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We conduct numerical simulations using the Eulerian–Lagrangian approach to
investigate the formation of the leaking, finger, and stable-settling modes in convective
sedimentation when a sediment-laden fluid layer descends through a sharply stratified
ambient flow. We show that the temporal evolution of the sedimentation process for
the leaking mode can be divided into three stages, including (in temporal order)
Rayleigh–Taylor instability, convection, and leaking stages. The presence of sheet-like
descending plumes of suspended particles is an important characteristic of the leaking
mode, which marks the existence of the leaking stage. For larger particles, the motion
is more dominated by gravitational settling and less affected by buoyancy-induced
flow motion. The resulting lack of the leaking stage for the larger-particle case leads
to persistent finger-like plumes of suspended particles, known as the finger mode.
The stable-settling mode occurs when the particles are large and the concentration is
dilute such that flow motion due to Rayleigh–Taylor instability has no effect on the
particle motion, and the convective motion of suspended particles is insignificant. For
the third stage of the leaking mode, which is also the final stationary state, we derive
the criterion for the occurrence of the leaking pattern from a scaling argument of the
viscous boundary layer. The criterion is further confirmed by the present simulation
results and previous laboratory experiments. Through analysis of the energy budget
and the vertical flux, we show that although the settling of individual particles is
accelerated, the presence of the sheet-like descending plumes in the leaking mode does
not contribute to an efficient settling enhancement compared with the finger mode and
the Rayleigh–Taylor instability, i.e., the cases with no background stratification. This
implies a negative effect on the settling enhancement for small suspended particles
when a stable background density stratification exists. In addition, simulations using
the equilibrium Eulerian description for the suspended particles are also conducted
to examine the difference between the present Lagrangian particle approach and the
conventional Eulerian model.

Key words: buoyancy-driven instability, geophysical and geological flows, multiphase and
particle-laden flows
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1. Introduction
The settling of suspended solid matter at a sharp density interface in liquid flows

is an important phenomenon in many environmental and industrial flow problems.
Examples include the deposition of sediments from river plumes (Parsons, Bush &
Syvitski 2001; Warrick et al. 2008), fall layers of the widespread volcanic ash in the
deep sea (Carey 1997; Manville & Wilson 2004), and convective transport of plankton
(Green & Diez 1995). In estuaries, buoyancy-induced convective sedimentation plays
a critical role in transporting near-surface suspended matter down to the near-bed
region of the water column (Bradley 1965). When the sizes of suspended particles
are small, the buoyant effect can result in a downward movement of particles that
is much faster than the settling speed of each individual particle. When there is no
background stratification, this is simply a result of Rayleigh–Taylor instability (RTI)
(Chou, Wu & Shih 2014b; Chou & Shao 2016). If there is a density stratification
in the ambient flow, there can be either double-diffusive convection or settling
convection (Green 1987; Hoyal, Bursik & Atkinson 1999a,b; Davarpanah Jazi &
Wells 2016). The former case is due to two different diffusivities associated with
different diffusion agents (e.g. salt, temperature, and very fine sediments), and the
later case is dominated by RTI that occurs at the lower boundary of the descending
sediment-laden layer. The double-diffusive convection occurs only when particle sizes
are sufficiently small, such that the associated molecular diffusion is significant. For
suspended particles larger than O(10 µm), the settling convection is the dominant
mode of convective sedimentation in the stratified environment. Although it has been
argued that RTI plays a major role in settling convection (Yu, Hsu & Balachandar
2014; Burns & Meiburg 2015), as schematically shown in figure 1, due to the
background stratification that subsequently leads to a three-layer structure in bulk
density while the sediment-laden layer descends through the background density
interface, the following convective motion of both the fluid and sediment phases can
be much more sophisticated.

Recently, convective sedimentation has been studied in detail theoretically (Burns &
Meiburg 2012; Yu, Hsu & Balachandar 2013) and numerically (Yu et al. 2014; Burns
& Meiburg 2015). Through linear stability analysis, Burns & Meiburg (2012) first
introduced the ratio of the single-particle settling velocity to the diffusive spreading
velocity of the background density interface (e.g., the diffusivity of salinity) as an
important parameter to determine whether convection is driven by double diffusion
(if the ratio <1) or is settling driven (if the ratio >1). Yu et al. (2013) further
extended the theoretical framework of Burns & Meiburg (2012) to cases in which
the long-range hydrodynamic effects of the inter-particle interaction are taken into
account. Theoretical analysis can thus be performed for a range of effective sediment
diffusivities based on the semi-empirical formula of Segre, Herbolzheimer & Chaikin
(1997). Yu et al. (2014) then used direct numerical simulation along with the scalar
transport model for sediment transport to investigate sedimentation patterns in both the
double-diffusive and settling-driven RTI modes. They showed that the characteristic
presence of small fingers (on a scale of millimetres) associated with double-diffusive
instability is dominant when sediments of a fine size (O(1 µm)) are investigated,
while fingers on the centimetre scale due to settling-driven RTI become dominant in
the larger-size case (O(10 µm)). Burns & Meiburg (2015) also conducted a direct
numerical simulation study of the problem. Their simulation results confirmed that
the ratio of the effective thickness of the diffusive background density interface to
the particle settling distance is a key parameter determining the sedimentation pattern
(double diffusion or settling-driven RTI). Moreover, they found a phase-locking
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SPC Salinity Bulk density

SBDI

SPC Salinity Bulk density

(a)

(b)

FIGURE 1. Schematic showing the initial profiles of SPC, salinity, and bulk density (a)
and the same profiles at a later time (b). The stable bulk density interface (SBDI) is
indicated by the arrow in the bulk density plot in (b).

mechanism due to large-scale overturning events in the settling-driven case. Both
Yu et al. (2014) and Burns & Meiburg (2015) showed that both double-diffusive
and settling-driven RTI modes can greatly enhance particle settling (faster than the
gravitational settling of a single particle), which could explain the field observations
of rapid sedimentation processes near river mouths. Both of these numerical studies
focused on relatively small particles, for which a continuum description is appropriate.
Therefore, double-diffusive convection and its transition to settling-driven RTI were
addressed comprehensively in these studies. However, as suspended particles in
natural water bodies span a wide range in size (O(1–100 µm)), detailed numerical
investigation of larger particles may provide useful insights to make the parametric
study of convective sedimentation more complete.

In contrast to the double-diffusive problem, past studies of settling-driven RTI
are relatively rare, probably because the latter can be simply categorized as a form
of conventional RTI, a classical problem with abundant references. However, the
sheet-like sediment plumes that appeared in both Yu et al. (2014) and Burns &
Meiburg (2015) are not a typical flow feature of RTI. This plume pattern (manifesting
as sheet-like plumes in three dimensions), which has also been observed in laboratory
experimental studies (Hoyal et al. 1999a; Parsons et al. 2001; Davarpanah Jazi &
Wells 2016), is called the ‘leaking’ mode. Parsons et al. (2001) reported a series of
experimental results showing that settling convection can exhibit finger-like, leaking,
or intermediate (both finger and leaking modes) patterns. This study was the first ever

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.349


516 Y.-C. Shao, C.-Y. Hung and Y.-J. Chou

to classify the aforementioned settling-driven convection into three modes. Using both
salt and temperature as the agents to generate a background density stratification in a
originally quiescent water column, Parsons et al. (2001) reported that with a stabilized
density interface (dρ/dz < 0), only the leaking mode was observed if the diffusive
heat and salinity fluxes were in the same direction, while otherwise, both leaking
and finger modes were observed. According to Turner & Stommel (1964), the former
case can lead to a background density interface that is temporarily over stabilized,
while in the latter case, a double-diffusive instability can occur, which may in turn
destabilize the density interface, as discussed in a recent study by Carpenter, Sommer
& Wuest (2012). The findings of Parsons et al. (2001) reveal the importance of the
heat flux in this phenomenon. Parsons et al. (2001) also stated that without thermal
effects, the double-diffusive convection of suspended particles is not likely to occur
in natural environments, which was also supported by calculations by Hoyal et al.
(1999a). Characteristics similar to those of the leaking pattern were also observed in
the laboratory by Hoyal et al. (1999a), who further proposed a conceptual model to
predict their occurrence. By analogy with the phenomenon of heat convection, the
model proposed by Hoyal et al. (1999a) was based on a theoretical analysis of the
Rayleigh–Benard convection. However, as the diffusivity of the suspended sediment
was negligible in most of their cases, instead of the Rayleigh number (Ra), they
used the Grashof number (Gr), which does not depend on the diffusivity. In fact,
the validity of treating sediment (which, if not sufficiently fine, has a negligible
diffusivity) as a diffusive agent remains questionable. The model proposed by Hoyal
et al. (1999a) is solely based on observation and a scaling argument, and may
need further justification. In fact, the mechanism that leads to different patterns in
convective sedimentation remains unclear and needs further study, as also suggested
by Parsons et al. (2001). A very recent study by Davarpanah Jazi & Wells (2016),
who used symmetry of velocity fluctuation at the background density interface as
an indicator, addressed the importance of the ratio of excess density due to salt
(lower layer) to that due to suspended particles (upper layer), in setting up different
sedimentation modes.

