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Abstract. We present a kinetic theory analysis of the electrostatic ion cyclotron
(EIC) instability in a plasma containing positive ions, electrons, and negative ions
that are much more massive than the positive ions. Conditions are investigated for
exciting the fundamental and the higher harmonic EIC waves associated with each
ion species. We find that as the concentration of heavy negative ions increases,
the wave frequencies increase, the unstable spectrum in general shifts to longer
perpendicular wavelengths, and the growth of higher harmonic EIC waves tends
to increase within certain parameter ranges. Applications to possible laboratory
plasmas are discussed.

1. Introduction
The electrostatic ion cyclotron (EIC) instability is a low-frequency field-aligned
current-driven instability that has one of the lowest threshold drift velocities among
current-driven instabilities (Drummond and Rosenbluth 1962). In a plasma con-
taining electrons and positive ions, the fundamental EIC wave has frequency of the
order of the ion cyclotron frequency Ωi , propagates nearly perpendicular to the
magnetic field B, and has a small but finite wave number along B so that it can be
destabilized by electrons drifting along B (see, e.g., Rasmussen and Schrittwieser
1991; Okuda et al. 1981).
The excitation of the fundamental EIC mode in a negative ion plasma has been

studied experimentally (Song et al. 1989) and theoretically for a plasma containing
heavy negative ions and light positive ions (D’Angelo and Merlino 1986; Chow and
Rosenberg 1996a). In this type of plasma there can be an EIC wave associated
with each ion component. Prior experiments on the EIC instability in negative
ion plasmas indicate that the critical electron drift decreases as the density of
negative ions increase (Song et al. 1989). It was found theoretically that the critical
drift for the excitation of the fundamental EIC modes associated with either the
positive or negative ions decreases as the relative density of negative ions increases
(Chow and Rosenberg 1996a). The EIC instability in a dusty plasma containing
electrons, light ions, and massive negatively charged dust grains was investigated
both experimentally (Barkan et al. 1995) and theoretically (D’Angelo 1990; Chow
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and Rosenberg 1995, 1996b). Both theory and experiment show that as more
negative charge is carried by the dust, the frequency and growth rate of the light-ion
EIC mode increases. In addition, the critical drift decreases as the concentration of
negatively charged dust increases (Chow and Rosenberg 1996b). The excitation of
electrostatic dust cyclotron (EDC) modes by ions drifting along the magnetic field
in a dusty plasma was investigated theoretically by D’Angelo (1998) and Rosenberg
and Chow (1999). It was shown that the critical ion drift can decrease as the density
of negatively charged dust increases. Conditions for exciting higher harmonic EDC
modes by drifting ions was considered by Sorasio and Rosenberg (2001).
In this paper, we extend the analysis of the EIC instability (EICI) in a negative

ion plasma by Chow and Rosenberg (1996a), by considering the conditions for
exciting the higher harmonic EIC modes as well as the fundamental modes. We
focus on the regime where the negative ions are muchmoremassive than the positive
ions, and where the negative ion density can be larger than that of the electrons.
Such plasmas have been discussed recently in both laboratory and space contexts.
For example, Merlino and Kim (2006) and Kim and Merlino (2006) considered
the conditions under which dust grains injected into a negative ion plasma could
become positively charged, when the electron density is small enough so the lighter
positive ions are the more mobile species. Kim and Merlino (2007) reported on
the generation of a negative ion plasma in the laboratory, and the detection of
the fundamental and second harmonic EIC waves associated with each ion species.
Very recently, Kim et al. (2008) reported on the generation of both the fundamental
and higher harmonics associated with both the light positive ions (K+ ) and heavy
negative ions (C7F−

14) in a laboratory plasma at very low pressure. With regard to
space plasmas, Rapp et al. (2005) have discussed the possible role of negative ions, in
explaining their observations of positively charged nanoparticles in the mesosphere
under night-time conditions.
The paper is organized as follows. The analysis is given in Sec. 2, and both analytic

and numerical results are given in Sec. 3, with application to possible experimental
laboratory plasma parameters. Section 4 gives a brief summary.

