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Abstract
We compare two contracts for managing systematic longevity risk in retirement: a collective arrangement
that distributes the risk among participants, and a market-provided annuity contract. We evaluate the
contracts’ appeal with respect to the retiree’s welfare, and the viability of the market solution through
the financial reward to the annuity provider’s equityholders. We find that individuals prefer to bear
the risk under a collective arrangement than to insure it with a life insurers’ annuity contract subject
to insolvency risk (albeit small). Under realistic capital provision hypotheses, the annuity provider is
incapable of adequately compensating its equityholders for bearing systematic longevity risk.
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1. Introduction

Systematic longevity risk is a looming threat to pension systems worldwide. In contrast to idiosyncratic
longevity risk, which is the risk surrounding an individual’s actual date of death given known survival
probabilities, systematic longevity risk concerns the misestimation of future survival probabilities.1 The
persistent trend toward improved life expectancy and the increased uncertainty in mortality develop-
ments make it clear that systematic longevity risk can be distressful for retirement financing, especially
since longevity linked assets are not yet commonplace (Tan et al., 2015).

The global transition of funded pensions from Defined Benefit (DB) to Defined Contribution (DC)
plans2 precipitates the need for sustainable means of managing systematic and idiosyncratic longevity
risks, which have conventionally been borne by the DB plan sponsor. With the decline of DB pension
funds, individuals are given more freedom to manage their retirement capital and rely more on
insurers to provide longevity protection. However, insurance companies’ ability to fulfill that role
on a large scale is questionable, as long-dated guarantees in life annuities are difficult to price and
hedge (Koijen and Yogo, 2017). In the 1980s and 1990s, a number of life insurance companies
defaulted (e.g., First Executive Corporation in the USA, Nissan Mutual Life in Japan). In June
2009, the Hartford Group was bailed out under the US government’s Troubled Asset Relief
Program after incurring significant losses on life annuity products. For individuals, insurers’
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1Systematic and idiosyncratic longevity risks are also referred to as macro- and micro-longevity risks, respectively.
2In 1975, close to 70% of all US retirement assets were in DB plans. In 2015, DB assets accounted for only 33% of total

retirement assets. Over the same period, assets in DC plans and individual retirement accounts grew from 20% to 59%
(Investment Company Institute, 2016). In the UK, 98% of the FTSE 350 companies offered a DC pension plan in 2017
(Willis Towers Watson, 2017).
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insolvency risk has serious consequences. While the optimal, rational individual response to idiosyn-
cratic longevity risk in a frictionless setting is to insure it through pooling (Yaari, 1965; Davidoff et al.,
2005; Reichling and Smetters, 2015), the corresponding response to systematic longevity risk is less
evident, especially when insolvency risk exists.

We consider two ways to manage systematic longevity risk. The first resembles pension plans in the
Netherlands, whereby individuals bear systematic longevity risk under a collective arrangement but
pool idiosyncratic longevity risk. This financial contract is similar to Group Self-Annuitization
(GSA) introduced by Piggott et al. (2005). The second possibility is for individuals to offload the
risk at a cost by purchasing an annuity contract from an equity backed insurance company. Both
options allow individuals to pool idiosyncratic longevity risk, but entail different implications with
regard to systematic longevity risk. We compare these arrangements to ascertain the option that
maximizes individuals’ expected utility. We also investigate the viability of the annuity market by
evaluating the risk-return tradeoff with respect to systematic longevity risk for the equityholders of
the annuity contract provider.

A number of scholars have examined the appeal of participating contracts to retirees, under which
individuals bear longevity risk collectively but pool idiosyncratic ones. We differentiate our work from
analyses that incorporate only idiosyncratic longevity risk (Stamos, 2008; Donnelly et al., 2013;
Milevsky and Salisbury, 2015), but instead associate our analysis with those that consider systematic
longevity risk (Hanewald et al., 2013; Maurer et al., 2013). The main novelty of our work is to con-
currently model individual preferences and the business of an equity backed annuity provider when
systematic longevity risk exists. Despite equityholders’ critical role in the provision of contracts, com-
parisons of the GSA and annuity contracts that include systematic longevity risk disregard this aspect,
by either exogenously setting a default rate, or putting a loading on the contract that eliminates default
risk (e.g., Denuit et al., 2011; Richter and Weber, 2011; Maurer et al., 2013; Qiao and Sherris, 2013).
This approach is incompatible with the fact that insurers’ insolvency risk is non-zero and determines
individuals’ willingness to pay for insurance contracts when the default probabilities are known
(Zimmer et al., 2009, 2018).3

In our setting, to credibly offer insurance against a systematic risk, the annuity provider requires
reserve capital that is constituted either from equity contribution, and/or from contract loading to
absorb unexpected shocks.4 Reserve cushioning has a cost. If the annuity provider solicits capital
from equityholders, then it would have to compensate them with a systematic longevity risk premium.
If the provider charges too high a loading, then individuals would prefer the GSA over the annuity
contract (e.g., Hanewald et al., 2013; Boyle et al., 2015).5 Therefore, the existence of an annuity market
hinges on the provider’s ability to set a contract price such that all stakeholders are willing to partici-
pate in the market. Previous estimates on individuals’ willingness to pay to insure against systematic
longevity risk are low. Individuals are willing to offer a premium of between 0.75% (Weale and van de
Ven, 2016) and 1% (Maurer et al., 2013) for an annuity contract that insures them against systematic
longevity risk, and has no default risk. In contrast, the capital buffer that the annuity provider would
have to possess to restrain its default risk is much larger. To limit the default rate to 1%, the necessary
buffer is around 18% of the contract’s best estimate value (Maurer et al., 2013). These figures suggest

3There is evidence showing that individuals are unaware of insurers’ default risk when purchasing insurance (Table B1 of
Zimmer et al., 2009), and hence may regard annuity contracts as more attractive than they actually are.

4It would be equivalent to consider debt issuance to raise capital, and any dividend policy other than a one-off dividend
payment to equityholders (i.e., any gains before the end of the investment horizon are re-invested). This is because the
Miller–Modigliani propositions on the irrelevance of capital structure (Modigliani and Miller, 1958) and dividend policy
(Miller and Modigliani, 1961) on the market value of firms hold in our setup, which excludes taxes, bankruptcy costs, agency
costs, and asymmetric information.

5While allocating retirement wealth between the annuity contract and the collective scheme is conceptually appealing,
individuals can select only one option in the base setting. One of the benefits of mandatory participation in a collective
scheme is that it averts adverse selection and achieves cost reduction (Bovenberg et al., 2007). In Section 6.4, we consider
the case when individuals optimally allocate their wealth at retirement between the two contracts.
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that the annuity provider has little capacity to compose its reserve capital only from contract loading,
as is commonly assumed (Richter and Weber, 2011; Maurer et al., 2013; Boyle et al., 2015). Equity
capital is thus necessary. We attempt to reconcile the gap between the maximum loading that
individuals are willing to pay, and the minimum capital necessary to provide annuity contracts that
individuals are willing to purchase, by introducing equityholders.

While analyses that incorporate both policy and equityholders exist in insurance (e.g., Filipović
et al., 2015; Chen and Hieber, 2016), they are unforeseen in the literature on the comparison of the
GSA with annuity contracts, which focuses on policyholders only. An exception is Blackburn et al.
(2017), who take the equityholders’ viewpoint when investigating longevity risk management and
the share value of a life annuity provider. Demand for annuities in their model is determined by
an exogenous demand function. Instead, we analyze the policyholders and equityholders concurrently
when annuity demand is endogenous.

Consistent with the inchoate market for longevity hedging instruments, we assume that the annuity
provider has no particular advantage in bearing systematic longevity risk. Insurance companies may in
practice have a comparative advantage in bearing systematic longevity risk, which could be provided by
synergies between product offerings in terms of risk-hedging (Tsai et al., 2010). For example, the sys-
tematic longevity risk exposure of annuities can be partially hedged by life insurance products (see the
discussions on natural hedging in Cox and Lin (2007) and Luciano et al. (2015)). Moreover, the annu-
ity provider is required to maintain the value of its assets above the value of its liabilities – a plausible
regulatory requirement for such a for-profit entity. We investigate risk-sharing between individuals
and the annuity provider’s equityholders within a generation. Extension to inter-generational risk-
sharing entails other concerns such as fairness among cohorts and stability with respect to the age
groups (e.g., Gollier, 2008; Cui et al., 2011; Beetsma et al., 2012; Chen et al., 2016, 2017). Absent
of an assessment of fairness, inter-generational risk sharing improves the adequacy of benefits of
the older ages at the expense of the young (Qiao and Sherris, 2013). Applying instead equal welfare
gain across cohorts as a fairness criterion, Broeders et al. (2018) find that sharing longevity risk across
cohorts yields marginal welfare improvement.

We begin by assuming that the annuity provider composes its buffer entirely from equity capital. In
return for their capital contribution, equityholders receive the annuity provider’s terminal wealth as a
lump sum dividend. Due to equity-capital-cushioning, the annuity contract provides retirement ben-
efits that have a lower standard deviation across scenarios. However, as equity capital is finite, there is a
positive (albeit small) probability that the annuity provider defaults. We assess whether individuals are
willing to pay for an annuity that adequately compensates equityholders for bearing systematic lon-
gevity risk, when individuals have the option to form a collective scheme.

We find that individuals marginally prefer the collective scheme. The Certainty Equivalent Loading
(CEL) that the insurance company would have to charge for individuals to have no preference between
the two contracts is slightly negative (i.e., −0.35% to −0.052%; Table 3), meaning that the insurance
company could only sell the annuity contract at a discount.

Furthermore, exposure to systematic longevity risk does not enhance the equityholders’ risk-return
tradeoff if the annuity provider sells zero-loading contracts. While longevity exposure allows equity-
holders to achieve higher excess returns, it also increases their risk. A capital contribution in the insur-
ance company yields only half of the Sharpe ratio of a pure financial market investment, and a negative
Jensen’s α (Table 4). Consequently, under perfect competition between the two contracts, the annuity
contract would not co-exist with the collective scheme. The implication of our results would be even
stronger if there were frictional costs, e.g., financial distress, agency, regulatory capital, and double tax-
ation costs, because equityholders would require a higher financial return from the capital they
provide.

To further comprehend the tradeoff that an individual faces when selecting a contract, we carry out
sensitivity tests with respect to the individual’s characteristics, systematic longevity risk, and the annu-
ity provider’s default risk. The annuity provider’s default risk is the main determinant for the indivi-
dual’s preference for the annuity contract. For features that do not affect default rates materially, such
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as the deferral period, stock exposure, and parameter uncertainty surrounding the longevity model’s
time trend, the baseline results stay the same. For features that affect default rates, such as higher
standard deviation of the longevity model’s time trend, lower equity capital, or an alternate longevity
model that presents higher uncertainty of survivorship in the old age, then individuals prefer the col-
lective scheme much more when default risk increases, regardless of the underlying driver of default.
Only when we assume substantial uncertainty concerning longevity trends (as in the Cairns et al.
(2006) longevity model) and at the same time impose exogenously no default risk, do individuals
exhibit a preference for the annuity contract. Yet, the individual’s willingness to pay remains insuffi-
cient to entice equityholders to contribute the required amount of capital that would enable the pro-
vision of the contracts.

We present our model in Section 2 and calibrate it in Section 3. We first discuss the baseline case
results from the individual’s perspective (Section 4), then from the equityholders’ point of view
(Section 5). Section 6 is devoted to sensitivity tests on the individual’s traits, stock exposure, the annu-
ity provider’s leverage ratio, as well as the longevity model’s attributes. We conclude in Section 7.

2. Model presentation

We devise a model to investigate the welfare of individuals under a collective retirement scheme and a
market-provided deferred variable annuity (DVA) contract. The setting comprises a financial market
with a constant risk-free rate and stochastic stock index, homogeneous individuals with stochastic life
expectancies, and two contracts for retirement.6 We define and discuss these elements in detail in this
section.

2.1 Financial market

In a continuous-time financial market, the investor is assumed to be able to invest in a money market
account and a risky stock index. The financial market is incomplete due to the lack of longevity linked
securities. We assume that annual returns to the risk-free asset are constant, r. The money market
account is fully invested in the risk-free asset.

