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Free Group Algebras in Division Rings with
Valuation II

Javier Sánchez

Abstract. We apply the ûltered and graded methods developed in earlier works to ûnd (noncommu-
tative) free group algebras in division rings.

If L is a Lie algebra, we denote by U(L) its universal enveloping algebra. P. M. Cohn constructed
a division ring DL that contains U(L). We denote byD(L) the division subring ofDL generated by
U(L).

Let k be a ûeld of characteristic zero, and let L be a nonabelian Lie k-algebra. If either L is residu-
ally nilpotent or U(L) is an Ore domain, we show that D(L) contains (noncommutative) free group
algebras. In those same cases, if L is equipped with an involution, we are able to prove that the free
group algebra inD(L) can be chosen generated by symmetric elements in most cases.

LetG be a nonabelian residually torsion-free nilpotent group, and let k(G) be the division subring
of the Malcev–Neumann series ring generated by the group algebra k[G]. IfG is equipped with an in-
volution, we show that k(G) contains a (noncommutative) free group algebra generated by symmetric
elements.

1 Introduction

hesearch for free objects in division rings has been largelymotivated by the following
two conjectures that still remain open:

(G) If D is a noncommutative division ring, then the multiplicative group D/{0}
contains a free group of rank two.

(A) IfD is a division ringwhich is inûnite dimensional over its center Z and is ûnitely
generated (as a division algebra over Z), then D contains a free Z-algebra of rank
two.

Conjecture (G) was stated by A. I. Lichtman in [22] and has been proved when the
center of D is uncountable [5] and when D is ûnite dimensional over its center [16],
to name two important instances where it holds true. Conjecture (A) was formulated
independently by L. Makar-Limanov in [28] and T. Staòord. Evidence for conjecture
(A) has been given in many papers, for example [1, 2, 25, 27, 29]. In many division
rings in which conjecture (A) holds, D in fact contains a noncommutative free group
Z-algebra. For example, this always happens if the center of D is uncountable [17] (or
[39] for a slightly more general result). Other examples of the existence of free group
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1464 J. Sánchez

algebras in division rings can be found in [4, 25, 30, 38]. herefore, it makes sense to
consider the following unifying conjecture:
(GA) Let D be a skew ûeld with center Z. If D is ûnitely generated as a division ring

over Z and D is inûnite dimensional over Z, then D contains a noncommuta-
tive free group Z-algebra.

For more details on these and related conjectures, the reader is referred to [18].
A�er the work in [10–14,18] it has become apparent that an involutional version of

conjectures (G) and (A) should be investigated. Part of our work deals with an involu-
tional version of (GA). To bemore speciûc, ifD is equipped with an involution, under
the hypothesis of (GA), can we ûnd a free group algebra whose set of free generators
is formed by symmetric elements (i.e., x∗ = x)?

Let k be a ûeld. A k-involution on a k-algebra R is a k-linearmap ∗∶R → R, x ↦ x∗,
such that (ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ R. here are two families of k-
algebras that usually are equipped with an involution. hese are group k-algebras and
universal enveloping algebras of Lie k-algebras. Given an involution on a group (see
p. 1499 for precise a deûnition), it induces a k-involution on the group k-algebra k[G]
(p. 1499). Furthermore, ifG is an orderable group (p. 1466), there is a prescribed con-
struction of a division k-algebra, which we call k(G), that contains k[G]; it is gener-
ated by k[G] and is such that any k-involution on k[G] can be extended to k(G) (see
Section 7 for more details). Also, a given k-involution (see p. 1472) of a Lie k-algebra
L induces a k-involution on the universal enveloping algebraU(L) in the natural way
([9, Section 2.2.17]). here is also a concrete construction of a division k-algebra,
which we denote byD(L). It contains U(L); it is generated by U(L) and is such that
any
k-involution on L can be extended to a k-involution ofD(L) (see Section 5 for more
details). We remark that neither k[G] nor U(L) need to be Ore domains, but if they
are, both k(G) andD(L) coincide with the Ore rings of fractions of k[G] and U(L)
respectively.

he aim of our work is to apply the graded and ûltered methods developed in
[39, 40] to obtain free group algebras in division rings. Concerning conjecture (GA),
we are able to prove an extension of a result by Lichtman. More precisely, [25, heo-
rem 4] is (ii) of the following result.

heorem 1.1 Let k be a ûeld of characteristic zero and L be a nonabelian Lie k-algebra.
Suppose that one of the following conditions is satisûed.
(i) L is residually nilpotent.
(ii) he universal enveloping algebra U(L) is an Ore domain.
hen D(L) contains a (noncommutative) free group k-algebra.

Notice thatD(L)may not contain a free k-algebra of rank two if the characteristic
of k is not zero. In fact, as noted in [25, p. 147], the proof given in [20, p. 204] shows
that if L is ûnite dimensional over k, then D(L) is ûnite dimensional over its center.
herefore, it does not contain a noncommutative free algebra.
Concerning involutional versions of conjecture (GA), we are able to prove the fol-

lowing two theorems.
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heorem 1.2 Let k be a ûeld of characteristic zero, and let L be a nonabelian Lie
k-algebra endowed with a k-involution ∗∶ L → L. Suppose that one of the following
conditions is satisûed.

(i) L is residually nilpotent.
(ii) he universal enveloping algebra U(L) is an Ore domain and either

(a) there exists x ∈ L such that [x∗ , x] ≠ 0 and the Lie k-subalgebra of L gener-
ated by {x , x∗} is of dimension at least three, or

(b) [x∗ , x] = 0 for every x ∈ L, but there exist x , y ∈ L with [y, x] ≠ 0 and the
k-subspace of L spanned by {x , x∗ , y, y∗} is not equal to the Lie k-subalgebra
of L generated by {x , x∗ , y, y∗}.

henD(L) contains a (noncommutative) free group k-algebra whose free generators are
symmetric with respect to the extension of ∗ to D(L).

heorem 1.3 Let k be a ûeld of characteristic zero and let G be a nonabelian residually
torsion-free nilpotent group endowed with an involution ∗∶G → G. hen k(G) contains
a free group k-algebra whose free generators are symmetric with respect to the extension
of ∗ to k(G).

Notice that since the map L ↦ L, x ↦ −x, is a k-involution for any Lie k-algebra L,
heorem 1.2(i) impliesheorem 1.1(i). On the other hand, the proofs and the elements
that generate the free group algebra in heoren 1.2 are more complicated than those
of heorem 1.1.

Let k be a ûeld of characteristic zero. he general strategy to obtain heorems 1.1
and 1.2 goes back to Lichtman [25] and was also used in [10]. Roughly speaking, one
has to obtain free (group) algebras in the division ring D(H), where H is the Lie
k-algebra H = ⟨x , y ∶ [y, [y, x]] = [x , [y, x]] = 0⟩. From this, one obtains free group
algebras in D(L), where L is a residually nilpotent Lie k-algebra. Now there is a way
to obtain free (group) algebras in D(L), where L is a Lie k-algebra such that U(L) is
an Ore domain, from the residually nilpotent case using ûltered and gradedmethods.
We have improved and somewhat clariûed this strategy in order to obtain the two
ûrst theorems above. hen heorem 1.3 is obtained from the previous results using
the ûltered methods from [40] and a technique from [10].

We begin Section 2.1 by introducing some basics on ûltrations and valuations. In
Section 2.2, we state some results on how ûltrations and gradations of Lie algebras
induce ûltrations and gradations of their universal enveloping algebras. Section 2.3
is devoted to results about the existence of free group algebras obtained in [39, 40].
hey show diòerent ways of obtaining free group algebras in division rings generated
by group graded rings and in division rings endowed with a valuation.

he results in Section 2 are stated in more generality than necessary in subsequent
sections, but we believe there is some merit in the general statements and that they
could be of interest to others.

he ûrst part of Section 3 is concerned with the classiûcations of all the
k-involutions of the Heisenberg Lie k-algebraH = ⟨x , y ∶ [y, [y, x]] = [x , [y, x]] = 0⟩
over k, a ûeld of characteristic diòerent from two. We are able to prove that, up to
equivalence, there are three involutions on H. We then use this to show that any
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nilpotent Lie k-algebra endowed with an involution ∗∶ L → L contains a ∗-invariant
k-subalgebra H of L whose restriction to H is one of those three involutions.

Section 4 deals with the problem of ûnding free (group) algebras in the Ore ring of
fractions ofU(L), the universal enveloping algebra of a nilpotent Lie k-algebra L over
a ûeld of characteristic zero. hemain result is the technical heorem 4.5, where a lot
of free (group) algebras in D(H) are obtained. Each of those free (group) algebras is
suitable for later applications of the results in Section 2.3. hus, the free generators (or
elements obtained from them) will be homogeneous elements of some graded rings
that appear in this and subsequent sections. here could be simpler elements that do
the job and avoid some technicalities, but we were not able to ûnd them.

Let L be a nonabelian residually nilpotent Lie k-algebra over a ûeld of characteristic
zero k. he main aim of Section 5 is to obtain free (group) algebras in the division
ring D(L) from the ones obtained in the previous section. It is done by a method
involving series that was developed in [10]. Although technical, the argument is quite
natural.

Let L be a nonabelian Lie k-algebra over a ûeld of characteristic zero such that its
universal enveloping algebraU(L) is an Ore domain. In Section 6, we ûnd free group
algebras in D(L), the Ore ring of fractions of U(L), using the results in previous
sections. Roughly speaking, the idea of the proof is that for some natural ûltrations of
L, the associated graded Lie algebra grad(L) is residually nilpotent. he isomorphism
of graded algebras U(grad(L)) ≅ grad(U(L)) allows us to use the results in previous
sections thanks to the fact that U(L) is an Ore domain and the good behaviour of the
Ore localization with respect to ûltrations described in Section 2.

he arguments in Section 6 should clarify why some of the elements in earlier
sections were chosen in that way. Here it is one of the places where Proposition 2.8
andheorem 2.9 are strongly used.

he last section of the paper is devoted to ûnding free group algebras in k(G) for
k a ûeld of characteristic zero and G a nonabelian residually torsion-free nilpotent
group. Let H = ⟨a, b ∶ (b, (b, a)) = (a, (b, a)) = 1⟩ be the Heisenberg group. here
are ûltrations of the group ring k[H] such that the induced k-algebra is isomorphic to
U(H) as graded k-algebras, where we consider a certain gradation in U(H) induced
from one of H. Again, using the crucial results of Section 2.3, one can obtain suitable
free group algebras in k(H). From this, using an argument from [14], one gets the
desired free group algebras in k(G).

2 Filtrations, Gradations, and Valuations

A strict ordering on a set S is a binary relation < that is transitive and such that s1 < s2
and s2 < s1 cannot both hold for elements s1 , s2 ∈ S. It is a strict total ordering if for
every s1 , s2 ∈ S, exactly one of s1 < s2, s2 < s1 or s1 = s2 holds.
A group G is called orderable if its elements can be given a strict total ordering <

that is le� and right invariant. hat is, g1 < g2 implies that g1h < g2h and hg1 < hg2
for all g1 , g2 , h ∈ G. We call the pair (G , <) an ordered group. Clearly, any addi-
tive subgroup of the real numbers is orderable. More generally, torsion-free abelian
groups, torsion-free nilpotent groups, and residually torsion-free nilpotent groups
are orderable [15].
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We would like to point out that the results in this section are stated for ordered
groups, but in the following ones they will be applied for the ordered group Z alone.
We believe there is somemerit in the general statements, and they could be of interest
to others.

2.1 On Filtrations and Valuations

Let R be a ring and (G , <) an ordered group. A family FGR = {FgR}g∈G of additive
subgroups of R is a (descending) G-ûltration if it satisûes the following four condi-
tions:
(F1) FgR ⊇ FhR for all g , h ∈ G with g ≤ h;
(F2) FgR ⋅ FhR ⊆ FghR for all g , h ∈ G;
(F3) 1 ∈ F1R;
(F4) ⋃g∈G FgR = R.
We say that the G-ûltration is separating if it also satisûes the following:
(F5) For every x ∈ R, there exists g ∈ G such that x ∈ FgR and x ∉ FhR for all h ∈ G

with g < h.
Let R be a ring, (G , <) an ordered group, and FGR = {FgR}g∈G a G-ûltration of R.

For each g ∈ G, deûne
F>gR = ∑

h>g
FhR and Rg = FgR/F>gR.

he fact that G is an ordered group and the deûnition of G-ûltration imply that
F>gR ⋅ F>hR ⊆ F>ghR, F>hR ⋅ FgR ⊆ F>ghR, FgR ⋅ F>hR ⊆ F>ghR

for any g , h ∈ G. hus, a multiplication can be deûned by
(2.1) Rg × Rh Ð→ Rgh , (x + F>gR)(y + F>hR) = xy + F>ghR.
he associated graded ring of FGR is deûned to be

gradFG
(R) = ⊕

g∈G
Rg .

he addition on gradFG
(R) arises from the addition on each component Rg . he

multiplication is deûned by extending the multiplication (2.1) on the components bi-
linearly to all gradFG

(R). Notice that gradFG
(R) may not have an identity element. If

FGR is separating, then gradFG
(R) is a ring with identity element 1 + F>1R.

he Rees ring of the ûltration is
ReesFG (R) = ⊕

g∈G
(FgR)g ,

which is a subring of the group ring R[G]. hus, an element of ReesFG (R) is a ûnite
sum∑g∈G ag g where ag ∈ FgR. Notice that ReesFG (R) is aG-graded ringwith identity
element 1ReesFG (R) = 1R1G .

he next lemma is well known. It can be proved as in [32, Section 1.8], where the
ûltrations are ascending.

Lemma 2.1 Let R be a ring, let (G , <) be an ordered group, and let FGR = {FgR}g∈G
be a G-ûltration of R. he following hold true.
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(i) he subset G1 = {g ∈ G ∶ g ≤ 1} is an Ore subset of Reesv(R), and the Ore
localization G1

−1 ReesFG (R) = R[G] is the group ring.
(ii) Let J be the ideal of ReesFG (R) generated by G− = {g ∈ G ∶ g < 1}. hen

J = ⊕g∈G(F>gR)g and ReesFG (R)/J ≅ gradFG
(R) as graded rings.

(iii) Let I be the ideal of ReesFG (R) generated by the elements {1 − g ∶ g ∈ G−}. hen
ReesFG (R)/I ≅ R.

Let R be a ring and (G , <) be an ordered group. A map υ∶R → G ∪ {∞} is a
valuation if it satisûes
(V1) υ(x) = ∞ if, and only if, x = 0;
(V2) υ(x + y) ≥ min{υ(x), υ(y)};
(V3) υ(xy) = υ(x)υ(y).
Notice that υ(1) = 1G and υ(−x) = υ(x) for all x ∈ R. For each g ∈ G, we set R≥g =
{ f ∈ R ∶ υ( f ) ≥ g} and R>g = { f ∈ R ∶ υ( f ) > g}. Deûning FgR = R≥g for each g ∈ G,
we obtain a separating ûltration FGR = {FgR}g∈G . Wewill denote the graded ring and
the Rees ring associated with this ûltration as gradυ(R) and Reesυ(R), respectively.
Furthermore, observe that gradυ(R) is a domain because of (V3). It is well known
that the converse is also true [32, p. 91]. hat is, given a separating ûltration FGR =
{FgR}g∈G of R such that the associated graded ring gradFG

(R) is a domain, one can
deûne a valuation υ∶R → G ∪ {∞} by υ(x) = max{g ∈ G ∶ x ∈ FgR} for each
x ∈ R/{0}.

If X is an Ore domain, we denote by Qcl(X) the Ore ring of fractions of X, that is,
the Ore localization of X at the multiplicative set X/{0}.

he following lemma is a generalization of [25, Propositions 16, 17, 18], with a some-
what diòerent proof.