2. Analysis
We consider a plasma composed of electrons, singly charged positive ions, and singly
charged negative ions. The ratio of the heavy-ion mass mh to the light-ion mass
ml, Mr = mh/ml, is much greater than 1.
The condition of overall charge neutrality is given by

nl = ne + nh, (1)

where nα is the density of charged species α (the subscript α = l, e, h, denotes light
positive ions, electrons, and heavy negative ions, respectively). This condition can
be written as

δ =
nl
ne

= 1 + εh (2)

where εh = nh/ne.
The plasma is assumed to be homogeneous and immersed in a uniform magnetic

field Bz. The electrons and negative ions have drifts in the z-direction and the
positive ions drift in the −z-direction; the magnitude of these drifts is u0α . We
neglect collisions in the following, and assume that the electrons and ions can be
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described by drifting Maxwellian distributions. Then the dispersion relation for
electrostatic waves with perturbed E1 ∼ exp(ik · r− ωt) and frequency ω much less
than the electron cyclotron frequency Ωe, having wavevector components k⊥ and kz

which are perpendicular and parallel to B, respectively, is given by (see, e.g., Kindel
and Kennel 1971; Satyanarayana et al. 1985; Chow and Rosenberg 1996)

D(ω, k) = 1 +
∑
α

χα = 0, (3)

where

χe =
1

k2λ2
De

[1 + ζeΓ0(be)Z(ζe)], (4)

χj =
1

k2λ2
Dj

[
1 + ζj0

∞∑
m=−∞

Γm (bj )Z(ζjm)
]
. (5)

Here

ζe =
ω − kzu0e√

2kzve
, (6a)

ζjm =
ω − k · u0j − mΩj√

2kzvj

, (6b)

and the subscript j = l,h. In the above equations, vα , Ωα , ρα = vα/Ωα , and
λDα = (Tα/4πnαZ2

αe2)1/2 are the thermal speed, gyrofrequency, gyroradius, and
Debye length of species α, respectively, bα = k2

⊥ρ2
α , Γm (x) = Im (x) exp(−x), with

Im the modified Bessel function of order m, Z(ζ) is the plasma dispersion function
(Fried and Conte 1961), and k2 = k2

⊥ + k2
z .

Assuming that the wave is either weakly damped or growing, the solution to the
real part of the frequency ωr is given by

Dr(ωr, k) = 0, (7a)

where Dr is the real part of (3). The imaginary part of the frequency is then given
by (e.g. Krall and Trivelpiece 1973)

γ = − Di(ωr, k)
∂Dr(ωr, k)/∂ωr

, (7b)

where Di is the imaginary part of (3).

3. Results
3.1. Analytical results

In this section, we give analytical results following from (3) for certain regimes that
have application to possible laboratory experimental parameters.
There is an EICI associated with each ion species. The frequencies of the funda-

mental harmonic EIC waves are slightly larger than their respective gyrofrequen-
cies, and similarly for the higher harmonics. For the plasma we are considering, we
refer to these instabilities as the light-ion EICI and the heavy-ion EICI. Generally,
the EICI is driven by an electron current parallel to B, with election drift speed
larger than the parallel phase speed of the wave, i.e. u0e/ve > ω/kzve. The instability
can be damped by ion cyclotron damping (and by ion collisions if the ion collision
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frequency is not much smaller than the growth rate). In the negative ion plasma
we are considering, there is the possibility that the drift of the light ions parallel to
B could excite a heavy-ion EICI, with ω ∼ Ωh for the fundamental mode. In order
for this to occur, it is required that u0l/vl > Ωh/kz vl, i.e. that the drift speed of the
light ions is larger than the parallel phase speed of the heavy-ion EIC wave. The
latter condition can be rewritten as

u0l

vl
>

1

b
1/2
h

k⊥
kz

vh
vl

.

