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What parts of the classical descriptive set theory done in Polish spaces still hold for more

general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question

has been addressed by Selivanov in a series of papers centred on algebraic domains. And

recently it has been considered by de Brecht for quasi-Polish spaces, a framework that

contains both countably based continuous domains and Polish spaces. In this paper, we

present alternative unifying topological spaces, that we call approximation spaces. They are

exactly the spaces for which player Nonempty has a stationary strategy in the Choquet

game. A natural proper subclass of approximation spaces coincides with the class of

quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in

approximation spaces, revisiting the work done for the other topological spaces. We also

consider the problem of effectivization of these results.

1. Introduction

The primary setting of the descriptive set theory, including the study of Borel and

Hausdorff hierarchies, is that of Polish spaces. These are spaces homeomorphic to complete

metric spaces that have a countable dense subset, for example the Cantor space, the Baire

space, the real line and its intervals. The question of what parts of the classical descriptive

set theory still hold for non-Polish spaces, specifically for general T0 topological spaces,

has not been yet systematically studied. Major progress has been made by Selivanov in

his investigations centred mainly in algebraic domains (directed complete partial orders

(dcpo) with a countable base of compact elements) in an ongoing series of papers on

this topic that started in 1978. Recently, de Brecht (2013) presented the theory of quasi-

Polish spaces, a unifying framework for Polish spaces and countably based domains (i.e.

ω-continuous domains, or dcpo with a countable basis). De Brecht characterized quasi-

Polish spaces in terms of the Choquet topological games, and he proved that a descriptive

set theory can be nicely developed in such spaces.

† Members of the Laboratoire International Associé INFINIS, Universidad de Buenos Aires – Université Paris

Diderot-Paris 7. This research was partially done whilst the first author was a visiting fellow at the Isaac

Newton Institute for Mathematical Sciences in the programme ‘Semantics & Syntax’.
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In this paper, we consider alternative unifying topological spaces that we call ap-

proximation spaces. Not only they contain all Polish spaces and all continuous domains,

but a natural subclass of approximation spaces coincides with the class of quasi-Polish

spaces. Approximation spaces can be viewed as the ‘à la domain’ version of the ‘à la

Polish’ unifying framework of de Brecht. These spaces can also be characterized in terms of

Choquet games. We study the Borel and Hausdorff difference hierarchies in approximation

spaces, revisiting the work done for the other topological spaces. We also consider the

problem of effectivization of these results.

The paper is organized as follows. Section 2 presents the preliminary material. We

recall the needed notions about the Borel and Hausdorff hierarchies in a T0 (possibly not

T2) topological context. We give an overview of the needed material on domains with

the Scott topology and quasi-Polish spaces. We also present some prerequisites on the

Banach–Mazur and Choquet topological games.

Section 3 is devoted to the class of approximation spaces. We prove that both, Polish

spaces and continuous domains, are approximation spaces. Indeed, we show that all quasi-

Polish spaces are approximation spaces. Theorem 3.9 characterizes approximation spaces

in terms of Choquet games. Theorem 3.11 proves that quasi-Polish spaces and convergent

approximation spaces are the same class.

In the context of Polish spaces, the Baire property asserts that any countable intersection

of dense open sets is dense. Thus, countable intersections of open sets, the Gδ sets,

constitute the Π0
2 level of the Borel hierarchy. In the context of T0 but not T2 spaces

this is not true anymore: the Π0
2 level consists of countable intersections of Boolean

combinations of open sets. Then it is natural to consider the Π0
2 Baire property which

asserts that any countable intersection of dense differences of open sets is dense. As

shown by de Brecht (2013), the usual Gδ Baire property and Hausdorff–Kuratowski’s

theorem both hold for quasi-Polish spaces. Consequently, these two results are ensured

for convergent approximation spaces. Theorem 3.13 proves that, in fact, all approximation

spaces satisfy the Π0
2 Baire property. Theorem 3.15 extends Hausdorff’s theorem to spaces

having a countable basis and such that every closed subspace is an approximation space:

the Δ0
2 class coincides with the difference hierarchy. This result was previously obtained

by Selivanov for ω-algebraic domains, and then for ω-continuous domains (Selivanov

2005; 2008). De Brecht (2013) proved that the full Hausdorff–Kuratowski’s theorem holds

for quasi-Polish spaces; hence, it holds for convergent approximation spaces. We do not

know whether it holds for all approximation spaces.