This study presents numerical results of convective sedimentation in a sharply
stratified environment when particle sizes d0 = O(10 µm). This occurs in a wide
range of sizes of suspended particles found in natural water bodies such as oceans
and lakes. We use a Lagrangian particle-tracking method to simulate the motion
of suspended particles, rather than the Eulerian approach used in conventional
sediment transport modelling (e.g. Yu et al. 2014; Burns & Meiburg 2015), so that
an arbitrary diffusivity for transport of the particle concentration is not required. This
is more representative of larger particles than the Eulerian approach. Through detailed
investigation, the main objective of the present numerical experiments is to address
the following points that were missing in previous studies: (1) the mechanisms that
lead to different patterns in convective sedimentation; (2) the criterion for the leaking
mode to take place; and (3) the enhancement of particle settling in different modes.
The third point is of major geological and environmental importance, and in the
present study, an energy budget analysis is performed to address this point. It should
be noted that in the present study, we focus on fast-settling, large particles, for which
the associated convective sedimentation is mainly induced by settling-driven RTI
(Burns & Meiburg 2012). Therefore, the term ‘finger’ used in the present study refers
to the relatively large finger-like plume induced by RTI, rather than the fine-scale
finger due to double-diffusive convection.

The rest of the paper is outlined as follows. Section 2 presents the mathematical
formulation, numerical methods, and simulation set-up. The relevant scaling for the
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present problem is also presented. In § 3, we focus on the qualitative presentation
of the different sedimentation modes revealed by the present simulations, including
leaking, finger, and stable-settling modes – the three distinctive stages in the time
evolution of the present Lagrangian particle tracking and the traditional equilibrium
Eulerian approach. In § 4, we provide a more detailed discussion on the leaking and
finger modes and present a criterion for the occurrence of the leaking mode, which is
further tested against the existing experimental results. The sensitivity of the present
leaking criterion to the background stratification is also addressed. Section 5 presents
the analysis of the energy budget, with an aim to identify the enhancement of particle
settling in a bulk manner. Comparison with the results from the conventional Eulerian
particle model is given in § 6, which highlights the difference between the Lagrangian
and Eulerian treatments for suspended solid particles. Concluding remarks are then
given in § 7.

2. Method
2.1. Governing equations

We consider hydrodynamic drag and gravitational force to describe particle motion.
The momentum of a single solid particle is thus described as (Maxey & Riley 1983;
Ferry & Balachandar 2001):

mp
dup

dt
=mp

uc|p − up

τp
+ (mp −mf )g, (2.1)

where mp is the mass of the solid particle, mf is the mass of the fluid, d/dt is
the material derivative of the Lagrangian particle moving with a velocity up, uc|p
is the velocity of the continuum phase evaluated at the particle location xp, g is
the gravitational acceleration, and τp is the particle relaxation time, which can be
obtained with (Schiller & Nauman 1935)

τp =
ρp

ρ0

d2
p

18ν
(1+ 0.15Re0.687

p )−1, (2.2)

in which ρp and ρ0 are densities of the particle and fluid phases, respectively, dp is
the particle diameter, ν is the kinematic viscosity, and

Rep =
|uc|p − up|dp

ν
6 800 (2.3)

is the particle Reynolds stress. For the fluid phase, we consider a density-stratified
incompressible flow subject to the drag force due to a certain number of point
particles. Under the Boussinesq approximation, the momentum equations are written
as

∂uc

∂t
+ uc · ∇uc =−

1
ρ0
∇p+ ν∇2uc + f + α(S− S0)g, (2.4)

where the subscript c indicates the continuous phase, p is the dynamic pressure, f
is the total drag the particles exert on the fluid, S is the salinity, S0 is the reference
salinity, and α is the density expansion coefficient of salinity. Mass conservation of
the fluid phase is governed by the continuity equation,

∇ · uc = 0. (2.5)
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Transport of the salinity field, S, is governed by the advection–diffusion equation, i.e.,

∂S
∂t
+ uc · ∇S= κ∇2S, (2.6)

where κ is the diffusion coefficient for the salinity concentration. In the present study,
we consider the diluted condition for suspended particles (volume fraction <1 %) so
that the Boussinesq approximation is applied. The forcing term f in (2.4) within a
control volume for monodispersed particles is obtained with

f =−r
Np∑

k=1

φp
uc|p,k − up,k

τp
, (2.7)

where Np is the total number of particles in the control volume, φp is the volume
fraction of a single particle, and r = ρp/ρ0 is the density ratio between the particle
and fluid.

Using (2.1), the particle velocity can be expressed as

up = uc|p + τp

(
1−

1
r

)
g− τp

dup

dt
, (2.8)

which shows that when τp is small such that τpdup/dt� uc|p,

up ≈ uc|p + τpg′ = uc|p −wsê3, (2.9)

where ê3 is the unit vector in the vertical direction, g′ = (1 − 1/r)g is the reduced
gravity of a single solid particle in water, and ws is called the settling speed. When
the problem involves a large number of solid particles, the equilibrium continuum
model is usually adopted to describe the motion of the particles. This is the
so-called equilibrium Euler method to describe the motion of suspended particles.
A typical example involves the study of suspended-sediment transport in the context
of geophysical and environmental flows. The model formula can be obtained by
assuming that the particle drag is in equilibrium with the gravitational force so that
the particle is associated with zero inertia. Substituting the first identity of (2.9) into
(2.7) gives the equilibrium particle forcing equation:

f eq = (r− 1)Npφpg= (r− 1)φg, (2.10)

where φ is the volume fraction of the total number of particles in the control volume.
Substituting (2.10) into (2.4) gives the equilibrium formulation for the momentum
equations of the fluid:

∂uc

∂t
+ uc · ∇uc =−

1
ρ0
∇p+ ν∇2uc + α(S− S0)g+ (r− 1)φg. (2.11)

The feedback forcing of equilibrium particles to the fluid phase is equivalent to a
buoyant forcing term. Equation (2.11) is the single-phase equation that has been
commonly used to model suspended-sediment transport in the context of geophysical
and environmental flows. Using the maximum salinity difference, 1S0, and the
maximum difference in bulk sediment concentration, 1φ0, as the concentration
scales and relevant scales in length (L̃), velocity (Ũ), time (T̃ = L̃/Ũ), and pressure
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(P̃ = ρ0Ũ2/L̃), the dimensionless momentum equations (keeping the same notation)
can be written as

Re
(
∂uc

∂t
+ uc · ∇uc

)
=−Re∇p+∇2uc −

Gr
Re
(Rs(S− S0)+ φ)ê3, (2.12)

where

Re=
ŨL̃
ν
, (2.13)

Gr=
(r− 1)1φ0gL̃3

ν2
, (2.14)

and

Rs=
α1S0

(r− 1)1φ0
(2.15)

are the Reynolds number, Grashof number, and stability ratio (Huppert & Manins
1973), respectively. One can thus obtain viscous scaling quantities under the condition
Re=Gr= 1 as

L̃=
(
ν2

g′

)1/3

, (2.16)

T̃ =
(
ν

g′2

)1/3

, (2.17)

Ũ = (νg′)1/3, (2.18)

P̃= ρ0(νg′)2/3, (2.19)

where g′ = (r − 1)1φ0g. Equations (2.16)–(2.19) are the dimensional quantities used
to normalize the present results.

Equations (2.16)–(2.19) are scales defined for the fluid phase that are relevant for
the bulk behaviour. For the small-scale velocity deviation of the single particle from
its surrounding flow field, it is more relevant to use the settling speed ws. As such, a
new non-dimensional variable is introduced as

δucp =
uc|p − up

ws
. (2.20)

Applying (2.20) to (2.7) and substituting it into (2.4), along with (2.5) and (2.6), the
dimensionless governing equations for the fluid phase in the present study can be
written as follows:

∇ · uc = 0, (2.21)

Re
(
∂uc

∂t
+ uc · ∇uc

)
=−Re∇p+∇2uc −

GrRs
Re

(S− S0)ê3 −
Ws

ReSt
rφp

Np∑
k=1

δucp,k,

(2.22)
∂S
∂t
+ uc · ∇S=

1
Sc
∇

2S, (2.23)
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where

St=
τp

T̃
, (2.24)

Ws =
ws

Ũ
, (2.25)

and
Sc=

ν

κ
(2.26)

are the particle Stokes number, non-dimensional settling speed (Burns & Meiburg
2012, 2015), and Schmidt number for salinity, respectively. It can be seen that under
the equilibrium condition, δucp,k = 1 and (2.22) recovers to its equilibrium form, i.e.,
(2.11). In analogy to the Stokes number used in the context of turbulent dispersed
two-phase flow (e.g. Balachandar & Eaton 2010), St in (2.22) characterizes the
importance of particle inertia. For example, if St > O(1), particle inertia becomes
important and the single-phase approximation (2.11) may not be valid, a common
condition in the solid–gas system. However, as mentioned by Chou, Wu & Shih
(2014a), in most solid–liquid suspension problems in natural environments, including
the present problem (as seen in table 1), St is sufficiently small due to the small
solid–liquid density ratio. Therefore, equation (2.11) is a good approximation such
that non-dimensional parameters given by (2.13)–(2.15) and scaling parameters given
by (2.16) and (2.19) are valid.