Since bh is of the order of unity, while k⊥/kz �1 and vh/vl is typically not smaller
than about 0.1, this implies that the critical light-ion drift would be roughly of the
order of the light-ion thermal speed. Thus, in the following we confine our attention
to the regime where u0l is much smaller than this value, i.e. where u0l�ω/kz , and
set both u0l and u0h equal to zero for simplicity.
In the following, we consider the kinetic regime for the electrons, with ζe�1, and

the limit of small electron Larmor radius with be�1. The electron susceptibility (4)
then becomes

χe ≈ 1
k2λ2

De

[
1 + i

√
π

2
ω − kzu0e

kzve

]
. (8)

3.1.1. Light-ion EICI.. For the light ions, we consider the phase velocity regime
where ζlm �1, where light-ion cyclotron damping is small. This implies that (ω −
mΩl)�kzvl for each mth harmonic. Then from (5) the light-ion susceptibility be-
comes approximately

χl ≈ 1
k2λ2

Dl

{
1 −

∑
m

ωΓm (bl)
ω − mΩl

+ i

√
π

2

∑
m

ωΓm (bl)
kzvl

e−ζ 2
lm

}
. (9)

For the heavy ions, we make the following approximation in order to get a simple
qualitative result. SinceMr �1, we have that ω�Ωh. We assume that the heavy-ion
response is the unmagnetized response, so that

χh ∼ −k2
Dh

2k2 Z ′(Rh)

where Rh = ω/
√

2kvh (see Rosenbluth 1965; Kindel and Kennel 1971). The term
Z ′(Rh) is estimated as follows. Using ω ∼ mΩl and k ∼ k⊥, we have Rh ∼
(m/b

1/2
l )(vl/vh). Since generally bl < m2 and vl > vh, we can expand Z ′ for large

argument. Then χh becomes approximately

χh ∼ −
ω2
ph

m2Ω2
l
,

where ωph is the heavy ion plasma frequency.
Although the latter approximation is reasonable when bh�1, it is not as good in

the case of smaller bh. At any rate, if we compare χh with the real part of χe given
in (8), we find that

χh
Re χe

∼ bl
m2

εh
Mr

Te
Tl

.

Since this quantity is generally much less than 1, we neglect the contribution of χh
for the light-ion EICI. However, the heavy ions modify the dispersion relation of
the light-ion EICI via the charge neutrality condition (1). This treatment is similar
to that of the light-ion EICI in a dusty plasma (see Chow and Rosenberg 1995).
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Using (8) and (9) for the electron and light-ion susceptibilities, we then use (7a)
to obtain the real part of the frequency, ωr. Writing ωr = mΩl(1 + Δlm ), we obtain

Δlm =
δτelΓm (bl)

1 + k2λ2
De + δτel[1 − G(bl)]

, (10)

where τel = Te/Tl, τeh = Te/Th, and

G(bl) = Γm (bl) +
∑
n �=m

ωΓn (bl)
ω − nΩl

. (11)

What we can see from (10) is that as the density of heavy ions increases (i.e. as
δ = 1 + εh increases), the frequency of the mode increases, and the unstable mode
shifts to larger perpendicular wavelengths, that is, smaller bl (where Γm is smaller)
in order that Δlm < 1. This behavior is similar to that of a standard electron–ion
plasma having δ = 1, as the ratio of the electron to ion temperatures increases
(see Kindel and Kennel 1971; Rasmussen and Schrittwieser 1991). The increase
in mode frequency is basically due to the increase in the ion acoustic speed. In
our case, this is due to an increase in δ = ni/ne. (This can be compared with the
standard electron–ion plasma where ni = ne, where the ion acoustic speed increases
as Te/Ti increases). When the mode frequency increases, the ion cyclotron damping
can decrease. This implies that it may be possible to excite higher-order harmonics
at lower critical electron drifts.
For the fundamental harmonic with m = 1, (10) becomes approximately

Δl1 ≈ δτelΓ1(bl)
1 + k2λ2

De + δτel[1 − Γ1(bl) − Γ0(bl)]
. (12)