The value of the stock index at time t, which is denoted by St, follows the diffusion process,
dSt = St (r + λSσS) dt + StσS dZS,t. ZS is a standard Brownian motion with respect to the physical
probability measure, σS is the instantaneous stock price volatility, and λSσS is the constant
stock risk premium.

2.2 Individuals

At time t0, individuals who are aged x = 25 either form a collective scheme or purchase a deferred
annuity contract with a lump sum capital that is normalized to one. Both retirement contracts com-
mence retirement benefit payments at age 66, up to the maximum age of 95, conditional on the indi-
vidual’s survival. Individuals’ lifespan is determined by survival probabilities that follow the Lee and
Carter (1992) model.

We set the maximum age at 95 because there are a small number of survivors beyond that. For
example, in 2015, life expectancy for the US population was 78.8 years. A 65-year-old American
can expect to live to around age 80 (Xu et al., 2016). The small pool of survivors at high ages amplifies
changes in the GSA funding ratio, subsequently generating extreme benefit adjustments. The baseline
case results do not materially change when the maximum age is extended to 100, but a substantially a
larger number of replications is necessary to achieve the same accuracy. Due to the unreliability of

6We abstract from model uncertainty by assuming that the stochastic dynamics underlying the financial assets and life
expectancies are known.
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mortality statistics for high ages, which give rise to different risk profiles for deep-deferred annuities
(Ji and Zhou, 2017), retirement contracts at very high ages are best analyzed in a separate setting.

2.2.1 Longevity risk model
We assume that individual mortality rates evolve independently from the financial market. Although
productive capital falls as the population ages, empirical evidence on the link between demographic
structure and asset prices is mixed.7

We adopt the Lee and Carter (1992) model, which is widely used (e.g., by the US Census Bureau
and the US Social Security Administration) and studied. This is a one-factor statistical model for long-
run forecasts of age-specific mortality rates. It relies on time-series methods and is fitted to historical
data. The log central death rate for an individual of age x in year t, log(mx,gtt)8 is assumed to linearly
depend on an age-specific constant, and an unobserved period-specific intensity index, kt:

log (mx,t) = ax + bxkt + 1x,t (1)

where exp (ax) is the general shape of the mortality schedule across age; bx is the rate of change of the
log central death rates in response to changes in kt, whereas the error term, 1x,t , is normally distributed
with zero mean and variance s2

x.
The Lee and Carter (1992) model is defined for the central death rates, mx,t , but we apply it to

model the annual rate of mortality, qx,t by the approximation qx,t ≃ 1− exp(−mx,t). The probability
that someone who is aged x at time t0 is alive in s-year time, s px, is then spx =

∏s−1
l=0 (1− qx+l,t+l). We

denote the conditional probability in year t≥ t0 that an individual of age x at time t will survive for at
least s more years as sp(t)x , sp(t)x = ∏s−1

l=0 (1− qx+l,t) = exp
∑l=0

s−1 −mx+l,t

( )
.9

While many refinements of Lee and Carter (1992) exist (e.g., the two-factor model of Cairns et al.
(2006), the addition of cohort effects in Renshaw and Haberman (2006)), the model is not only
reasonably robust to the historical data used, but also produces plausible forecasts that are similar
to those from extensions of the model (Cairns et al., 2011).

2.2.2 Welfare
Individuals maximize expected utility in retirement.10 Benefits from the retirement contracts consti-
tute the individual’s only source of income.11 We consider individuals who exhibit Constant
Relative Risk Aversion (CRRA), and evaluate their utility in retirement by equation (2):

U(J) =
∫T
tR

e−b(t−t0) J
1−g
t

1− g
t−t0 p25dt (2)

where t−t0p25 is the probability that someone who is 25 years old in year t0 is alive in year t ≥ t0, β is the
subjective discount factor γ >1 is the risk aversion parameter, Jt is the retirement income in year t,
and tR is the retirement year whereas T is the year when the individual attains maximum age.

7Erb et al. (1994), Poterba (2001), Ang and Maddaloni (2003), Visco (2006), Schich (2008), Arnott and Chaves (2012).
8mx,t is the ratio of the number of deaths of individuals aged x in year t, over the exposure, defined as the number of aged x

individuals who were living in year t.
9This is an exponentiated finite sum of log-normal random variables that has no known analytical distribution function.

Therefore, we resort to simulation for our analysis. Alternate ways to proceed include quantile estimation of random survival
probabilities in Denuit et al. (2011), or the Taylor series approximation by Dowd et al. (2011).

10We can ignore bequest motives as both contracts provide income only when the individual is still alive.
11In practice, individuals can benefit from social security and other sources of pension income. As we assume homogeneity

across individuals, alternative sources of income for retirement would be identical for all and independent of the individual’s
choice between a GSA or a DVA.
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2.3 Contracts for retirement

There are two retirement contracts. The first is a collective pension called the GSA scheme. The second
is a DVA contract offered by an annuity provider who is backed by equityholders. We describe both
contracts in this section. Appendix A elaborates on the rationale of the definition and provision of the
contracts.

The contracts specify the distribution of financial and systematic longevity risks between the
stakeholders. As the contracts are intended to portray systematic longevity risk, both treat stock market
risk identically – the risk is fully borne by the individuals. The benefits due, henceforth known as enti-
tlements, are fully indexed to the same underlying financial portfolio called the reference portfolio
(e.g., a portfolio that is 20% invested in the stock index, and 80% in the money market account).
The materialization of longevity risk leads the annuity provider either to add to or draw on the capital
reserve provided by equityholders. This modifies the proportion of the equityholders’ contribution
that is exposed to equity risk and ultimately determines the terminal payout to equityholders.
Therefore, the equityholders’ risk-return outcome differs depending on whether the reference port-
folio is exposed to financial market risk.

Systematic longevity risk distribution, however, distinguishes the two contracts. Under the GSA, it
is shared equally among individuals. Under the DVA, the risk is borne by equityholders up to a limit
implied by their equity contribution, beyond which the DVA provider defaults. Both contracts stipu-
late to distribute mortality credit according to the survival probabilities, conditional on the date of
contract sale. The DVA provider’s equityholders bear the risk that the survival probability forecast
deviates from the realized values. The provider uses its equity capital to finance underestimation of
systematic longevity, and disburses any surplus arising from overestimation of longevity to its equity-
holders as a dividend.

Due to the lack of a liquid market of financial assets associated with systematic longevity risk, the
risk cannot be hedged by the DVA provider. Additionally, we assume that the number of individuals
who either purchase the DVA or participate in a GSA is large enough such that by the Law of Large
Numbers, the proportion of surviving individuals within each pool coincides with that implied by the
realized survival probabilities, so we can eliminate idiosyncratic longevity risk.12 In our setting, mor-
tality credit can be positive or negative depending on systematic longevity evolution.

2.3.1 Deferred Variable Annuity (DVA)
The DVA contract is parameterized by an actuarial construct called the assumed interest rate (AIR),
h = {h(t)}Tt=t0

. The AIR is a deterministic rate that determines the cost, A, of a contract sold to an indi-
vidual who is aged x at time t0 as follows:

A(h, F, t0, x) = (1+ F)
∫T
t=tR

t−t0p
(t0)
x exp (−h(t)× (t − tR))dt (3)

where t−t0p
(t0)
x is the conditional probability in year t0 that someone who is x years old lives for at least

t− t0 years, h is the AIR, and F is the loading factor whereas tR is the retirement year. The loading
factor, F, is a proportional one-off premium that the DVA provider attaches to a contract. A contract
that is priced at its best estimate has a loading factor of zero, F = 0.

The DVA contract is indexed to a reference investment portfolio that follows a deterministic
investment policy, u ; {ut}

T
t=t0

. θt is the fraction of portfolio wealth allocated to the risky stock
index at time t, while the remaining 1− θt is invested in the money market account. Let WRef

t (u)
be the value of the reference portfolio at time t. The dynamics of the reference portfolio is thus
dWRef

t = WRef
t (r + utlSsS)dt +WRef

t utsSdZS,t .

12The GSA in our setting is a specific case of the GSA in Piggott et al. (2005), whereby we omit idiosyncratic longevity risk.
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Using an annuitization capital that is normalized to one, the individual purchases A(h, F, t0, x)
−1

unit(s) of DVA contract(s), and is entitled to J, for every year t in retirement, tR≤ t≤ T13:

J(h, F, t, x) = exp (−h(t)× (t − tR))
A(h, F, t0, x)

WRef
t (u)

WRef
t0 (u)

WRef
t (u) = value of the reference portfolio at time t

(4)

The AIR influences the expectation and dispersion of the benefit payments over time. For instance, the
fund units are front- (back-) loaded (i.e., due in the earlier (later) years of retirement) under a higher
(lower) AIR.14

We demonstrate in Appendix A that for any given θ, the AIR that maximizes the individual’s
expected utility in retirement is equation (5), which we refer to as the optimal AIR, h*. h* depends
on the individual’s preference and financial market parameters. It serves as the AIR of both the
DVA and GSA:

h
∗
(t, ut) = r + b− r

g
− 1− g

g
utsS lS − gutsS

2

( )
(5)

The DVA provider merely serves as a distribution platform for annuity contracts. It acts in the best
interest of its equityholders, who outlive the individuals. The equityholders provide a lump sum capital
that is proportional to the value of its estimated liabilities in the year t0.

15 At every date t ≥ t0, the DVA
provider’s asset value has to be at least equal to the value of its estimated liabilities.16 In any year t0≤
t≤ T, if the DVA provider fails to meet the 100% solvency requirement, then the DVA provider
defaults. Regulatory oversight is introduced for the DVA provider, because as a for-profit entity, the
DVA provider may have an incentive to take excessive risk at the individuals’ expense (Filipović
et al., 2015). We impose a solvency constraint as it is not only the norm in regulatory regimes for
insurers (e.g., Solvency II in the European Union), but is also shown to be effective in mitigating risk-
shifting (Filipović et al., 2015).

In every year of retirement, the individual receives a benefit that is equal to the DVA entitlement:

J
DVA(h

∗
, F, t, x) = J(h

∗
, F, t, x) (6)

conditional on the individual’s survival and the DVA provider’s solvency. J(.) is equation (4) while h*
is equation (5).

In the event of default, the residual wealth of the DVA provider is distributed among all living indi-
viduals, in proportion to the value of their contracts that remains unfulfilled. Equityholders receive
none of the residual wealth. We impose a resolution mechanism that obliges individuals to use the
provider’s liquidated wealth to purchase an equally weighted portfolio of zero-coupon bonds, of
maturities from the year of default if the individual is already retired, or from the year of retirement,
until the year of maximum age. Assuming that the bond issuer poses no default risk, then the

13The benefits adjust instantaneously with the value of the portfolio to which the contract is indexed. Maurer et al. (2016)
make the case for smoothing of the benefits, which is advantageous to both the policyholder and the contract provider.

14Let r̃ denote the reference portfolio’s expected return, and suppose h is time-invariant. Then an annuity contract with
h = r̃ has a constant expected benefit payment path. When h , r̃, then the expected benefit stream is upward sloping, with
increasing variance as the individual ages. Conversely, when h . r̃, the expected benefit stream is downward sloping, and the
variance is higher during the initial payout phase. Horneff et al. (2010) provide an exposition on retirement benefits under
numerous AIRs and reference portfolios.

15The estimation of the value of liabilities is explained in Appendix B.
16This is a simplifying assumption. Under Solvency II, for instance, insurance companies face solvency capital require-

ments calculated on a 1-year ruin probability of 0.5%.
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individual has a guaranteed income until death, but receives no mortality credit. If the individual dies
before the maximum age, the face value of the bonds that mature subsequently is not bequeathed. This
resolution to insolvency is harsh on the individuals because it eliminates the mortality credit, but it
reflects the empirical evidence that individuals substantially discount the value of an annuity that
poses default risk (Wakker et al., 1997; Zimmer et al., 2009).