2.2. Numerical methods
Calculations of particle momentum and movement are implemented in an incompre-
ssible Navier–Stokes solver that was originally developed by Zang, Street & Koseff
(1994). In this code, a finite-volume method is used to discretize the governing
equations on non-staggered grids. All spatial derivatives except the convective
terms are discretized with second-order central differences. The convective terms
are discretized using a variation of QUICK (Leonard 1979; Perng & Street 1989).
For the time advancement, the second-order Crank–Nicolson scheme is used for the
diagonal viscous terms, and the second-order Runge–Kutta (RK2) method is used for
all other terms. Following Kim & Moin (1985), the momentum equation is advanced
with a predictor–corrector procedure based on the fractional-step method (Chorin
1968), in which a divergence-free velocity field is calculated at each time step by
correcting the predicted velocity with the pressure gradient. The code was parallelized
by Cui using the message passing interface (MPI) so that it can be performed on
a massively parallel computer (Cui 1999). The original single-phase code has been
successfully applied to simulations of numerous flow problems, including turbulent
lid-driven cavity flow (Zang et al. 1994), coastal upwelling (Zang & Street 1995; Cui
& Street 2004), interfacial waves (Fringer & Street 2003; Venayagamoorthy & Fringer
2007; Arthur & Fringer 2014), and sediment transport (Zedler & Street 2001, 2006;
Chou & Fringer 2008, 2010). Calculation of particle movement is implemented by
Chou, Gu & Shao (2015), in which the particle momentum is also calculated using
RK2, while its movement is performed with the explicit Euler method. In Chou et al.
(2015), calculation of Lagrangian particles has been validated by some canonical
cases of suspended-sediment transport. The present two-phase Euler–Lagrange model
has been applied to study the particle-induced RTI (Chou & Shao 2016). In this
study, following Chou & Shao (2016), direct numerical simulation along with the
point-force representation for fine suspended particles are employed to study the
convective sedimentation.
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Case Rs St Ws(=RL) Lx × Ly × Lz Grid resolution No. particles

C0001d18 158 6.58× 10−5 2.48× 10−1 70× 70× 106 256× 256× 384 3 477 699
C0010d18 16 3.05× 10−4 1.15× 10−1 152× 152× 228 256× 256× 384 35 300 534
C0010d18RT 0 3.05× 10−4 1.15× 10−1 152× 152× 228 256× 256× 384 35 300 534
C0010d18W 16 3.05× 10−4 1.15× 10−1 152× 152× 228 256× 256× 384 23 442 422
C0010d18E 16 3.05× 10−4 1.15× 10−1 152× 152× 228 256× 256× 384 0
C0030d18 5 6.35× 10−4 7.99× 10−2 219× 219× 219 256× 256× 256 53 051 102
C0001d36 158 2.63× 10−4 9.93× 10−1 70× 70× 106 256× 256× 512 951 659
C0010d36 16 1.22× 10−3 4.61× 10−1 152× 152× 228 256× 256× 384 4 401 978
C0010d36RT 0 1.22× 10−3 4.61× 10−1 152× 152× 228 256× 256× 384 4 401 978
C0010d36E 16 1.22× 10−3 4.61× 10−1 152× 152× 228 256× 256× 384 0
C0030d36 5 2.54× 10−3 3.19× 10−1 219× 219× 328 256× 256× 256 6 699 182
C0001d54 158 5.92× 10−4 2.23× 100 152× 152× 228 256× 256× 384 254 067
C0010d54 16 2.75× 10−3 1.04× 100 152× 152× 228 256× 256× 384 1 268 351
C0010d54RT 0 2.75× 10−3 1.04× 100 152× 152× 228 256× 256× 384 1 268 351
C0010d54E 0 2.75× 10−3 1.04× 100 152× 152× 228 256× 256× 384 0
C0030d54 5 5.71× 10−3 7.19× 10−1 152× 152× 228 256× 256× 384 3 975 058

TABLE 1. Simulation parameters and set-up, in which ‘W’ indicates the case of thicker
background density interface, ‘RT’ represents particle-induced RTI when there is no
background stratification, and ‘E’ represents the equilibrium Eulerian approach to model
particle transport (6.1).

2.3. Simulation set-up
Simulations are carried out in a three-dimensional domain with different domain
sizes, as summarized in table 1. As shown in figure 1, the two-layer fluid system
that is initially stable is studied. The upper fluid layer, defined by z > 0, initially
contains particles that are randomly seeded. The fluid in both layers is quiescent at
the beginning. The specific density of the particle r= 2.65 is used in all of the cases.
The total numbers of particles in the upper layer are given based on the desired
initial bulk volumetric concentrations, φ0,max = 0.0001, 0.001, and 0.003. The salinity
is set at 34 psu in the lower layer, as in the regular ocean, and 0 in the upper layer.
Combined with the particle concentration, the initial configurations in all of the cases
are stable (i.e., the bulk density of the upper layer is less than that of the lower layer).
According to Mulder & Syvitski (1995), the present suspended particle concentration
can be categorized as a river condition that is ‘moderately dirty’. The error function
is used to describe the initial vertical profiles for salinity, S, i.e.,

S= 0.5S0,max

[
1− erf

(
z
l0

)]
, (2.27)

where the maximum density S0,max = 34 psu and l0 is the initial interface thickness.
In the present study, l0= 1.5 mm is set as a fixed value in all of the cases except the
case C0010d18W, in which l0 = 15 mm is used. The value l0 = 1.5 mm corresponds
to 3.77L̃ in the case that 1φ0 = 0.001. A large value of the Schmidt number,
Sc = 50, is used in all of the simulation cases, and the change in the interfacial
thickness of the background density through the course of the simulation is very
small (O(1L̃)). The periodic boundary condition is applied to all of the boundaries in
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the horizontal direction, and the open boundary condition, which allows free slip and
flow penetration, is applied to both the top and bottom boundaries. To eliminate any
possible boundary effect due to either the horizontal or vertical boundary conditions,
the simulations are run until either of the following two conditions is violated: (1) the
primary wavelength in the horizontal direction of the flow field exceeds half of the
horizontal domain size; or (2) the first descending particle plume (as discussed later)
reaches the bottom boundary. In each concentration, three particle sizes, d0 = 18, 36,
and 54 µm, are studied. That is, depending on the particle size, different numbers
of particles are randomly placed in the upper particle-laden fluid layer to retain the
same bulk excess density. The numbers of particles in all of the cases are provided in
table 1. According to the Stokes settling velocity, ws, and velocity scaling in (2.16),
particle sizes are characterized by the dimensionless settling velocity, Ws = ws/Ũ in
table 1. Another important dimensionless parameter used for fluid–particle interaction
is the Stokes number, St= τp/T̃ , which characterizes the inertia of individual particles.
In the present study, all of the St values are much less than one (O(10−5–10−3), see
table 1), meaning that the particle inertia is much less important than the flow-induced
motion and that the scaling parameters given by (2.16) are valid.

3. Sedimentation pattern
3.1. Leaking

3.1.1. Stage 1: Rayleigh–Taylor instability
Figure 2 presents snapshots of the particles and the resulting excess bulk density,

1ρ, at the central slice in the y-direction at representative time instants in the case
C0010d18. The excess bulk density here is obtained with

1ρ = (r− 1)φ + α(S− S0), (3.1)

where φ is obtained by summing the volume fraction of all of the particles in a grid
cell. As shown in figure 2(a,c), at the initial stage, suspended particles slowly settle
due to the gravitational force, with a speed that is roughly equal to the Stokes settling
speed ws. The settling particles then form a layer of reversed buoyancy (see figure 2d),
which is unstable subject to the gravitational forcing, known as the RTI. However, as
shown in figure 2(e, f ), unlike the regular RTI, in which perturbation grows without
bound, the motion of uprising flow, also known as bubbles, ceases while the stable
bulk density interface (SBDI) is encountered. This leads to the end of the RTI stage.
The SBDI is defined as the point where the reversed buoyant force vanishes, which is
simply the end point of the layer of particle-induced excess density, as shown in the
bulk density plot in figure 1(b). In other words, flow instability due to the reversed
buoyancy occurs only after settling particles pass through the SBDI.

3.1.2. Stage 2: convection
Once the rising bubble is blocked by the SBDI, the presence of the density interface

resembles a solid wall. At the moment, due to mass conservation, an apparent
horizontal flow develops right beneath the interface. It moves downwards along the
descending spike originally developed at the RTI stage, and at the cusp of the spike it
moves towards its origin due to mass conservation. This can be more easily seen from
the zoom-in snapshots of 1ρ and velocity arrows in figure 3. This forms a convection
cell within each initial RTI bubble. The size of the convection cell is dominated by
the size of the adjacent descending plumes (spikes). An interesting flow pattern at
this stage is the presence of the vortex rings due to strong convection, as shown
in figure 4, where the vortical flow structures are visualized by the iso-surfaces of
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FIGURE 2. (Colour online) Snapshots of the particles (a,c,e,g,i) and excess bulk density
(b,d, f,h,j) of the active region at the central slice in the y-direction at representative time
instants in the case C0010d18. Three regions at the final state, as described in § 3.1.3,
are indicated in (i). In the particle plots, point markers are used to represent the positions
of the particles locating in Ly/2− δy 6 y 6 Ly/2, in which Ly is the domain size in the
y-direction and δy is the grid size in the y-direction.

the imaginary part of the complex eigenvalue of the velocity gradient tensor, namely,
λI , as suggested by Soria & Cantwell (1993). The pattern of the convection cell is
similar to those found in heat convection problems (i.e., Rayleigh–Benard instability)
(Chandrasekhar 1961). Unlike those standard Rayleigh–Benard problems, there is no
lower boundary explicitly imposed in the present system, but the cusp region at the
descending plume acts as a stress-free lower boundary, and the SBDI becomes a rigid
upper boundary. However, the present results differ from the heat convection problem
in that the suspended particles of interest do not diffuse (i.e., d0 >O(10 µm)). As a
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FIGURE 3. (Colour online) Zoom-in snapshot of excess bulk concentration along with
velocity arrows near the interface region to indicate the presence of convection, as
highlighted by the red arrows.
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FIGURE 4. The vortical structures, visualized by the imaginary part of the eigenvalue of
the normalized velocity gradient tensor (λI), at t = 81.59, showing the formation of the
vortex rings right beneath the background density interface during the convection stage.
The iso-surface presented here corresponds to λI = 0.11.

result, unlike the traditional Rayleigh–Benard problem, in which the Rayleigh number
plays a critical role in flow instability, the flow is always unstable like RTI without
density diffusion (Chandrasekhar 1961).