To obtain (12) we have retained only the contribution of them = 0, 1 terms. For the
higher harmonics with m � 2, when ω ∼ mΩl, bl > 1 and bl < m2 , the G functions
(11) for the lower harmonics are close to one (Kindel and Kennel 1971). However, we
cannot really make this approximation for the situation we are studying, because
as the density of heavy ions increases, instability occurs at smaller values of bl, and
the mode frequency increases substantially. Thus we would need to retain the full
expression in (10) with the G function in (11) determined numerically.
Marginal stability occurs when Di(ωr, k) = 0 from (7b). From (8) and (9) we find

that the critical electron drift at marginal stability is given by

u0e,c

vl
≈ m(1 + Δlm )ξl

[
1 + δ

(
Te
Tl

)3/2(
ml

me

)1/2

×
{

Γm (bl) exp
(

−m2Δ2
lm ξ2

l

2

)
+ Γm+1(bl) exp

(
− (mΔlm − 1)2ξ2

l

2

)}]
,

(13)

where

ξl =
1

b
1/2
l

k⊥
kz

,

The first term in brackets in (13) reflects the requirement that u0e > ω/kz for
instability, while the second term corresponds to light-ion cyclotron damping, where
we have retained contributions both from the m and m + 1 harmonics, since
the latter can be significant when the frequency increases as the negative ion
concentration εh increases. In order for ion cyclotron damping to be small, the
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corresponding exponential terms in (13) should be small; for damping by the m
harmonic, this implies the condition ζl�1/mΔlm . Now, as εh increases,Δlm increases
as can be seen from (10), so it is easier to satisfy the latter condition on ζl. In
addition, bl tends to decrease as the negative ion density increases which results
in the following effect. Since the critical drift is proportional to ζl, as bl decreases
maximum growth of the instability tends to shift to smaller values of k⊥/kz that
still satisfy the condition ζl�1/mΔlm for small ion cyclotron damping. Thus in
general we expect that higher harmonics of the light-ion EIC could be more easily
excited as εh increases, with the unstable waves tending to propagate at smaller
angles with respect to B, and having longer perpendicular wavelengths. However, a
practical consideration is that if εh gets too large, the unstable wavenumbers shift
to such small values of bl that the wavelengths may not fit in the plasma. Now, as
εh increases further, the mode frequency can approach them+1 harmonic, at least
for fixed bl. Then, to avoid cyclotron damping from the m + 1 harmonic, k⊥/kz

increases; thus ζl increases as does the critical drift (which is proportional to ζl).
Thus we may expect a minimum in the behavior of the critical drift as a function
of εh, at least for fixed bl.
We estimate the growth rate when u0e�u0e,c. Neglecting ion cyclotron damping

terms, (7b) yields, using (8) and (9),

γ

Ωl
≈ 1

δτel

mΔ2
lm

Γm (bl)

√
π

2

(
u0e

ve
− ωr

kzve

)
. (14)

To obtain (14), we have assumed that ∂Dr (ωr, k)/∂ωr is determined from the mth
harmonic term contribution to χl. (This may not be so good an approximation as
εh increases and the mode frequencies increase.)

3.1.2. Heavy-ion EICI.. Here we consider the excitation of the fundamental and
higher harmonics of the heavy-ion EIC mode. Similarly to the case of the light-ion
EICI, we assume that (ω − mΩh)�kzvh for each mth harmonic. Then from (5) the
heavy negative ion susceptibility has the same form as (9) for the light ions, that is

χh ≈ 1
k2λ2

Dh

{
1 −

∑
m

ωΓm (bh)
ω − mΩh

+ i

√
π

2

∑
m

ωΓm (bh)
kzvh

e−ζ 2
hm

}
. (15)

Because the frequency of the heavy-ion EIC mode is less than Ωl, we retain only
them = 0 term in the real part of the light-ion susceptibility in (5), which becomes

χl ∼ 1
k2λ2

Dl

(
1 − Γ0(bl) + i

√
π

2
ω

kzvl
Γ0(bl)e−ζ 2

l0

)
. (16)

Using (8), (15), and (16) we can use (7a) to obtain the real part of the frequency
ωr = mΩh(1 + Δhm ). This yields

Δhm ≈ εhτehΓm (bh)
1 + k2λ2

De + εhτeh[1 − G(bh)] + δτel[1 − Γ0(bl)]
, (17)

where

G(bh) = Γm (bh) +
∑
n �=m

ωΓn (bh)
ω − nΩh

. (18)

From (17), we can see that as εh and δ(= 1+εh) increase, bh and bl should decrease
in order to keep Δhm < 1. This trend is similar to the case of the light-ion EICI,
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although it can be more dramatic because of the additional term in the denominator
of (17) due to light ions. For the fundamental heavy-ion harmonic, (17) becomes