Lemma 2.2 Let R be an Ore domain, (G , <) an ordered group, and υ∶R → G ∪{∞}
a valuation. Let D be the Ore ring of fractions of R. he following hold true.
(i) he valuation υ can be extended to a valuation υ∶D → G ∪ {∞}.
(ii) he set H of nonzero homogeneous elements of gradυ(R) is an Ore subset of

gradυ(R).
(iii) here exists an isomorphism of G-graded rings λ∶H−1 gradυ(R) → gradυ(D)

given by f + R>υ( f ) ↦ f + D>υ( f ) for all f ∈ R.
(iv) If G is poly-(torsion-free abelian), then gradυ(R) is an Ore domain.
(v) If G is poly-(torsion-free abelian), then Reesυ(R) is an Ore domain.
(vi) If G is torsion-free abelian, then J = Reesυ(R)/J is an Ore subset of Reesυ(R),

and J−1 Reesυ(R) is a local ring with residue division ring Qcl(gradυ(R)).

Proof he proof of (i) can be found in [7, Proposition 9.1.1], for example.
(ii) Let f1 , f2 ∈ R/{0}. Consider the nonzero homogeneous elements f1 + R>υ( f1) ,

f2 + R>υ( f2) ∈ gradυ(R). Since R is an Ore domain, there exist q1 , q2 ∈ R such that
q1 f1 = q2 f2 ≠ 0. Consider the nonzero homogeneous elements q1 + R>υ(q1) , q2 +
R>υ(q2) ∈ gradυ(R). hen

(q1 + R>υ(q1))( f1 + R>υ( f1)) = (q2 + R>υ(q2))( f2 + R>υ( f2)).
Now [33, Lemma 8.1.1] implies the result.
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(iii) First note that gradυ(D) is a G-graded skew ûeld, and the natural maps
ι∶ gradυ(R) ↪ gradυ(D), κ∶ gradυ(R) ↪H−1 gradυ(R) are embeddings of G-graded
rings. hus, for each element in H, the image by ι is an homogeneous invertible
element in gradυ(D). By the universal property of the Ore localization, there exists
a homomorphism λ∶H−1 gradυ(R) → gradυ(D) such that ι = λκ. he homomor-
phism λ is injective, since it is so when restricted to homogeneous elements. Now
let f , q ∈ R/{0}. Consider q−1 f + D>υ(q−1 f ). his element is the image by λ of
(q + R>υ(q))−1( f + R>υ( f )). hus, λ is surjective.

(iv) he graded division ring gradυ(D) is a crossed product of the division ring
D0 over the subgroup {g ∈ G ∶ Dg ≠ 0}, which is again poly-(torsion-free abelian).
hus, gradυ(D) is an Ore domain by, for example, [36, Corollary 37.11]. We show that
the Ore ring of fractions Qcl(gradυ(D)) of gradυ(D) is also the Ore ring of fractions
of gradυ(R). For that, it is enough to show that every element of Qcl(gradυ(D)) is of
the form b−1a with a, b ∈ Qcl(gradυ(R)), b ≠ 0. An element of f ∈ Qcl(gradυ(D))
is of the form (dg1 + ⋯ + dgr)−1(eh1 + ⋯ + ehs), where dg i ∈ Dg i , eh j ∈ Dh j . By (ii),
(iii), and a�er bringing it to a common denominator, we can suppose that there exist
t, a i , b j ∈H such that

f = (t−1a1 +⋯ + t−1ar)−1(t−1b1 +⋯ + t−1bs) = (a1 +⋯ + ar)−1(b1 +⋯ + bs).
(v) In the same way as (iv), one can show that the group ring D[G] and R[G] are

Ore domains with the same Ore ring of fractions Qcl(R[G]). By Lemma 2.1(i), R[G]
is the localization of Reesυ(R) at G1. Hence, one can proceed as in (iv) to show that
Reesυ(R) is an Ore domain with Ore ring of fractions Qcl(R[G]).

(vi) Let x = ∑n
i=1 a i g i ∈ Reesυ(R) where we suppose that a i ≠ 0, i = 1, . . . , n.

Hence, υ(a i) ≥ g i for all i. We suppose that if i < j either υ(a i)−1g i < υ(a j)−1g j or
υ(a i)−1g i = υ(a j)−1g j and g i < g j . We deûne ω(x) = υ(an)−1gn ≤ 1G . Observe that
x = x′ω(x), where

x′ =
n

∑
i=1
a i g i g−1

n υ(an).

Since υ(an)−1gn ≥ υ(a i)−1g i , g−1
i υ(a i) ≥ g−1

n υ(an). his implies that υ(a i) ≥
g i g−1

n υ(an). Hence, x′ ∈ J. Note that x ∈ J if and only if ω(x) = 1, since J =
⊕g∈G F>gR ⋅ g.

If a, b ∈ R, g ∈ G such that ag , bg ∈ Reesυ(R), then
ω((a + b)g) ≤ max{ω(ag),ω(bg)}.

Now let y = ∑p
j=1 b jh j ∈ Reesυ(R) where we suppose that b j ≠ 0, j = 1, . . . , p, and if

j < l either υ(b j)−1h j < υ(b l)−1h l or υ(b j)−1h j = υ(b l)−1h l and h j < h l .
Now note that

xy = anbp gnhp + ∑
{(i , j)∶(i , j)≠(n ,p)}

a ib j g ih j ,

and if (i , j) ≠ (n, p), either υ(a ib j)−1g ih j < υ(anbp)−1gnhp or g ih j < gnhp . here-
fore ω(xy) = ω(x)ω(y).

Let u ∈ J and v ∈ Reesυ(R). Since Reesυ(R) is an Ore domain, there exist x , y ∈
Reesυ(R) such that xu = yv. We have to prove that y can be chosen such that y ∈ J.
From xu = x′uω(x) = y′v′ω(y)ω(v) = yv, we get xω(y)−1u = y′v, where y′ ∈ J.
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Since ω(x) = ω(y)ω(v) with ω(v) ≤ 1, ω(x) ≤ ω(y) ≤ 1. It implies that xω(y)−1 ∈
Reesυ(R) and ω(y′) = 1. ∎

2.2 On Gradations and Filtrations of Universal Enveloping Algebras

If L is a Lie algebra, we denote its universal enveloping algebra by U(L).
Let k be a ûeld, L a Lie k-algebra, and G a commutative group. We say that L is a

G-graded Lie k-algebra if there exists a decomposition of L as L = ⊕g∈G Lg satisfying
the following:
(a) Lg is a k-subspace of L for each g ∈ G,
(b) [Lg , Lh] ⊆ Lg+h for all g , h ∈ G.
he elements of ⋃g∈G Lg are the homogeneous elements of L. If x ∈ Lg , we say that x
is homogeneous of degree g.

he main examples we will deal with are the following. Examples (i) and (ii) are
important in Section 4, while examples (iii) and (iv) are useful in Section 7

Example 2.3 Let k be a ûeld. We can endow the Heisenberg Lie k-algebra H with
diòerent Z-gradings. We will use the following ones.
(i) H = ⊕n∈Z Hn , where H−1 = kx + ky, H−2 = kz, and Hn = 0 for all n ≠ −1,−2.
(ii) H = ⊕n∈Z Hn , where H−1 = kx , H−2 = ky, H−3 = kz, and Hn = 0 for all

n ≠ −1,−2,−3.
(iii) H = ⊕n∈Z Hn , where H1 = kx + ky, H2 = kz, and Hn = 0 for all n ≠ 1, 2.
(iv) H = ⊕n∈Z Hn , where H1 = kx , H2 = ky, H3 = kz, and Hn = 0 for all n ≠ 1, 2, 3.

For each g ∈ G, letBg = {e gi }i∈Ig be a k-basis of Lg . henB = ⋃g∈G Bg is a k-basis
of L. Fix an ordering < of B. Consider the universal enveloping algebra U(L) of L.
he standard monomials in B are the elements
(2.2) e g1i1 e

g2
i2 ⋯e

gr
ir ∈ U(L), with e g j

i j ∈ Bg j , e
g1
i1 ≤ e

g2
i2 ≤ ⋯ ≤ e gr

ir .

By the Poincaré–Birkoò–Witt (PBW) theorem, the standard monomials, together
with 1, form a k-basis of U(L). We say that the standard monomial (2.2) is of de-
gree g = g1 + g2 +⋯+ gr . In this situation, one can obtain a gradation of the universal
enveloping algebra as follows.

Lemma 2.4 Let G be a group and let L = ⊕g∈G Lg be a G-graded Lie k-algebra. hen
the universal enveloping algebra U(L) is an (associative) G-graded k-algebra. Indeed,

U(L) = ⊕
g∈G

U(L)g ,

where U(L)g is the k-span of the standard monomials of degree g.

Let k be a ûeld, let L be a Lie k-algebra, and let (G , <) be an ordered abelian group.
A (descending) separating ûltration of L is a family of subspaces FGL = {FgL}g∈G ,
such that
(FL1) FgL ⊇ FhL for all g , h ∈ G with g ≤ h;
(FL2) [FgL, FhL] ⊆ Fg+hR for all g , h ∈ G;
(FL3) ⋃g∈G FgL = L;
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(FL4) for every x ∈ L, there exists g ∈ G such that x ∈ FgL and x ∉ FhL for all h ∈ G
with g < h.

Deûne F>gL = ∑h>g FhL, and Lg = FgL/F>gL for all g ∈ G. hen one obtains the
associated graded Lie k-algebra

gradFG
L = ⊕

g∈G
Lg .

he ûltration FGL of L induces a ûltration FGU(L) = {FgU(L)}g∈G of the univer-
sal enveloping algebra U(L) as follows. Deûne, for each g ∈ G, g ≤ 0,

FgU(L) = k + ∑
g1+⋯+gr≥g

Lg1⋯Lgr ,

and for each g > 0,
FgU(L) = ∑

g1+⋯+gr≥g
Lg1⋯Lgr .

hen FhU(L) ⊆ FgU(L) for g < h, and FgU(L)⋅FhU(L) ⊆ Fg+hU(L) for all g , h ∈ G.
An easy but important example for us is the following. It will be used in Section 6.

Example 2.5 Let L be a Lie k-algebra generated by two elements u, v ∈ L. Deûne
FLr = 0 for all r ≥ 0, FL−1 = ku + kv, and, for n ≤ −1,

Fn−1L = ∑
n1+n2+⋯+nr≥(n−1)

[Fn1L, [Fn2L, . . . ]⋯] .

Observe that, for each n ∈ Z, there exists Bn ⊆ L whose classes give a basis of Ln =
FnL/Fn+1L such that ⋃n∈ZBn is a basis of L.

he next lemma will be used in Sections 6, 7.

Lemma 2.6 Let k be a ûeld and L be a Lie k-algebra. he following hold true.
(i) Suppose that there exists a basis Bg = {e gi }i∈Ig of Lg for each g ∈ G such that

⋃g∈G Bg is a basis of L. hen the ûltration is separating, and there exists an iso-
morphism of G-graded k-algebras

U(gradFG
(L)) ≅ gradFG

(U(L)).
Hence the ûltration induces a valuation υ∶U(L) → G ∪ {∞}.

(ii) If U(L) is an Ore domain, then U(gradFG
(L)) is an Ore domain.

Proof (i)his can be proved in the sameway as [41, Proposition 1] or [3, Lemma2.1.2].
(ii) his can be proved by Lemma 2.2(iv). ∎

2.3 Free Group Algebras in Division Rings

Our work can be regarded as an application of some techniques on the existence of
free group algebras in division rings. In this section, we gather together the version
of those results that we will use.

We begin with [39, heorem 3.2]. It tells us a way to obtain a free group algebra
from a free algebra in case the division ring is the Ore ring of fractions of a graded
Ore domain.
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heorem 2.7 Let G be an orderable group and let k be a commutative ring. Let
A = ⊕g∈G Ag be aG-graded k-algebra. Let X be a subset of A consisting of homogeneous
elements where we denote by gx ∈ G the degree of x ∈ X, i.e., x ∈ Agx . Suppose that the
following three conditions are satisûed.

(i) here exists a strict total ordering < of G such that (G , <) is an ordered group and
1 < gx for all x ∈ X.

(ii) he k-subalgebra of A generated by X is the free k-algebra on X.
(iii) A is a le� Ore domain with le� Ore ring of fractions Qcl(A).
hen the k-subalgebra of Qcl(A) generated by {1 + x , (1 + x)−1}x∈X is the free group
k-algebra on the set {1 + x}x∈X .

he next proposition is [40, Proposition 2.5(4’)]. It shows that (under some cir-
cumstances) the existence of a free group algebra in the graded ring induced by a
valuation on a division ring D, implies the existence of a free group algebra in D.

Proposition 2.8 Let Z be a commutative ring and R a Z-algebra. Let υ∶R → Z∪{∞}
be a valuation. Let X be a subset of elements of R such that the map X → gradυ(R),
x ↦ x + R>υ(x), is injective. Moreover, assume that

(i) the elements of X are invertible in R,
(ii) the Z0-subalgebra of gradυ(R) generated by {x+R>υ(x) , x−1+R>υ(x−1)}x∈X is the

free group Z0-algebra on {x + R>υ(x)}x∈X .

hen the Z-subalgebra of R generated by {x , x−1}x∈X is the free group Z-algebra on X,
where Z0 = Z≥0/Z>0.

he next theorem is [40, heorem 3.2]. It tells us that, sometimes, in order to ûnd
a free group algebra in division ring D it is enough to ûnd a free algebra on the graded
ring induced by a valuation on D.

heorem 2.9 Let D be a division ring with prime subring Z. Let υ∶D → R∪{∞} be
a nontrivial valuation. Let X be a subset of D satisfying the following three conditions.

(i) he map X → gradυ(D), x ↦ x + D>υ(x), is injective.
(ii) For each x ∈ X, υ(x) > 0.
(iii) he Z0-subalgebra of gradυ(D) generated by the set {x + D>υ(x)}x∈X is the free

Z0-algebra on the set {x + D>υ(x)}x∈X , where Z0 = Z≥0/Z>0 ⊆ D0.

hen, for any central subûeld k, the k-subalgebra of D generated by {1 + x , (1 + x)−1}x∈X
is the free group k-algebra on {1 + x}x∈X .

3 Nilpotent Lie Algebras with Involutions

Let k be a ûeld and let L be a Lie k-algebra. A k-linear map ∗∶ L → L is a k-involution
if for all x , y ∈ L, [x , y]∗ = [y∗ , x∗], x∗∗ = x. he main example of a k-involution in
a Lie k-algebra is what we call the principal involution. It is deûned by x ↦ −x for all
x ∈ L.
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he Heisenberg Lie k-algebra is the Lie k-algebra with presentation

H = ⟨x , y ∶ [[y, x], x] = [[y, x], y] = 0⟩ .

he Heisenberg Lie k-algebra can also be characterized as the unique Lie k-algebra of
dimension three such that [H,H] has dimension one and [H,H] is contained in the
center of H; see [20, Section 4.III].

Let k be a ûeld of characteristic diòerent from 2. In this section, we ûrst ûnd all
the k-involutions of H; second, we show that there are essentially three involutions
on H, and then we show that any nilpotent Lie k-algebra with involution contains a
k-subalgebra isomorphic toH invariant under the involution such that the restriction
of the involution to H is one of those three.

Lemma 3.1 Let k be a ûeld of characteristic diòerent from two. Let H = ⟨x , y ∶
[x , [y, x]] = [y, [y, x]] = 0⟩ be the Heisenberg Lie k-algebra and z = [y, x]. hen any
k-involution τ∶H → H is of one of the following forms:

(i)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(x) = ax + by + cz,
τ(y) = dx − ay + f z,
τ(z) = z,

where a, b, c, d , f ∈ k satisfy

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a2 + bd = 1,
(a + 1)c + b f = 0,
dc + (1 − a) f = 0.

(ii)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(x) = x + cz,
τ(y) = y + f z,
τ(z) = −z,

where c, f ∈ k.

(iii)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(x) = −x ,
τ(y) = −y,
τ(z) = −z.

Proof Let ∗∶H → H be a k-involution on H. Note that Z(H), the center of H, is the
one-dimensional k-subspace generated by z = [y, x]. Since z∗ ∈ Z(H) and (z∗)∗ = z,
we obtain that z∗ = z or z∗ = −z.

Suppose that x∗ = ax + by + cz and y∗ = dx + ey + f z where a, b, c, d , e , f ∈ k.