2.3.2 Group Self-Annuitization (GSA)
Similar to the DVA, the GSA is parameterized by the optimal AIR, h*, and is indexed to a reference
portfolio with the investment policy θ. The aged-x individual receives A(h*, 0, t, x)−1 contract(s) for
every unit of contribution at time t. In any year t≥ tR, the GSA’s entitlement depends on the reference
portfolio’s value at time t, WRef

t (u).
The description of the GSA thus far is identical to a DVA contract with zero loading, F = 0. The

GSA’s distinctive feature is that the entitlements are adjusted according to its funding status. Let
the funding ratio at time t, FRt, be the ratio of the GSA’s value of assets, taking into account the invest-
ment return from the preceding year, over the best estimated value of its liabilities.17 For any year t in
retirement, tR≤ t≤ T, the individual is entitled to J

GSA(h∗, 0, t, x):

J
GSA(h

∗
, 0, t, x) =J(h

∗
, 0, t, x)× FRt

1

= exp (−h
∗
(t, ut)× (t − tR))

A(h∗
, 0, t0, x)

WRef
t (u)

WRef
t0 (u)

FRt

FRt = Funding Ratio in year t

(7)

The first two terms of equation (7) are identical to the entitlement for a DVA contract with zero
loading, equation (4). The last term of equation (7) represents the adjustment. If FRt is smaller (larger)
than 1, then the GSA entitlement, JGSA, is lower (higher) than the DVA entitlement, JDVA, in year t.
Equation (7) ensures that the GSA is 100% funded in any year.

3. Model calibration

We consider three groups of individuals, distinguished by their risk aversion levels, γ = 2, 5, and 8.18

Individuals are otherwise homogeneous. They have an annual subjective discount factor of 3%,19 are
aged 25 at time t0 = 0, and use a lump sum that is normalized to one to either purchase DVA, or join
the GSA at time t0. Both contracts stipulate payment of annual retirement benefits from age 66 until
age 95, conditional on the individual’s survival in any year, according to the contract specification in
Section 2.3.

The portfolio to which the DVA and GSA are indexed is either fully invested in the money market
account (θ = 0), or 20% invested in equities and 80% in the money market account (u = 20%). These

17Estimation of the GSA liabilities is identical to the estimation of liabilities of the DVA provider. See Appendix B for
details.

18Using survey responses from the Health and Retirement Study on the US population, Kimball et al. (2008) estimate that
the mean risk aversion level among individuals is 8.2, with a standard deviation of 6.8. Even if there is ample literature dis-
cussing the differences in risk aversion between men and women (Eckel and Grossman, 2008), we are unaware of precise
estimates of male and female risk aversion levels. Hence, we investigate individual preferences at three risk aversion levels
(2,5,8).

19While field experiments reveal a wide range of implied subjective discount factor (e.g., see Table 1 in Frederick et al.,
2002), we choose a value that is commonly adopted in welfare analysis. For example, in similar analyses on retirement
income, Feldstein and Ranguelova (2001) and Hanewald et al. (2013) adopt a subjective discount factor of around 2%.
We do not perturb the individual discounting factor in the sensitivity analysis because the benefits are defined to be optimal
for the given discounting factor, and influences both the GSA and DVA similarly.
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allocations yield the optimal AIR range of 3–4% (Table 1) that is not only observed in the annuity
market (Brown et al., 2001), but also typically considered in the related literature (Koijen et al.,
2011; Maurer et al., 2013). In Section 6.1.2, we explore alternative investment policies and demonstrate
that they uphold the same results as when u = 0, 20%.

We assume that the DVA provider’s equityholders provide a lump sum capital at date t0 that is 10%
of the contract’s best estimate price. The level of equity capital contribution is set such that the annuity
provider’s leverage ratio is 90%. It reflects the average leverage ratio of US life insurers between 1998
and 2011.20 We consider capital injection at initiation only. Extension to interim capital contribution
is an interesting avenue for future research (Kulenko and Schmidli, 2008; Avanzi et al., 2011; Yao et al.,
2011).

To provide descriptive calculations on individual welfare under the GSA and the DVA, we calibrate
the financial market and life expectancy models to US data. These parameters constitute our baseline
case.

3.1 Financial market

We adopt a constant risk-free rate of r = 3.6%. The stock index has an annualized standard deviation
of sS = 15.8%, and an instantaneous Sharpe ratio of λS = 0.467. This implies that the stock risk pre-
mium is lSsS = 7.39%. These parameters reflect the performance of the market-capitalization-
weighted index of US stocks and the yield on the 3-month US Treasury bill between January 1985
and May 2016.

3.2 Longevity risk model

We estimate the Lee and Carter (1992) model using US female death counts21 and the exposure to risk
from 1980 to 2013, over the full population (Human Mortality Database, 2015).22 The mortality rate
for age group x in year t is the ratio of death counts over exposure to risk. By relying on population
mortality data, we eschew adverse selection that plagues the annuity market, i.e., the individuals who
purchase an annuity typically have a longer average lifespan than the general population (Mitchell and
McCarthy, 2002; Finkelstein and Poterba, 2004).

Estimation of the Lee and Carter (1992) model proceeds in three steps. First, kt is estimated using
singular value decomposition. In the second step, ax and bx are estimated by ordinary least squares on

Table 1. Baseline case: optimal AIR, h* (%). This table shows the optimal AIR, equation (5), of the DVA and GSA contracts
by the individuals’ risk aversion parameter, γ. The underlying portfolio to which the contracts are indexed is either 100%
invested in the money market account (θ = 0), or 20% in the risky stock index and 80% in the money market account
(u = 20%).

θ
(%)

γ

2 5 8

0 3.31 3.50 3.54
20 4.00 4.48 4.48

20Leverage Ratio≡ 1−Value of Equity/Value of Assets. Based on the A.M. Best data used in Koijen and Yogo (2015), the
leverage ratio of US life insurers between 1998 and 2011 is 91.36% on average. Assuming that assets are composed of
premium and equity capital only, and normalizing Premium = 1, we have Leverage Ratio = 1− Equity/&sbnd;(1 + Equity),
which we use to solve for Equity when the Leverage Ratio ≈ 90%.

21We perform the analysis using US female death counts to compare our results to Maurer et al. (2013), who also apply US
female mortality data for calibration. When we calibrate the Lee and Carter (1992) model using US male data, we obtain
comparable results.

22This fitting period is selected using the method of Booth et al. (2002). It involves determining the longest period when
the assumption of linearity of the mortality index kt (equation (8)) holds, via a loss of fit ratio.
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each age group, x. In the third step, kt is re-estimated by iterative search to ensure that the predicted
number of deaths coincides with the data. For identification of the model, we impose the constraints∑

x bx = 1 and
∑

t kt = 0.
The estimated model is used for forecasting by assuming that the mortality index kt follows a ran-

dom walk with drift:

kt = c+ kt−1 + dt

d �N (0,s2
d)

(8)

Forecasts of the log of the central death rates for any year t ′, t ′ ≥ t, are given by
Et[log(mx,t′ )] = ax + bxk̂t′ , with k̂t′ = (t′ − t)c+ kt . The realized log of the mortality rate incorporates
the independently and identically normally distributed error terms 1x �N (0, s2

x) and d �N (0,s2
d),

where 1x,t1 and dt2 are uncorrelated for any t1, t2∈ [t0, T ] and x. Therefore, the conditional expected
forecast error of log (mx,t) is zero.

We estimate that ĉ = −1.047, which implies a downward trend for kt, while the estimate of σδ is
ŝd = 1.744. In Figure 1, we present the estimates for ax, bx, and σx. ax is increasing in age. Estimates
for bx suggest that the change in the sensitivity of age groups to the time trend, k, is not monotone
across ages. As for σx, it decreases in age non-monotonically until around age 85. With these estimates,
83.8% of the variation in the data is explained.

In Figure 2, we display a fan plot of the fraction of living individuals by age, between 25 and 95,
with the population at age 25 normalized to one. The maximum and minimum realizations have a
wide range. At its widest at age 88, the difference is as large as 30%.

3.3 Contract characteristics

In order to develop intuition and grasp the contracts’ definition, we discuss the characteristics of the
GSA and the DVA under the calibrated parameters. Table 1 presents the optimal AIRs as given by
equation (5), and evaluated at the parameters outlined in Sections 3.1 and 3.2.

Figure 3 is a box plot of the benefits that individuals receive under the DVA and the GSA. The
median benefits of both contracts grow along the retirement horizon because the optimal AIR is
lower than the constant financial market return. For the DVA, the median value is also the maximum,
because the surplus from life expectancy misestimates belongs to the equityholders.

The GSA yields more instances of positive than negative adjustments to benefits that are 1.5-time lar-
ger than the range between its 75th and 25th percentiles. We infer this from the relative density of ‘ + ’
symbols above and under the box (Figure 3, top panel). When the individual attains the maximum age of
95, benefits as large as 25% more than the median could occur. In contrast, in the worse scenario at the
same age, the reduction in benefits relative to the median is 12.5% at most. This asymmetric effect on
benefits arises from the non-linearity of the Lee and Carter (1992) model. For error terms of the same
magnitude (i.e., {1x,t}

T
t=t0 in equation (1) and {dt}

T
t=t0 in equation (8), for any x [ Z> [25, 95]), over-

estimation of the log of the central death rates generates a larger entitlement adjustment than underesti-
mation does. When the DVA provider defaults, the individual is at risk of receiving a much lower benefit.
The worst case under the DVA entails up to a 30% lower benefit relative to the median at the maximum
age.

The box plots indicate that while both contracts offer comparable benefits at the median, those of
the GSA have higher standard deviations across scenarios due to the entitlement adjustments, but
upward adjustments are more prevalent than downward ones. The DVA offers less volatile benefits,
but is susceptible to severe low benefit outcomes when the provider defaults. These are the main fea-
tures that the individuals weigh in utility terms.
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4. The individual’s perspective

We investigate two settings distinguished by the existence of stock market risk. In both, there is sys-
tematic longevity risk, but in one instance, there is no investment in the stock market, θ = 0, and so the
financial return is constant at r, whereas in the other, u = 20% is invested in the risky stock index
while the remaining 80% is allocated to the money market account. All results are based on simula-
tions with 500,000 replications unless specified otherwise. The code that produces all figures and esti-
mates in Sections 4–6 is available from the authors upon request.

Figure 1. Mortality model parameter estimates. The top panel
shows the estimates for ax, the middle panel displays the
estimates for bx, whereas the bottom panel presents the esti-
mates of σx, for the Lee and Carter (1992) model as specified
by equation (1). The calibration sample is the US female mor-
tality data from 1980 to 2013, from the Human Mortality
Database. The estimate of c is − 1.047 and that of σδ is
1.744. 83.8% of variation of the sample is explained by
these estimates.
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Figure 2. Mortality model: fan plot. This figure
presents the fan plot of the simulated fraction
of living individuals (i.e., the population of
25-year-olds is normalized to one) over 10,000
replications when longevity is modeled accord-
ing to Lee and Carter (1992), using estimates in
Figure 1. Darker areas indicate higher probabil-
ity mass.

Figure 3. Baseline case: box plots of GSA and
DVA benefits. This figure presents the box
plot of benefits, for the GSA (top panel), and
the DVA (bottom panel), for an individual
with a risk aversion level of γ = 5 who has an
optimal AIR of 3.5%, at ages 66, 80, and 95.
At age 25, the individual chooses to participate
in either a GSA or a DVA that will only begin
benefit payments 40 years later. The under-
lying portfolio is invested in the money market
account only. The line in the middle of the box
is the median, while the edges of the box
represent the 25th and 75th percentiles. The
height of the box is the interquartile range,
i.e., the interval between the 25th and 75th
percentiles. The ‘+’ symbols represent data
points that are 1.5 times larger than the inter-
quartile range.
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4.1 Cumulative default rate

We measure the DVA provider’s default rates with the Cumulative Default Rate (CDR), an estimate of
the probability that the DVA provider defaults during the individuals’ planning horizon.

Let Dt be the indicator function that the DVA provider has defaulted in any year t
′
, t0 <t

′
≤ t≤ T.

For example, if the DVA provider defaults in the year t*, then Dt = 1 for t≥ t* and Dt = 0 for t <t*.
Additionally, Dt0 ; 0 because the contracts are sold at their best estimate price, and the equity con-
tribution is non-negative.