In Section 4, we revisit a part of the work by Selivanov (2005, 2008) on domains

that does not apply to Polish spaces: his characterization of the classes of the Hausdorff

hierarchy in terms of alternating trees, and his proof of non-existence of ambiguous sets

in this hierarchy. We check that the assumption of ω-algebraicity or ω-continuity can be

replaced, mutatis mutandis, by that of continuity.

Section 5 is devoted to effectivization. The definition of approximation spaces admits

a straightforward definition of an effective version. We make the first steps in developing

the effective theory. We first recall the notions of effective topological space and effective

domains. We also include the known machinery of effective Borel codes. Theorem 5.17

proves a weak effective version of Hausdorff’s theorem in effective approximation spaces.
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We obtain this proof as an adaptation of the work by Selivanov (2003) for the Baire

space. A general effective version of Hausdorff’s theorem is still an open question.

2. Preliminary definitions and results

We write N for the set of natural numbers, P(N) for the set of all subsets of N and P<ω(N)

for the set of all finite subsets of N. Finite sequences of elements of a set X are denoted

by (x1, x2, . . . , xn). Concatenation of sequences u, v and element x are written simply as

uv, ux. We use Greek letters to denote ordinals. We write ω for the first infinite ordinal,

ω1 for the first uncountable ordinal and ωCK
1 for the least not computable ordinal (the

Church–Kleene ordinal). For any two ordinals α, β, α ∼ β means that they have the same

parity.

2.1. Borel and Hausdorff hierarchies in general topological spaces

All the material of this subsection on the Borel and Hausdorff hierarchies in general

topological spaces has first appeared in Selivanov (2005). To make the presentation

self-contained, we reproduce here some of the proofs.

2.1.1. The Borel hierarchy. In general topological spaces, an open set may possibly not

be a countable union of closed sets, cf. Remark 2.13 infra. In order to get the expected

inclusion Σ0
1(E) ⊆ Σ0

2(E), one has to distort the usual definition of Borel spaces given

in metric spaces. This leads to define the hierarchy of Borel sets in a general setting as

follows.

Definition 2.1 (Borel sets). Let E be a topological space.

1. Borel subsets of E are those sets obtained from open sets by iterated complementation

and countable unions and intersections.

2. The Borel classes Σ0
α(E), Π0

α(E), Δ0
α(E), where α � 1 varies over countable ordinals, are

inductively defined as follows:

Σ0
1(E) = open subsets of E

if α � 2 Σ0
α(E) = countable unions of Boolean combinations of sets in

⋃
β<α Σ0

β(E)

Π0
α(E) = {E \X | X ∈ Σ0

α(E)}
Δ0
α(E) = Σ0

α(E) ∩Π0
α(E).

3. The class Gδ(E) (respectively Fσ(E)) is the family of countable intersections of open

sets (respectively unions of closed sets). In general, it is a proper subclass of Π0
2(E)

(respectively Σ0
2(E)).

The following result follows from the elementary set theory.

Proposition 2.2.

1. Σ0
β(E) ∪Π0

β(E) ⊆ Δ0
α(E) for any α > β � 1.
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2. Each one of the Borel classes Σ0
α(E), Π0

α(E), Δ0
α(E) is closed under finite unions and

intersections and continuous inverse images. The Σ0
α(E) (respectively Π0

α(E)) classes

are closed under countable unions (respectively intersections).

As expected, the above definition is equivalent to the usual one for metric spaces. Also,

in the general case, the distortion can be done solely for Σ0
2(E).

Proposition 2.3.

1. Σ0
2(E) coincides with the family of countable unions of differences of sets in Σ0

1(E),

i.e. sets of the form
⋃

n∈N Un \ Vn, where the Un, Vn’s are open. Moreover, if B is a

countable topological basis then one can take the Un’s in B.

2. If α � 3 then Σ0
α(E) is the family of countable unions of sets in

⋃
β<α Π0

β(E). If E is

metrizable then this also holds for α = 2.

Proof.

1. Observe that a Boolean combination of open sets is a finite union of differences of

two open sets. For the last assertion, use that Un is a union of sets in B.

2. It suffices to prove that the difference X \ Y of two sets in Σ0
β(E), with β < α, is

equal to a countable union of sets in Π0
γ (E) with γ < α.