Case 1: z∗ = z. hen

z = [y, x] = [y, x]∗ = [x∗ , y∗] = [ax + by + cz, dx + ey + f z]
= [by, dx] + [ax , ey] = (bd − ae)z.

hus,

(3.1) bd − ae = 1.

From

x = (x∗)∗ = (ax + by + cz)∗ = a(ax + by + cz) + b(dx + ey + f z) + cz
= (a2 + bd)x + (ab + be)y + (ac + b f + c)z,
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we get
a2 + bd = 1,(3.2)
b(a + e) = 0,(3.3)

ac + b f + c = 0.(3.4)
From

y = (y∗)∗ = (dx + ey + f z)∗ = d(ax + by + cz) + e(dx + ey + f z) + f z
= d(a + e)x + (e2 + db)y + (cd + e f + f )z,

we obtain
e2 + bd = 1,(3.5)
d(a + e) = 0,(3.6)

cd + e f + f = 0.(3.7)
From (3.2) and (3.5), we obtain that a = ±e.

Suppose that a = e. hen (3.2) and (3.1) imply that a = e = 0. hus, this case is
contained in the case a = −e.

Suppose now that a = −e. hen (3.2), (3.5), and (3.1) are in fact the same equation.
Also equations (3.3) and (3.6) do not give any new information. hus, (3.4) and (3.7)
are equal to

(3.8)
⎧⎪⎪⎨⎪⎪⎩

(a + 1)c + b f = 0
dc + (1 − a) f = 0.

Observe that, by (3.2), det (a+1 b
d 1−a) = −a2 − bd + 1 = 0.

herefore x∗ = ax + by + cz, y∗ = dx − ay + f z, z∗ = z, where a, b, c, d , f satisfy
(3.2) and (3.8). Hence, (i) is proved.
Case 2: z∗ = −z. −z = [y, x]∗ = [x∗ , y∗] = [ax + by + cz, dx + ey + f z] = [by, dx] +
[ax , ey] = (bd − ae)z. hus
(3.9) ae − bd = 1.
From x = (x∗)∗ = (ax + by + cz)∗ = a(ax + by + cz) + b(dx + ey + f z) − cz =
(a2 + bd)x + (ab + eb)y + (ac + b f − c)z, we get

a2 + bd = 1,(3.10)
b(a + e) = 0,(3.11)

ac + b f − c = 0.(3.12)

From y = (y∗)∗ = (dx + ey + f z)∗ = d(ax + by + cz) + e(dx + ey + f z) − f z =
d(a + e)x + (e2 + db)y + (cd + e f − f )z, we obtain

e2 + bd = 1,(3.13)
d(a + e) = 0,(3.14)

cd + e f − f = 0.(3.15)
From (3.10) and (3.13), we obtain that a = ±e.

It is not possible that a = −e, because (3.10) and (3.9) would imply that 1 = −1.
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Suppose now that a = e. hen (3.9), (3.10), and (3.13) imply that a2 = 1. Hence,
a = e = ±1. Now (3.11) and (3.14) imply that b = d = 0.

If a = −1, we obtain, by (3.12) and (3.15), that f = c = 0. Hence, we obtain (iii), i.e.,
x∗ = −x, y∗ = −y, z∗ = −z.

If a = 1, (3.12) and (3.15) do not give any new information. Hence, we obtain (ii),
i.e., x∗ = x + cz, y∗ = y + f z, z∗ = −z, where c, f ∈ k. ∎

Let k be a ûeld. Let τ, η∶ L → L be two k-involutions of a Lie k-algebra L. We say
that τ is equivalent to η if there exists an isomophism of Lie k-algebras φ∶ L → L such
that φ−1τφ = η.

Lemma 3.2 Let k be a ûeld of characteristic diòerent from two and let H be the
Heisenberg Lie k-algebra. Any k-involution τ∶H → H is equivalent to one of the follow-
ing involutions η∶H → H.
(i) he involution η∶H → H deûned by η(x) = x , η(y) = −y, η(z) = z. More

precisely, any k-involution in Lemma 3.1(i) is equivalent to η just deûned.
(ii) he involution η∶H → H deûned by η(x) = x , η(y) = y, η(z) = −z. More

precisely, any k-involution in Lemma 3.1(ii) is equivalent to η just deûned.
(iii) heprincipal involution η∶H → H deûned by η(x) = −x , η(y) = −y, η(z) = −z.
Furthermore, we exhibit explicit isomorphisms φ∶H → H which prove that φ−1τφ = η,
where τ is any involution in Lemma 3.1(i) and (ii).

Proof Clearly the involution from Lemma 3.1(iii) is the same as the one in (iii).
First we prove (ii). Let f ↦ f ∗ be any involution in Lemma 3.1(ii). Suppose that

c, f ∈ k and that x∗ = x + cz, y∗ = y + f z and z∗ = −z. Deûne X = 1
2 (x + x∗) =

1
2 (2x + cz), Y = 1

2 (y + y∗) = 1
2 (2y + f z), and Z = z. Note that X ,Y , Z form a k-basis

of H and that [Y , X] = [y, x] = z = Z. hus, there exists an isomorphism φ∶H → H
sending x ↦ X, y ↦ Y and z ↦ Z. Moreover, X∗ = X, Y∗ = Y and Z∗ = −Z, as
desired.

Now we prove (i). Let h ↦ h∗ be any involution from Lemma 3.1(i). Let a, b, c, d ,
f ∈ k satisfy the conditions in Lemma 3.1(i). Hence, x∗ = ax + by + cz, y∗ = dx −
ay + f z, z∗ = z. We consider three cases:
(I) b ≠ 0,
(II) d ≠ 0,
(III) b = d = 0.

(I) Suppose b ≠ 0. Deûne X = 1+a
2 x + b

2 y +
c
2 z, Y = 1−a

2 x − b
2 y −

c
2 z, and Z =

− b2 z. Note that X ,Y , Z is a k-basis of H and that [Y , X] = Z . hus there exists an
isomorphism φ∶H → H sending x ↦ X, y ↦ Y , z ↦ Z. Note that X∗ = X, Y∗ = −Y
and Z∗ = Z, as desired.

(II) Suppose now that d ≠ 0. Deûne X = d
2 x +

1−a
2 y+ f

2 z, Y = d
2 x −

a+1
2 y+ f

2 z, and
Z = − d2 z. Note that X ,Y , Z is a k-basis ofH and that [Y , X] = Z. hus there exists an
isomorphism φ∶H → H given by x ↦ X, y ↦ Y , z ↦ Z. Note that X∗ = X, Y∗ = −Y
and Z∗ = Z, as desired.

(III) Suppose that b = d = 0. hen a2 = 1 and either c = 0 or f = 0. In both
cases deûne X = − 1+a

2 x + 1−a
2 y + f−c

2 z, Y = a−1
2 x + 1+a

2 y + c− f
2 z, Z = −az. It is not
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diõcult to show that X ,Y , Z is a k-basis of H and that [Y , X] = Z. hus, there exists
an isomorphism φ∶H → H given by x ↦ X, y ↦ Y , z ↦ Z. Note that X∗ = X,
Y∗ = −Y and Z∗ = Z, as desired. ∎

he following two results are the Lie algebra version of [14, Lemma 2.3, Proposi-
tion 2.4]. he proofs are analogous to the ones given there for groups.

Lemma 3.3 Let k be a ûeld of characteristic diòerent from two, and let L be a ûnitely
generated nilpotent Lie k-algebra of class 2 with involution ∗∶ L → L, f ↦ f ∗. hen
L contains a ∗-invariant Heisenberg Lie k-subalgebra H and the restriction of ∗ to H
is one of the involutions in Lemma 3.2. More precisely, there exist x , y ∈ L such that
[y, x] ≠ 0, [y, [y, x]] = [x , [y, x]] = 0, and either x∗ = x and y∗ = −y, x∗ = x and
y∗ = y, or x∗ = −x and y∗ = −y.

Proof LetC denote the center of L. It follows from the nilpotency class of L that L/C
is a ûnitely generated torsion-free abelian Lie k-algebra and the involution induces an
automorphism of k-vector spaces φ∶ L/C → L/C, f + C ↦ f ∗ + C. Notice that L/C
has dimension at least two, because L is not abelian. Since φ2 is the identity, φ is
diagonalizable. here exist u1 , . . . , un ∈ L such that {u1 + C , . . . , un + C} is a basis
of L/C consisting of eigenvectors with eigenvalues ±1. Since L is not abelian, we can
suppose that [u1 , u2] ≠ 0. Hence, there exist z1 , z2 ∈ C such that u∗i = ε iu i + z i , where
ε i ∈ {1,−1}, for i = 1, 2.

Suppose that u∗1 = −u1 + z1 and u∗2 = u2 + z2. Let H be the subalgebra with basis
x = 1

2 (u1 − u∗1 ) = u1 − 1
2 z1, y =

1
2 (u2 + u∗2 ) = u2 + 1

2 z2, and z = [y, x]. Now proceed
as in the following case.

Suppose that u∗1 = u1 + z1 and u∗2 = −u2 + z2. Let H be the subalgebra with basis
x = 1

2 (u2 − u∗2 ) = u2 − 1
2 z2, y = 1

2 (u1 + u∗1 ) = u2 + 1
2 z2, and z = [y, x]. Clearly z

commutes with x and y, because it is an element of C. Now x∗ = −x, y∗ = y, and
z∗ = [y, x]∗ = [x∗ , y∗] = [−x , y] = z. hus, ∗, when restricted to H, is the involution
(i) in Lemma 3.1.

Suppose that u∗1 = u1 + z1 and u∗2 = u2 + z2. Let H be the subalgebra with basis
x = 1

2 (u1 + u∗1 ) = u1 + 1
2 z1, y = 1

2 (u2 + u∗2 ) = u2 + 1
2 z2 and z = [y, x]. Clearly z

commutes with x and y, because it is an element of C. Now x∗ = x, y∗ = y and
z∗ = [y, x]∗ = [x∗ , y∗] = [x , y] = −z. hus, ∗, when restricted to H, is the involution
(ii) in Lemma 3.1.

Suppose that u∗1 = −u1 + z1 and u∗2 = −u2 + z2. Let H be the subalgebra with basis
x = 1

2 (u1 − u∗1 ) = u1 − 1
2 z1, y = 1

2 (u2 − u∗2 ) = u2 − 1
2 z2 and z = [y, x]. Clearly,

z commutes with x and y, because it is an element of C. Now x∗ = −x, y∗ = −y,
and z∗ = [y, x]∗ = [x∗ , y∗] = [−x ,−y] = −z. hus ∗, when restricted to H, is the
involution (iii) in Lemma 3.1 ∎

heorem 3.4 Let k be a ûeld of characteristic diòerent from two, and let L be a non-
abelian nilpotent Lie k-algebra with involution ∗∶ L → L, f ↦ f ∗. hen L contains a
∗-invariant Heisenberg Lie k-subalgebra H such that the restriction to H is one of the
involutions in Lemma 3.2. More precisely, there exist x , y ∈ L such that [y, x] ≠ 0,
[y, [y, x]] = [x , [y, x]] = 0, and either x∗ = x and y∗ = −y, x∗ = x and y∗ = y, or
x∗ = −x and y∗ = −y.
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Proof By taking the subalgebra of L generated by two noncommuting elements and
their images by ∗, we can assume that L is ûnitely generated.

We shall argue by induction on the nilpotency class c of L, the case c = 2 having
been dealt with in Lemma 3.3.

Suppose that c > 2 and let C denote the center of L. hen L/C is a nonabelian
ûnitely generated nilpotent Lie algebra of class c − 1 with an involution induced by ∗.
By the induction hypothesis, there exist x , y ∈ L such that {x + C , y + C} generate
a ∗-invariant Heisenberg Lie subalgebra of L/C. Moreover, x∗ + C = εx + C and
y∗ + C = ηy + C with ε, η ∈ {1,−1} and z = [y, x] ∉ C, [y, z], [x , z] ∈ C. It follows
that M, the subalgebra of L generated by {x , y,C}, is a ∗-invariant subalgebra of L of
nilpotency class at most 3.

If M has class 2, then the result follows from Lemma 3.3.
Suppose that M has class 3. hen [x , z] ≠ 0 or [y, z] ≠ 0. Say [x , z] ≠ 0. We shall

show that the k-subalgebra K generated by {x , x∗ , z, z∗} is a ∗-invariant subalgebra
of L of class 2. It will be enough to show that [α, β] lies in the center of K for all
α, β ∈ {x , x∗ , z, z∗}. For each n ≥ 1, let γn(M) denote the n-th term in the lower
central series ofM. Now, z = [y, x] ∈ γ2(M), so z∗ ∈ γ2(M), because the terms in the
lower central series are fully invariant subgroups of G. It follows that for every α ∈ K
and β ∈ {z, z∗} we have [α, β] ∈ γ3(M), which is a central subalgebra of M; hence,
[α, β] is central in K. Finally, that [x , x∗] = 0 follows from the fact that x∗ − x ∈ C.
So K is indeed a ∗-invariant subalgebra of L of class 2. Hence, Lemma 3.3 applies. ∎

4 Free Group Algebras in the Ore Ring of Fractions of Universal
Enveloping Algebras of Nilpotent Lie Algebras

Let k be a ûeld of characteristic zero and let H be the Heisenberg Lie k-algebra. In this
section, we ûnd various free (group) k-subalgebras inD(H), the Ore ring of fraction
of the universal enveloping algebraU(H) ofH. For that, ourmain tool is the result by
G. Cauchon [4, héorème]. he technique for obtaining suitable free algebras, from
the paper of Cauchon, was developed in [10, Section 3]. In some cases, we then use
heorem 2.7 to obtain free group algebras in D(H). If L is a nilpotent Lie k-algebra,
applying heorem 3.4, the foregoing implies the existence of free group algebras in
D(L), the Ore ring of fractions of the universal enveloping algebra U(L) of L.

Let k be a ûeld of characteristic diòerent from 2. Let K = k(t) be the ûeld of
fractions of the polynomial ring k[t] in the variable t. Let σ be a k-automorphism of
K of inûnite order. We will consider the skew polynomial ring K[p; σ]. he elements
of K[p; σ] are “right polynomials” of the form∑n

i=0 pia i , where the coeûcients a i are
in K. he multiplication is determined by

ap = pσ(a) for all a ∈ K .

It is known that K[p; σ] is a noetherian domain, and therefore it has an Ore division
ring of fractions D = K(p; σ).

Since σ is an automorphism of K, σ(t) = at+b
c t+d , whereM = (a bc d) ∈ GL2(k) deûnes

a homography h of the projective line ∆ = P1(k) = k ∪ {∞}, h∶∆ → ∆, z ↦ h(z) =
az+b
cz+d .
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We denote by H = {hn ∶ n ∈ Z} the subgroup of the projective linear group
PGL2(k) generated by h. he group H acts on ∆. If z ∈ ∆, we denote by H ⋅ z =
{hn(z) ∶ n ∈ Z} the orbit of z under the action ofH.

heorem 4.1 (Cauchon’s heorem) Let α and β be two elements of k such that the
orbits H ⋅ α andH ⋅ β are inûnite and diòerent. Let s and u be the two elements of D
deûned by

s = (t − α)(t − β)−1 and u = (1 − p)(1 + p)−1 .

If the characteristic of k is diòerent from 2, then the k-subalgebra Ω of D generated by
ξ = s, η = usu−1, ξ−1, and η−1 is the free group k-algebra on the set {ξ, η}.

We will need the following consequence of Cauchon’s heorem.

Proposition 4.2 Let k be a ûeld of characteristic zero and let K = k(t) be the ûeld of
fractions of the polynomial ring k[t]. Let σ ∶K → K be the automorphism of k-algebras
determined by σ(t) = t − 1. Consider the skew polynomial ring K[p ;σ] and its Ore
division ring of fractions K(p ;σ). Set s = (t − 5

6 )(t −
1
6 )

−1, u = (1− p2)(1+ p2)−1, and
u1 = (1 − p3)(1 + p3)−1. he following hold true.
(i) he k-subalgebra of K(p ;σ) generated by {s, s−1 , usu−1 , us−1u−1} is the free

group k-algebra on the set {s, usu−1}.
(ii) he k-subalgebra of K(p ;σ) generated by {s + s−1 , u(s + s−1)u−1} is the free

k-algebra on the set {s + s−1 , u(s + s−1)u−1}.
(iii) he k-subalgebra of K(p ;σ) generated by {s + s−1 , u1(s + s−1)u−1

1 } is the free
k-algebra on the set {s + s−1 , u1(s + s−1)u−1

1 }.