Δh1 ≈ εhτehΓ1(bh)
1 + k2λ2

De + εhτeh[1 − Γ1(bh) − Γ0(bh)] + δτel[1 − Γ0(bl)]
. (19)

To obtain (19), we retained only the m = 1, 0 harmonics for the heavy ions and the
m = 0 harmonic for the light ions.
The critical electron drift at marginal stability can be obtained in a similar way

as the critical drift for the light-ion EICI (viz., (13)). Thus we have

u0e,c
vh

≈ m(1 + Δhm )ξh

[
1 + εh

(
Te
Th

)3/2(
mh

me

)1/2

×
{

Γm (bh) exp
(

−m2Δ2
hm ξ2

h

2

)
+ Γm+1(bh) exp

(
− (mΔlm − 1)2ξ2

h

2

)

+
δ

εh

(
Th
Tl

)3/2 Γ0(bl)√
Mr

exp
(

−m2(1 + Δhm )2ξ2
h

2
v2
h

v2
l

)}]
, (20)

where

ξh =
1

b
1/2
h

k⊥
kz

.

The condition u0e > ω/kz , which is reflected in the first term in the brackets in
(20), is easier to satisfy compared with the corresponding condition for the light-
ion mode, basically because the frequency of the heavy-ion mode is smaller. The
second and third terms in the brackets in (20) correspond to heavy-ion cyclotron
damping (due to the m and m + 1 harmonics), while the last term corresponds
to light-ion cyclotron damping. In order for the ion cyclotron damping terms to
be small, the corresponding exponential terms should be small. This implies the
condition ζh�1/mΔhm to minimize the m harmonic contribution to heavy-ion
cyclotron damping. To minimize light-ion cyclotron damping requires roughly the
condition ζh�vl/mvh, which can actually be more constraining than the former
condition, since generally vl�vh. Thus wemight expect a narrower range of unstable
wavenumbers compared with the light-ion EICI, due to the light-ion cyclotron
damping of the heavy-ion modes. In addition, as εh increases the mode frequency
increases and so them+1 harmonic can contribute to heavy-ion cyclotron damping,
further limiting the range of unstable wavenumbers.
We can obtain the growth rate for the heavy-ion EICI in the limit u0e�u0e,c, in

the same way we obtained the growth rate (14) for the light-ion EICI. Neglecting
ion cyclotron damping terms, (7b) yields, using (8) and (15),

γ

Ωh
≈ 1

εhτeh

mΔ2
hm

Γm (bh)

√
π

2

(
u0e

ve
− ωr

kzve

)
. (21)

To obtain (21), we have assumed that ∂Dr (ωr, k)/∂ωr is determined from the mth
harmonic term contribution to χh. Note that the latter is not always a good
approximation. For example, when the mode frequencies increase substantially so
that Δhm > 1/2, the m + 1 harmonic can contribute to ∂Dr/∂ωr.
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Figure 1. (a) Real ωr and (b) imaginary γ parts of ω (normalized to Ωl) for the light-ion
EICI versus k⊥ρl obtained by solving (3). Parameters are: ml/mp = 39, mh/mp = 350,
Te/Tl = 1, Te/Th = 8, ωpl/Ωl = 9, θ = 88◦ where tan θ = k⊥/kz , and fixed u0e/ve = 0.25.
Here εh = nh/ne = 0.

3.2. Numerical results

In this section, we show solutions of (3) for parameters that may be representative of
laboratory negative ion plasmas discussed by Kim and Merlino (2007). We consider
a plasma in which the light ions are singly ionized potassiumK+ and the heavy ions
are C7F−