We define the CDR as

Cumulative Default Rate = 1−
∏T

t=t0
(1− d(t)) (9)

where d(t) is the marginal default rate, i.e., the probability that the annuity provider defaults in year t,
conditional on not having defaulted in previous years:

d(t) = E[Dt]
1− E[Dt] (10)

The default rates in the baseline case are at most 0.01% (Table 2). As the AIR determines whether the
bulk of benefits are due earlier or later in retirement, when combined with the fact that longevity fore-
cast errors are larger at longer horizons, the DVA provider’s default rates are inversely related to the
AIRs. A higher AIR results in a payment schedule with benefits mostly due earlier in retirement. As
such, the longevity estimates are accurate when most of the benefits are paid. Conversely, if the AIR is
low, benefit payments are deferred to the end of retirement, when life expectancies are most vulnerable
to forecasting errors. Therefore, for a fixed level of equity capital, the DVA provider is less susceptible
to defaults when the AIR is higher.23 For the risk aversion levels γ = 2, 5, 8, the optimal AIR is increas-
ing in γ (Table 1), hence the default rates are decreasing in γ (Table 2) for both u = 0, 20%. Similarly,
the default rates are lower when u = 20% than when u = 0% for all levels of γ because the optimal
AIRs are higher under u = 20%.

4.2 Individual preference for contracts

We quantify the individuals’ preference for the contracts via the CEL. This is the level of loading on
the DVA (i.e., F in equation (3)), that equates an individual’s expected utility under the DVA and the
GSA. The CEL satisfies equation (11). A positive (negative) CEL suggests that the individual prefers
the DVA (GSA):

E U
J

DVA|F=0

1+ CEL

( )[ ]
= E[U(JGSA)] (11)

where JDVA|F=0 is the retirement benefit of a DVA with zero loading (F = 0 for equation (6)), JGSA is
the retirement benefit of a GSA, (7) and U(.) is the utility function, equation (2). Confidence intervals
for the CELs are estimated via the Delta method, for which more details are presented in Appendix C.

Table 3 presents the CEL in the baseline case. The CELs are negative for all risk aversion levels. This
implies that individuals prefer the GSA over the DVA, but only marginally. If the DVA contracts were
to be sold at a discount of between 0.052% and 0.350%, then individuals would have no preference

23From the regulator’s perspective, the notion of an annual probability of default, instead of a cumulative one, may be more
salient. We explore the ‘Maximum Annual Conditional Probability of Default’, defined as maxt=t0,..., T d(t), and find that the
maximum annual default rate in the baseline case is 0.0008%. This suggests that the 10% buffer capital is sufficient to restrict
default rates of DVA providers who are exposed to only systematic longevity risk to existing regulatory limits (e.g., Solvency II
for insurers in Europe).
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between the two contracts. The CEL is increasing in the risk aversion level, γ. This is because more
risk-averse individuals have greater preference for the DVA benefits’ lower standard deviation across
scenarios.

5. The equityholders’ perspective
To evaluate the equityholders’ risk-return tradeoff on systematic longevity risk exposure, we consider
the Sharpe ratio and the Jensen’s α of providing capital to the annuity provider, against those of invest-
ing the same amount of capital in the reference portfolio over the same time period.24 As in Section 4,
the annuity provider offers contracts at zero loading.

At time t0, equityholders make a capital contribution equal to 10% of the DVA provider’s best esti-
mate value of liabilities. At time t, they receive the terminal wealth of the DVA provider, W(A)

T , as divi-
dend. When the value of liabilities is normalized to one, the continuously compounded annualized
return of capital provision in excess of the risk-free rate is R(Aexs) = log (W(A)

T /0.1)/(T − t0)− r. We
evaluate the equityholders’ profitability via the Sharpe ratio, SR = E[R(Aexs)]/s(Aexs), and we compute
the Sharpe ratio’s confidence intervals in accordance with Mertens (2002).

The Jensen’s α is given by equation (12) (Jensen, 1968):

R(Aexs) = a+ bR(Sexs) + u (12)

Here R(Sexs) is the annualized excess return of the stock index and u is the error term. We estimate
equation (12) by ordinary least squares. A positive α suggests that systematic longevity risk exposure

Table 2. Baseline case: CDRs (%). This table displays the CDRs, equation (9), of the DVA provider who sells zero-loading
variable annuity contracts with a 40-year deferral period, and has equity capital valued at 10% of the liabilities in the
year that the contract was sold. The underlying portfolio to which the DVA and GSA are indexed is either fully invested
in the money market account (θ = 0), or 20% in the stock index, and 80% in the money market account (u = 20%).

θ
(%)

γ

2 5 8

0 0.0102 0.0084 0.0082
20 0.0070 0.0038 0.0038

Table 3. Baseline case: CEL (%). This table presents the CEL, equation (11), by the risk aversion levels (γ). Individuals aged
25 either purchase the DVA or join the GSA with a lump sum capital normalized to one. The reference portfolio is either
fully invested in the money market account (θ = 0), or is u = 20% invested in the stock index and 80% in the money market
account. The expected utilities to which the CELs are associated are computed over individuals’ retirement between ages
66 and 95. The equityholders’ capital is 10% of the present value of liabilities at the date when the contract is sold. The
default rates that ensue at this level of equity capitalization are shown in Table 2. The 99% confidence intervals estimated
by the Delta method are in parentheses.

θ
(%)

γ

2 5 8

0 −0.350 −0.200 −0.055
[−0.362, −0.339] [−0.211, −0.188] [−0.067, −0.044]

20 −0.349 −0.200 −0.052
[−0.361, −0.338] [−0.216, −0.184] [−0.088, −0.016]

24The stochastic discount factor, {Mt}
T
t=t0 , that follows dMt/Mt = −r dt − lS dZS,gtt , allows us to price any contingent

claim exposed to stock market risk only: If Xt is a (random) cash flow generated by a contingent claim at time t, then its
price at time t0 is Et0

�T
t=t0

(Mt/Mt0 )Xt dt
[ ]

. However, when such pricing is carried out for claims due on a long horizon,
and the market price of stock risk (i.e., the Sharpe ratio) exceeds its volatility, the price depends on extreme sample paths
along which the claim’s return explodes (Martin, 2012). As the claims are susceptible to severe underpricing when the
Monte Carlo replication sample size is small, we refrain from valuing contingent claims when comparing the equityholders’
investment opportunities.
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enhances the equityholders’ risk-return tradeoff. When θ = 0 and β = 0 due to the assumption that the
mortality evolution is uncorrelated with the financial market dynamics.

When θ = 0, the annualized excess return of capital provision is between −0.008% and −0.007%,
and the standard deviation is 3.9% (Table 4, top panel). When u = 20%, investing in the DVA provider
yields an expected excess return of 1.44% (Table 4, bottom panel). This is of no material difference with
the expected excess return on the identical financial market portfolio, i.e., ulSsS − u2s2

S/2 = 1.43%
when u = 20%. However, the standard deviation of excess returns is considerably higher when equity-
holders are exposed to systematic longevity risk (i.e., ≈ 5%, Table 4, bottom panel), than when their
investment is subject to stock market risk only (i.e., usS = 3.17% with u = 20%). Consequently, invest-
ing in the financial market only is associated with a Sharpe ratio that is around 50% higher than the
Sharpe ratio of providing capital to the DVA provider (i.e., 0.29 in Table 4, bottom panel, as compared
to λS− θσS/2 = 0.45 when u = 20%25). Thus, if equityholders were risk-neutral, then the excess returns
imply that they would have no preference between either investment opportunity. If equityholders were
risk averse, investing in systematic longevity risk worsens the equityholders’ risk-return tradeoff when
the annuity provider sells the contracts at zero loading. The negative Jensen’s α of −0.0001 corroborates
this inference. Any positive loading is infeasible, because it intensifies individuals’ preference for the
GSA. Therefore, the annuity provider is incapable of adequately compensating its equityholders for
exposure to systematic longevity risk.

The box plot in Figure 4 indicates that the medians of the excess returns from either investing in the
DVA provider, or in the portfolio having the same investment policy as the DVA contract reference

Table 4. Baseline case: equityholders’ investment performance statistics. This table displays the equityholders’ mean
annualized return in excess of the risk-free rate of return (E[R(Aexs )], %), standard deviation of annualized excess return
(s(Aexs ), %), the Sharpe ratio (SR) and Jensen’s α (E[α], %), equation (12), of capital provision to the DVA provider. The
underlying portfolio is either invested in the money market account only (θ = 0, top panel), or is 20% invested in the
risky stock index, and 80% invested in the money market account (u = 20%, bottom panel). The 99% confidence
intervals are in parentheses

θ = 0

γ

Statistic 2 5 8

E[R(Aexs )]
(%)

−0.008 −0.007 −0.007
[−0.010, −0.006] [−0.009, −0.005] [−0.008, −0.005]

s(Aexs )

(%)
3.96 3.91 3.89

[3.95, 3.40] [3.90, 3.91] [3.88, 3.90]
SR −0.002 −0.0017 −0.0017

[−0.0056, 0.0016] [−0.0054, 0.0019] [−0.0053, 0.0020]
E[α]
(%)

−0.0001 −0.0001 −0.0001
[−0.0001, −0.0001] [−0.0001, −0.0001] [−0.0001, −0.0001]

u = 20%

γ

Statistic 2 5 8

E[R(Aexs )]
(%)

1.44 1.44 1.44
[1.44, 1.44] [1.44, 1.45] [1.44, 1.45]

s(Aexs )

(%)
5.04 4.95 4.95

[5.03, 5.06] [4.94, 4.96] [4.94, 4.96]
SR 0.29 0.29 0.29

[0.29, 0.29] [0.29, 0.29] [0.29, 0.29]
E[α]
(%)

−0.0001 −0.0001 −0.0001
[−0.0001, −0.0001] [−0.0001, −0.0001] [−0.0001, −0.0001]

25This is the discrete Sharpe ratio, which is the parameter we estimate using simulation replications, as opposed to the
instantaneous Shape ratio, λS (Nielsen and Vassalou, 2004).
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portfolio are comparable. While excess returns on the financial market only are less volatile across
scenarios, their maximum is lower than the best excess returns attainable via capital provision.
Therefore, systematic longevity risk exposure allows the equityholders to achieve higher excess returns
in the best scenario, but entails greater downside risk due to the possible default of the DVA provider.

6. Sensitivity analysis

6.1 Features that indirectly affect default rates

For model features that only indirectly affect the DVA provider’s CDRs via the optimal AIR,26 such as the
contract’s length of the deferral period and stock market risk exposure, the baseline case’s results hold.

6.1.1 Deferral period
As the accuracy of longevity forecast depends on its horizon, the preference for either contract may be
sensitive to the age when the individual annuitizes. In the baseline case, individuals are aged 25 when
purchasing a DVA contract or participating in the GSA. As retirement benefit payments commence at
age 66, the deferral period is 40 years. When the deferral period is shorter, survival probability fore-
casts are more accurate. Thus, we expect smaller differences in the average level and standard deviation
of benefits between contracts. However, this does not necessarily imply that the CEL estimates would
be closer to zero, because the time-preference discounting, as governed by the subjective discount fac-
tor, β in equation (2), plays a larger role when retirement is imminent. Thus, while the difference
between the benefits would be smaller, the effect in terms of utility would be greater. By shortening
the deferral period to 20 years, we find that the effect due to shorter time-discounting dominates
the more accurate probability forecast, while for immediate annuitization, the effects are mixed.
In all cases, the CEL estimates are negative and statistically significant across all γs (Table 5).

6.1.2 Stock exposure
As long as the allocation to the stock index corresponds to an optimal AIR with similar default rates as
those in the baseline case, individuals prefer the GSA.

We consider four alternative exposures to the stock index. The first three are constant allocations
over the planning horizon: u1 = 40%, u2 = 60%, u3 = lS/gsS. θ3 corresponds to the individual’s

Figure 4. Box plot of equityholders’
annualized excess return (%): u = 20%.
This figure presents the box plot of the
equityholders’ annualized return in
excess of the risk-free rate (%), from
either capital provision to the DVA pro-
vider (left), or investing in the reference
portfolio (right). The reference portfolio
is 20% invested in the risky stock index
and 80% in the money market account.