Proof We will apply Cauchon’s heorem to the skew polynomial ring K[p2 ;σ 2],
where σ 2∶K → K is given by σ 2(t) = t − 2.

Let α = 5
6 ∈ k and β = 1

6 . Let H be deûned as above. Consider the orbits H ⋅ α =
{ 56 − 2n ∶ n ∈ Z},H ⋅ β = { 1

6 − 2n ∶ n ∈ Z}, which are inûnite and diòerent.
hen, by Cauchon’s heorem, s = (t − α)(t − β)−1 and u = (1 − p2)(1 + p2)−1 are

such that the k-algebra generated by ξ = s, η = usu−1, ξ−1 and η−1 is the free group
k-algebra on the free generators {ξ, η}. hus, (i) is proved.
By Corollary 4.4, the k-algebra generated by {s + s−1 , u(s + s−1)u−1} is the free

k-algebra on the set {s + s−1 , u(s + s−1)u−1}. hus, (ii) is proved.
In order to prove (iii), apply Cauchon’s heorem to the skew polynomial ring

K[p3 ;σ 3], where σ 3∶K → K is given by σ 3(t) = t−3. hen proceed as in (i) and (ii).∎

he following lemma is well known. For example, it appears in [10, Section 3.3].

Lemma 4.3 Let k be a ûeld of characteristic zero. Let K = k(t) be the ûeld of frac-
tions of the polynomial ring k[t] and σ ∶K → K be the automorphism of k-algebras
determined by σ(t) = t− 1. Consider the skew polynomial ring K[p ;σ] and its Ore ring
of fractions K(p ;σ). Let

H = ⟨x , y ∶ [[y, x], x] = [[y, x], y] = 0⟩
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be the Heisenberg Lie k-algebra, set z = [y, x] and consider the universal enveloping
algebra U(H) of H. he following hold true.
(i) Set I = U(H)(z − 1), the ideal of U(H) generated by z − 1. he set S = U(H)/I

is a le� Ore subset of U(H).
(ii) here exists a surjective k-algebra homomorphism

Φ∶S−1U(H) Ð→ K(p ;σ)
such that Φ(y) = p, Φ(x) = p−1 t, and Φ(z) = 1.

Proof First note that

p(p−1 t) − (p−1 t)p = t − p−1p(t − 1) = 1.

Hence, there exists a k-algebra homomorphism Φ∶U(H) → K(p ;σ) such that
Φ(y) = p, Φ(x) = p−1 t, and Φ(z) = 1. he ideal I is clearly contained in the kernel of
Φ. Now note that U(H)/I is the ûrst Weyl algebra, which is a simple k-algebra. hus,
I is the kernel of Φ. he subsetS is an Ore subset ofU(H) by [25, Lemma 13]. By the
universal property of the Ore localization, Φ can be extended to a k-algebra homo-
morphismΦ∶S−1U(H) → K(p ;σ). Note thatS−1U(H) is a local ring withmaximal
ideal S−1I. It induces an embedding of division rings S−1U(H)/S−1I → K(p ;σ).
Now Φ is surjective because Φ(yx) = t and Φ(y) = p. ∎

he next result is [10, Corollary 3.2]. It will allow us to obtain free algebras gener-
ated by symmetric elements from free group algebras.

Lemma 4.4 Let G be the free group on the set of two elements {x , y}. Let k be a
ûeld and consider the group algebra k[G]. hen the k-algebra generated by x + x−1 and
y + y−1 inside k[G] is free on {x + x−1 , y + y−1}.

Nowwe are ready to present themain result of this section. It will be used through-
out the paper: parts (i), (ii), and (iii) in Sections 5 and 6 and parts (iv) and (v) in
Section 7.

heorem 4.5 Let k be a ûeld of characteristic zero. Let H be the Heisenberg Lie
k-algebra. Let U(H) be the universal enveloping algebra of H, and letD(H) be the Ore
division ring of fractions of U(H). Set z = [y, x], V = 1

2 (xy + yx), and consider the
following elments ofD(H):

S = (V − 1
3
z)(V + 1

3
z)

−1
,

T = (z + y2)−1(z − y2)S(z + y2)(z − y2)−1 ,

S1 = z−1((V − 1
3
z)(V + 1

3
z)

−1
+ (V − 1

3
z)

−1
(V + 1

3
z)) z−1 ,

S2 = z((V − 1
3
z)(V + 1

3
z)

−1
+ (V − 1

3
z)

−1
(V + 1

3
z)) z,

T1 = (z + y2)−1(z − y2)S1(z + y2)(z − y2)−1 ,

T2 = (z2 + y3)−1(z2 − y3)S1(z2 + y3)(z2 − y3)−1 ,
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T3 = (z + y2)−1(z − y2)S2(z + y2)(z − y2)−1 ,

T4 = (z2 + y3)−1(z2 − y3)S2(z2 + y3)(z2 − y3)−1 .

he following hold true.

(i) he k-subalgebra of D(H) generated by {S , S−1 , T , T−1} is the free group
k-algebra on the set {S , T}.

(ii) (a) he elements S1, S2
1 , T1, and T2

1 are symmetric with respect to the involutions
in Lemma 3.2(ii) and (iii).

(b) he k-subalgebra ofD(H) generated by {S1 , T1} is the free k-algebra on the
set {S1 , T1}.

(c) he k-subalgebra ofD(H) generated by

{1 + S1 , (1 + S1)−1 , 1 + T1 , (1 + T1)−1}

is the free group k-algebra on the set {1 + S1 , 1 + T1}.
(d) he k subalgebra of D(H) generated by {S2

1 , T2
1 } is the free k-algebra on

the set {S2
1 , T2

1 }.
(e) he k-subalgebra ofD(H) generated by {1+S2

1 , (1+S2
1 )−1 , 1+T2

1 , (1+T2
1 )−1}

is the free group k-algebra on the set {1 + S1 , 1 + T1}.
(iii) (a) he elements S1, S2

1 , T2, and T2
2 are symmetric with respect to the involution

in Lemma 3.2(i).
(b) he k-subalgebra ofD(H) generated by {S1 , T2} is the free k-algebra on the

set {S1 , T2}.
(c) he k-subalgebra ofD(H) generated by

{1 + S1 , (1 + S1)−1 , 1 + T2 , (1 + T2)−1}

is the free group k-algebra on the set {1 + S1 , 1 + T2}.
(d) he k-subalgebra of D(H) generated by {S2

1 , T2
2 } is the free k-algebra on

the set {S2
1 , T2

2 }.
(e) he k-subalgebra ofD(H) generated by

{1 + S2
1 , (1 + S2

1 )−1 , 1 + T2
2 , (1 + T2

2 )−1}

is the free group k-algebra on the set {1 + S2
1 , 1 + T2

2 }.
(iv) (a) heelements S2, S2

2 , T3, and T2
3 are symmetric with respect to the involutions

in Lemma 3.2(ii) and (iii).
(b) he k-subalgebra of D(H) generated by {S2

2 , T2
3 } is the free k-algebra on

the set {S2
2 , T2

3 }.
(v) (a) he elements S2, S2

2 , T4, and T2
4 are symmetric with respect to the involution

in Lemma 3.2(i).
(b) he k-subalgebra of D(H) generated by {S2

2 , T2
4 } is the free k-algebra on

the set {S2
2 , T2

4 }.

Proof Consider the surjective k-algebra homomorphism Φ∶S−1U(H) → K(p ;σ)
given in Lemma 4.3. hen Φ(y) = p, Φ(x) = p−1 t, and Φ(z) = 1.
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Recall that in K(p ;σ), we have tp = p(t − 1). hus,

Φ(V) = Φ( 1
2
(xy + yx)) = 1

2
(p−1 tp + pp−1 t) = 1

2
(t − 1 + t) = t − 1

2
,

Φ(V − 1
3
z) = t − 1

2
− 1

3
= t − 5

6
, Φ(V + 1

3
z) = t − 1

2
+ 1

3
= t − 1

6
,

Φ(z + y2) = 1 + p2 , Φ(z − y2) = 1 − p2 ,

Φ(z2 + y3) = 1 + p3 , Φ(z2 − y3) = 1 − p3 .

Hence, the elements V − 1
3 z, V + 1

3 z, z + y2, z − y2, z2 + y3, z2 − y3 are invertible in
S−1U(H).

hus, S , S−1 , T , T−1 , S1 , S−1
1 , T1 , T−1

1 , T2 , T−1
2 ∈ S−1U(H). Moreover, following the

notation of Proposition 4.2,

Φ(S) = (t − 5
6
)(t − 1

6
)
−1
= s,

Φ(S1) = (t − 5
6
)(t − 1

6
)
−1
+ (t − 1

6
)(t − 5

6
)
−1
= s + s−1 ,

Φ(S2) = (t − 5
6
)(t − 1

6
)
−1
+ (t − 1

6
)(t − 5

6
)
−1
= s + s−1 ,

Φ((z + y2)−1(z − y2)) = (1 + p2)−1(1 − p2) = (1 − p2)(1 + p2)−1 = u,

Φ((z + y2)(z − y2)−1) = (1 + p2)(1 − p2)−1 = u−1 ,

Φ((z2 + y3)(z2 − y3)−1) = (1 + p3)(1 − p3)−1 = u−1
1 .

Hence, Φ(T) = usu−1, Φ(T1) = u(s + s−1)u−1, Φ(T2) = u1(s + s−1)u−1
1 , Φ(T3) =

u(s + s−1)u−1, and Φ(T4) = u1(s + s−1)u−1
1 .

We proceed to show that the elements in statements (i)–(v) generate free (group)
algebras. hat they are symmetric will be proved below.

(i) By Proposition 4.2(i), the set {s, s−1 , usu−1 , us−1u−1} generates a free group
k-algebra. herefore, the k-subalgebra ofS−1U(H) generated by {S , S−1 , T , T−1} is
the free group k-algebra on the set {S , T}.

(ii) By Proposition 4.2(ii), the set {s + s−1 , u(s + s−1)u−1} are the free genera-
tors of a free k-algebra. herefore the k-subagebra generated by {S1 , T1} is the free
k-algebra on {S1 , T1}. his implies that the k-subalgebra generated by {S2

1 , T2
1 } is the

free k-algebra on {S2
1 , T2

1 }.
Consider H as aZ-graded Lie k-algebra as in Example 2.3(i). henU(H) is graded

according to Lemma 2.4. he k-algebra U(H) is an Ore domain. Recall that given
a Z-graded k-algebra that is an Ore domain, localizing at the set of nonzero ho-
mogeneous elements yields a graded division ring. hus, if we localize at the set
H of homogeneous elements of U(H), we get that H−1U(H) is a graded division
ring. Notice that z, V − 1

3 z, V + 1
3 z are homogeneous of degree −2. herefore,

S1 is homogeneous of degree 4, and S2
1 is homogeneous of degreee 8. Notice that

z + y2, z − y2 are homogeneous of degree −2. herefore, T1 is homogeneous of de-
gree 4, and T2

1 is homogeneous of degree 8. By heorem 2.7, the k-subalgebra gen-
erated by the set {1 + S1 , (1 + S1)−1 , 1 + T1 , (1 + T1)−1} is the free group k-algebra on
the set {1 + S1 , 1 + T1}. Also, by heorem 2.7, the k-subalgebra generated by the
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set {1 + S2
1 , (1 + S2

1 )−1 , 1 + T2
1 , (1 + T2

1 )−1} is the free group k-algebra on the set
{1 + S2

1 , 1 + T2
1 }, as desired.

(iii) By Proposition 4.2(iii), the set {s + s−1 , u1(s + s−1)u−1
1 } are the free genera-

tors of a free k-algebra. herefore the k-subagebra generated by {S1 , T2} is the free
k-algebra on {S1 , T2}. his implies that the k-subalgebra generated by {S2

1 , T2
2 } is the

free k-algebra on {S2
1 , T2

2 }.
ConsiderH as aZ-gradedLie k-algebra as in Example 2.3(ii). henU(H) is graded

according to Lemma 2.4. he k-algebra U(H) is an Ore domain. Recall that given
a Z-graded k-algebra that is an Ore domain, localizing at the set of nonzero homo-
geneous elements yields a graded division ring. hus, if we localize at the set H of
homogeneous elements of U(H), we get that H−1U(H) is a graded division ring.
Notice that z, V − 1

3 z, V + 1
3 z are homogeneous of degree −3. herefore, S1 is homo-

geneous of degree 6 and S2
1 is homogeneous of degree 12. Notice that z2 + y3 , z2 − y3

are homogeneous of degree −6. herefore, T2 is homogeneous of degree 6 and T2
2

is homogeneous of degree 12. By heorem 2.7, the k-subalgebra generated by the set
{1+S1 , (1+S1)−1 , 1+T2 , (1+T2)−1} is the free group k-algebra on the set {1+S1 , 1+T2}.
Also, by heorem 2.7, the k-subalgebra generated by the set {1 + S2

1 , (1 + S2
1 )−1 , 1 +

T2
2 , (1 + T2

2 )−1} is the free group k-algebra on the set {1 + S2
1 , 1 + T2

2 }, as desired.
(iv) By Proposition 4.2(ii), the set {s + s−1 , u(s + s−1)u−1} are the free genera-

tors of a free k-algebra. herefore the k-subagebra generated by {S2 , T3} is the free
k-algebra on {S2 , T3}. his implies that the k-subalgebra generated by {S2

2 , T2
3 } is the

free k-algebra on {S2
2 , T2

3 }.
(v) By Proposition 4.2(iii), the set {s + s−1 , u1(s + s−1)u−1

1 } are the free genera-
tors of a free k-algebra. herefore the k-subagebra generated by {S2 , T4} is the free
k-algebra on {S2 , T4}. his implies that the k-subalgebra generated by {S2

2 , T2
4 } is the

free k-algebra on {S2
2 , T2

4 }.
Now we prove that the elements considered in the statements of (ii), (iii), (iv),

and (v) are symmetric. Consider ûrst the principal involution, that is, the one in
Lemma 3.2(iii):

V∗ = 1
2
(xy + yx)∗ = 1

2
(xy + yx) = V ,

(V − 1
3
z)

∗
= V + 1

3
z, (V + 1

3
z)

∗
= V − 1

3
z,

S∗1 = (z−1((V − 1
3
z)(V + 1

3
z)

−1
+ (V − 1

3
z)

−1
(V + 1

3
z)) z−1)

∗

= z−1((V − 1
3
z)

−1
(V + 1

3
z) + (V − 1

3
z)(V + 1

3
z)

−1
) z−1

= S1 ,

((z + y2)−1(z − y2))∗ = (−z − y2)(−z + y2)−1

= (z + y2)(z − y2)−1 ,

T∗
1 = ((z + y2)−1(z − y2)S(z + y2)(z − y2)−1)∗

= (z + y2)−1(z − y2)S(z + y2)(z − y2)−1

= T1 .
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Similarly, S∗2 = S2 and T∗
3 = T3.

Now consider the involution in Lemma 3.2(ii):

V∗ = 1
2
(xy + yx)∗ = 1

2
(xy + yx) = V ,

(V − 1
3
z)

∗
= V + 1

3
z, (V + 1

3
z)

∗
= V − 1

3
z,

S∗1 = (z−1((V − 1
3
z)(V + 1

3
z)

−1
+ (V − 1

3
z)

−1
(V + 1

3
z)) z−1)

∗

= z−1((V − 1
3
z)

−1
(V + 1

3
z) + (V − 1

3
z)(V + 1

3
z)

−1
) z−1

= S1 ,

((z + y2)−1(z − y2))∗ = (−z − y2)(−z + y2)−1

= (z + y2)(z − y2)−1 ,

T∗
1 = ((z + y2)−1(z − y2)S(z + y2)(z − y2)−1)∗

= (z + y2)−1(z − y2)S(z + y2)(z − y2)−1

= T1 .