14 . Thus the ratio of the heavy-ion to light-ion mass isMr = 350/39 ≈ 9. We
assume that the electron temperature is Te ∼ 0.2 eV, and that τel = Te/Tl ∼ 1, and
that the temperature of the heavy negative ions is near room temperature, so that
τeh = Te/Th ∼ 8. It is further assumed that the plasma is immersed in a magnetic
field of strength B ∼ 0.3 T. In this case, the light-ion gyroradius ρl ∼ 0.095 cm
and the heavy-ion gyroradius is about ρh ∼ 0.1 cm. We take a light-ion density of
nl ∼ 1 × 109 cm−3 , so that ωpl/Ωl ∼ 9, where ωpl is the plasma frequency of the
light ions. We note that, in the type of plasma we are considering, u0e/ve ∼ u0l/vl.
Thus if we confine our attention to the parameter regime where u0e/ve < 1 we also
have u0l/vl < 1. In this case, we would expect that the heavy-ion EIC mode could
not become excited by drifting light ions (see the discussion at the beginning of
Sec. 3.1).
Figures 1 and 2 show the frequency and growth rate of the light-ion EICI versus

k⊥ρl, for the following parameters:Mr ≈ 350/39, Te = Tl = 8Th, εh = 1, ωpl/Ωl = 9,
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Figure 2. (a) Real ωr and (b) imaginary γ parts of ω (normalized to Ωl) for the light-ion
EICI versus k⊥ρl obtained by solving (3). Parameters are the same as in Fig. 1, except that
εh = 1. The curves correspond to different harmonics.

electron drift speed u0e/ve = 0.25, and θ = 88◦, where θ is the angle between k and
B (tan θ = k⊥/kz , so θ = 88◦ corresponds to k⊥/kz ≈ 28.6). Figure 1 shows results
when there are no negative ions present, with εh = 0. As can be seen, harmonics
up to the third harmonic can be excited for this set of parameters. Figure 2 shows
results for the light-ion EICI when there are negative ions present, with εh = 1. The
addition of negative ions leads to the appearance of higher harmonics beyond the
third harmonic, an increase in the frequency of the modes, and increased growth
rates. In addition, as discussed in Sec. 3.1.1, as εh increases, the range of unstable
k⊥/kz can increase. This is illustrated in Fig. 3 which shows growth rates for the
fundamental mode at fixed k⊥ρl = 1 as a function of θ, where tan θ = k⊥/kz .
Figure 4 shows the approximate critical drift for exciting the fundamental light-
ion EIC mode for fixed k⊥ρl = 0.3 as a function of εh and the corresponding
mode frequency. As can be seen, the mode frequency increases while the critical
drift decreases as εh increases up to about εh ∼ 20 beyond which there is a slow
turnaround to larger critical drifts, reflecting the increase of ion cyclotron damping
due to the m + 1 harmonic.
Figure 5 shows the frequency and growth rate for the light-ion EICI for larger

εh = 10, and at a smaller value of θ = 85◦ (corresponding to k⊥/kz ≈ 11.4). As
can be seen, as εh increases even higher harmonics can be excited. In addition, the
modes shift to smaller k, and the frequencies increase.
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Figure 3. Imaginary γ parts of ω (normalized toΩl) for the light-ion EICI for the fundamental
harmonic versus θ where tan θ = k⊥/kz , for fixed k⊥ρl = 1, obtained by solving (3). Other
parameters are the same as in Fig. 1, except that the curves correspond to different values
of εh: εh = 0 (solid curve), εh = 1 (dotted curve), εh = 10 (dash-dotted curve).

Figure 4. Normalized critical electron drift u0e,c/ve (dashed curve) and corresponding
normalized real frequency ωr/Ωl (solid curve) for the fundamental light-ion EICI versus
εh obtained using (3). Other parameters are the same as in Fig. 1, except that b

1/2
l = 0.3 is

fixed and θ is varied.