In case β + 1 < α then, as the intersection of a Σ0
β(E) and a Π0

β(E) set, X \ Y is Π0
β+1(E)

and we are done. In case α = β + 1, since α � 3, we have β � 2 and X is of the form

X =
⋃

i∈N Ui \ Vi, where Ui, Vi are in
⋃

γ<β Σ0
γ(E). Thus, X \ Y =

⋃
i∈N(Ui \ Vi) \ Y =⋃

i∈N Ui∩ (E \ (Vi∪Y )). Now, Ui ∈ Σ0
γ(E), with γ < β, hence Ui ∈ Π0

γ+1(E) where γ+1 � β.

Also, Vi ∪ Y ∈ Σ0
β(E) hence E \ (Vi ∪ Y ) ∈ Π0

β(E). Therefore, X \ Y is a countable union

of sets in Π0
β(E). Finally, in a metric space, the topological closure X of any set X is Gδ

since X =
⋂

n∈N{z | ∃x ∈ X d(z, x) < 2−n}. Going to complements, any open set is Fσ .

Then, any difference of two open sets hence also any Σ0
2(E) set is also Fσ , i.e. a countable

union of Π0
1(E) sets.

2.1.2. The Hausdorff difference hierarchy. Recall the Hausdorff difference infinitary op-

eration, cf. Kuratowski (1966) and Kechris (1995).

Definition 2.4. Let α be an ordinal.

1. The difference operation Dα maps an α-sequence of subsets (Aβ)β<α of a space E to the

subset Dα((Aβ)β<α) =
⋃

β<α, β 	∼α
Aβ \ ∪γ<βAγ .

2. We let co-Dα((Aβ)β<α) = E \ Dα((Aβ)β<α).

3. For a class of subsets A, we let Dα(A) (respectively co-Dα(A)) be the class of all

subsets Dα((Aβ)β<α) (respectively co-Dα((Aβ)β<α)), where Aβ ∈ A for all β < α.

Remark 2.5. In particular, D2(A) (respectively co-D2(A)) is the family of sets A1 \ A0

(respectively A0 ∪ (E \ A1)) with A0, A1 ∈ A.

Proposition 2.6.

1. If � ∈ A then Dβ(A) ⊆ Dα(A) for all β < α.
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Fig. 1. In grey: D1(A0), D2(A0, A1), D3(A0, A1, A2), D4(A0, A1, A2, A3), where A0 ⊂ A1 ⊂ A2 ⊂ A3. In

white (including the unbounded complement of the largest disk): co-D1(A0), co-D2(A0, A1),

co-D3(A0, A1, A2), co-D4(A0, A1, A2, A3).

2. If E ∈ A then co-Dα(A) ⊆ Dα+1(A). In particular, if �, E ∈ A and β < α then

Dβ(A) ∪ co-Dβ(A) ⊆ Dα(A) ∩ co-Dα(A).

3. If A is closed under countable unions then, for α countable, in the definition of Dα(A),

one can restrict to monotone increasing α-sequences.

Proof.

1. If β ∼ α then Dβ((Aγ)γ<β) = Dα((A
′
δ)δ<α), where A′δ = Aδ for δ < β and A′δ = � for

δ � β. If β 	∼ α then Dβ((Aγ)γ<β) = Dα((A
′
δ)δ<α), where A′δ+1 = Aδ for δ < β and

A′δ = � for δ = 0 or δ limit or δ � β.

2. Observe that Dα((Aβ)β<α) = Dα((A
′
β)β<α), where A′β =

⋃
γ�β Aγ .

3. Letting Aα = E, we have co-Dα((Aβ)β<α) = Dα+1((Aβ)β�α).

Definition 2.7. For any 0 < β < ω1, the αth level of the difference hierarchy over Σ0
β(E) is

Dα(Σ
0
β(E)). The difference hierarchy over Σ0

1(E) is simply called the difference hierarchy

and denoted by Dα(E).

Remark 2.8.

1. Using item 2 of Proposition 2.6, we can graphically represent sets in the first levels of

the difference hierarchy as in Figure 1.

2. This graphical representation makes it clear that Dα(E) is not closed under finite union

nor finite intersection: for instance, if A0 ⊂ A1 ⊂ A2 then
D2(�, A0) ∪ D2(A1, A2) = D3(A0, A1, A2)

hence co-D2(�, A0) ∩ co-D2(A1, A2) = co-D3(A0, A1, A2)

and D3(�, A0, E) ∩ D3(A1, A2, E) = D4(A0, A1, A2, E) .

Proposition 2.9.
⋃

α<ω1
Dα(Σ

0
β(E)) ⊆ Δ0

β+1(E).