Similarly, S∗2 = S2 and T∗
3 = T3.

Finally, consider the involution in Lemma 3.2(i).

V∗ = 1
2
(xy + yx)∗ = − 1

2
(xy + yx) = −V ,

(V − 1
3
z)

∗
= −V − 1

3
z, (V + 1

3
z)

∗
= −V + 1

3
z,

S∗1 = (z−1((V − 1
3
z)(V + 1

3
z)

−1
+ (V − 1

3
z)

−1
(V + 1

3
z)) z−1)

∗

= z−1(( − V + 1
3
z)

−1
( − V − 1

3
z) + ( − V + 1

3
z)( − V − 1

3
z)

−1
) z−1

= z−1((V − 1
3
z)

−1
(V + 1

3
z) + (V − 1

3
z)(V + 1

3
z)

−1
) z−1

= S1 ,

((z2 + y3)−1(z2 − y3))∗ = (z2 + y3)(z2 − y3)−1 ,

T2
∗ = ((z2 + y3)−1(z2 − y3)S1(z2 + y3)(z2 − y3)−1)∗

= (z2 + y3)−1(z2 − y3)S1(z2 + y3)(z2 − y3)−1

= T2 .

Similarly S∗2 = S2 and T∗
4 = T4. ∎

heorem 4.6 Let k be a ûeld of characteristic zero and L be a nonabelian nilpotent
Lie k-algebra. Let U(L) be the universal enveloping algebra of L andD(L) be the Ore
ring of fractions of U(L). hen, for any involution ∗∶ L → L, f ↦ f ∗, there exist
nonzero symmetric elements U ,V ∈ L such that the k-subalgebra ofD(L) generated by
{U ,U−1 ,V ,V−1} is the free group k-algebra on {U ,V}.
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Proof By heorem 3.4, there exists a ∗-invariant Heisenberg Lie k-subalgebra H
generated by two elements x , y and such that∗, when restricted toH is one of the three
involutions in Lemma 3.2. SinceU(L) is anOre domain,U(H) is also anOre domain.
hus, the division ring generated by U(H) inside D(L) is D(H). By heorem 4.5,
there exist elements U and V as desired. ∎

5 Free Group Algebras in Division Rings Generated by Universal
Enveloping Algebras of Residually Nilpotent Lie Algebras

Let k be a ûeld, L a Lie k-algebra, and U(L) its universal enveloping algebra. It was
proved in [8] thatU(L) can be embedded in a division ring. Two similar proofs of this
fact were given in [21, 24]. Moreover, the division ring constructed in the foregoing
three papers is the same [21, heorem 8]. We will work with the construction of the
skew ûeld D(L) that contains U(L) and it is generated by U(L) (as a division ring)
given by Lichtman in [24]. he interested reader can also ûnd this construction in
[7, Section 2.6]. Of course, when U(L) is an Ore domain, D(L) is the Ore ring of
fractions of U(L).

In this subsection, we want to obtain free group algebras in D(L), where L is a
(generalization of) a residually nilpotent Lie algebra, from the ones obtained inD(H),
where H is the Heisenberg Lie algebra. he technique we will use is from [10, Sec-
tion 4].
For that, wewill need some results on the division ringD(L). For example,D(L) is

well behaved for Lie subalgebras of L as shown in [26, Proposition 2.5]. More precisely,
if N is a Lie subalgebra of L, then the natural embedding U(N) ↪ U(L) can be
extended to an embedding D(N) ↪ D(L). Furthermore, if BN is a basis of N and
C is a set of elements of L/N such that BN ∪ C is a basis of L, then the standard
monomials in C are linearly independent over D(N). Notice that if U(L) is an Ore
domain, then these assertions are easily veriûed.

Let k be a ûeld and R be a k-algebra. Suppose that δ∶R → R is a k-derivation
of R; that is, δ is a k-linear map such that δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R.
We will consider the skew polynomial ring R[x ;δ]. he elements of R[x ;δ] are “right
polynomials” of the form ∑n

i=0 x ia i , where the coeûcients a i are in R. he multipli-
cation is determined by

ax = xa + δ(a) for all a ∈ R.
Given R[x ;δ], one can construct the formal pseudo-diòerential operator ring, de-

noted R((tx ;δ)), consisting of the formal Laurent series ∑∞
i=n t ixa i , with n ∈ Z and

coeõcients a i ∈ R, satisfying at−1
x = t−1

x a + δ(a) for all a ∈ R. herefore,

atx = txa − txδ(a)tx =
∞
∑
i=1

t ix(−1)i−1δ i−1(a),

for any a ∈ R.
he subset R[[tx ;δ]] of R((tx ;δ)) consisting of the Laurent series of the

form∑∞
i=0 t ixa i is a k-subalgebra of R((tx ;δ)). he set S = {1, tx , t2x , . . .} is a le� de-

nominator set of R[[tx ;δ]] such that the Ore localization S−1R[[tx ;δ]] is the
k-algebra R((tx ;δ)); see, for example, [7, heorem 2.3.1]. If R is a domain, then a
series f ∈ R((tx ;δ)) is invertible if and only if the coeõcient of the least element in
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the support of f is invertible in R. Notice that there is a natural embedding R[x ;δ] ↪
R((tx ;δx)) sending x to t−1

x .
In what follows, R[y ;δy][x ;δx] means polynomials of the form ∑n

i=0 x i f i where
each f i ∈ R[y ;δy] and δx is a k-derivation of R[y ;δy]. Also, R((ty ;δy))((tx ;δx)) is
the ring of series of the form ∑∞

i=n t ix f i , with n ∈ Z, coeõcients f i ∈ R((ty ;δy)) and
δx is a k-derivation of R((y ;δy)).

Let k be a ûeld. Let L a Lie k-algebra generated by two elements u, v. Let H =
⟨x , y ∶ [[y, x], x] = [[y, x], y] = 0⟩ be the Heisenberg Lie k-algebra. Suppose that
there exists a Lie k-algebra homomorphism

L
ρÐ→ H, u z→ x , v z→ y.

Deûne w = [v , u] and z = [y, x]. Let N = ker ρ. hus, N is a (Lie) ideal of L.
By the universal property of universal enveloping algebras, ρ can be uniquely ex-

tended to a k-algebra homomorphism ψ∶U(L) → U(H) between the corresponding
universal enveloping algebras. Note that kerψ is the ideal of U(L) generated by N .
he restriction ψ∣U(N) coincides with the augmentation map ε∶U(N) → k.
By the PBW-heorem, the elements ofU(H) are uniquely expressed as ûnite sums

∑l ,m ,n≥0 x l ymzna lmn , with a lmn ∈ k. Let δx be the inner k-derivation of U(H) de-
termined by x, i.e., δx( f ) = [ f , x] = f x − x f for all f ∈ U(H). It can be proved that

U(H) = k[z][y][x ;δx],(5.1)

U(H) ↪ k((tz))((ty))((tx ;δx)), z z→ t−1
z , y z→ t−1

y , x z→ t−1
x .

Now consider U(L), the universal enveloping algebra of L. By the PBW-heorem,
the elements of U(L) can be uniquely expressed as ûnite sums∑l ,m ,n≥0 u lvmwn f lmn
with f lmn ∈ U(N). Since N is an ideal of L, the inner derivations δu , δv , δw of
U(L) deûned by u, v ,w, respectively, are such that δu(U(N)) ⊆ U(N), δv(U(N)) ⊆
U(N), δw(U(N)) ⊆ U(N). he k-subalgebra of U(L) generated by U(N) and w is
U(N)[w ;δw]. Since δv(w) ∈ U(N) ⊆ U(N)[w ;δw], the k-subalgebra of U(L) gen-
erated by U(N) and {w , v} is U(N)[w ;δw][v ;δv]. Furthermore, since δu(v) = w
and δu(w) ∈ U(N),

U(L) = U(N)[w ;δw][v ;δv][u ;δu],(5.2)
U(L) ↪ U(N)((tw ;δw))((tv ;δv))((tu ;δu)),

w z→ t−1
w , v z→ t−1

v , u z→ t−1
u , f z→ ε( f ), for all f ∈ U(N).

In this setting, the next two lemmas are [10, Lemmas 4.1,4.2].

Lemma 5.1 here exists a commutative diagram of embeddings of k-algebras

U(L) = U(N)[w ;δw][v ;δv][u ;δu]
� � //

� _

��

� v

))

D(N)[w ;δw][v ;δv][u ;δu]� _

��

H h

uu
D(L) � v

))
U(N)((tw ;δw))((tv ;δv))((tu ;δu))

� � // D(N)((tw ;δw))((tv ;δv))((tu ;δu))
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Lemma 5.2 Let ε∶U(N) → k denote the augmentationmap. he following hold true.
(i) here exists a k-algebra homomorphism

Φw ∶U(N)((tw ;δw)) Ð→ k((tz)), ∑
i

t iw f i z→∑
i

t izε( f i),

where f i ∈ U(N) for each i.
(ii) here exists a k-algebra homomorphism

Φv ∶U(N)((tw ;δw))((tv ;δv)) Ð→ k((tz))((ty)), ∑
i

t iv g i z→∑
i

t iyΦw(g i),

where g i ∈ U(N)((tw ;δw)) for each i.
(iii) here exists a k-algebra homomorphism

Φu ∶U(N)((tw ;δw))((tv ;δv))((tu ;δu)) Ð→ k((tz))((ty))((tx ;δx)),
∑
i

t iuh i z→∑
i

t ixΦv(h i),

where h i ∈ U(N)((tw ;δw))((ty ;δy)) for each i, and extending the embeddings
of (5.1) and (5.2).

Now we turn our attention to k-involutions of U(L) induced from the ones in L.

Lemma 5.3 Let k be a ûeld and L be a Lie k-algebra generated by two elements
u, v. Let H = ⟨x , y ∶ [[y, x], x] = [[y, x], y] = 0⟩ be the Heisenberg Lie k-algebra.
Suppose that there exists a Lie k-algebra homomorphism L

ρ→ H, u ↦ x , v ↦ y. Let
N = ker ρ. Consider the induced k-algebra homomorphismψ∶U(L) → U(H). Suppose
that ∗∶ L → L is an involution in L such that N is a ∗-invariant ideal of L and call again
∗ the induced involution on H ≅ L/N. hen ψ( f ∗) = ψ( f )∗ for all f ∈ U(L).

Proof Deûne w = [v , u] and z = [y, x]. Since ∗ is the induced involution on H ≅
L/N , then ψ(u∗) = ψ(u)∗ = x∗, ψ(v∗) = ψ(v)∗ = y∗, ψ(w∗) = ψ(w)∗ = z∗ and
ψ( f ∗) = ψ( f )∗ = ε( f ) ∈ k for all f ∈ U(N).

Given∑l ,m ,n≥0 u lvmwn f lmn with f lmn ∈ U(N), we have

ψ( ∑
l ,m ,n≥0

u lvmwn f lmn)
∗
= ( ∑

l ,m ,n≥0
x l ymznε( f lmn))

∗

= ∑
l ,m ,n≥0

(z∗)n(y∗)m(x∗)l ε( f lmn).

On the other hand,

ψ(( ∑
l ,m ,n≥0

u lvmwn f lmn)
∗
) = ψ( ∑

l ,m ,n≥0
f ∗lmn(w∗)n(v∗)m(u∗)l)

= ∑
l ,m ,n≥0

(z∗)n(y∗)m(x∗)l ε( f lmn),

as desired. ∎

It is well known that any k-involution on L can be extended to a k-involution of
U(L). Moreover, it was proved in [6, Proposition 5] that any k-involution of L can be
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uniquely extended to a k-involution ofD(L). See also [10, Proposition 2.1]. With this
in mind, we are ready to prove the main result of this section.

heorem 5.4 Let k be a ûeld of characteristic zero, let H = ⟨x , y ∶ [[y, x], x] =
[[y, x], y] = 0⟩ be the Heisenberg Lie k-algebra and let L be a Lie k-algebra generated
by two elements u, v. Suppose that there exists a Lie k-algebra homomorphism

LÐ→H, u z→ x , v z→ y,

with kernel N. Let w = [v , u], V = 1
2 (uv + vu), and consider the following elements of

D(L):

S = (V − 1
3
w)(V + 1

3
w)

−1
, T = (w + v2)−1(w − v2)S(w + v2)(w − v2)−1 ,

S1 = w−1((V − 1
3
w)(V + 1

3
w)

−1
+ (V − 1

3
w)

−1
(V + 1

3
w))w−1 ,

T1 = (w + v2)−1(w − v2)S1(w + v2)(w − v2)−1 ,

T2 = (w2 + v3)−1(w2 − v3)S1(w2 + v3)(w2 − v3)−1 .

hen the following hold true.
(i) he k-subalgebra of D(L) generated by {S , S−1 , T , T−1} is the free group

k-algebra on the set {S , T}.
(ii) Suppose that ∗∶ L → L is an involution in L such that N is a ∗-invariant ideal of

L and that the induced involution on H ≅ L/N is one of the involutions in Lemma 3.2(ii)
and (iii). hen the following hold true.
(a) he elements S1S∗1 and T1T∗

1 are symmetric.
(b) he k-subalgebra of D(L) generated by {S1S∗1 , T1T∗

1 } is the free k-algebra on
{S1S∗1 , T1T∗

1 }.
(c) he k-subalgebra ofD(L) generated by

{1 + S1S∗1 , (1 + S1S∗1 )−1 , 1 + T1T∗
1 , (1 + T1T∗

1 )−1}

is the free group k-algebra on the set {1 + S1S∗1 , 1 + T1T∗
1 }.

(iii) Suppose that ∗∶ L → L is an involution in L such that N is a ∗-invariant ideal of
L and that the induced involution on H ≅ L/N is one of the involutions in Lemma 3.2(i).
hen the following hold true.
(a) he elements S1S∗1 and T2T∗

2 are symmetric.
(b) he k-subalgebra of D(L) generated by {S1S∗1 , T2T∗

2 } is the free k-algebra on
{S1S∗1 , T2T∗

2 }.
(c) he k-subalgebra ofD(L) generated by

{1 + S1S∗1 , (1 + S1S∗1 )−1 , 1 + T2T∗
2 , (1 + T2T∗

2 )−1}

is the free group k-algebra on the set {1 + S1S∗1 , 1 + T2T∗
2 }.

Proof Deûne z = [y, x] ∈ H. Consider the embedding U(H) ↪ k((tz))((ty))
((tx ;δx)) given in (5.1). Since k((tz))((ty))((tx ;δx)) is a division k-algebra and
U(H) is anOre domain, it extends to an embeddingD(H)↪ k((tz))((ty))((tx ;δx)).

https://doi.org/10.4153/S0008414X19000348 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000348


1488 J. Sánchez

Consider the embedding

U(L) ↪ U(N)((tw ; δw))((tv ; δv))((tu ; δu))
given in (5.2). Let Φu ∶U(N)((tw ; δw))((tv ; δv))((tu ; δu)) → k((tz))((ty))
((tx ; δx)) be the homomorphism given in Lemma 5.2.
Deûne the following elements in D(H):

VH = 1
2
(xy + yx)

SH = (VH −
1
3
z)(VH +

1
3
z)

−1
,

TH = (z + y2)−1(z − y2)SH(z + y2)(z − y2)−1 .

S1H = z−1((VH −
1
3
z)(VH +

1
3
z)

−1
+ (VH −

1
3
z)

−1
(VH +

1
3
z)) z−1 ,

T1H = (z + y2)−1(z − y2)S1H(z + y2)(z − y2)−1 ,

T2H = (z2 + y3)−1(z2 − y3)S1H(z2 + y3)(z2 − y3)−1 .

Claim 1: he elements V − 1
3w, V + 1

3w, w + v2, w − v2, w2 + v3, and w2 − v3 are all
invertible in U(N)((tw ; δw))((tv ; δv))((tu ; δu)).

We proceed to prove claim 1. We begin with the element w + v2 = t−1
w + t−2

v . As
a series in tv , this element is invertible in U(N)((tw ; δw))((tv ; δv)) if and only
if the coeõcient of t−2

v is invertible in the ring of coeõcients U(N)((tw ; δw)). he
coeõcient is 1, which is clearly invertible. Similarly, it can be proved thatw−v2,w2+v3,
and w2 − v3 are invertible. Now we show that V + 1

3w is invertible in U(N)((tw ;
δw))((tv ; δv))((tu ; δu)). First, we obtain an expression of V + 1

3w as a series in tu .