26Refer to footnote 14.
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optimal exposure to stocks (see Appendix A). For the least risk-averse individual (γ = 2), θ3 is 147.2%.
The moderately risk-averse individual (γ = 5) optimally invests 58.9% in the stock index whereas the
most risk-averse individual (γ = 8) optimally invests 36.8% in stocks. The fourth exposure that we con-
sider is an age-dependent allocation that begins with around 90% allocation to stocks at age 25, and
gradually diminishes to a minimum of about 30% post-retirement until the maximum age,
u4 = {u4,x}

95
x=25.

27

For all θs, the optimal AIRs that are set according to equation (5) are higher than those in the base-
line case. Due to the inverse relationship between the default rate and the AIR, the default rates are
marginally smaller than those in the baseline case. Consequently, individuals prefer the GSA to a
similar extent as in the baseline case.

6.2 Features that directly affect default rates

We investigate an individual’s preference between the DSA and the GSA at various default rates. The
DVA provider’s CDRs are directly affected by systematic longevity risk when equity capital is kept con-
stant, or alternately, the level of equity capital when systematic longevity risk is held constant. When
higher DVA provider default rates manifest via a lower level of equity capital, or a higher standard
deviation of the longevity model time trend (i.e., higher σδ), the extent to which the individual prefers
the GSA is greater. As the DVA provider’s default rates are only slightly affected by the standard devi-
ation of the age-dependent errors on the mortality matrix (σx) and parameter uncertainty of the time
trend’s drift term, c, these two sources of uncertainty do not influence the individual’s preference for
the GSA.

6.2.1 Consequential
The level of equity capital and σδ have consequential effects on the default rates. A lower level of equity
capital or a higher σδ increases the CDR, hence individuals prefer the GSA more, as indicated by the

Table 5. Deferral period: CEL (%). The top panel displays the CEL, equation (11), for individuals aged 45 at annuitization,
whereas the bottom panel corresponds to the CELs for individuals aged 65 at that time. All other parameters are identical
to those in the baseline case. The 99% confidence intervals estimated by the Delta method are in parentheses

20-year deferral

θ
(%)

γ

2 5 8

0 −0.380 −0.260 −0.150
[−0.386, −0.367] [−0.271, −0.252] [−0.161, −0.142]

20 −0.370 −0.270 −0.180
[−0.391, −0.350] [−0.293, −0.244] [−0.219, −0.140]

Immediate annuitization

θ
(%)

γ

2 5 8

0 −0.270 −0.230 −0.190
[−0.274, −0.266] [−0.234, −0.226] [−0.198, −0.190]

20 −0.260 −0.220 −0.190
[−0.262, −0.254] [−0.222, −0.213] [−0.192, −0.182]

27This glidepath allocation is based on the 2014 Target-Date Fund industry average (Yang et al., 2016). A decreasing expos-
ure to stocks as the individual grows older is consistent with popular financial advice (Viceira, 2001). In theory, when the
investment opportunity set is constant, horizon-dependent investment strategies are optimal in situations where, for instance,
the individual receives labor income (Viceira, 2001; Cocco et al., 2005), or where the individual’s risk aversion parameter is
time dependent (Steffensen, 2011).
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CELs that are decreasing in CDRs (Figures 5 and 6).28 Moreover, the extent to which individuals prefer
the GSA relative to the DVA with respect to their risk aversion levels varies with the CDR, i.e., the
curves intersect. At low levels of CDR, risk averse individuals have a weaker preference for the
GSA relative to a more risk averse individual. This is due to the appeal of more stable benefits
under a DVA from a sound provider. When there is a small amount of default risk of about 0.5%,
more risk averse individuals soon find the DVA to be less attractive than the GSA. Individuals’ pref-
erence for the DVA diminishes in the CDR regardless of whether the high default rates are induced by

Figure 5. CEL and CDR: varying level of
equity capital. This figure presents the
CEL and CDR for the base case’s risk
aversion levels, γ. The CDR is altered
by changing the level of equity capital
from 0% to 12.5% of the contract’s
best estimate value. The top panel is
for u = 0%, whereas the bottom
panel is for u = 20%. The data points
are based on simulations with 100,000
replications.

28Figure 6 contains only σδ that generates positive CDRs. Situations when σδ is small such that 10% equity capital is
sufficient to ensure no default are discussed in Appendix E.
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heightened systematic longevity risk or less equity capital. Additionally, individuals have a slight pref-
erence for the GSA over a zero-default-risk DVA, as seen from a negative CEL when CDR is zero. This
is due to the asymmetric effect that longevity time-trend shocks in the Lee and Carter (1992) model
have on the benefit adjustments. A negative shock which causes life expectancy decline results in larger
upward benefit adjustment than the downward benefit adjustment that a positive shock of the same
magnitude entails.

6.2.2 Inconsequential
The standard deviation of errors on the mortality matrix (σx) and drift parameter uncertainty affect
the default rates only marginally. Hence, the baseline results are unchanged.

Figure 6. CEL and CDR: varying σδ. This
figure presents the CEL and CDR for the
base case’s risk aversion levels, γ. The
CDR is altered by changing σδ from 0
to 2 times the calibrated value in the
base case. The top panel is for
u = 0%, whereas the bottom panel is
for u = 20%. The data points are
based on simulations with 100,000
replications.
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The time trend in the Lee and Carter (1992) model accounts for the bulk of the uncertainty
surrounding systematic longevity evolution. Thus, even when σx is five times as large as the calibrated
values, CDRs and CELs deviate little from those in the baseline case.

When there is uncertainty around the drift parameter, the DVA is disadvantaged by a higher
default probability. However, the GSA’s appeal also diminishes as entitlement adjustments have a
wider variation, especially near the maximum age. Neither of these drawbacks is sufficiently decisive
to sway individual preferences. Therefore, the CELs differ only marginally from those in the baseline
case. The incorporation of parameter uncertainty is described in Appendix D.

6.3 Alternate longevity model

We next explore the choice of the longevity model by replacing the Lee and Carter (1992) model with
the Cairns et al. (2006) model, which produces a wider range of survival probabilities at old age. We
calibrate the Cairns et al. (2006) model over the same sample of mortality data as that in Section 3.2.
Figure 7 presents the fan plot of the simulated fraction of living individuals under the Cairns et al.
(2006) model. The maximum range of the fraction of 25-year-olds still alive at older ages is 45%
(i.e., at age 91), 50% more than the maximum range under the Lee and Carter (1992) model (i.e.,
30% interval at age 88; Figure 2). This wider range translates into greater variability in benefits for
the GSA, and higher default rates for the DVA provider.

With either the Lee and Carter (1992) or the Cairns et al. (2006) model, the rise in GSA benefits
with age is accompanied by more uncertainty surrounding the benefits. However, the Cairns et al.
(2006) model produces greater uncertainty as the individual ages, as seen by comparing the top panels
in Figures 3 and 8. This generates greater individual preference for the DVA under the Cairns et al.
(2006) model.

For a fixed level of equity capital, the Cairns et al. (2006) model yields higher default rates because
of the heightened uncertainty surrounding old age survival. If we maintain the baseline case’s 90%
leverage ratio, the default rates under the Cairns et al. (2006) model are between 0.48% and 2.21%
(Table 6), substantially higher than the at-most 0.01% default rates when the Lee and Carter (1992)
model is adopted (Table 2). Consequent to more defaults, individuals have a lower preference for
the DVA (Table 6, bottom panel), as the CEL estimates are more negative than those in the baseline
case (Table 3). Therefore, individuals prefer the DVA contract under the Cairns et al. (2006) model

Figure 7. Mortality model: fan plot.
This figure presents the fan plot of the
simulated fraction of living individuals
(i.e., the population of 25-year-olds is
normalized to one) over 10,000 replica-
tions when longevity is modeled
according to the Cairns et al. (2006)
model. The model is calibrated on US
female death counts from 1980 to
2013 taken from the Human Mortality
Database. Darker areas indicate higher
probability mass.
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only if the associated default risk is curtailed. Despite that, regardless of whether equityholders provide
enough capital to eliminate default risk, the Sharpe ratio of equity provision is lower than the ratio of
abstaining from systematic longevity risk exposure. The Jensen’s α of equity provision is positive but
economically insignificant.

Additionally, the choice of the longevity model underlies the inference of Maurer et al. (2013).
While we find that individuals marginally prefer the GSA, Maurer et al. (2013) observe the opposite
(positive CEL for the contract indexed to systematic longevity; Table 7 of Maurer et al., 2013). When
we assume that no default occurs, as do Maurer et al. (2013), we are able to reconcile our results to
theirs. For instance, individuals who are moderately risk-averse to risk-averse, γ = 5 and 8, prefer the
DVA; Table 7, top panel. The most risk-averse individual is willing to pay as much as 1% in loading to
shed systematic longevity risk. Despite that, when the annuity provider sets the loading to be equal to
the CEL, the accompanying Sharpe ratio remains inferior to the Sharpe ratio of investing in only the
financial market, i.e., 0.45 when u = 20%, whereas the Jensen’s α is positive but economically

Figure 8. Mortality model: box plots of
GSA and DVA benefits. This figure pre-
sents the box plots of benefits for the
GSA (top panel) and the DVA (bottom
panel), for an individual with a risk
aversion level of γ = 5, at ages 66, 80,
and 95. The underlying portfolio is
invested in the money market account
only. The line in the middle of the box
is the median, while the edges of the
box represent the 25th and 75th
percentiles. The height of the box is
the interquartile range, i.e., the interval
between the 25th and 75th percentiles.
The ‘+’ symbols represent data points
1.5 times larger than the interquartile
range.
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insignificant (Table 7, bottom panel). Therefore, while individual preference is sensitive to the choice
of the longevity model, the extent that individuals are willing to pay to insure against systematic lon-
gevity risk is insufficient to entice equityholders to gain exposure to that risk.

6.4 Contract combination

The analysis thus far assumes that the individual can select either the DVA or the GSA but not both. In
Figure 9, we show the optimal weight allocated to a DVA contract with no loading for various CDRs

Table 7. Mortality Model with No Default: CEL (%) and Investment Performance Statistics. The top panel presents the CEL,
equation (11), when life expectancy follows the Cairns et al. (2006) model, calibrated to the same sample as the Lee and
Carter (1992) model. The bottom panel shows the Sharpe ratio (SR) and Jensen’s α, equation (12), when the loading is set
at the CEL estimates in the top panel. Equity capital is sufficiently high such that no default occurs. All other parameters
are identical to those in the baseline case. The 99% confidence intervals are in parentheses

CEL (%)

θ
(%)

γ

2 5 8

0 −0.089 0.528 1.019
[−0.099, −0.079] [0.519, 0.537] [1.011, 1.028]

20 −0.092 0.461 0.874
[−0.101, −0.082] [0.448, 0.475] [0.835, 0.913]

Sharpe ratio and Jensen’s α:
no default risk, loading = CEL

θ
(%) Statistic

γ

2 5 8

0 SR 0.0206 0.0481 0.0701
[0.0170, 0.0242] [0.0444, 0.0517] [0.0665, 0.0738]

E[α]
(%)

0.0001 0.0002 0.0002
[0.0001, 0.0001] [0.0002, 0.0002] [0.0002, 0.0002]

20 SR 0.4337 0.4362 0.4379
[0.4337, 0.4337] [0.4362, 0.4362] [0.4379, 0.4379]

E[α]
(%)

0.0001 0.0001 0.0002
[0.0001, 0.0001] [0.0001, 0.0001] [0.0002, 0.0002]

Table 6. Mortality model with default: CDRs (%) and CEL (%). The top panel presents the CDRs, equation (9), whereas the
bottom panel displays the CEL, equation (11), when life expectancy follows the Cairns et al. (2006) model, calibrated to the
same sample as the Lee and Carter (1992) model. All other parameters are identical to those in the baseline case. The 99%
confidence intervals are in parentheses

Cumulative default rates (%)

θ
(%)

γ

2 5 8

0 2.2120 1.8082 1.7120
20 0.9676 0.4808 0.4756

CEL (%)

θ
(%)

γ

2 5 8

0 −0.950 −0.660 −0.975
[−0.970, −0.930] [−0.690, −0.630] [−1.025, −0.924]

20 −0.877 −0.503 −1.515
[−0.906, −0.847] [−0.571, −0.436] [−1.763, −1.268]
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when there is no investment in stocks (θ = 0). When the DVA provider has no default risk, the most
risk-averse individual, γ = 8, optimally holds around 44.8% of the annuitization wealth in the DVA.
The optimal holding for a less risk-averse individual, γ = 5, is markedly smaller at 11.8%. The least
risk-averse individual, γ = 2, never finds it optimal to purchase a DVA contract regardless of the pro-
vider’s default risk. Risk-averse individuals find it more appealing to purchase a DVA with low or zero
default risk because the DVA offers a less volatile benefits.