3.1.3. Stage 3: leaking
The horizontal flow developed near the SBDI at the second stage results in

thinning of the neck region of the descending plume, leading to the sheet-like
shape, as shown in figure 2(g). In the meantime, the horizontal returning flow at
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the cusp of the plume deforms the plume head by enhancing its lateral development,
which is often asymmetric. The descending plume is thus subject to a very unstable
condition. For example, pinch-off of the head region is very likely to occur, as
shown in figure 2(g,h). The convection cells then vanish, and in the lower region of
the domain, large-scale convection develops, as shown in figure 2(i,j). Although the
convection cells no longer exist, the horizontal flow motion driven by the descending
sheet-like plume persists, driving fine particles to move horizontally to form a stable
suspended particle concentration (SPC) interface. It should be noted that, as it is
developed due to the horizontal flow motion, the SPC interface does not coincide
with SBDI at which the velocity vanishes. Figure 5 schematically shows the flow and
SPC patterns at this stage. A very important feature in figure 5 is the development
of a boundary layer between the SPC interface and SBDI. Due to the SBDI that acts
as a solid wall, the flow vanishes inside the boundary layer due to viscosity. Also, as
the sheet-like descending plume becomes unstable in the lower region of the domain,
the distribution of suspended particles is spatially non-uniform (see figure 2i) and
the secondary RTI is unlikely to occur, such that the flow is mainly driven by the
convective motion of unstable plumes. As a result, without significant RT bubbles,
the upward velocity near the SBDI is relatively weak and usually makes a negligible
contribution to driving the vertical plume descending from the SPC interface. This
is demonstrated in figure 6, where we show that given the same initial volume
concentration for suspended particles, the vertical velocity field corresponding to
figure 2(i) is much less than that in a non-leaking mode (known as the finger mode)
corresponding to figure 7(g), the details of which are given in § 3.2. In the absence
of the vigorous upward flow, the formation of the descending plume is due to the
onset of the RTI of the gravitationally unstable sediment-laden layer at the edge of
the boundary layer near the SBDI (see figure 5). Sedimentation at the SBDI is then
dominated by the sheet-like plume.

The leaking stage is the final stationary mode, at which the particle-laden flow
column can be divided into three regions. As shown in figure 2(i), the first region
(region 1 in figure 2(i)) is a stable particle-containing region above the SPC interface.
The second region (region 2 in figure 2(i)) is the leaking sedimentation region right
beneath the SPC interface, which comprises the sheet-like particle plumes. This is the
character of the leaking pattern in convective sedimentation. The third region (region
3 in figure 2(i)) is where the large-scale convection takes place due to the unstable
development and strong lateral motion of the plume.

3.2. Finger
In the previous section, we noted that the temporal evolution of the sedimentation
process can be divided into three regimes, namely, RTI, convection, and leaking
stages. The leaking pattern, in which sheet-like particle plumes are present, appears
as the final pattern of sedimentation. However, depending on the particle size and
concentration, another pattern is possible in which finger-like plumes appear at the
final stage. Figure 7 shows a series of snapshots of particles and the corresponding
excess density in the case C0010d54, in which larger particles with the same
volumetric concentration as in the previous example of leaking are tested. As shown
in figure 7(a,b), the particle-containing layer settles stably at the very beginning. Due
to the excess bulk density induced by the suspended particles, RTI starts to develop
at the front of the particle-laden layer, as shown in figure 7(c,d). Similar to the RTI
stage in the leaking mode, the RTI bubbles then hit the density interface. The upward
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Stable bulk density interface (SBDI)

B. L.

B. L.

SBDI

Q

(a)

(b)

FIGURE 5. (Colour online) Schematic plots to show the flow and sedimentation patterns
(a) in the leaking mode and the associated flow structure near the SBDI (b). The shaded
region indicates the suspended particle concentration and the dashed line indicates the
SBDI (see also figure 1).
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FIGURE 6. (Colour online) Snapshots of the vertical velocity in (a) the leaking
mode (C0010d18), corresponding to figure 2(i), and (b) the finger mode (C0010d54),
corresponding to figure 7(g).

motion is then halted by the background density interface (see figure 7e, f ), which
generates significant horizontal flow at this interface, similar to the convection stage
in the case of leaking. However, due to the faster settling speed compared with the
particles in the leaking case, the particle motion is more dominated by gravitational
settling and is relatively less influenced by the background flow motion. As a result,
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FIGURE 7. Snapshots of the particles (a,c,e,g) and excess bulk density (b,d, f,h) of the
active region at the central slice in the y-direction at representative time instants in the
case C0010d54, showing the finger mode in the case of larger particles. In the particle
plots, point markers are used to represent the positions of the particles locating in Ly/2−
δy 6 y 6 Ly/2, in which Ly is the domain size in the y-direction and δy is the grid size
in the y-direction.

rather than the sheet-like pattern seen in the leaking mode, the particles settle through
the density interface with a more uniform distribution in the horizontal direction, and
the finger patterns due to RTI are present in the lower water column, as shown in
figure 7(g,h).

3.3. Stable settling
The time duration of the aforementioned RTI stage, namely, T1, can be simply
estimated from the trajectory of a single particle. For a small particle for which the
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equilibrium condition (2.9) can be assumed, its trajectory is a combined result of
gravitational and flow forcing. The time duration of the RTI stage is thus the time
that the particle takes to reach the density interface (z = 0) after its initial release,
i.e.,

0=−wsT1 +

∫ t=T1

t=0
w0eσ t dt, (3.2)

where w0 is the initial perturbation in the vertical velocity and σ is the growth rate
of the initial perturbation, which can be calculated using linear stability analysis (e.g.
Chandrasekhar 1961) or its modified version for suspended sediment by Burns &
Meiburg (2012). It is apparent that the equivalence of (3.2) holds for T1 = 0. For
T1 > 0, equation (3.2) can be further written as

W∗ =
eT∗1 − 1

T∗1
, (3.3)

where W∗ = ws/w0 and T∗1 = σT1. It can be seen from (3.3) that T∗1 (>0) exists
only when the initial perturbation w0 is less than ws (i.e., W∗ > 1). In other words,
equation (3.3) shows that the RTI stage lasts for a longer time T∗1 for larger particles
(larger ws). However, as (3.2) assumes an exponential growth rate, it only applies
to the initial (linear) regime of RTI. In fact, the momentum of the RTI bubble can
easily be dissipated, especially when the excess density is due to discrete suspended
particles (Chou & Shao 2016). In such a case, during the course of sedimentation,
the RTI-induced upward velocity is often relatively weak compared with the Stokes
settling speed of the individual particles, such that the settling particles do not readily
respond to the background flow. As a result, it is possible that during the course of
sedimentation, the sediment-containing layer stably settles, and the RTI bubble due to
the initial interfacial instability no longer reaches the density interface, as shown in
figure 8.