V + 1
3
w = 1

2
(uv + vu) + 1

3
w = 1

2
(uv + [v , u] + uv) + 1

3
w(5.3)

= 1
2
w + uv + 1

3
w = 5

6
w + uv = 5

6
t−1
w + t−1

u t−1
v .

hus, as a series in tu , the coeõcient of the least element in the support of V + 1
3w

3 is
t−1
v , which is invertible in U(N)((tw ; δw))((tv ; δv)). Hence, V + 1

3w
3 is invertible

in U(N)((tw ; δw))((tv ; δv))((tu ; δu)). he case of V − 1
3w is shown analogously,

and the claim is proved.

(i) By Claim 1, S and T are invertible in U(N)((tw ; δw))((tv ; δv))((tu ; δu)),
and we have Φu(V) = VH , Φu(S) = SH , and Φu(T) = TH . By heorem 4.5, the
k-algebra generated by {SH , S−1

H , TH , T−1
H } is the free group k-algebra on the set

{SH , TH}. By Lemma 5.1, V , S and T belong to D(L). herefore, the elements S
and T are nonzero and invertible in D(L), and the k-subalgebra generated by
{S , S−1 , T , T−1} is the free group k-algebra on the set {S , T}.

(ii)(a) his is clear.
(ii)(b) We will prove in detail the result for the involution in Lemma 3.2(ii); the

other case can be shown similarly. Let nu , nv , nw , ∈ N be such that

u∗ = u + nu , v∗ = v + nv , w∗ = −w + nw .

https://doi.org/10.4153/S0008414X19000348 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000348


Free Group Algebras 1489

Claim 2: he elements

(V + 1
3
w)

∗
, (V − 1

3
w)

∗
, (w + v2)∗ , (w − v2)∗

belong to and are invertible in U(N)((tw ; δw))((tv ; δv))((tu ; δu)).
From Claim 2, it follows that we have the elements

S∗1 , T
∗
1 ∈ U(N)((tw ; δw))((tv ; δv))((tu ; δu)) .

By Lemma 5.3, Φu(Z∗) = Φu(Z)∗, where Z is any of the elements in Claim 2. hus,
by heorem 4.5(ii)(a),

(5.4) Φu(S∗1 ) = Φu(S1)∗ = S∗1H = S1H and Φu(T∗
1 ) = Φu(T1)∗ = T∗

1H = T1H .

Hence Φu(S1S∗1 ) = S2
1H and Φu(T1T∗

1 ) = T∗
1H . By heorem 4.5(ii)(d), the k-algebra

generated by {S2
1H , T2

1H} is the free algebra on {S2
1H , T2

1H}. herefore, the result
follows.

We proceed to prove Claim 2.

(V + 1
3
w)

∗
= ( 1

2
(uv + vu) + 1

3
w)

∗
(5.5)

= 1
2
((u + nu)(v + nv) + (v + nv)(u + nu)) +

1
3
(−w + nw)

= 1
2
(uv + vu + unv + nvu + nuv + vnu + nunv + nvnu)

− 1
3
w + 1

3
nw

= 1
2
(uv + uv + [v , u] + unv + unv + [nv , u] + vnu + vnu

+ [nu , v] + nunv + nvnu) −
1
3
w + 1

3
nw

= u(v + nv) + vnu +
1
6
w + f1

= t−1
u (t−1

v + nv) + t−1
v nu +

1
6
t−1
w + f1 ,

where f1 ∈ U(N).

(V − 1
3
w)

∗
= ( 1

2
(uv + vu) − 1

3
w)

∗
(5.6)

= 1
2
((u + nu)(v + nv) + (v + nv)(u + nu)) −

1
3
(−w + nw)

= 1
2
(uv + vu + unv + nvu + nuv + vnu + nunv + nvnu)

+ 1
3
w − 1

3
nw

= 1
2
(uv + uv + [v , u] + unv + unv + [nv , u] + vnu + vnu

+ [nu , v] + nunv + nvnu) +
1
3
w − 1

3
nw
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= u(v + nv) + vnu +
5
6
w + f2

= t−1
u (t−1

v + nv) + t−1
v nu +

5
6
t−1
w + f2 ,

where f2 ∈ U(N). Note that the element (t−1
v + nv) is invertible in U(N)((tw ; δw))

((tv ; δv)). hus, (V+ 1
3 )
∗ and (V− 1

3 )
∗ are invertible inU(N)((tw ; δw))((tv ; δv))

((tu ; δu)).
here exist f3 , f4 ∈ U(N) such that

(w + v2)∗ = −w + nw + (v + nv)2(5.7)

= v2 + vnv + nvv + n2
v −w + nw

= v2 + 2vnv −w + [nv , v] + n2
v + nw

= t−2
v + 2t−1

v nv − t−1
w + f3 ,

(w − v2)∗ = −w + nw − (v + nv)2(5.8)

= −v2 − vnv − nvv − n2
v −w + nw

= −v2 − 2vnv −w − [nv , v] − n2
v + nw

= −t−2
v − 2t−1

v nv − t−1
w + f4 .

he elements (w + v2)∗ , (w − v2)∗ are invertible, because the coeõcient of t−2
v is

±1, which is clearly invertible. And the claim is proved.

(ii)(c) By heorem 4.5(ii)(d), the k-subalgebra generated by

{1 + S2
1H , (1 + S1H)−1 , 1 + T2

1H , (1 + T1H)−1}
is the free group k-algebra on the set {1 + S2

1H , 1 + T2
1H}. Moreover, by (5.4), Φu(1 +

S1S∗1 ) = 1 + S2
1H and Φu(1 + T1T∗

1 ) = 1 + T2
1H . herefore, it is enough to prove that the

elements 1+S1S∗1 and 1+T1T∗
1 are invertible inU(N)((tw ; δw))((tv ; δv))((tu ; δu)).

By (5.3), V − 1
3w and V + 1

3w are series of the form t−1
u t−1

v (1 + h1), where h1 is
a series on positive powers of tu with coeõcients in U(N)((tw ; δw))((tv ; δv)).
Hence, (V − 1

3w)−1 and (V + 1
3w)−1 are series of the form tv tu(1 + h2), where h2 is a

series on positive powers of tu with coeõcients inU(N)((tw ; δw))((tv ; δv)). Using
thatw−1 = tw , we obtain that S1 is a series of the form 2t2w + h3, where h3 is a series on
positive powers of tu with coeõcients in U(N)((tw ; δw))((tv ; δv)).
By (5.5) and (5.6), (V− 1

3w)∗ and (V+ 1
3w)∗ are series of the form t−1

u (t−1
v +nv)(1+

h4), where h4 is a series on positive powers of tu with coeõcients in U(N)((tw ;
δw))((tv ; δv)). Hence, ((V − 1

3w)∗)−1 and ((V + 1
3w)∗)−1 are series of the form

(t−1
v + nv)−1 tu(1 + h5), where h5 is a series on positive powers of tu with coeõcients

in U(N)((tw ; δw))((tv ; δv)). Using that (w∗)−1 = (−t−1
w + nw)−1, we obtain

that S∗1 is a series of the form 2t2w + h6, where h6 is a series on positive powers of
tu with coeõcients in U(N)((tw ; δw))((tv ; δv)). From these considerations, it
follows that 1 + S1S∗1 is a series of the form 1 + 4t4w + h7, where h7 is a series on pos-
itive powers of tu with coeõcients in U(N)((tw ; δw))((tv ; δv)). Now 1 + 4t4w
is invertible in U(N)((tw ; δw))((tv ; δv)), and 1 + S1S∗1 is therefore invertible in
U(N)((tw ; δw))((tv ; δv))((tu ; δu)).
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Clearly, (w+v2) and (w−v2) are series of the form±t−2
v (1+g1), where g1 is a series

on positive powers of tv and coeõcients in U(N)((tw ; δw)). hus, (w + v2)−1 and
(w−v2)−1 are series of the form ±t2v(1+ g2), where g2 is a series on positive powers of
tv and coeõcients in U(N)((tw ; δw)). Using that S1 is a series of the form 2t2w + h3,
where h3 is as stated above, we obtain that T1 is a series of the form 2t2w+g3+h8, where
g3 is a series on positive powers of tv and coeõcients in U(N)((tw ; δw)) and h8 is
a series on positive powers of tu with coeõcients in U(N)((tw ; δw))((tv ; δv)).
By (5.7) and (5.8), (w + v2)∗ and (w − v2)∗ are series of the form ±t−2

v (1 + g4),
where g4 is a series on positive powers of tv and coeõcients in U(N)((tw ; δw)).
hus, ((w+v2)∗)−1 and ((w−v2)∗)−1 are series of the form ±t2v(1+ g5), where g5 is a
series on positive powers of tv and coeõcients in U(N)((tw ; δw)). Using that S∗1 is
a series of the form 2t2w + h6, where h6 is as stated above, we obtain that T∗

1 is a series
of the form 2t2w + g6 + h9, where g6 is a series on positive powers of tv and coeõcients
in U(N)((tw ; δw)) and h9 is a series on positive powers of tu with coeõcients in
U(N)((tw ; δw))((tv ; δv)). herefore 1+T1T∗

1 is a series of the form 1+4t4w+g7+h10,
where g7 is a series on positive powers of tv and coeõcients in U(N)((tw ; δw)) and
h10 is a series on positive powers of tu with coeõcients inU(N)((tw ; δw))((tv ; δv)).
Now 1+ T1T∗

1 is invertible, because the series 1+ 4t4w + g7 is invertible in U(N)((tw ;
δw))((tv ; δv)), since 1 + 4t4w is invertible in U(N)((tw ; δw)).

(iii) Suppose that the induced involution on L/N is the one on Lemma 3.2(iii).
he result follows verymuch like (ii) from the following claimwhich can be shown

as Claim 2.
Claim 3: he elements

(V + 1
3
w)

∗
, (V − 1

3
w)

∗
, (w2 + v3)∗ , (w3 − v3)∗

belong to and are invertible in U(N)((tw ; δw))((tv ; δv))((tu ; δu)):

(w2 + v3)∗ = (−w + nw)2 + (−v + nv)3

= w2 −wnw − nww + n2
w − v3 + v2nv + vnvv + nvv2

− vn2
v − n2

vv − nvvnv + n3
v

= −v3 + 3v2nv − v(3n2
v + [nv , v]) − [n2

v , v] + [nv , v2]
− [nv , v]nv + n3

v +w2 − 2wnw + [nw ,w] + n2
w

= −t−3
v + 3t−2

v nv − t−1
v (3n2

v + [nv , v]) + t−2
w − 2t−1

w + f5 ,

(w2 − v3)∗ = (−w + nw)2 − (−v + nv)3

= w2 −wnw − nww + n2
w − (−v3 + v2nv + vnvv + nvv2 − vn2

v

− n2
vv − nvvnv + n3

v)
= t−3

v − 3t−2
v nv + t−1

v (3n2
v + [nv , v]) + t−2

w − 2t−1
w + f6 .

he elements (w2 + v3)∗ , (w2 − v3)∗ are invertible, because the coeõcient of t−3
v

is ±1, which is clearly invertible. ∎
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Corollary 5.5 Let k be a ûeld of characteristic zero and let K be a residually nilpotent
Lie k-algebra. Let u, v ∈ K be such that [v , u] ≠ 0 and denote by L the Lie k-subalgebra
of K generated by {u, v}.

Let w = [v , u], V = 1
2 (uv + vu), and consider the following elements ofD(L):

S = (V − 1
3
w)(V + 1

3
w)

−1
,

T = (w + v2)−1(w − v2)S(w + v2)(w − v2)−1 ,

S1 = w−1((V − 1
3
w)(V + 1

3
w)

−1
+ (V − 1

3
w)

−1
(V + 1

3
w))w−1 ,

T1 = (w + v2)−1(w − v2)S1(w + v2)(w − v2)−1 ,

T2 = (w2 + v3)−1(w2 − v3)S1(w2 + v3)(w2 − v3)−1 .

hen the following hold true.
(i) he Lie k-algebra L/[[L, L], L] is isomorphic to H, the Heisenberg Lie k-algebra.
(ii) he k-subalgebra of D(L) generated by {S , S−1 , T , T−1} is the free group

k-algebra on the set {S , T}.
(iii) Suppose that L is invariant under ∗ and that the induced involution on

L/[[L, L], L] is one of the involutions in Lemma 3.2.
(a) If the induced involution on L/[[L, L], L] is one of the involutions in

Lemma 3.2(ii) and (iii), then the following hold true.
(a.1) he elements S1S∗1 and T1T∗

1 are symmetric.
(a.2) he k-subalgebra of D(L) generated by {S1S∗1 , T1T∗

1 } is the free
k-algebra on {S1S∗1 , T1T∗

1 }.
(a.3) he k-subalgebra ofD(L) generated by

{1 + S1S∗1 , (1 + S1S∗1 )−1 , 1 + T1T∗
1 , (1 + T1T∗

1 )−1}

is the free group k-algebra on the set {1 + S1S∗1 , 1 + T1T∗
1 }.

(b) If the induced involution on L/[[L, L], L] is one of the involutions in
Lemma 3.2(i), then the following hold true.
(b.1) he elements S1S∗1 and T2T∗

2 are symmetric.
(b.2) he k-subalgebra of D(L) generated by {S1S∗1 , T2T∗

2 } is the free
k-algebra on {S1S∗1 , T2T∗

2 }.
(b.3) he k-subalgebra ofD(L) generated by

{1 + S1S∗1 , (1 + S1S∗1 )−1 , 1 + T2T∗
2 , (1 + T2T∗

2 )−1}

is the free group k-algebra on the set {1 + S1S∗1 , 1 + T2T∗
2 }.

Proof Deûne N = [[L, L], L]. Since L is residually nilpotent and not abelian,
[v , u] ∈ [L, L]/N . hus, L/N is not abelian. Moreover, L/N is a noncommutative
3-dimensional Lie k-algebra with basis {u, v ,w}, the classes of u, v and w in L/N .
Moreover, [L/N , L/N] = kw, which is contained in the center of L/N . herefore,
L/N is the Heisenberg Lie k-algebra.
By heorem 5.4, the result holds for D(L). Since D(L) ↪ D(K), the result

follows. ∎
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Corollary 5.6 Let k be a ûeld of characteristic zero and let L be a nonabelian resid-
ually nilpotent Lie k-algebra endowed with an involution ∗∶ L → L. hen there ex-
ist symmetric elements A, B ∈ D(L) such that the k-subalgebra of D(L) generated by
{A,A−1 , B, B−1} is the free group k-algebra on {A, B}.

Proof Let N be the ∗-invariant ideal [L, [L, L]]. he Lie k-algebra L/N is nilpotent
but not abelian, and ∗ induces an involution on L/N . By heorem 3.4, there exists
an invariant Heisenberg Lie k-subalgebra H of L/N such that the restriction of the
involution is one of involutions of Lemma 3.2. Let a + N , b + N be the generators of
H. Let M be the Lie k-subalgebra of L generated by N ∪ {a, b}. hen ∗ induces an
involution ∗∶M → M by restriction, M/N ≅ H, and the induced involution on M/N
is one of the involutions of Lemma 3.2. Apply heorem 5.4(ii) and (iii) to obtain that
D(M) satisûes the desiered result. Now observe that D(M) ⊆D(L). ∎

6 Free Group Algebras in the Ore Ring of Fractions of Universal
Enveloping Algebras that are Ore Domains

hemain results in this section areheorems 6.1, 6.4, and 6.5. hey all have a similar
but technical proof. hanks to the results in Section 2.3, the method can be seen as
an improvement of the technique originally used in the proof of [25, heorem 2] and
that was also used to show [10, heorem 5.2].