Proof. If the Aγ ’s, γ < α are in Σ0
β(E) then so are the

⋃
δ<γ Aδ ’s. Thus, Dα((Aγ)γ<α) is a

countable union of differences of sets in Σ0
β(E) hence is in Σ0

β+1(E). By Proposition 2.6,

we see that E \ Dα((Aγ)γ<α) = Dα+1((Aγ)γ<α, E) ∈ Π0
β+1(E).

Proposition 2.10. Let D,E be topological spaces and f : D → E be continuous. If Y ⊆ E

is in some Hausdorff class Dα(E), α < ω1, then f−1(Y) is in Dα(D).
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2.1.3. The Borel and Hausdorff hierarchies may collapse. As it is well known, the Borel

and Hausdorff hierarchies are proper in uncountable Polish spaces: Σ0
α(E) � Σ0

β(E)

and Dα(Σ
0
ξ(E)) � Dβ(Σ

0
ξ(E)) when α < β. The same for the effective hierarchies (with

α, β < ωCK
1 ) relative to some fixed enumeration of a countable basis of open sets. However,

this is not true in general topological spaces. For instance, if the space is T2 and countable

then Σ0
2(E) = P(E). However, (de Brecht 2013) proves the non-collapse of the Borel and

Hausdorff difference hierarchies in uncountable quasi-Polish spaces, a class containing

Polish spaces and ω-continuous domains.

2.2. Domains

The domain theory refers to the field initiated by Dana Scott in the late 1960s to specify

denotational semantics for functional programming languages. The theory formalizes

the ideas of approximation and convergence via some partially ordered sets called

domains.

Example 2.11. Some examples of Scott topologies on partially ordered sets.

1. Scott topology on (P(N),⊆). For A ∈ P<ω(N), let OA = {X ∈ P(N) | X ⊇ A}. The

Scott topology on P(N) is has the OA’s, for A ∈ P<ω(N), as a topological basis. This

is the topology of ‘positive information’; in contrast, the Cantor topology on 2ω gives

positive and negative information.

2. Scott topology on (P∞(N),⊆). Consider the family P∞(N) of infinite subsets of N as a

topological subspace of P(N).

3. Scott topology on the family (X�ω,�pref) of finite or infinite X-sequences. We suppose X

is any set with at least two elements. For any s ∈ X<ω , let Bs = {u ∈ X�ω | u extends s}.
The Scott topology on the space X�ω is that which admits the Bs’s, s ∈ X<ω , as a

topological basis.

4. Scott topology on the right extended real line (
−→
R ,�). Let

−→
R = R ∪ {+∞}. The open

sets of the topology on
−→
R are

−→
R and the semi-intervals ]x,+∞], for x ∈ R.

5. Extended real line (R̃,�) with duplicated rationals. Let R̃ = R∪ (Q×{+})∪{+∞} and

� be the following total order: +∞ is a maximum element, and for all x, y ∈ R and

q ∈ Q, q <
R̃

(q,+); x <
R̃
y if and only if x < y; and x <

R̃
(q,+) <

R̃
y if and only if

x < q < y. The Scott topology on R̃ is that for which the [(q,+),+∞]’s, q ∈ Q, are a

topological basis.

The following properties are straightforward.

Proposition 2.12. The Scott topologies of spaces in Examples 2.11 are not T2 but

are T0, i.e. they satisfy Kolmogorov’s axiom: given two distinct points, one of them

has a neighbourhood which does not contain the other one (but this may not be

symmetric).

Remark 2.13.

1. As noticed in Selivanov (2005), the finite levels of the Scott Borel hierarchy on P(N)

do not coincide with the corresponding ones on the Cantor space 2ω : Σ0
n(P(N)) �
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Σ0
n(2

ω) � Σ0
n+1(P(N)) for all n ∈ N. The same is true with the effective Borel hierarchy

(cf. Section 5.3). For instance, X = P(N) \ {N}, defined by the formula ∃x (x /∈ X), is

Σ0
1(2

ω) and Σ0
2(P(N)) but neither Scott open nor closed. However, the infinite levels of

the Borel hierarchy on P(N) and 2ω coincide.

2. The only subsets of P(N) that are both open and Fσ are � and P(N). Indeed, suppose

O is open and X is Fσ and O,X are different from �,P(N). Then there exist non-

empty finite subsets X,Y of N such that OX ⊆ O and P(N) \ OY ⊆ X . Observe that

the set X ∪ Y is in O \ X , showing O 	= X .

2.2.1. The Scott topology on dcpo’s. We briefly recall the main definitions and notions,

and refer the reader to classical papers and books, for instance Abramsky and Jung

(1994), Edalat (1997) and Gierz et al. (2003).