4. Leaking versus fingering
The common feature of the leaking and finger modes is the formation of the RTI

at the front of the particle-laden layer during the initial stage. However, when the
associated rising RT bubble reaches the SBDI and generates a horizontal flow, the
finer particles follow the flow field to form a convection cell. The larger particles
differ in behaviour from the finer particles in that they do not respond to the
horizontal flow and tend to settle more uniformly through the SBDI. As a result,
both the convection and leaking stages are not as distinctive in the finger mode
as in the leaking mode. Figure 9 presents representative snapshots of the excess
bulk density superimposed with the horizontal velocity vectors in three cases of
different particle sizes but with the same volumetric concentration (φ = 0.001) at the
final stage. Figure 9(a–c) show that flow in different particle-size cases exhibits a
similar planar flow pattern of circular (or more polygon-like) patches associated with
horizontal flow divergence. In the fine-particle case (figure 9a), the flow divergence is
mainly driven by the sheet-like plume at the leaking stage, which in turn transports
particles. As mentioned in § 3.1.3 and schematically shown in figure 5, a boundary
layer forms beneath the SBDI. Therefore, the plume in the leaking case is laminar,
which is consistent with the experimental finding of Parsons et al. (2001). This differs
from the coarse-particle case, in which the flow divergence (see figure 9b,c) is more
dominated by energetic RT bubbles being blocked at the SBDI (see figure 9d,e). As
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FIGURE 8. Representative snapshots of particles in the central slice in the y-direction
in the case C0001d54, showing the mode of stable settling when there is no significant
convective motion during the course of the simulation, in spite of the appearance of small
fingers due to RTI at the lower front of the particle-laden layer at the later time (b).
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FIGURE 9. (Colour online) Snapshots of planview (a–c) at z = −7.41 and lateral view
(d–f ) at the middle transect in the y-direction of the excess bulk density at representative
time steps in the cases of different particle sizes. The planviews (a–c) are superimposed
with the horizontal flow field indicated by the green arrows.

a result, the flow pattern is more polygon-like when driven by the particle-laden
plume, as in the fine-particle case (see figure 9a), and more circular-shaped due to
RT bubbles, as in the large-particle case (see figure 9c). Also, as shown in figure 6,
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FIGURE 10. Examples of particle trajectories at the final stationary state for the cases of
d0= 18 µm (a) and 54 µm (b). The trajectory lines were made by linearly connecting the
particle positions (represented by the point markers) at successive times with a constant
time increment in each subpanel. The time increment between any two consecutive points
along a trajectory line = 12.79 in panel (a) and = 3.84 in panel (b).

for the same volumetric concentration, the resulting flow field in the lower region is
significantly more energetic in the finger mode than in the leaking mode. Figure 9
also shows that as the particle size increases, the particle distribution becomes more
uniform while passing through the SBDI (see figure 9d–f ), and only the spatial
distribution of small particles (see figure 9a) coincides with the flow pattern.

To further examine how particles of different sizes respond to the flow field,
trajectories of small and large particles during the final stage of sedimentation are
plotted in figure 10. Figure 10(a) shows that after passing through the SBDI, fine
particles are subject to a strong horizontal motion beneath the SBDI. Particles are
subsequently clustered at the origin of the plume and settle down. By marking the
time for some representative points, figure 10(a) also shows that for each single
particle, due to the buoyant effect, it settles at a much faster rate in the descending
plume than its settling speed (the settling rate before passing through the SBDI). An
estimate according to figure 10(a) gives a descending speed that is at least 10 times
greater than its gravitational settling speed (ws) after passing through the SBDI in
the case C0010d18. Different from the small-particle case, figure 10(b) shows that
large particles directly settle through the SBDI without being affected by the strong
horizontal flow. In this case, particle trajectories start to deviate from the straight
vertical line in the lower region of the domain caused by the overturning flow due
to the RTI fingers. Relatively weak enhancement (compared to case C0010d18) of
particle settling is observed, which is approximately three times greater than its
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FIGURE 11. (Colour online) Spectra of the vertical velocity (dash-dot) and SPC (solid) for
the cases C0010d18 (a), C0010d36 (b), and C0010d54 (c) at representative time instants.

gravitational settling speed. More details about the settling enhancement are provided
in § 5.

An important indicator used to distinguish between the present leaking and finger
modes is the correlation between the distribution of particles and the flow pattern.
To examine this quantitatively, figure 11 presents the spectra of the vertical velocity
and SPC (φ) for different particle-size cases at different times. The spectra were
obtained on a horizontal plane near the SPC interface (z = −7.41). Initially, the
randomly seeded particles act as a perturbation to section off the flow field with large
wavenumbers. In figure 11, the first peak value of the velocity spectrum emerges as
a result of the most unstable wavenumber during the initial RTI. Both the wavelength
and spectral density of the vertical velocity then increase with time, while for φ, only
the case of the smallest particle size shows the similar trend. Figure 11 shows that as
the particle size is larger, the spectrum of φ becomes more uniform, indicating that
motion of larger suspended particles is more dominated by the gravitational force
and independent of the flow field. Moreover, as shown by the early- and mid-time
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velocity spectra in figure 11 (the bright green dash-dotted lines), the first peaks in
the spectrum occur at wavenumbers ranging from 0.3 to 0.5, which agrees with the
value of 0.41 obtained by linear stability analysis for RTI induced by non-diffusive
density stratification (Chandrasekhar 1961). Concordance with the theoretical results
is also found in the cases of 1φ0 = 0.0001 and 0.003 (not shown here), indicating
that the initial development of the flow instability is well predicted by linear theory.

4.1. Scaling: leaking criterion
As mentioned, a unique feature of the leaking mode is the formation of the sheet-like
descending plume at the final stage. In this stage, the weak upward flow motion near
the SBDI makes a negligible contribution to the descending plume, and the formation
of the descending plume is a result of the RTI of the gravitationally unstable sediment-
laden layer at the edge of the viscous boundary layer near the SBDI, as mentioned in
§ 3.1.3. One can thus apply the scaling Re=Gr = 1 for the onset of the descending
plume, which gives the viscous scaling, equations (2.16)–(2.19), used in the present
study. Figure 12 presents the zoom-in snapshots of the bulk excess density (1ρ) in
the present three leaking cases, which shows the density structure near the SBDI. In
figure 12, the structure similar to the schematic plot of figure 5(a) can be seen, and
the non-dimensional boundary layer thickness δb, as indicated in figure 12(b), is found
ranging from 1 to 3 near the origin of the descending plume.

Moreover, the flow velocity within the boundary layer beneath the SBDI, which
is driven by the descending sediment plume, can be estimated by a simplified flow
configuration. As shown in figure 5(b), the horizontal flow is driven by the plume
with a flow rate Q. Given the conditions that the flow vanishes at the SBDI, which
acts as a solid wall (see § 3.1.2), and that the flow is stress-free at the lower edge
of the boundary layer, the horizontal velocity Ub(z) within the boundary layer can
be approximated by assuming a steady, fully developed flow along the horizontal
direction. Thus, the maximum horizontal velocity Ub,Max, which occurs at the lower
edge, can be obtained as

Ub,Max = 0.75
Q
δb
. (4.1)

The vertical velocity corresponding to figure 9(a) is presented in figure 13, which
shows a typical example of the distribution of the vertical velocity at the SPC
interface in the leaking model. As shown by the negative values in figure 13, the mean
magnitude of the non-dimensional vertical velocity Wp in the sheet-like plume scales
with 0.5. Combined with the thickness of the boundary layer developed right beneath
the SBDI, the scale of the plume velocity confirms the viscous scaling. Moreover,
figure 13 shows that the horizontal thickness of the plume Db (see figure 13) ranges
from 3 to 8. Multiplying Wp = 0.5 gives an estimate of the mean non-dimensional
flow rate per unit length, which is equal to 2.75. As a result, using δb = 2 and
Q= 2.75 (see figure 5), equation (4.1) gives Ub,Max = 1.03. This is further confirmed
in figure 14, where we plot the histograms of the magnitudes of the horizontal
velocity at the SPC interface in all of the leaking cases corresponding to figure 12 by
sampling at every grid point on a horizontal plane. The horizontal speed ranges from
0 to 1.5 in all of the present leaking cases, while most of the data lie within the range
between 0 and 1. Because the horizontal motion within the boundary layer is mainly
driven by the sediment plume, as shown in figure 13, the horizontal speed attains
its minimum at the centre of the convection cell, while its maximum magnitude is
found near the plume (i.e. w< 0). The horizontal speed in the present simulation can
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FIGURE 12. Zoom-in snapshots of the bulk excess density at the final time step of
three cases of the leaking mode (i.e., C0001d18, C0010d18, and C0030d18), showing the
structure of the excess density near the SBDI. In (b), the boundary layer is indicated by
arrows. Note that as the length scale, L̃, decreases with the particle concentration, given
a fixed grid resolution on the dimensional scale, the resolution in terms of L̃ becomes
coarser when the initial particle concentration (1φ0) becomes denser.

be greater than that estimated using the simplified flow configuration because, in the
former case, the horizontal flow near the SBDI can be enhanced by the upward flow
motion due to mass conservation when the plume sinks and undissipated convective
motion from the lower region of the domain. In addition, as schematically shown in
figure 5, the flow within the boundary layer is not exactly fully developed. Despite
these limitations, the present analysis and numerical results show that Ũ appears to
be a proper value to scale the maximum magnitude of the horizontal speed at the
SPC interface, and in what follows, we simply use Ub,Max ∼ Ũ.

As there is no significant convective motion above the SBDI, the particles exhibit
negligible horizontal motion before passing the SBDI. Thus, from (2.1), the horizontal
force component FH exerted on the single particle passing the SBDI can be simply
approximated as

FH =
Ũ − 0
τp

. (4.2)
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FIGURE 13. (Colour online) A snapshot of the planview of the vertical velocity
corresponding to figure 9(a) superimposed with the horizontal flow field indicated by the
black arrows, showing a typical example of the horizontal distribution of the velocity
field at the SPC interface in the leaking pattern. Two representative values of the plume
thickness Db (= 3 and 8) are indicated by the white double arrows.
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FIGURE 14. Histograms of the horizontal speed on a horizontal plane near the SPC
interface in all of the present leaking cases corresponding to each panel in figure 12. Data
are sampled at every grid point. In each case, the magnitude of Ws is indicated by the
dash-dotted line, and the proportion of which Ub,Max >Ws is given by the percentage.