6.1 On Conjecture (GA)

heorem 6.1 Let k be a ûeld of characteristic zero and L be a Lie k-algebra whose
universal enveloping algebra U(L) is an Ore domain. Let u, v ∈ L be such that the Lie
subalgebra generated by them is of dimension at least three.
Deûne w = [v , u], V = 1

2 (uv+vu), and consider the following elements ofD(L) the
Ore ring of fractions of U(L):

S = (V − 1
3
w)(V + 1

3
w)

−1
and T = (w + v2)−1(w − v2)S(w + v2)(w − v2)−1 .

hen the k-subalgebra ofD(L) generated by {S , S−1 , T , T−1} is the free group k-algebra
on {S , T}.

Proof Let L1 be the Lie k-subalgebra of L generated by u and v. Since U(L) is an
Ore domain,U(L1) is also an Ore domain andD(L1) ⊆D(L). hus, we can suppose
that L is generated by u and v.
Consider the ûltration FZL = {FnL}n∈Z of L given in Example 2.5. It induces a

ûltration FZU(L) = {FnU(L)}n∈Z on U(L) as shown in Section 2.2. Moreover, by
Lemma 2.6(i), there exists an isomorphism of Z-graded k-algebras

(6.1) U(gradFZ(L)) ≅ gradFZ(U(L)),

which induces a valuation υ∶U(L) → Z ∪ {∞} as in Section 2.1. It can be extended
to a valuation υ∶D(L) → Z ∪ {∞} [7, Proposition 9.1.1]. We recall that the ûltration
it induces is FZD(L) = {FnD(L)}n∈Z, where FnD(L) = { f ∈D(L) ∶ υ( f ) ≥ n}.
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In what follows, the two objects in (6.1) will be identiûed. Consider u, v and w =
[v , u]. Note that υ(u) = υ(v) = −1 and υ(w) = −2, because L is not two-dimensional.
Denote by u, v the class of u, v ∈ U(L)−1 and also the class of u and v in L−1. Denote
byw the class ofw in U(L)−2 and in L−2. By Lemma 2.2(iv),U(gradFZ(L)) is an Ore
domain. Let D(gradFZ(L)) be its Ore ring of fractions.

Now, gradFZ(L) is a (negatively) graded Lie k-algebra that is not abelian (w ∈
L−2/L−1). hus, gradFZ(L) is a nonabelian residually nilpotent Lie k-algebra. Ob-
serve that [v , u] = w as elements of gradFZ(L).

Now deûne V = 1
2 (uv + vu),

S = (V − 1
3
w)(V + 1

3
w)

−1
, T = (w + v2)−1(w − v2)S(w + v2)(w − v2)−1 .

hen Corollary 5.5(ii) shows that the k-subalgebra of D(gradFZ(L)) generated by
{S , S −1

, T , T −1} is the free group k-algebra on {S , T}. Let H be the set of homoge-
neous elements of gradFZ(U(L)). From (6.1), and Lemma 2.2, we obtain the following
commutative diagram

gradFZ(U(L)) ≅ U(gradFZ(L))
� � //

� _

��

D(gradFZ(L))

H−1 gradFZ(U(L)) ≅ gradFZ(D(L))
' �

44
,

where the diagonal arrow is obtained from the universal property of the Ore local-
ization. Note that V , V − 1

3w , V + 1
3w , w + v2 , w − v2 are homogeneous elements of

degree −2 in gradFZ(U(L)). hus S, S
−1
, T , T

−1
are in fact homogeneous elements

of degree zero in gradFZ(D(L)).
Now observe that S and T are elements ofD(L) such that υ(S) = υ(T) = 0 and S =

S +D(L)>0 , T = T +D(L)>0 in gradFZ(D(L)). By Proposition 2.8, the k-subalgebra
ofD(L) generated by {S , S−1 , T , T−1} is the free group k-algebra on {S , T}. ∎

When the Lie subalgebra generated byu and v is of dimension two, we cannot apply
the methods developed thus far, but we have the following consequence of Cauchon’s
heorem.

Proposition 6.2 Let k be a ûeld of characteristic zero. Let M be the nonabelian two
dimensional Lie k-algebra. hus, M has a basis {e , f } such that [e , f ] = f . Deûne
s = (e− 1

3 )(e+
1
3 )
−1 and u = (1− f )(1+ f )−1. Consider the embedding U(M) ↪D(M).

hen the k-algebra generated by the set {S = s, S−1 , T = usu−1 , T−1} is the free group
k-algebra on {S , T}.

Proof Since [e , f ] = e f − f e = f , e f = f (e + 1). hus, U(M) can be seen as a skew
polynomial k-algebra, U(M) = k[e][ f ; σ], where σ(e) = e + 1.
According to Cauchon’s heorem, if we deûne s = (e − 1

3 )(e +
1
3 )
−1 and u =

(1 − f )(1 + f )−1, the k-subalgebra generated by {s, s−1 , usu−1 , us−1u−1} is the free
group k-algebra on {s, usu−1}. ∎
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Combiningheorem 6.1 and Proposition 6.2, we obtain the following result, which
is [25, heorem 4].

heorem 6.3 Let k be a ûeld of characteristic zero. Let L be a noncommutative Lie
k-algebra such that U(L) is anOre domain. hen there exist elements S , T ∈D(L) such
that the k-subalgebra ofD(L) generated by {S , S−1 , T , T−1} is the free group k-algebra
on {S , T}. More precisely, let u, v ∈ L such that [v , u] ≠ 0. hen
(i) if the Lie k-subalgebra of L generated by {u, v} is of dimension greater than two,

then one can choose S and T as deûned in heorem 6.1;
(ii) if the Lie k-subalgebra of L generated by {u, v} is of dimension exactly two, then

one can choose S and T as deûned in Proposition 6.2.

6.2 On Involutional Versions of Conjecture (GA)

Now we turn our attention to involutions and the existence of free group algebras
generated by symmetric elements.

heorem 6.4 Let k be a ûeld of characteristic zero and L be a Lie k-algebra such that
U(L) is an Ore domain. Let ∗∶ L → L be a k-involution. Suppose that there exists an
element a ∈ L such that [a∗ , a] ≠ 0 and the Lie k-subalgebra generated by {a, a∗} is of
dimension at least 3.
Deûne u = a + a∗, v = a∗ − a, w = [v , u] and V = 1

2 (uv + vu), and consider the
following elements ofD(L):

S1 = w−1((V − 1
3
w)(V + 1

3
w)

−1
+ (V − 1

3
w)

−1
(V + 1

3
w))w−1 ,

T2 = (w2 + v3)−1(w2 − v3)S1(w2 + v3)(w2 − v3)−1 .

hen the k-subalgebra ofD(L) generated by

{1 + S1S∗1 , (1 + S1S∗1 )−1 , 1 + T2T∗
2 , (1 + T2T∗

2 )−1}

is the free group k-algebra on the set {1 + S1S∗1 , 1 + T2T∗
2 }.

Proof Let L1 be the Lie k-subalgebra of L generated by u and v.
Since U(L) is an Ore domain, U(L1) is also an Ore domain. Moreover, D(L1) ⊆

D(L). hus, we can suppose that L is generated by u and v.
Consider the ûltration FZL = {FnL}n∈Z of L deûned by FrL = 0 for all r ≥ 0,

F−1L = ku, F−2L = kv + F−1L, F−3L = k[v , u] + F−2L and for n ≤ −3,

Fn−1L = ∑
n1+n2+⋯+nr≥(n−1)

[Fn1L, [Fn2L, . . . ]⋯] .

Observe that, for each n ∈ Z, there exists Bn ⊆ L whose classes give a basis of Ln =
FnL/Fn+1L such that ⋃n∈ZBn is a basis of L. his ûltration on L induces a ûltration
FZU(L) = {FnU(L)}n∈Z on U(L) as shown in Section 2.2. Moreover, by Lemma 2.6,
there exists an isomorphism of Z-graded k-algebras

(6.2) U(gradFZ(L)) ≅ gradFZ (U(L)) ,
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which induces a valuation υ∶U(L) → Z ∪ {∞} as in Section 2.1. In what follows,
the two objects in (6.2) will be identiûed via the isomorphism given in either [41,
Proposition 1] or [3, Lemma 2.1.2]. his isomorphism sends the class of an element of
Bn in Ln to its class in U(L)n .

Note that each FnL is invariant under ∗, because u∗ = u and v∗ = −v. Hence,
∗ induces an involution on gradFZ(L) and hence on U(gradFZ(L)). Moreover, each
FnU(L) is invariant under ∗, and thus ∗ also induces an involution on gradFZ(U(L)).
herefore, the isomorphism given in (6.2) is an isomorphism of k-algebras with in-
volution; that is, if Φ is the isomorphism of (6.2), then Φ( f ∗) = Φ( f )∗.

Observe that gradFZ(L) is a residually nilpotent Lie k-algebra. DeûneN = ⊕n≥4 Ln .
hen gradFZ(L)/N is isomorphic to the Heisenberg Lie k-algebra H. Moreover, N is
invariant under the involution ∗, and the induced involution in gradFZ(L)/N is the
one in Lemma 3.2(i).

he valuation υ∶U(L) → Z ∪ {∞} can be extended to a valuation υ∶D(L) →
Z ∪ {∞} [7, Proposition 9.1.1].
Consider u, v, and w = [v , u]. Note that υ(u) = −1, υ(v) = −2, and υ(w) = −3.

Denote by u, v, w the class of u ∈ U(L)−1, v ∈ U(L)−2, w ∈ U(L)−3 and also the class
of u in L−1, v ∈ L−2, and w ∈ L−3, respectively. By Lemma 2.2(iv), U(gradFZ(L)) is an
Ore domain. LetD(gradFZ(L)) be its Ore ring of fractions. Observe that [v , u] = w as
elements of gradFZ(L). Deûne V = 1

2 (uv + vu), and consider the following elements
ofD(gradFZ(L)):

S1 = w−1((V − 1
3
w)(V + 1

3
w)

−1
+ (V − 1

3
w)

−1
(V + 1

3
w))w−1 ,

T2 = (w2 + v3)−1(w2 − v3)S1(w2 + v3)(w2 − v3)−1 .

By Corollary 5.5(iii)(a.2), the k-subalgebra of D(gradFZ(L)) generated by
{S1S

∗
1 , T2T

∗
2} is the free k-algebra on {S1S

∗
1 , T2T

∗
2}. Let H be the set of homoge-

neous elements of gradFZ(U(L)). From (6.2) and Lemma 2.2, we obtain the following
commutative diagram:

gradFZ(U(L)) ≅ U(gradFZ(L))
� � //

� _

��

D(gradFZ(L))

H−1 gradFZ(U(L)) ≅ gradFZ(D(L))
' �

44
,

where the diagonal arrow is obtained from the universal property of the Ore localiza-
tion. Note that V , V − 1

3w , V + 1
3w are homogeneous elements of degree −3, and the

elements w2 + v3 , w2 − v3 are homogeneous elements of degree −3 in gradFZ(U(L)).
hus, S1, S

∗
1 , T2, T

∗
2 are in fact homogeneous elements of degree−6 in gradFZ(D(L)).

Nowobserve that S1, S∗1 , T2 andT∗
2 are elements ofD(L) such that υ(S1) = υ(S∗1 ) =

υ(T2) = υ(T∗
2 ) = 6; hence, υ(S1S∗1 ) = 12, υ(T2T∗

2 ) = 12 and S1S
∗
1 = S1S∗1 +D(L)>12 ,

T2T
∗
2 = T2T∗

2 +D(L)>12 in gradFZ(D(L)).
Now, by heorem 2.9, the result follows. ∎
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In the case where [x , x∗] = 0 for all x ∈ L, we are able to prove the following
theorem.

heorem 6.5 Let k be a ûeld of characteristic zero and L be a Lie k-algebra such that
U(L) is an Ore domain. Let ∗∶ L → L be a k-involution. Suppose that [x , x∗] = 0 for
all x ∈ L, but there exist elements x , y ∈ L such that [y, x] ≠ 0 and the k-subspace of L
spanned by {x , x∗ , y, y∗} is not the Lie k-subalgebra generated by {x , x∗ , y, y∗}. hen
there exist symmetric elements A, B ∈ D(L) such that the k-subalgebra generated by
{A,A−1 , B, B−1} is the free group k-algebra on {A, B}.

Proof Let L1 be the Lie k-subalgebra of L generated by {x , x∗ , y, y∗}. Since U(L)
is an Ore domain, U(L1) is also an Ore domain. Moreover,D(L1) ⊆D(L). hus, we
can suppose that L is generated by {x , x∗ , y, y∗}. Let V be the k-subspace spanned
by {x , x∗ , y, y∗}. Consider the ûltration FZL = {FnL}n∈Z of L deûned by FrL = 0 for
all r ≥ 0, F−1L = V , F−2L = [V ,V] + F−1L, and for n ≤ −2,

Fn−1L = ∑
n1+n2+⋅⋅⋅+nr≥(n−1)

[Fn1L, [Fn2L, . . . ] ⋅ ⋅ ⋅ ] .

Note that FnL is invariant under ∗ for all n ∈ Z. hus, the involution on L induces an
involution on gradFZ(L). Now deûne N = ⊕n≤−3 Ln . hen N is an ideal of gradFZ(L)
such that gradFZ(L)/N is a nonabelian nilpotent Lie k-algebra because [V ,V] is not
contained in V by assumption. Moreover, N is invariant under ∗, and thus the in-
volution on gradFZ(L) induces an involution on gradFZ(L)/N , again denoted by ∗.
By heorem 3.4, there exist u, v ∈ gradFZ(L)/N such that they generate a ∗-invariant
Heisenberg Lie k-subalgebra of gradFZ(L)/N and the restriction to it is one of the
involutions in Lemma 3.2. Note that F−1L = L−1. Also gradFZ(L)/N ≅ L−1 ⊕ L−2

as k-vector spaces, and the induced product [L−1 , L−2] = 0. hus, we can choose
u, v ∈ L−1 = F−1L.

Suppose that the involution on gradFZ(L)/N is like the one in Lemma 3.2(i), i.e.,
u∗ = u, v∗ = −v and w∗ = w, where w = [v , u]. hen take u1 = u + v , v1 = u − v ∈ L−1.
Note that u∗1 = v1 and [u1 , v1] = 2[v , u] ≠ 0, a contradiction to our assumption that
[x , x∗] = 0 for all x ∈ L. Hence the involution on the Heisenberg subalgebra of
gradFZ(L)/N generated byu, v is of the type in either Lemma3.2(ii) or Lemma3.2(iii).

Let L2 be the Lie k-subalgebra of L generated by {u, v}. Since U(L) is an Ore
domain, U(L2) is also an Ore domain. Moreover, D(L2) ⊆ D(L). hus, we may
suppose that L is generated by {u, v}. Let V be the k-subspace spanned by {u, v}.
Consider the ûltration FZL = {FnL}n∈Z of L deûned by FrL = 0 for all r ≥ 0, F−1L = V ,
F−2L = [V ,V] + F−1L, and for n ≤ −2,

Fn−1L = ∑
n1+n2+⋯+nr≥(n−1)

[Fn1L, [Fn2L, . . . ]⋯ ].

Note that FnL is invariant under ∗ for all n ∈ Z. hus the involution on L induces an
involution on gradFZ(L). Deûne now N = ⊕n≤−3 Ln . hen N is an ideal of gradFZ(L)
such that gradFZ(L)/N is the Heisenberg Lie k-algebra and the involution induced
on it is of type either Lemma 3.2(ii) or Lemma 3.2(iii).
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Observe that for each n ∈ Z, there exists Bn ⊆ L whose classes give a basis of
Ln = FnL/Fn+1L such that ⋃n∈ZBn is a basis of L. his ûltration on L induces a
ûltration FZU(L) = {FnU(L)}n∈Z on U(L), as shown in Section 2.2. Moreover, by
Lemma 2.6, there exists an isomorphism of Z-graded k-algebras

(6.3) U(gradFZ(L)) ≅ gradFZ(U(L)),

which induces a valuation υ∶U(L) → Z ∪ {∞} as in Section 2.1. In what follows,
the two objects in (6.3) will be identiûed via the isomorphism given in either [41,
Proposition 1] or [3, Lemma 2.1.2]. his isomorphism sends the class of an element of
Bn in Ln to its class in U(L)n .

he valuation υ∶U(L) → Z ∪ {∞} can be extended to a valuation υ∶D(L) →
Z ∪ {∞} [7, Proposition 9.1.1].
Consider u, v, andw = [v , u]. Note that υ(u) = υ(v) = −1 and υ(w) = −2, because

L is not two-dimensional. Denote by u, v the class of u, v ∈ U(L)−1 and also the class
of u and v in L−1. Denote byw the class ofw inU(L)−2 and in L−2. By Lemma 2.2(iv),
U(gradFZ(L)) is an Ore domain. Let D(gradFZ(L)) be its Ore ring of fractions.

