DFNB24a 11q23 – – –
DFNB25a 4p15.3-q12 – –
DFNB26 reserved – – –
aUnpublished (R. Smith et al.)
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these developments and the fact that new gene
linkage is often found in a new family, it can be
expected that in the next few years several dozen
more new hereditary forms of hearing loss will be
recognized. This explosion of new knowledge will
lead to our �nding out more about the genes
responsible. In this way we will learn about the
building blocks of the inner ear, and we will gain
more insight into their position and the role they
play in the total functioning of the inner ear.110 At
present it is believed that about 1000 genes are
involved in the build-up and function of the inner
ear.

At the same time the �rst genes have been
identi�ed that, in a mutated form, are responsible
for non-syndromic forms of early childhood deaf-
ness. In the Mediterranean countries one of these
genes, connexin-26, appears to be responsible for
half of the cases of early childhood deafness.111,112

Connexin-26 is a fairly small protein, which means
that research into mutated forms will be simple and
reasonably cheap. As a consequence, the early
diagnosis of hereditary deafness in a young hear-
ing-impaired or deaf child has become reality. In
view of the speed of recent developments, it can be
expected that important new discoveries will be
made very soon. We can conclude that the secret
code which determines how the inner ear functions
will indeed be cracked in the near future.110 ,113,114

The meaning of diagnosing the often unsuspected
hereditary cause of deafness at an early stage is of
great importance for the child and the parents.

It is now a question of making this new knowledge
accessible on a suf�ciently large scale for clinical
practice.
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Ärtze und Studierenden. Stuttgart: Ferdinand Enke, 1876;
2nd edn 1887

8 van Gilse PHG, Hinnen AB, Nieuwenhuijse AC.
Heredity in Diseases in the Field of Oto-rhino-laryngology.
Bibliographia Genetica Deel XIII, No. 4, pp.301–424. ‘s
Gravenhage: Martinus Nijhoff, 1942

9 Ruben RJ. The history of the genetics of hearing
impairment. Ann NY Acad Sci 1991;630:5–15

10 Deol MS. The anomalies of the labyrinth on the mutants
varitint-Waddler, Shaker-2 and Jerker in the mouse.
J.Genet 1954;52:562–88

11 Deol MS. The auditory and development of the mutants
pirouette, shaker-1 and waltzer in the mouse. Proc Roy
Soc Lond Ser B 1956;145:206–13

12 Deol MS, Robins MW. The spinner mouse. J Hered
1962;53:133–6

13 Deol MS. The origin of the abnormalities of the inner ear
in Dreher mice. J Embryol Exp Morphol 1964;12:727–33

14 Deol MS. The abnormalities of the inner ear in Kreisler
mice. J Embryol Exp Morphol 1964;12:474–90

15 Deol MS. A new gene affecting the morphogenesis of the
vestibular part of the inner ear in the mouse. J Embryol
Exp Morphol 1996;16:543–58

16 Deol MS. Inherited diseases of the inner ear in man in the
light of studies on the mouse. J Med Genet 1968;5:137–57

17 Deol MS. The relationship between abnormalities of
pigmentation and of the inner ear. Proc Roy Soc Lond
Ser B 1970;175:201–17

18 Deol MS. An experimental approach to the under-
standing and treatment of hereditary syndromes with
congenital deafness and hypothyroidism. J Med Genet
1973a;10:235–42

19 Deol MS. Congenital deafness and hypothyroidism.
Lancet 1973b;2:105–6

20 Deol MS. De�ciencies of the inner ear in the mouse and
their origin. Colloq Int CNRS 1976;266:163–71

21 Brown KS, Bergsma DR, Barrow MV. Animal models of
pigment and hearing abnormalities in man. Birth Defects
1971; OAS VII no. 4 102–9

22 Parving A. Epidemiology of genetic hearing impairment.
In: Martini A, Read A, Stephens D, eds. Genetics and
Hearing Impairment. London: Whurr, 1996

23 Grote JJ. Slechthorendheid een vergeten volksgezond-
heidsprobleem. Ned Tijdschr Geneeskd 1992;136:2404–6

24 Pederson KE. Presbyacusis. An epidemiological study.
Dissertation, University of Göteborg, 1990
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