Also from (2.1), the vertical force component FV is due to the reduced gravity, i.e.,

FV =

(
1−

1
r

)
g. (4.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.349


Convective sedimentation 535

Therefore, a relevant scale for the ratio of gravitational force to the horizontal flow
motion at the SPC interface is thus expressed as

RL =
FV

FH
=

ws

Ũ
=

ws

((r− 1)φg)1/3
=Ws. (4.4)

Equation (4.4) provides a criterion for which the leaking mode can occur. For
example, if RL is small (i.e., closer to zero), meaning a smaller particle size and
larger concentration, the sedimentation pattern can be more leaking dominant. In other
words, if RL is large, particles are not likely affected by the horizontal flow near the
SBDI. In this case, particles pass directly through the SBDI without being affected by
the horizontal flow motion. As a result, a secondary RTI develops and fingers form
in the lower region of the domain. For particles of relatively small inertia compared
with the gravitational acceleration, such as those used in the conventional Eulerian
model, particle velocity can be approximated using (2.9), and (4.4) also characterizes
the trajectory of particles passing through the SPC interface. It should be noted that
FH scales the greatest horizontal force exerted on particles. When particles initially
settle through the density interface with a uniform distribution on the horizontal plane,
a number of particles located near the horizontal centre of the convection cell are
subject to significantly weaker horizontal forces because Ub ≈ 0, as shown by the
arrows in figure 13. One may expect these particles to exhibit a non-leaking mode.
In fact, the leaking criterion RL (=Ws) also characterizes the proportion of particles
that are affected by strong horizontal forcing. This is demonstrated in figure 14 by
showing the proportions of particles where Ub >Ws near the SPC interface. Because
the particles are uniformly distributed while initially passing through the SBDI, in
each case, this gives an estimate for the proportion of particles subject to horizontal
forces that are greater than the gravitational force. In the present leaking cases, the
proportion is 82 % in the most dilute case (C0001d18) and greater than 95 % in the
others (C0010d18 and C0030d18). In fact, although particles at the horizontal centre
of the convection cell are not affected by strong horizontal forcing, settling can still
be hindered due to the undissipated upward flow motion, as shown in figure 13,
making the bulk sedimentation mode more similar to leaking.

The leaking criterion, equation (4.4), is tested against the present simulation results
and three sets of laboratory data from Davarpanah Jazi & Wells (2016) (four data
points), Hoyal et al. (1999a) (ten data points) and Parsons et al. (2001) (fourteen
data points) in figure 15. Davarpanah Jazi & Wells (2016) found that the leaking
mode occurs when Rρ � 1, while the finger mode is present when Rρ ≈ 1. As
we focus on the cases of Rρ � 1 (as shown in table 1), we exclude those cases
of Rρ ≈ 1 in Davarpanah Jazi & Wells (2016) for comparison but offer a detailed
discussion in § 4.2. Moreover, as found in the present study and in Davarpanah Jazi
& Wells (2016), the sedimentation pattern is likely to be independent of Rρ when
Rρ � 1. Therefore, although a number of laboratory experiments with different Rρ
values were conducted in Davarpanah Jazi & Wells (2016), we simply take four
representative volumetric concentrations under the condition that Rρ � 1 irrespective
of the values of Rρ , as it is not taken into account in (4.4). Details on all of the
experimental data used for comparison, along with the present simulation results,
are summarized in table 2. Also, based on Parsons et al. (2001), we use those data
only when the background stratification due to salinity is strong, by excluding data
with either the temperature difference or weak background stratification (i.e., case
no. 82 in Parsons et al. (2001)). According to Parsons et al. (2001), the sedimentation
patterns are categorized as leaking, finger, and intermediate, and experimental results
from Hoyal et al. (1999a) are categorized as leaking. Intermediate is the pattern that
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Present study

Davarpanah Jazi & Wells (2016)

Parsons et al. (2001)

Hoyal et al. (1999)
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FIGURE 15. (Colour online) Plot of ws versus Ũ of present numerical simulations
(crosses) and experimental data from Davarpanah Jazi & Wells (2016) (triangles), Parsons
et al. (2001) (circles) and Hoyal et al. (1999a) (squares). The colour red indicates leaking,
green indicates intermediate, and blue indicates fingers. Note there are in total 36 data
points while several data points from laboratory experiments are overlapped. In the figure,
markers with slightly larger sizes are plotted when overlapped with another data point.
Details of data points are summarized in table 2.

includes features in both leaking and fingers. As shown in figure 15 and table 2,
except for four cases in Parsons et al. (2001), RL can be used to discriminate leaking
when RL 6 0.3, intermediate when 0.3< RL 6 0.7, and finger when RL > 0.7. In fact,
the determination of the convection pattern is very arbitrary. In the laboratory, the
background stratification can be easily mixed during the experimental operation, which
can lead to certain discrepancies between the proposed criterion and experimental
data, such as those shown in figure 15 and table 2, in which four intermediate patterns
are found in the leaking region based on RL. A more detailed discussion on the effect
of the interfacial thickness of the background density is given in § 4.2. The other
factor that can lead to discrepancies between the present criterion and laboratory data
is the occurrence of double-diffusive convection. As particles sizes are small, such
as d0 = 6.5 µm in Parsons et al. (2001), this can cause the finger-like pattern at the
SBDI (Yu et al. 2014; Burns & Meiburg 2015). Despite this, as shown in figure 15,
the present model results and previous experimental data demonstrate that RL, simply
based on external flow and particle parameters, can be used as a relevant criterion
to discriminate different patterns of convective sedimentation in a sharply stratified
background flow.

4.2. Effect of the interfacial thickness
Although the sharp background density stratification is focused upon in the present
study, it is also important to examine the effect of the interfacial thickness of the
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Case no. d50 (µm) 1φ0 RL(=ws/Ũ) Mode

Davarpanah Jazi & Wells (2016)
7.8 4.52× 10−4 7.19× 10−2 L
7.8 1.81× 10−3 4.53× 10−2 L
7.8 3.16× 10−3 3.76× 10−2 L
7.8 4.97× 10−3 3.23× 10−2 L

Parsons et al. (2001)
43 6.5 2.26× 10−3 1.14× 10−2 I
9, 33 6.5 1.89× 10−3 1.22× 10−2 L(1), I (1)
31 6.5 1.51× 10−3 1.31× 10−2 I
8 6.5 1.13× 10−3 1.44× 10−2 L
80, 92, 93 6.5 9.43× 10−4 1.53× 10−2 L(2), I (1)
35 6.5 3.77× 10−4 2.08× 10−2 L
47 6.5 1.89× 10−4 2.62× 10−2 L
97 19 1.13× 10−3 1.23× 10−1 L
110 30 1.13× 10−3 3.07× 10−1 L
16 45 1.51× 10−3 6.28× 10−1 I
7 45 1.13× 10−3 6.91× 100 I

Hoyal et al. (1999a)
4, 8 4.5 1.13× 10−4 3.52× 10−2 L(2)
3, 7 6.5 1.13× 10−4 7.35× 10−2 L(2)
2, 6 9.3 1.89× 10−4 1.27× 10−1 L(2)
9 29.2 5.66× 10−3 1.48× 10−1 L
10 46.5 5.66× 10−3 2.32× 10−1 L
1, 5 17.3 3.77× 10−4 3.48× 10−1 L(2)

Present study
C0030d18 18 3.00× 10−3 7.99× 10−2 L
C0010d18 18 1.00× 10−3 1.15× 10−1 L
C0001d18 18 1.00× 10−4 2.48× 10−1 L
C0030d36 36 3.00× 10−3 3.19× 10−1 I
C0010d36 36 1.00× 10−3 4.61× 10−1 I
C0030d54 54 3.00× 10−3 7.19× 10−1 F
C0001d36 36 1.00× 10−4 9.93× 10−1 F
C0010d54 54 1.00× 10−3 1.04× 100 F
C0001d54 54 1.00× 10−4 2.23× 100 S

TABLE 2. Summary of the experimental results of Davarpanah Jazi & Wells (2016),
Parsons et al. (2001), and Hoyal et al. (1999a), along with the present results (L: leaking;
I: intermediate; F: finger; S: stable settling). Italic text indicates the cases that are not
predicted by (4.4).

background stratification on sedimentation dynamics. Therefore, a case of d0= 18 µm
and 1φ0 = 0.001 with a thicker background density interface is conducted. This is
made by setting a new l0 (=37.7L̃) in (2.27), which is ten times larger than the
original value used in the present study. The simulation set-up of this case, entitled
by C0010d18W, is also summarized in table 1. Figure 16 presents three consecutive
snapshots of the particle distribution at the central slice in the y-direction in case
C0010d18W. An important character of this case is the strong vertical flow velocity
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FIGURE 16. Consecutive snapshots of particles in the case of a thicker background density
interface (C0010d18W) at the central slice in the y-direction at representative time instants.
The grey dashed line in (a) marks the location of the SBDI. Here, point markers represent
only the positions of the particles, not the volume.

that is not efficiently dissipated near the SBDI as it is in the case of the sharp
density gradient during the final stationary state, as shown in figure 16(c). As
previously mentioned, when the background density gradient is sharp, the interface
acts like a solid wall that dissipates the vertical velocity associated with RTI bubbles.
When the background density gradient becomes weaker (i.e., thicker interface), the
slowly dissipated vertical flow leads to a weaker horizontal flow field near the SBDI
compared with the case of the sharp background density gradient. As a result, particles
are subject to weaker horizontal forcing and tend to settle more uniformly through
the SBDI, as shown in figure 16(a). Similar to the aforementioned finger mode, RTI
takes place at the lower region of the domain. If the particle size is so small that the
movement of particles is easily altered by the flow motion (i.e., small St), such as in
case C0010d18W, the shape of the particle plume becomes dominated by the strong
convective motion due to the undissipated RTI bubble, as shown in figure 16(b,c),
which leads to the second type of the finger (or intermediate) mode. As shown by
the time histories of the spectrum for w and φ in figure 17, the difference of this
mode compared with the leaking mode (see figure 11a) is more energetic vertical
flow that is not efficiently dissipated by the density interface. Compared with the
aforementioned finger mode (see figure 11c) in the large-size cases, the distribution
of particles has a stronger correlation with the velocity field.