Figure 6 shows the frequency and growth rate of the heavy-ion EICI versus
k⊥ρh, for the same parameters as in Fig. 1 but with εh = 1. As εh increases, the
mode frequency increases and the mode shifts to smaller k⊥. These effects are
illustrated in Figs 7. Figure 7 uses the same parameters as in Fig. 6, but with an
increased εh = 10. As can be seen, as εh increases the mode frequencies increase,
the unstable modes shift to smaller wavenumbers (at least for fixed k⊥/kz ), and
the growth rates decrease for the higher harmonic modes. Figure 8 shows growth
rates for the fundamental mode at fixed k⊥ρh = 0.5 as a function of θ, where
tan θ = k⊥/kz . The decreased range of unstable k⊥/kz as εh increases, as compared
with the light-ion EICI, may arise for several reasons. First, the heavy-ion cyclotron
damping term in (20) is proportional to both εh and τeh, the latter already being
large (∼8) for our choice of parameters. Secondly, the mode frequency increases
substantially as εh increases, so that k⊥/kz has to increase to minimize damping
by the m + 1 cyclotron harmonic. Finally, there is also damping by the light ions.
Figure 9 shows the approximate critical drift and corresponding mode frequency
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Figure 5. (a) Real ωr and (b) imaginary γ parts of ω (normalized to Ωl) for the light-ion
EICI versus k⊥ρl obtained by solving (3). Parameters are the same as in Fig. 1, except that
θ = 85◦ and εh = 10. The curves correspond to different harmonics.

for the fundamental heavy-ion mode for fixed k⊥ρh = 0.3 as a function of εh. As
can be seen, the mode frequency increases while the critical drift decreases as εh
increases up to about εh ∼ 8 beyond which there is a slow turnaround to larger
critical drifts, reflecting the increase of ion cyclotron damping due to the m + 1
harmonic as the mode frequency increases, similar to the light-ion EICI.

4. Summary and discussion
We have investigated the EICI in a magnetized plasma containing electrons, heavy
negative ions, and light positive ions, using linear kinetic theory.We have considered
the excitation of the fundamental mode and higher harmonic modes associated
with each ion species, focusing on the regime where the negative ion density is
larger than the electron density. It was found that, in general, as the density of
negative ions increases, the wave frequencies increase and the unstable spectrum
shifts to longer wavelengths. In addition, instability can occur over a wider range
of k⊥/kz , where k⊥ and kz are the components of the wavevector perpendicular and
parallel, respectively, to the magnetic field. For fixed perpendicular wavelength,
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Figure 6. (a) Real ωr and (b) imaginary γ parts of ω (normalized to Ωh) for the heavy-ion
EICI versus k⊥ρh obtained by solving (3). Parameters are the same as in Fig. 1, except that
εh = 1. The curves correspond to different harmonics.

it appears that the critical drift for both the light-ion and heavy-ion EICI of the
m = 1 harmonic decreases as the density of negative ions increases, up to a point
where the frequency approaches the second harmonic. In general, it appears that
it is easier to excite the fundamental and higher harmonic EIC modes of both ion
species in the presence of a large (but not too large) density of negative ions. The
results seem to have qualitative similarity with the recent experimental results
of Kim et al. (2008). Future work will compare the theoretical and experimental
results in more detail. We note that this may involve including collisional damping
effects as well.
However, we point out that when εh gets very large, there is a relatively small

amount of energy in the streaming electrons, so that one might expect that the
energy density of any excited waves to also be relatively small. It should also be
noted that for very large εh one might expect the instability of the higher frequency
‘fast’ ion-acoustic wave to occur as well. For large δ, the phase speed of the ion
acoustic wave can be much greater than vl even in a plasma with Te = Tl, so the
wave can be driven unstable by relatively small electron drifts since ion Landau
damping would be negligible (see, e.g., Rosenberg and Merlino 2007).
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Figure 7. (a) Real ωr and (b) imaginary γ parts of ω (normalized to Ωh) for the heavy-ion
EICI versus k⊥ρh obtained by solving (3). Parameters are the same as in Fig. 6, except that
εh = 10. The curves correspond to different harmonics.

Figure 8. Imaginary γ parts of ω (normalized to Ωh) for the heavy-ion EICI for the
fundamental harmonic versus θ where tan θ = k⊥/kz , for fixed k⊥ρh = 0.5, obtained by
solving (3). Other parameters are the same as in Fig. 1, except that the curves correspond
to different values of εh: εh = 1 (solid curve), εh = 5 (dotted curve), εh = 10 (dash-dotted
curve).
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Figure 9. Normalized critical electron drift u0e,c/ve (dashed curve) and corresponding
normalized real frequency ωr/Ωh (solid curve) for the fundamental heavy-ion EICI versus
εh obtained using (3). Other parameters are the same as in Fig. 1, except that b

1/2
h = 0.3 is

fixed and θ is varied.
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