However, the increase in expected utility from contract combination is small, as measured by the
level of loading on the DVA (CEL) that equates the individual’s expected utility under the GSA and the
optimal DVA/GSA mix. This CEL is less than 0.18% for the most risk-averse individual for the DVA
contract with no default risk. This positive but low CEL generates insufficient reward to entice equi-
tyholders to provide capital to the DVA provider. Instead, equityholders are better off investing in the
stock market only. When contracts are 20% invested in the stock index, we obtain comparable optimal

Figure 9. Optimal allocation to DVA,
CEL, and CDR: u = 0%. The top panel
displays the optimal allocation, ω*, to
the DVA, for an annuitization wealth
that is normalized to 1 (1− ω* is thus
used to purchase the GSA), for various
levels of CDR and u = 0%. The bottom
panel shows the CEL for the DVA in
the optimal contract combination, for
various levels of CDR. The CDR is
altered by changing the level of equity
capital from 0% to 12.5% of the
contract’s best estimate value.
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DVA contracts purchased, CEL, and inference on the equityholders’ investment performance. For
instance, for γ = 8, u = 20% and equity capital of 12.5%, offering the DVA with a loading equivalent
to the CEL of 1.6 b.p. realizes a Sharpe ratio of 0.34 for equityholders, which is less than the Sharpe
ratio of 0.45 of investment in the financial market only.29 Thus, the DVA provider is unable to
adequately compensate equityholders when individuals can allocate between the two contracts.

Allowing the individual to allocate annuitized wealth between the two options is appealing to indi-
viduals who are at least moderately risk-averse (γ≥ 5), and only when the DVA provider’s default risk is
small. Even though a combination of contracts is welfare-enhancing, the expected utility improvement is
so small that equityholders are not sufficiently compensated for bearing systematic longevity risk.

7. Conclusion

We investigate systematic longevity risk management in retirement planning in the presence of two
alternatives: individuals participate in a collective scheme that adjusts retirement income according
to longevity evolution, or purchase a variable annuity contract offered by an equityholder-backed
annuity provider. Our model features the perspective of not only the individuals, who evaluate
their welfare in retirement, but also of the equityholders, who weigh their risk-return tradeoff from
systematic longevity risk exposure.

Due to the entitlement adjustments arising from errors in survival probability forecasts, the collect-
ive scheme provides more volatile benefits than those of an annuity contract. However, the collective
scheme also offers a slightly higher average level of benefits, because for errors of the same magnitude,
over- and under-estimating the log central death rates produce asymmetric effects.

The annuity contract provider relies on limited equity capital to subsume forecasting errors, and so
is subject to default risk. Although the annuity contract shields individuals from downward entitle-
ment adjustments up to a limit, it deprives individuals of any upward adjustments, as these gains
belong to the equityholders.

We find that individuals marginally prefer the collective scheme over the annuity contract priced
at its best estimate. This implies that the annuity provider is unable to charge a positive loading on
the contract, subsequently failing to compensate its equityholders who bear longevity risk.
Therefore, when individuals have the choice to form a collective scheme, the annuity provider
who has no advantage at managing systematic longevity risk, and who has to fully hedge financial
market risk would not exist in equilibrium. Our finding is robust to individuals’ risk aversion level,
the contract deferral period, and stock market risk exposure. Individuals’ desire for an annuity con-
tract diminishes in the provider’s default risk regardless of whether the underlying determinant of
default risk is the magnitude of systematic longevity risk or the level of equity capital. When faced
with higher systematic longevity risk, individuals are willing to purchase an annuity contract with no
default risk, but the loading that individuals offer remains insufficient to compensate the equity-
holders for taking systematic longevity risk. Individuals can attain higher expected utility by opti-
mally allocating their wealth at retirement between the two contracts. In this instance, the
risk-averse individuals are willing to offer a positive loading, but the loading is also insufficient
as a reward to the equityholders.

The results advocate for collective mechanisms in pension provision, which exist in a handful of
countries (e.g., Collective Defined Contribution in the Netherlands, Target Benefit Plans in
Canada). The pressing issue of population aging, and the gradual maturation of the longevity risk deri-
vatives market, is likely to spur reform. For example, the US Chamber of Commerce (2016) recom-
mends new plan designs to enhance the private retirement system. Our results also highlight the
difficulty for insurers to offer long-term guarantees on non-diversifiable risks such as systematic lon-
gevity, while offering an attractive remuneration to their shareholders.

29The individual optimally allocates a lower, but nevertheless positive proportion of annuitization wealth to a DVA with
1.6 b.p. loading relative to a zero-loading DVA (i.e., 22.4% vs. 44.8%).
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A limitation of our work is the exclusion of channels that may reduce the insurer’s effective lon-
gevity exposure, such as synergies in product offering (e.g., natural hedging of systematic longevity
risk via the sale of annuities and life insurance contracts; Gatzert and Wesker, 2012; Wong et al.,
2017), access to reinsurance (Baione et al., 2017), and shadow insurance (Koijen and Yogo, 2016).
In such a scenario, the annuity contract could be sold at a lower price. In the base case scenario,
our results suggest that individuals would choose the DVA only when it is priced lower than the actu-
arial best estimate price. There are also alternative resolutions in the case of default, and other factors
that may influence annuitization decisions, such as bequest motives, medical expenses, social security,
uninsurable income, etc. (Lockwood, 2012; Pashchenko, 2013; Yogo, 2016; Ai et al., 2017; Peijnenburg
et al., 2017). Additionally, when the number of individuals is not large enough to assume away idio-
syncratic longevity risk, it may become a larger risk driver of benefits relative to the systematic com-
ponent of longevity risk. Examining these features in future research would enrich our knowledge of
retirement planning.

Acknowledgement. We gratefully acknowledge research funding from Observatoire de l’Epargne Européenne. We thank
the editor, O. Mitchell, two anonymous referees, D. Blake, D. Davydoff, A.M.B. De Waegenaere, N. Gatzert, J. Glachant,
C. Gollier, P. Lopes, E. Luciano, A. Michaelides, G. Nicodano, T.E. Nijman, E. Vigna, R. Zhou, as well as the participants
of the Longevity 12 Conference, Netspar International Pension Workshop 2017, American Risk and Insurance
Association (ARIA) 2017 Annual Meeting, and ‘Household Finance and Retirement Savings’ Workshop of the Center for
Research on Pensions and Welfare Policies (CeRP). The views and opinions expressed here do not necessarily reflect that
of Aegon and/or its clients.

References
Aase KK (2015) Life insurance and pension contracts I: the time additive life cycle model. ASTIN Bulletin 45, 1–47.
Ai J, Brockett PL, Golden LL and Zhu W (2017) Health state transitions and longevity effects on retirees’ optimal annui-

tization. Journal of Risk and Insurance 84(S1), 319–343.
Ang A and Maddaloni A (2003) Do demographic changes affect risk premiums? Evidence from international data. NBER

Working Paper No. 9677, National Bureau of Economic Research.
Arnott RD and Chaves DB (2012) Demographic changes, financial markets, and the economy. Financial Analysts Journal

68, 23–46.
Avanzi B, Shen J and Wong B (2011) Optimal dividends and capital injections in the dual model with diffusion. ASTIN

Bulletin: The Journal of the IAA 41, 611–644.
Baione F, De Angelis P, Menzietti M and Tripodi A (2017) A comparison of risk transfer strategies for a portfolio of life

annuities based on RORAC. Journal of Applied Statistics 44, 1875–1892.
Beetsma RM, Romp WE and Vos SJ (2012) Voluntary participation and intergenerational risk sharing in a funded pension

system. European Economic Review 56, 1310–1324.
Blackburn C, Hanewald K, Olivieri A and Sherris M. (2017) Longevity risk management and shareholder value for a life

annuity business. ASTIN Bulletin 47, 43–77.
Booth H, Maindonald J and Smith L (2002) Applying Lee-Carter under conditions of variable mortality decline. Population

Studies 56, 325–336.
Bovenberg L, Koijen RS, Nijman T and Teulings C (2007) Saving and investing over the life cycle and the role of collective

pension funds. De Economist 155, 347–415.
Boyle P, Hardy M, Mackay A and Saunders D (2015) Variable payout annuities. Working paper, Pension Section Research

Committee.
Broeders D, Mehlkopf R, van Ool A, et al. (2018) The economics of sharing macro-longevity risk. Working paper No. 618,

De Nederlandsche Bank.
Brown JR, Mitchell OS and Poterba JM (2001) The role of real annuities and indexed bonds in an individual accounts

retirement program. In Y John, Campbell and Martin Feldstein (eds), Risk Aspects of Investment-based Social Security
Reform. Chicago and London: University of Chicago Press, pp. 321–370.

Cairns AJ, Blake D and Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and
calibration. Journal of Risk and Insurance 73, 687–718.

Cairns AJ, Blake D, Dowd K, Coughlan GD, Epstein D and Khalaf-Allah M (2011) Mortality density forecasts: an analysis
of six stochastic mortality models. Insurance: Mathematics and Economics 48, 355–367.

Casella G and Berger RL (2002) Statistical Inference, 2nd Edn. the Wadsworth Group, Duxbury: California.
Chen A and Hieber P (2016) Optimal asset allocation in life insurance: the impact of regulation. ASTIN Bulletin 46, 605–

626.

Journal of Pension Economics and Finance 433

https://doi.org/10.1017/S1474747219000192  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747219000192


Chen DH, Beetsma RM, Ponds EH and RompWE (2016) Intergenerational risk-sharing through funded pensions and pub-
lic debt. Journal of Pension Economics and Finance 15, 127–159.

Chen DH, Beetsma RM, Broeders DW and Pelsser AA (2017) Sustainability of participation in collective pension schemes:
an option pricing approach. Insurance: Mathematics and Economics 74, 182–196.

Cocco JF, Gomes FJ and Maenhout PJ (2005) Consumption and portfolio choice over the life cycle. Review of Financial
Studies 18, 491–533.