The comparison of cases C0010d18 and C0010d18W shows the importance of
the interface thickness in the resulting sedimentation modes. While the interface
can be thickened due to mixing, this explains the possible reason that leads to the
misprediction of the proposed leaking criterion (4.4) for a few experimental results
of Parsons et al. (2001) (see § 4.1). That is, the mixing of the background density
stratification may lead to the change of the sedimentation mode from the leaking
to the intermediate type. Moreover, as mentioned in the Introduction, using both
salt and temperature as the agents to generate the background stratification, Parsons
et al. (2001) reported that only the leaking mode was observed if the diffusive
heat and salinity fluxes were in the same direction, while otherwise, both leaking
and finger modes were observed. In the former case, Turner & Stommel (1964)
reported the formation of an over-stabilized, sharp density interface, while in the
latter case, a recent study by Carpenter et al. (2012) shows the possible occurrence
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FIGURE 17. (Colour online) Spectra of the vertical velocity (dash-dot) and SPC (solid) in
the case of a thicker background density interface (C0010d18W) sampled at z=−54.64
at representative time instants.

of a double-diffusive instability, which can thicken the SBDI, thus changing the
sedimentation mode. This is consistent with the findings of the present study. At
this point, it can be concluded that the effectiveness of the velocity dissipation near
the SBDI plays a key role in determining whether the leaking or finger mode can
develop. This also applies to the case where the stability ratio Rρ ≈ 1 because RT
bubbles from the lower fluid can be effectively dissipated only when there is an
apparent bulk density contrast at the SBDI (see figure 1), i.e., Rρ � 1. For example,
Davarpanah Jazi & Wells (2016) reported that when Rρ = 1.03, sedimentation was
in the finger mode. Also, in case no. 82 of Parsons et al. (2001), Rρ = 1.00 and the
finger mode was reported.

5. Energy budgets: settling enhancement

In this section, energy budget analysis is performed for each case. The object of
the analysis is to quantitatively characterize the enhancement of particle settling in
a bulk manner, which may provide insights that cannot be obtained by investigating
individual particles. Moreover, to examine the importance of the background
stratification, cases of the suspension of particles of three sizes with φ = 0.001
in an unstratified saline liquid are also simulated for comparison. The RTI in these
cases are purely particle-induced. Following Chou & Shao (2016), if the initial
condition of both phases is static, the equations of the energy budget of the present
Eulerian–Lagrangian (EL) system for a horizontally periodic domain at time t= t̃ can
be written as

KE(t̃)=Θ(t̃)+1PEp(t̃)+1PEα(t̃)+D.D.(t̃). (5.1)
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In (5.1),

KE(t̃)=
Ntot∑
k=1

1
2

mp|up,k|
2
+

∫
Ω

ρ0
1
2
|uc|

2 dV, (5.2)

is the total kinetic energy, where Ntot is the number of particles and
∫
Ω
(·) dV

represents integration over the entire computational domain,

Θ(t̃)=
∫
Ω

ρ0uc · (∇ · T) dV, (5.3)

is the shear dissipation, where T=µ∇uc (µ is the viscosity),

1PEp(t̃)=
∫ t̃

t=0

Ntot∑
k=1

up,k ·mp

(
1−

1
r

)
g dt (5.4)

is the potential energy released by the settling of particles,

1PEα(t̃)=
∫ t̃

t=0

∫
Ω

uc · α(S− S0)g dV dt (5.5)

is the potential energy released due to reversal of the salinity stratification, and

D.D.(t̃)=
∫ t̃

t=0

Ntot∑
k=1

mp
|up,k − uc|p,k|

2

τp
dt (5.6)

is the drag dissipation due to particle–fluid interaction. It should be noted that because
a stable background stratification is initially specified, 1PEα(t̃) is solely due to the
undissipated motion of RTI bubbles, the contribution of which is extremely small.
Indeed, in the present study, 1PEα(t̃) is more than two orders of magnitude smaller
than all of the other terms. Therefore, it is neglected in the following discussion.
In what follows, each term in (5.1) is normalized using the initial potential energy,
PE0=

∑Ntot
k=1 mp(1− 1/r)g1Hk, in which 1Hk is the distance between the kth particle

and the bottom of the domain. As 1PEp represents the actual change in the total
potential energy of the particles, the bulk settling enhancement (S.E.) can be obtained
by

S.E.(t̃)=1PEp(t̃)−D.D.(t̃). (5.7)

Figure 18 shows the time histories of the normalized energy budget for all of the
present cases. In all of these cases, D.D. is almost equal to the equilibrium drag
dissipation, D.D.eq, which is written as

D.D.eq(t̃)=
∫ t̃

t=0

Ntot∑
k=1

mp
w2

s

τp
dt=Ntotmpτpg′2 t̃. (5.8)

In the leaking case, as shown in figure 18(a–c), 1PEp initially increases, with a slope
very close to that of the drag dissipation. This indicates either of the following two
conditions at the initial stage. First, particles stably settle through the background
density interface without forming SBDI so that the flow instability does not form.
The second condition is that the front of the particle-laden layer form SBDI but

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.349


Convective sedimentation 541

C0001d18 C0010d18 and RTI (gray) C0030d18
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FIGURE 18. Time histories of energy budgets for each case. In cases C0010d18 (b),
C0010d36 (e), and C0010d54 (h), the results of the corresponding RTI cases (without the
background stratification), shown by grey lines, are also presented.

the induced RTI is relatively weak compared with individual particle settling. As a
result, the change in the potential energy of suspended particles is dominated by the
balance between particle drag and gravity. As there is no significant flow motion,
the KE associated with the settling of individual particles is negligible. During
this stage, there is little contribution to the settling enhancement from the shear
dissipation, because the flow motion induced by particle settling is weak. At later
times (e.g., t > 70 in figure 18b), corresponding to significant RTI or the start of
the convective stage in the leaking mode, i.e., when the rising RTI bubbles hit the
SBDI, the particle-induced buoyant effect becomes more important. The formation
of a particle-containing buoyant plume accelerates the vertical motion of suspended
particles, so that the settling is not only dominated by particle drag. At this time, both
shear dissipation (Θ) and kinetic energy (KE) abruptly increase, leading to stronger
settling enhancement. However, a comparison with the RTI (see table 1), as presented
in figure 18(b), shows that the enhancement is relatively weak compared with the
case where there is no background stratification. For the RTI case in figure 18(b), the
initial particle settling (i.e., 0< t< 30) is also dominated by drag and gravity. When
t> 30, particle settling rapidly increases, as indicated by the abrupt increase of 1PEp.
Comparison of RTI cases for different particle sizes (figure 18b,e,h) shows that as
the particle size decreases, the particles respond to the flow motion more easily and
the resulting settling enhancement becomes stronger. It also shows that the presence
of a sharp, stable background stratification in the small-particle case actually hinders
the particle settling such that the settling enhancement is much reduced compared
with the case without background stratification.
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FIGURE 19. Time histories of normalized bulk particle mass fluxes at representative
vertical layers in the case C0010d18.