Observe that [v , u] = w as elements of gradFZ(L). Deûne V = 1
2 (uv + vu), and

consider the following elements ofD(gradFZ(L)):

S1 = w−1((V − 1
3
w)(V + 1

3
w)

−1
+ (V − 1

3
w)

−1
(V + 1

3
w))w−1 ,

T 1 = (w + v2)−1(w − v2)S1(w + v2)(w − v2)−1 .

By Corollary 5.5(iii)(a.2), the k-subalgebra of D(gradFZ(L)) generated by
{S1S

∗
1 , T 1T

∗
1 } is the free k-algebra on {S1S

∗
1 , T2T

∗
2}. Let H be the set of homoge-

neous elements of gradFZ(U(L)). From (6.3) and Lemma 2.2, we obtain the following
commutative diagram

gradFZ(U(L)) ≅ U(gradFZ(L))
� � //

� _

��

D(gradFZ(L))

H−1 gradFZ(U(L)) ≅ gradFZ(D(L))
' �

44
,

where the diagonal arrow is obtained from the universal property of the Ore localiza-
tion. Note that V , V − 1

3w , V + 1
3w are homogeneous elements of degree −3 and the

elements w + v2 , w − v2 are homogeneous elements of degree −2 in gradFZ(U(L)).
hus, S1, S

∗
1 , T 1, T

∗
1 are in fact homogeneous elements of degree −4 in gradFZ(D(L)).

Nowobserve that S1, S∗1 , T2 andT∗
2 are elements ofD(L) such that υ(S1) = υ(S∗1 ) =

υ(T2) = υ(T∗
2 ) = 4; hence, υ(S1S∗1 ) = 8, υ(T2T∗

2 ) = 8 , and S1S
∗
1 = S1S∗1 +D(L)>8 ,

T2T
∗
2 = T2T∗

2 +D(L)>8 in gradFZ(D(L)).
Deûning A = 1 + S1S∗1 and B = 1 + T1T∗

1 , the result follows from heorem 2.9. ∎

As a corollary, we obtain a generalization of [10, heorem 5.2], where the exis-
tence of a free k-algebra was proved. We recall that the principal involution on a Lie
k-algebra L is deûned by L → L, f ↦ − f .
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Corollary 6.6 Let k be a ûeld of characteristic zero and L be a Lie k-algebra such that
its universal enveloping algebra U(L) is an Ore domain. Let D(L) be its Ore ring of
fractions. Let u, v ∈ L be such that the Lie subalgebra generated by them is of dimension
at least three. hen there exist symmetric elements A, B ∈ D(L) with respect to the
principal involution such that the k-subalgebra generated by {A,A−1 , B, B−1} is the free
group k-algebra on {A, B}.

7 Free Group Algebras in the Malcev–Neumann Division Ring of
Fractions of a Residually Torsion-free Nilpotent Group

In this section, for a group G and elements x , y ∈ G, then (y, x) denotes the commu-
tator (y, x) = y−1x−1 yx. Also, if A, B are subgroups ofG, (B,A) denotes the subgroup
of G generated by the commutators (y, x) with y ∈ B, x ∈ A.

LetR be a ring and (G , <) be an ordered group. Suppose thatR[G] is the group ring
of G over R. We deûne a new ring, denoted R((G ;<)) and calledMalcev–Neumann
series ring, in which R[G] embeds. As a set,

R((G ;<)) = { f = ∑
x∈G

axx ∶ ax ∈ R, supp( f ) is well ordered} ,

where supp( f ) = {x ∈ G ∶ ax ≠ 0}. Addition and multiplication are deûned extend-
ing the ones in R[G]. hat is, given f = ∑x∈G axx and g = ∑x∈G bxx, elements of
R((G ;<)), one has

f + g = ∑
x∈G

(ax + bx)x and f g = ∑
x∈G

( ∑
yz=x

aybz)x .

It was shown, independently, in [31,34] that if R is a division ring, then R((G ;<))
is a division ring.

If k is a ûeld, the division subring of k((G ;<)) generated by the group ring k[G]
will be called theMalcev–Neumann division ring of fractions of k[G] and will be de-
noted by k(G). It is important to observe the following. For a subgroup H of G,
k((H ;<)) and k(H) can be regarded as division subrings of k((G ;<)) and k(G),
respectively, in the natural way. We remark that k(G) does not depend on the order
< of G; see [19]. When the group ring k[G] is an Ore domain, then k(G) is the Ore
ring of fractions of k[G].
An involution on a group G is a map ∗∶G → G, x ↦ x∗, that satisûes

(xy)∗ = y∗x∗ and (x∗)∗ = x for all x , y ∈ G .

In other words, ∗ is an anti-automorphism of order two.
Suppose that G is a group endowed with an involution ∗∶G → G, x ↦ x∗, k

is a ûeld, and k[G] is the group k-algebra. he map ∗∶ k[G] → k[G] deûned by
(∑x∈G axx)∗ = ∑x∈G axx∗ is a k-involution on k[G].

If (G , <) is an ordered group, we remark that the k-involution on the group alge-
bra k[G] induced the involution ∗ on G extends uniquely to a k-involution on the
Malcev–Neumann division ring of fractions k(G) of k[G]; see [13, heorem 2.9].
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LetG be a group. IfH is a subgroup ofG, we denote by
√

H the subset ofG deûned
by

√
H = {x ∈ G ∶ xn ∈ H, for some n ≥ 1}.

We shall denote the n-th term of the lower central series of G by γn(G). hat is, we
set γ1(G) = G and, for n ≥ 1, deûne γn+1(G) = (G , γn(G)).
A groupG is residually torsion-free nilpotent if for each g ∈ G, there exists a normal

subgroup Ng of G such that g ∉ Ng and G/Ng is torsion-free nilpotent. Equivalently,
⋂n≥1

√
γn(G) = {1}. It is well known that any residually torsion-free nilpotent group

is orderable; see, for example, [15, heorem IV.6].
Let G be a residually torsion-free nilpotent group, let k be a ûeld of characteristic

zero, and consider the group algebra k[G]. Consider an involution on G and its ex-
tension to the Malcev–Neumann division ring of fractions k(G) of k[G]. he aim of
this section is to prove that there exist symmetric elements in k(G) that generate a
noncommutative free group k-algebra. For that wewill need the following discussion.

Let G be a torsion-free nilpotent group. An N-series of G is a sequence {H i}i≥1,

G = H1 ⊇ H2 ⊇ ⋯ ⊇ Hn ⊇ ⋯

of normal subgroups of G that satisûes the following three conditions

(H i ,H j) ⊆ H i+ j , ⋂
i≥1

H i = {1}, G/H i is torsion free for all i ≥ 1.

he N-series induces a weight function w∶G → N ∪ {∞} deûned by w(g) = i if
g ∈ H i/H i+1 and w(1) = ∞.

Let k be a ûeld of characteristic zero, G torsion-free nilpotent group with an
N-series {H i}i≥1, and consider the group ring k[G]. he N-series deûnes the can-
nonical ûltration, FZk[G] = {Fnk[G]}n∈Z, induced by {H i}i≥1, which is deûned by
Fnk[G] = k[G], for all n ≤ 0, and for n ≥ 1, Fnk[G] is the k-vector space spanned by
the set

{(h1 − 1)(h2 − 1) ⋅ ⋅ ⋅ (hs − 1) ∶ s ≥ 1,
s

∑
j=1

w(h j) ≥ n} .

Note that F1k[G] is the augmentation ideal of k[G] and that Fnk[G] ⋅ Fmk[G] ⊆
Fn+mk[G].
For each i ≥ 1, H i/H i+1 is an abelian group. Denote the operation additively. More

precisely, if x i , x′i ∈ H i , x̃ i denotes the class x iH i+1. hen x̃ i+x̃′i = x̃ ix′i inH i/H i+1. he
abelian group L(G) = ⊕i≥1 H i/H i+1 can be endowed with a Z-graded Lie Z-algebra
structure with the following product on homogeneous elements [x̃ i , x̃ j] = (̃x i , x j) ∈
H i+ j/H i+ j+1, for x i ∈ H i , x j ∈ H j , and then extending by bilinearity. hen k⊗Z L(G)
is a Lie k-algebra with universal enveloping algebra U(k ⊗Z L(G)).

In [23, heorem 2.3], Lichtman proved a more general version of [37], in a similar
way as Quillen’s result is shown in [35, Chapter VIII]. Lichtman’s result implies that
that there exists an isomorphism of Z-graded k-algebras

Θ∶U(k ⊗Z L(G)) Ð→ gradFZ(k[G])(7.1)
x̃ i z→ (x i − 1) + Fi+1k[G].
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Let H = ⟨a, b ∶ (b, (b, a)) = (a, (b, a)) = 1⟩ be the Heisenberg group. Deûne
c = (b, a). Consider the following main involutions of H that are deûned on the
generators and extended accordingly:
(a) a∗ = a, b∗ = b−1 and c∗ = c.
(b) a∗ = a, b∗ = b and c∗ = c−1.
(c) a∗ = a−1, b∗ = b−1 and c∗ = c−1.

Proposition 7.1 Let k be a ûeld of characteristic zero. Let
H = ⟨a, b ∶ (b, (b, a)) = (a, (b, a)) = 1⟩

be the Heisenberg group and c = (b, a). Consider the group k-algebra k[H] and its Ore
ring of fractions k(H). Consider the elements of k(H)

V = 1
2
((a − 1)(b − 1) + (b − 1)(a − 1)),

S2 = (c − 1)((V − 1
3
(c − 1))(V + 1

3
(c − 1))−1

+ (V − 1
3
(c − 1))−1(V + 1

3
(c − 1)))(c − 1),

T3 = ((c − 1) + (b − 1)2)−1((c − 1) − (b − 1)2)

× S2((c − 1) + (b − 1)2)((c − 1) − (b − 1)2)−1 ,

T4 = ((c − 1)2 + (b − 1)3)−1((c − 1)2 − (b − 1)3)

× S2((c − 1)2 + (b − 1)3)((c − 1)2 − (b − 1)3)−1 .
he following statements hold true.
(i) Suppose that ∗∶H → H is one of the main involutions (b) or (c) above. hen the

k-subalgebra of k(H) generated by

{1 + S2S
∗
2 , (1 + S2S

∗
2 )−1 , (1 + T3T

∗
3 ), (1 + T3T

∗
3 )−1}

is the free group k-algebra on the set {1 + S2S
∗
2 , (1 + T3T

∗
3 )}.

(ii) Suppose that ∗∶H→ H is the main involution (i) above. hen the k-subalgebra of
k(H) generated by

{1 + S2S
∗
2 , (1 + S2S

∗
2 )−1 , (1 + T4T

∗
4 ), (1 + T4T

∗
4 )−1}

is the free group k-algebra on the set {1 + S2S
∗
2 , (1 + T4T

∗
4 )}.

Proof (i) Consider the following N-series ofH:
H1 = H ⊇ H2 = (c) ⊇ H3 = {1}.

If we set x = aH2 , y = bH2 ∈ H1/H2 and z = cH3 ∈ H2/H3, then the Z-graded
Lie Z-algebra L(H) has as Z-basis the elements x , y, z with products [y, x] = z,
[y, z] = [x , z] = 0. Hence theZ graded Lie k-algebra k⊗Z L(H) is the Heisenberg Lie
k-algebra H with the Z-grading given in Example 2.3(iii). he isomorphism (7.1) im-
plies that the cannonical ûltration induced by the N-series is in fact a valuation, be-
cause the graded ring is a domain. Since k[H] is an Ore domain, the valuation can
be extended to a valuation υ∶ k(H) → Z ∪ {∞}. If we let H be the homogeneous
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elements of gradFZ(k[H]), Lemma 2.1(iii) implies that there exists an isomorphism
of Z-graded k-algebras

(7.2) gradυ(k(H)) ≅H−1 gradFZ(k[H]) ≅H−1U(k ⊗Z L(H)) .

Observe that H−1U(k ⊗Z L(H)) ↪D(k ⊗Z L(H)). Now note that

V,V ± (c − 1), (c − 1), (b − 1)2 , (c − 1) ± (b − 1)2 ∈ F2k[H]/F3k[H].
Hence, the classes of these elements in gradFZ(k[H]) are homogeneous of degree two.
It implies that the class of S2 and T3 in gradυ(k(H)) are homogeneous of degree
four. Moreover, their image under the isomorphism (7.2) are the elements S2 , T3 ∈
D(k ⊗Z L(H)) given in heorem 4.5(iv).

Since each H i is invariant under the involution ∗, it induces a k-involution in
the Lie k-algebra k ⊗Z L(H). Hence, the isomorphism (7.2) is an isomorphism of
∗-algebras, i.e., Φ( f ∗) = Φ( f )∗. Note that the induced involution on k ⊗Z L(H) is
one of the involutions in Lemma 3.2(ii) or (iii). By heorem 4.5(iv)(a), the elements
S2, T2 are symmetric with respect to the induced involution onD(k⊗ZL(H)). Hence,
the image of the classes of S∗2 and T∗3 are also S2 and T3, respectively. he classes of the
elements S2S

∗
2 ,T3T

∗
3 in gradυ(k(H)) are homogeneous of degree 8. Moreover, they

generate a free algebra in gradυ(k(H)), because S2
2 and T2

3 generate a free algebra in
D(k ⊗k L(H)) by heorem 4.5(iv)(b). Now the result follows by heorem 2.9.

(ii) It follows in the same way as (i). Now one has to consider theN-series

H1 = G ⊇ H2 = ⟨b, c⟩ ⊇ H3 = ⟨c⟩ ⊇ H4 = {1}.
hen again, k ⊗Z L(H) is the Heisenberg Lie k-algebra, but with the gradation given
in Example 2.3(iv). hen the isomorphism in (7.2) (with a diòerent gradation) sends
S2 and T4 to the elements S2 and T4 in heorem 4.5(v). ∎

he next result is [14, Proposition 2.4].

Proposition 7.2 Let G be a nonabelian torsion-free nilpotent group with involution
∗. hen G contains a ∗-invariant Heisenberg subgroup H such that the induced invo-
lution is one of the main involutions ofH. More precisely, there exist x , y ∈ G such that
(x , y) ≠ 1, (x , (x , y)) = (y, (x , y)) = 1, x∗ = x±1 , y∗ = y±1.

Recall that given a group G and a ûeld k such that k[G] is an Ore domain; then
k[N] is anOre domain for any subgroupN ofG. Hence, ifG is a torsion-free nilpotent
group andH is a subgroup of G, then k(H) is embedded in k(G). his fact, together
with Propositions 7.2 and 7.1, imply the following result.

heorem 7.3 Let G be a nonabelian torsion-free nilpotent group with an involution
∗∶G → G and k be a ûeld of characteristic zero. Consider the group ring k[G] and its
Ore ring of fractions k(G). hen there exist nonzero symmetric elements A, B ∈ k(G)
such that the k-subalgebra generated by {A,A−1 , B, B−1} is the free group k-algebra on
the set {A, B}.

heorem 7.4 Let G be a residually torsion-free nilpotent group with an involution
∗∶G → G and let k be a ûeld of characteristic zero. Consider the group ring k[G] and its
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Malcev–Neumann division ring of fractions k(G). hen there exist nonzero symmetric
elements A, B ∈ k(G) such that the k-subalgebra generated by {A,A−1 , B, B−1} is the
free group k-algebra on the set {A, B}.

Proof As noted in [14, Section 3], the argument used there can also be used to prove
the existence of free group algebras generated symmetric elements in k(G) using the
existence of free group algebras generated by symmetric elements in Ore ring of frac-
tions k(L), where L is a torsion-free nilpotent group. his fact has already been proved
in heorem 7.3. ∎
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