Cox SH and Lin Y (2007) Natural hedging of life and annuity mortality risks. North American Actuarial Journal 11, 1–15.
Cui J, de Jong F and Ponds E (2011) Intergenerational risk sharing within funded pension schemes. Journal of Pension

Economics and Finance 10, 1–29.
Davidoff T, Brown JR and Diamond PA (2005) Annuities and individual welfare. American Economic Review 95,

1573–1590.
Denuit M, Haberman S and Renshaw A (2011) Longevity-indexed life annuities. North American Actuarial Journal 15,

97–111.
Donnelly C, Guillén M and Nielsen JP (2013) Exchanging uncertain mortality for a cost. Insurance: Mathematics and

Economics 52, 65–76.
Dowd K, Blake D and Cairns AJ (2011) A computationally efficient algorithm for estimating the distribution of future annu-

ity values under interest-rate and longevity risks. North American Actuarial Journal 15, 237–247.
Eckel CC and Grossman PJ (2008) Men, women and risk aversion: experimental evidence. Handbook of Experimental

Economics Results 1, 1061–1073.
Erb CB, Harvey CR and Viskanta TE (1994) Forecasting international equity correlations. Financial Analysts Journal 50,

32–45.
Feldstein M and Ranguelova E (2001) Individual risk in an investment-based social security system. American Economic

Review 91, 1116–1125.
Filipović D, Kremslehner R and Muermann A (2015) Optimal investment and premium policies under risk shifting and

solvency regulation. Journal of Risk and Insurance 82, 261–288.
Finkelstein A and Poterba J (2004) Adverse selection in insurance markets: policyholder evidence from the UK annuity

market. Journal of Political Economy 112, 183–208.
Frederick S, Loewenstein G and O’Donoghue T (2002) Time discounting and time preference: a critical review. Journal of

Economic Literature 40, 351–401.
Froot KA (2007) Risk management, capital budgeting, and capital structure policy for insurers and reinsurers. Journal of Risk

and Insurance 74, 273–299.
Gatzert N and Wesker H (2012) The impact of natural hedging on a life insurer’s risk situation. The Journal of Risk Finance

13, 396–423.
Gatzert N, Holzmüller I and Schmeiser H (2012) Creating customer value in participating life insurance. Journal of Risk and

Insurance 79, 645–670.
Gollier C (2008) Intergenerational risk-sharing and risk-taking of a pension fund. Journal of Public Economics 92, 1463–1485.
Hanewald K, Piggott J and Sherris M (2013) Individual post-retirement longevity risk management under systematic mor-

tality risk. Insurance: Mathematics and Economics 52, 87–97.
Horneff WJ, Maurer RH, Mitchell OS and Stamos MZ (2010) Variable payout annuities and dynamic portfolio choice in

retirement. Journal of Pension Economics and Finance 9, 163–183.
Huang H, Milevsky MA and Salisbury TS (2012) Optimal retirement consumption with a stochastic force of mortality.

Insurance: Mathematics and Economics 51, 282–291.
Human Mortality Database (2015) University of California, Berkeley (USA), and Max Planck Institute for Demographic

Research (Germany). Last Accessed: 2015-03-31.
Investment Company Institute (2016) The US Retirement Market, Second Quarter 2016 (September). Last Accessed:

2016-10-24.
Jensen MC (1968) The performance of mutual funds in the period 1945–1964. Journal of Finance 23, 389–416.
Ji M and Zhou R (2017) Demographic risk in deep-deferred annuity valuation. Annals of Actuarial Science 11, 1–29.
Kimball MS, Sahm CR and Shapiro MD (2008) Imputing risk tolerance from survey responses. Journal of the American

Statistical Association 103, 1028–1038.
Koijen RS and Yogo M (2015) The cost of financial frictions for life insurers. American Economic Review 105, 445–475.
Koijen RS and Yogo M (2016) Shadow insurance. Econometrica 84, 1265–1287.
Koijen RS and Yogo M (2017) The fragility of market risk insurance. SSRN Working Paper No. 2972295.
Koijen RS, Nijman TE and Werker BJ (2011) Optimal annuity risk management. Review of Finance 15, 799.
Kulenko N and Schmidli H (2008) Optimal dividend strategies in a Cramér–Lundberg model with capital injections.

Insurance: Mathematics and Economics 43, 270–278.
Lee RD and Carter LR (1992) Modeling and forecasting US mortality. Journal of the American Statistical Association 87,

659–671.
Lockwood LM (2012) Bequest motives and the annuity puzzle. Review of Economic Dynamics 15, 226–243.

434 Ling-Ni Boon et al.

https://doi.org/10.1017/S1474747219000192  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747219000192


Luciano E, Regis L and Vigna E (2015) Single-and cross-generation natural hedging of longevity and financial risk. Journal
of Risk and Insurance 84, 961–986.

Martin I (2012) On the valuation of long-dated assets. Journal of Political Economy 120, 346–358.
Maurer R, Mitchell OS, Rogalla R and Kartashov V (2013) Lifecycle portfolio choice with systematic longevity risk and

variable investment-linked deferred annuities. Journal of Risk and Insurance 80, 649–676.
Maurer R, Mitchell OS, Rogalla R and Siegelin I (2016) Accounting and actuarial smoothing of retirement payouts in

participating life annuities. Insurance: Mathematics and Economics 71, 268–283.
Mertens E (2002) Comments on variance of the IID estimator in Lo (2002). Working paper.
Merton RC (1969) Lifetime portfolio selection under uncertainty: the continuous-time case. Review of Economics and

Statistics 51, 247–257.
Milevsky MA and Salisbury TS (2015) Optimal retirement income tontines. Insurance: Mathematics and Economics 64,

91–105.
Miller MH and Modigliani F (1961) Dividend policy, growth, and the valuation of shares. Journal of Business 34, 411–433.
Mitchell OS and McCarthy D (2002) Estimating international adverse selection in annuities. North American Actuarial

Journal 6, 38–54.
Modigliani F and Miller MH (1958) The cost of capital, corporation finance and the theory of investment. American

Economic Review 48, 261–297.
Nielsen LT and Vassalou M (2004) Sharpe ratios and alphas in continuous time. Journal of Financial and Quantitative

Analysis 39, 103–114.
Pashchenko S (2013) Accounting for non-annuitization. Journal of Public Economics 98, 53–67.
Peijnenburg K, Nijman T and Werker BJ (2017) Health cost risk: a potential solution to the annuity puzzle. Economic

Journal 127, 1598–1625.
Piggott J, Valdez EA and Detzel B (2005) The simple analytics of a pooled annuity fund. Journal of Risk and Insurance 72,

497–520.
Poterba JM (2001) Demographic structure and asset returns. Review of Economics and Statistics 83, 565–584.
Qiao C and Sherris M (2013) Managing systematic mortality risk with group self-pooling and annuitization schemes. Journal

of Risk and Insurance 80, 949–974.
Reichling F and Smetters K (2015) Optimal annuitization with stochastic mortality and correlated medical costs. American

Economic Review 105, 3273–3320.
Renshaw AE and Haberman S (2006) A cohort-based extension to the Lee–carter model for mortality reduction factors.

Insurance: Mathematics and Economics 38, 556–570.
Richter A and Weber F (2011) Mortality-indexed annuities: managing longevity risk via product design. North American

Actuarial Journal 15, 212–236.
Schich S (2008) Revisiting the asset-meltdown hypothesis. OECD Journal: Financial Market Trends 15, Organisation for

Economic Co-operation and Development.
Stamos MZ (2008) Optimal consumption and portfolio choice for pooled annuity funds. Insurance: Mathematics and

Economics 43, 56–68.
Steffensen M (2011) Optimal consumption and investment under time-varying relative risk aversion. Journal of Economic

Dynamics and Control 35, 659–667.
Tan KS, Blake DP and MacMinn RD (2015) Longevity risk and capital markets: the 2013–14 update. Insurance:

Mathematics and Economics 63, 1–11.
Tsai JT, Wang JL and Tzeng LY (2010) On the optimal product mix in life insurance companies using conditional value at

risk. Insurance: Mathematics and Economics 46, 235–241.
U.S. Chamber of Commerce (2016) Private retirement benefits in the 21st century: Achieving retirement security. Report,

United States Chamber of Commerce, Washington, DC.
Viceira LM (2001) Optimal portfolio choice for long-horizon investors with nontradable labor income. Journal of Finance

56, 433–470.
Visco I (2006) Longevity risk and financial markets. Keynote speech to the 26th SUERF Colloquium, Lisbon, 12–14 October

2006. Last accessed: 2017-04-20.
Wakker P, Thaler R and Tversky A (1997) Probabilistic insurance. Journal of Risk and Uncertainty 15, 7–28.
Weale M and van de Ven J (2016) Variable annuities and aggregate mortality risk. National Institute Economic Review 237,

55–61.
Willis Towers Watson (2017) FTSE 350 defined contribution pension scheme survey 2017. Infographic. Last Accessed:

2017-02-24.
Wong A, Sherris M and Stevens R (2017) Natural hedging strategies for life insurers: impact of product design and risk

measure. Journal of Risk and Insurance 84, 153–175.
Xu J, Murphy SL, Kochanek KD and Arias E (2016) Mortality in the united states, 2015. NCHS Data Brief No. 267,

National Center for Health Statistics.

Journal of Pension Economics and Finance 435

https://doi.org/10.1017/S1474747219000192  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747219000192


Yaari ME (1965) Uncertain lifetime, life insurance, and the theory of the consumer. Review of Economic Studies 32,
137–150.

Yang J, Acheson L, Holt J, Rupp G and Spica K (2016) 2015 Target-Date Fund Landscape. Report, Vanguard Group, Inc.
Last Accessed: 2017-03-06.

Yao D, Yang H and Wang R (2011) Optimal dividend and capital injection problem in the dual model with proportional
and fixed transaction costs. European Journal of Operational Research 211, 568–576.

Yogo M (2016) Portfolio choice in retirement: health risk and the demand for annuities, housing, and risky assets. Journal of
Monetary Economics 80, 17–34.

Zimmer A, Schade C and Gründl H (2009) Is default risk acceptable when purchasing insurance? Experimental evi-
dence for different probability representations, reasons for default, and framings. Journal of Economic Psychology
30, 11–23.

Zimmer A, Gründl H, Schade CD and Glenzer F (2018) An incentive-compatible experiment on probabilistic insurance
and implications for an insurer’s solvency level. Journal of Risk and Insurance 85, 245–273.

Appendix A

Rationale of the contract definition
The DVA and GSA contracts are not only modeled along the variable annuity contracts studied in the literature (Koijen et al.,
2011; Maurer et al., 2013), but are also relatable to an individual’s optimal consumption and investment.

The problem of optimal consumption and investment is composed of two separate parts: the allocation of initial wealth
over each retirement year, and the investment strategy. Aase (2015) shows that for an expected-CRRA-utility-maximizing
individual facing idiosyncratic longevity and stock market risks, the optimal allocation of initial wealth decays geometrically
in the retirement horizon. The AIR in our setting represents precisely this rate of decay.

When individuals are subject to longevity risk, its existence would not change the optimal wealth and asset allocation;
complication to the solution arises from the inability to react to longevity evolution (Huang et al., 2012). We, however,
assume that the contract’s parameters are deterministic (i.e., fixed in the year when it is sold, and the incorporation of
new information thereafter is prohibited). Therefore, by an appropriate choice of the AIR, h*, the contract described by equa-
tions (3) and (4) coincides with the optimal decumulation path of the individual.

We next solve the utility maximization problem, (13), to obtain the optimal AIR and investment strategy for a contract
defined by equations (3) and (4).

At time t0, the individual purchases the maximum number of variable annuity contracts affordable with a lump sum cap-
ital normalized to one. The annuity contract commences benefit payment in year tR, until the year t, conditional on the indi-
vidual’s survival. In the financial market setting as described in Section 2.1, with a deterministic fraction of wealth
u = {ut}

T
t=t0 invested in the risky stock index, and 1− θ invested in the money market account, the value of the reference

portfolio evolves according to dWt/Wt = (r + ut lsS)dt + utsSdZS,t :

max
{ut ,h(t, ut )}

T
t=tR

= Et0 [U(J)]

= Et0

∫T
tR

e−b(t−t0) J
1−g
t

1− g

∏t

s=t0
1p

(s)
x+(s−t0)

( )
dt

[ ]

Jt =
1

A(h) exp(−h(t, ut)(t − tR)) Wt

Wt0
if alive in year t

0 otherwise

⎧⎨⎩
⎫⎬⎭

A(h) =
∫T
tR

exp(−h(t, ut)(t − tR)) × Et0

∏t

s=t0
1p

(s)
x+(s−t0)

( )[ ]
dt

h(t, ut) =AIR

b = subjective discount factor

g = risk aversion parameter

Wt = value of the reference portfolio with the investment policyu

Et0 =
∏t

s=t0
1p

(s)
x+(s−t0)

[ ]
=t−t0p

(t0)
x

(13)

A(h) is the cost per unit of a zero-loading contract. It is straightforward to verify that the contract has a present expected value
of one for any h [ RT−tR , and thus satisfies the budget constraint. Given any θ, the first order condition, ∂Et0 [U(J)]/∂h = 0
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yields the optimal AIR, equation (14):

h
∗
(t, ut) = r + b− r

g
− 1− g

g
utsS lS − gutsS

2

( )
r = constant short rate

b = subjective discount factor

g = risk aversion parameter

ut = fraction of wealth allocated to the stock index at time t, tR ≤ t ≤ T

sS = standard deviation governing the stock index′s dynamics

lS = instantaneous Sharpe ratio of the stock index

(14)

Equation (14) is composed of the risk-free rate, the difference between the subjective discount factor and the risk-free rate, adjusted
by the risk aversion parameter, and a term concerning the exposure to the stock index, weighted by the risk aversion level.