The reduction of settling enhancement due to the background stratification can be
clarified by examining the bulk vertical fluxes. Figure 19 shows the vertical fluxes
normalized by 1φ0Ws at certain horizontal planes in the case C0010d18. It shows
that the fluxes increase with time starting from the onset of the convection stage,
reaching their peak values between t = 80 and 100 depending on the z-coordinates
of the sample plane, and then decrease after the start of the leaking stage. During
the leaking stage (i.e., t > 110), the (bulk) settling fluxes due to the sheet-like
plume are only slightly greater than 1φ0ws. This indicates that in the bulk, due
to its small cross-sectional area, the sheet-like buoyant plume does not contribute
significantly to the settling enhancement. Figure 18 also shows that as the size of
the suspended particles increases, for the same initial volume fraction (1φ0) the time
required for stable settling becomes shorter. With larger particles, the front of the
particle-laden layer requires less time to reach the lower water column, so that the
(reversed) buoyant force becomes effective in the earlier time. By comparing the
background-stratified cases with the RTI cases in figure 18(b,e,h), it can be seen that
as the particle sizes increase, the results with and without background stratification
begin to converge. This implies that for larger particles, the background stratification
has less effect on sedimentation. The effect of the particle size in the density-stratified
fluid can be further examined via the time derivative of S.E., which is equivalent to
the total vertical flux minus the flux due to the drag of individual particles. Figure 20
presents time histories of d(S.E)/dt for the three particle-size cases when 1φ0= 0.001.
In the leaking case (C0010d18), figure 20 shows that the time history of the flux
can be divided into three stages. The first is the regime of stable constant flux, when
particles settle stably and the RTI at the front of the particle-laden layer is still minor.
The second takes place at 70 < t < 95, which corresponds to the period duration in
which RTI becomes important and the aforementioned convection occurs. After t> 95,
there is a slight decrease of d(S.E.)/dt in the case C0010d18 (figure 20), due to the
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FIGURE 20. Time histories of d(S.E.)/dt in different size cases of 1φ0 = 1× 10−3.

unstable development of the plumes. The transition from the second stage (convection)
to the third stage (leaking) in d(S.E.)/dt is not so distinct, and as the particles become
larger, this transition becomes even less apparent (as in case C0010d36 in figure 20).
For the largest particle size (C0010d54 in figure 20), the transition does not occur,
indicating the absence of a leaking stage. Comparison of the different size cases
in figure 20 also reveals that when there is sharp, stable stratification, the settling
flux of small particles is often much less than that of larger particles, especially
when the leaking mode arises. Given that many previous studies (Yu et al. 2014;
Burns & Meiburg 2015) found that settling-induced convective sedimentation greatly
enhanced settling in a particle-wise manner, as also demonstrated in the present study
(see § 4), the great reduction in enhancement in the presence of background density
stratification is a notable finding of the present numerical study.

6. Comparison with the equilibrium Eulerian model
As the equilibrium Eulerian model (Ferry & Balachandar 2001) has been widely

used for suspended-sediment transport (e.g. Yu et al. 2014; Burns & Meiburg 2015),
we used this model to simulate three cases of 1φ0 = 0.001 with the three particle
sizes to investigate the difference between the Eulerian and Lagrangian treatments
of particles. In the equilibrium Eulerian model, the motion of suspended particles is
described by a transport equation for the volume fraction φ, which is written as

∂φ

∂t
+ uc · ∇φ −ws

∂φ

∂z
=

ν

Scφ
∇

2φ, (6.1)

where Scφ is the Schmidt number for the volume fraction φ. Here, an arbitrarily large
value Scφ = 50 was chosen to account for the negligible particle diffusion. In each
Eulerian simulation, φ was initialized with the same bulk volume fraction in each
grid cell as in its corresponding EL case. Figure 21 presents representative snapshots
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FIGURE 21. Representative snapshots of particles from the Lagrangian particle simulations
(a,c,e) and volumetric concentrations from the equilibrium Eulerian model (b,d, f ) during
the final time stage for the three particle sizes in the case of 1φ0= 0.001. In the particle
plots, point markers represent only the positions of the particles, not the volume.
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of particles (in EL cases) and volume fractions (in Eulerian cases) during the final
time stage for the three size cases. In accordance with figure 15, the cases presented
in figure 21 represent leaking (panels (a) and (b)), intermediate (panels (c) and (d)),
and finger (panels (e) and ( f )) modes. Comparison between figures 21(a) and 21(b)
shows that the simulation results from the two different approaches are qualitatively
similar for the leaking case. In this case, the aforementioned sedimentation patterns
from the Lagrangian model are also captured in the Eulerian model. The agreement
between the two models for the leaking case has two main causes: (i) the particles
are all in the equilibrium state, as seen from the small St values in table 1; and
(ii) the two different approaches assume identical cell-wise conditions at the start of
the simulations. The equilibrium state of the particles is an important condition for
particle-laden flow in the environmental liquid–solid two-phase system. As mentioned
by Chou et al. (2014a), unlike in the gas–solid system, the relatively small solid–fluid
density ratio makes the equilibrium assumption a valid approximation. As the particle
size becomes larger (figure 21c–f ), leading to smaller number densities for the
same volume fraction, the results from the equilibrium Eulerian and Lagrangian
approaches deviate more significantly. The Lagrangian particle treatment retains the
strong local inhomogeneity caused by the discrete distribution of particles. This
inhomogeneity is more pronounced when the number density is smaller. That is,
as mentioned by Yamamoto, Hisatake & Harada (2015) and Chou & Shao (2016),
only when the particles have a large number density does their motion resemble
continuum transport. Moreover, in the Eulerian model, diffusion, which can also
be caused by the numerical discretization, always has the effect of blurring the
local inhomogeneity of the particle concentration, making φ more locally uniform.
As shown in figure 21(e, f ), in the present case with the largest particle size, an
interesting difference between the two approaches is the coherent, fine structures that
only appear in the equilibrium Eulerian case, while in the EL case, only large plume
structures can be seen. This can be attributed to the fact that the local inhomogeneity
of discrete particles easily leads to small-scale entrainment/detrainment between
the particle-laden and ambient fluids, thus enhancing small-scale mixing (Chou &
Shao 2016). Despite these such small-scale differences between the two approaches,
the bulk (large-scale) behaviour of the particle plumes is similar in both (e.g., the
locations and sizes of the large-scale plumes in the two cases). However, in the
bulk, the local inhomogeneity retained by the Lagrangian particle approach often
results in a significant amount of additional shear dissipation compared with the
Eulerian approach. This is demonstrated in figure 22, where we compare the shear
dissipation for the two approaches for different particle sizes when 1φ0 = 0.001.
Moreover, figure 22 shows that the underestimation of the shear dissipation becomes
more significant as the particle size increases, which leads to the underestimation of
settling enhancement by the Eulerian approach.

7. Concluding remarks

Numerical simulations are conducted for a detailed investigation of the convective
sedimentation of particles of sizes larger than O(10 µm) in a strongly stratified
environment. The simulations display three modes of sedimentation pattern, namely,
leaking, finger, and stable settling. For the leaking mode, the simulations reveal three
stages in temporal evolution, namely, RTI, convection, and leaking, of which the third
stage is the final stationary state. It is found that strong background stratification
acts like a wall to block and dissipate the upward flow during the initial transient
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FIGURE 22. Time histories of the bulk shear dissipation from both the Eulerian–
Lagrangian (black lines) and equilibrium Eulerian (grey lines) simulations in cases of
1φ0 = 0.001.

period of development. Thus, a boundary layer forms near the background density
interface, and at the final stage, the sedimentation is dominated by sheet-like laminar
plumes. The formation of these laminar particle plumes is the characteristic feature
of the leaking mode. When the particle size is larger, such that particle motion is
less dominated by flow motion, the particles settle stably through the background
density interface without being affected by the strong horizontal motion of the flow.
Persistent finger-type particle plumes form at the lower region of the domain (below
the background density interface) due to RTI; therefore, this pattern is termed the
finger mode. In the case where the particle size is large and the concentration is dilute,
particle-laden layer settles stably through the domain. The stable settling indicates the
negligible effect of RTI, which is confined to the front region of the particle-laden
layer throughout the course of the simulation. A major difference between the leaking
and finger modes is the appearance of a final leaking stage in the leaking mode. The
appearance of this stage marks the development of the strong convective motion of
the flow into a dissipation stage with laminar plumes. During this stage, a boundary
layer forms near the SBDI, and the viscous scaling can be used to obtain a criterion
for the occurrence of the leaking mode. The derived leaking criterion is tested against
two sets of the experimental data, which shows good agreement in predicting the
sedimentation pattern. Energy budget analysis is then performed to examine the bulk
enhancement of particle settling. All of the present cases show significant settling
enhancement, attributed to the shear dissipation induced by the buoyancy-induced
flow motion. However, from the comparison with the particle-induced RTI cases
(with background stratification), it is found that as it blocks the convective motion of
the particle-laden plumes, the background density interface reduces the enhancement.
The reduction is particularly significant in the leaking mode, the case in which
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the particle size is small and concentration is dense. At the end, results from the
conventional equilibrium Eulerian model using the same simulation set-up and low
diffusivity are compared. We show that due to the small Stokes number of the
particles in the present study, both the Eulerian and Lagrangian approaches give the
results that are qualitatively similar. The aforementioned sedimentation pattern can
also be captured by the continuum treatment. However, due to the local flow field
that can be induced by the inhomogeneous nature of the particle distribution, the
Eulerian model underestimates the bulk shear dissipation, thus underestimating the
settling enhancement (vertical flux). This is particularly important when particle sizes
are large.

While previous numerical studies (Yu et al. 2014; Burns & Meiburg 2015) have
categorized the sedimentation patterns for fine particles into double-diffusive and
settling-driven (RTI) convection, the present study provides a more detailed description
of the latter case, where the particle sizes are larger. The study gives a detailed
physical explanation of the experimental findings of Parsons et al. (2001), and, in
combination with previous studies, may contribute to a more complete parametric
understanding of convective sedimentation. The theoretical model proposed in the
present study, based on viscous scaling, differs from the conceptual model proposed
by Hoyal et al. (1999a), which was based on heat convection. We believe that while
the diffusivity associated with the suspended particles modelled here is negligible,
a theoretical model that is based on buoyancy-driven flow is more relevant. While
the sharp density interface presented here has broad implications for many fields, as
noted in § 4.2, the problem of the background density interface with a thickness (i.e.,
l0 in (2.27)) that easily changes with time due to the strong diffusion or mixing is
also of particular relevance to oceanic and other environmental flows, and deserves
close attention in future study.
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