If the returns on the investment were constant at r (e.g., either θ = 0 or σS = 0), for any given level of risk aversion, γ, the
shape of the optimal consumption path depends on the relative magnitude of β and r. An individual who discounts future
consumption at a higher rate than the constant interest rate (i.e., β > r, an impatient individual) prefers a downward sloping
consumption path whereas a more patient person (i.e., β < r) optimally chooses an upward sloping path. When θ≠ 0 and
σS≠ 0, then the risk aversion level, the standard deviation and the market price of stocks also have a role in determining
the optimal consumption path.

The first-order condition corresponding to the allocation to the stock index, ∂Et0 [U(J)]/∂u = 0, implies the optimal allo-
cation to the risky asset:

u∗ = lS
gsS

(15)

The optimal allocation to the stock index, θ*, is independent of time and wealth, and is identical to the optimal investment
policy of Merton (1969).

The variable annuity contract provides the optimal decumulation path when the AIR is set to h∗(t, u∗t ). By prohibiting the
incorporation of new information into the contract definition after its date of sale (i.e., enforcing deterministic, but possibly
time-varying contract parameters), longevity risk does not influence the optimal AIR and the optimal portfolio choice.

The conception of the GSA as a collective justifies the assumption that it prioritizes individual welfare (i.e., maximizes indi-
viduals’ expected utility in retirement). Therefore, the GSA offers an AIR that is in the best interest of the individuals, without
conflict among its stakeholders. As for the annuity provider, such contracts are also conceivable. For instance, Froot (2007)
suggests that insurers should shed all liquid risks for which they have no comparative advantage to outperform (e.g., financial
market risk), and devote their entire risk budget to insurance risks (e.g., longevity risk). The selling of variable annuities without
any financial guarantee achieves precisely this goal. Besides, Gatzert et al. (2012) demonstrate that if an insurance company sets
contract parameters for a participating life insurance contract such that they maximize the contract’s value (e.g., expected utility)
to the individual, the individual may be willing to pay more for the contract. Therefore, the provision of contracts defined
according to equations (3) and (4) under either a cooperative setup or by a for-profit entity is plausible.

Appendix B

Definition of the book value of liabilities
Suppose that the DVA provider or the GSA administrator issues contract(s) to a cohort who is aged x at time t0, promising
entitlements of JK (h∗, F, t, x), K [ {DVA, GSA}, in every year t, tR≤ t≤ T, conditional on the individual’s survival.
The estimate of the entity’s book value of liabilities at time t, t0≤ t≤ T, is:

Lt ;J
K (h

∗
, F, t, x)

∫T
s=max {tR,t}

exp (−h
∗
(s, u)(s− t))×s−t p

(t)
x+t−t0 ds

s−tp
(t)
x+t−t0 = conditional probability in year t that a living individual

of age x + t lives for at least s− t more years

h
∗ (t,u) = optimal AIR, Equation (14)

J
K (h∗

, F, t, x) = benefit at time t for contract K [ {GSA,DVA}

(16)
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B.1 Illustration of the case with no risk
To motivate the definition of equation (16), let us consider a three-period case (t = t0, t1, t2) in the absence of stock market
and longevity risks. Assume that the individual buys exactly one unit of the retirement contract at retirement in year t0, lives
with certainty to collect the benefits in year t1 = t0 + 1, and dies with certainty before the year t2 = t1 + 1. Suppose that the
reference portfolio is fully invested in the money market account, earning an interest rate that is constant at 2%.
Furthermore, we adopt a constant AIR, h = 3%, and zero contract loading, F = 0. As there is no uncertainty in this example,
equation (16) should yield precisely the value of liabilities at time t.

By definition of the DVA contract, there are two payments to be made: one in the year t0 and another in the year t1.
The individual receives a payment immediately, in t0, that is valued at:

J(h, 0, t0, x) = 1×WRef
t0

WRef
t0

e−h×(t0−t0)

= 1

The second payment, in present value at time t1 is:

J(h, 0, t1, x) = 1×WRef
t1

WRef
t0

e−h×(t1−t0)

= WRef
t0 e0.02

WRef
t0

e−h

= e−h+0.02

= e−0.01

(17)

Discounting equation (17) by the constant interest rate, we obtain the present value at time t0, of the payment due at time t1:

PVt0 [J(h, 0, t1, x)] =J(h, 0, t1, x)e−0.02×(t1−t0)

= e−0.01−0.02

= e−0.03

The present value of liabilities at time t0 is

J(h, 0, t0, x)+ PVt0 [J(h, 0, t1, x)] = 1+ e−0.03 (18)

It remains to show that equation (16) yields equation (18):

Lt =J(h, 0, t1, x)× (e−h×0
0 p(t)t + e−h×1

1 p(t)t )

= 1× (1+ e−h)

= 1+ e−0.03

B.2 Illustration of the general case
We price the liabilities of the pension provision entity by constructing a replicating portfolio for its contractual obligation.
We demonstrate that the price of the portfolio that replicates all the cash flows of an annuity contract is equation (16).

In the setting with systematic but no idiosyncratic longevity risk, we consider the liability associated with a contract holder
who purchased 1/A unit(s) of contracts when aged x in the year t0 = 0, retired in the year t = tR, while being subject to
unknown survival probabilities throughout the horizon, until the maximum age in the year t = T, when death is certain.

The pension provision entity is contractually obliged to make annual benefit payments from the individual’s retirement in
the year t = tR until he or she attains maximum age in the year t = T, conditional on her survival. LetWRef

t be the price at time
t of the reference portfolio to which the benefits are indexed, t∈ [t0, T ].

Absent longevity risk, by purchasing the sum of all the units of the reference portfolio in column (2) of Table 8 at time t,
the annuity provider would be able to fulfill its contractual obligation with certainty. For instance, to meet the payment at

time tR, the annuity provider purchases 1/(AW
Ref
t0 )e−h×0

tR−t p(t0)x units of the reference portfolio at time t0. When longevity risk is

absent, the conditional expectation, made at time t0, of the individual’s survival in year tR coincides with the realized survival

438 Ling-Ni Boon et al.

https://doi.org/10.1017/S1474747219000192  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747219000192


probability, i.e., tR−tp
(t0)
x =tR−t px . The value of this portfolio will evolve along with the financial market, to be worth exactly

1
A

WRef
tR

WRef
t0

×∏tR−1
l=t0 l−t0

p(l)x+l−t0
, the payment due at time tR. By the same reasoning for the rest of the entries in column (2), equa-

tion (19) is thus the total units of the reference portfolio to be held at any time t, such that the pension provision entity fully
hedges financial market risk:

∫T
s=max {tR,t}

1
A

1

WRef
t0

e−h(s−tR)
s−t p(t)x+t−t0 ds (19)

Equation (19) is an estimate of the liabilities at time t, in terms of the units of reference portfolio. Each unit is worth WRef
t at

time t. To obtain the value of liabilities, we take the portfolio’s corresponding value:

WRef
t ×

∫T
s=max {tR,t}

1
A

1

WRef
t0

e−h(s−tR)
s−t p(t)x+t−t0 ds (20)

As J(h, F, t, x) = WRef
t /(AWRef

t0 )e−h(t−tR) by definition, we can substitute it into equation (20) to get

Lt := J(h
∗
, F, t, x)

∫T
s=max {tR,t}

exp (−h
∗
(s, u)(s− t))×s−t p

(t)
x+t−t0 ds (21)

Equation (21) is identical to equation (16).
When there is systematic longevity risk, the best replicating portfolio is identical to column (2) of Table 8, but this best

estimate may not necessarily provide the exact cash flow to meet the annuity provider’s contractual obligations because the
realized survival probability may deviate from its conditional expectation made at time t, which then triggers the provider’s
default.

Table 8. Future cash flow and the best replicating portfolio of the pension provision entity. This table shows the value of
entitlements due in each year of retirement until maximum age (column (1)), and the corresponding best replicating
portfolio in units of the reference portfolio (column (2)). The best replicating portfolio is the conditional expectation of
the benefits in future value

Time
Benefits in future value

Best replicating portfolio (constructed at time t)
Units of the reference portfolio

to purchase at time t
(1) (2)

tR 1
A

WRef
tR

WRef
t0

e−h(tR−tR ) ×
∏tR−1

l=t0 1px+l−t0
1
A

1

WRef
t0

e−h(tR−tR)
tR−t p(t)x+t−t0

tR + 1
1
A

WRef
tR+1

WRef
t0

e−h(tR+1−tR ) ×
∏tR

l=t0 1px+l−t0
1
A

1

WRef
t0

e−h(tR+1−tR )
tR+1−t p(t)x+t−t0

tR + 2

1
A

WRef
tR+2

WRef
t0

e−h(tR+2−tR ) ×
∏tR+1

l=t0 1px+l−t0
1
A

1

WRef
t0

e−h(tR+2−tR )
tR+2−t p(t)x+t−t0

⋮ ⋮ ⋮
t

1
A
WRef

T

WRef
t0

e−h×(T−tR ) ×
∏T−1

l=t0 1px+l−t0
1
A

1

WRef
t0

e−h(T−tR )
T−t p(t)x+t−t0
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Appendix C

Delta method
We apply the Delta method (Theorem 5.5.4 of Casella and Berger, 2002) to estimate the variance of the CELs, which is used
to compute their confidence intervals.

Consider the function g(x, y) = (x/y)1/(γ−1)− 1. By the definition of equation (11), CEL = g(U(JGSA), U(JDVA)). We
estimate the CEL by plugging the expected utility into g(.), g(E0[U(JGSA)], E0[U(JDVA)]). Theorem 5.5.24 of Casella and

Figure 10. CEL and multiple of σδ:
CDR = 0. This figure presents the CEL
and the multiple of σδ for the base
case’s risk aversion levels, γ. The top
panel is for u = 0%, whereas the bot-
tom panel is for u = 20%.
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Berger (2002) suggests the following estimate for its variance:

Var{g(E0[U(JGSA)],E0[U(JDVA)])}
= g2xVar(U(JGSA))+ g2yVar(U(JDVA))+ 2gxgycov(U(JGSA), U(JDVA))

gx = gx(E0[U(JGSA)], E0[U(JDVA)])
gy = gy(E0[U(JGSA)], E0[U(JDVA)])

(22)

gx and gy denote the first partial derivative of g(.) with respect to x and to y respectively. Var(U(JK )) for K∈ {GSA, DVA} and
cov(U(JGSA), U(JDVA)) are estimated by the sample variance and sample covariance.

Appendix D

Uncertainty of the drift parameter
The maximum likelihood estimate for the drift term of the longevity model is normally distributed, ĉ � N (c, s2

c ). Based on
the sample used for the model calibration, we obtain ĉ = −1.0689 and ŝc = 0.0521. Without parameter uncertainty, the
best m-year-ahead forecast at time t is k̂t+m = mĉ+ kt . To incorporate parameter uncertainty, we draw cl from the
distribution N (ĉ, ŝ2

c ) for the lth simulation replication. The time trend governing longevity is thus
kt+m,l = mcl + kt,l +

∑m
i=1 1d,l, 1d,l � N (0, ŝ2

d), while the best m-year-ahead forecast relies on ĉ as cl is unobserved, i.e.,̂kt+m,l = mĉ+ kt,l .

Appendix E

σδ Generating zero default
When σδ is very small, the baseline 10% equity capital ensures that the probability of default is zero. The CEL for γ = 5, 8
increases in the multiple of σδ, conditional on zero default probability. When systematic longevity risk is small, risk averse
individuals find the welfare improvement due to upward adjustments of GSA benefits outweigh the welfare cost of the
scheme’s more volatile payments, but this effect reverses when systematic longevity risk rises (Figure 10).
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