Definition 2.14.

1. A dcpo is a partially ordered set (D,�) such that every non-empty directed subset S

has a least upper bound (denoted by �S). A dcpo is pointed if it has a least element

⊥.

2. The Scott topology on a dcpo is the topology that admits as closed sets all sets X

satisfying conditions

— X is a downset: x ∈ X ∧ y � x⇒ y ∈ X.

— X is closed under suprema of directed subsets of D.

Then, O ⊆ D is open in the Scott topology if it satisfies the following conditions.

— O is an upset: x ∈ O ∧ x � y ⇒ y ∈ O.

— Every directed set with supremum in O has an element in O.

Example 2.15. For every x ∈ D, the set Ux = {z | z 	� x} is Scott open.

Proposition 2.16.

1. The Scott topology on a dcpo is T0, i.e. if x 	= y then there exists an open set which

contains only one of the two points x, y. It is T1 (respectively T2 ) if and only if the

order on D is trivial.

2. Let x, y ∈ D. The order on D can be recovered from the topology as the specialization

order: x � y if and only if every Scott open set containing x also contains y if and

only x ∈ {y} (where {y} is the topological closure of {y}).
3. A function f : D → E between two dcpo’s is continuous with respect to the Scott

topologies if and only if it is monotone increasing and preserves suprema of directed

subsets: if S ⊆ D is directed then f(�S) = �f(S).

2.2.2. The Scott topology on domains.

Definition 2.17.

1. Let (D,�) be a dcpo. The approximation (or way-below) relation on D is defined as

follows: let x, y ∈ D, x� y if, for all directed subset S , y � �S implies x � s for some

s ∈ S . We say x approximates, or is way-below, y.
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2. An element x ∈ D is compact (or finite) if x � x. The set of compact elements is

denoted by K(D).

3. ↟x = {y | x� y} and ↡x = {y | y � x}.

Proposition 2.18. Let (D,�) be a dcpo and x, x′, y, y′ ∈ D.

1. x� y ⇒ x � y, and (x′ � x� y � y′) ⇒ x′ � y′.

If x is compact then ∀u, v ((u � x � v) ⇔ (u� x� v)).

2. An element x is compact if and only if ↑x = {y | x � y} is Scott open.

Proposition 2.19. Let (D,�) be a dcpo. The following conditions are equivalent.

i. For every x ∈ D, the set ↡x = {z ∈ D | z � x} is directed and x = �↡x.

ii. There exists B ⊆ D such that, for every x ∈ D, B ∩ ↡x is directed and x = �(B ∩ ↡x).

D is a continuous domain if these conditions hold. Any set B satisfying condition (ii) is

called a basis. D is an ω-continuous domain if (ii) holds for some countable set B. D is an

algebraic (respectively ω-algebraic) domain if K(D) is a basis (and is countable).

Example 2.20. All spaces in Example 2.11 are dcpo’s with the Scott topology. The spaces

P(N), X�ω , R̃ are ω-algebraic domains. Their sets of compact elements are respectively

P<ω(N), X<ω and Q × {+}. The way-below relation on any of these three spaces is the

restriction of the partial order � to K(D)× D. The space
−→
R is an ω-continuous domain

but is not algebraic: there is no compact element and its way-below relation is the strict

order <. The space P∞(N) is not continuous: its way-below relation is empty.

Let us recall classical results in continuous domains.

Proposition 2.21. Let (D,�) be a continuous domain with basis B.

1. (Interpolation property). If M ⊆ D is finite and a� x for each a ∈M then there exists

x′ ∈ B such that M � x′ � x.

2. x� y if and only if y is interior to the upper cone ↑x = {z | x � z}.
3. A set O is open if and only if O =

⋃
x∈O ↟x if and only if O =

⋃
x∈O∩B ↟x. In particular,

the family of sets ↟z, where z varies in B, is a basis of the Scott topology on D.

2.3. Quasi-Polish spaces

Quasi-Polish spaces, developed by de Brecht (2013), are a unifying framework of Polish

spaces and ω-continuous domains. We recall here the definition and main results.

Definition 2.22.

1. Giving up the symmetry axiom of metrics, a quasi-metric on a space E is defined as a

function d : E2 → [0,+∞[ such that, for all x, y, z ∈ E,

x = y ⇔ d(x, y) = d(y, x) = 0, d(x, z) � d(x, y) + d(y, z) .

The topology associated to d is the one generated by the open balls.

2. A sequence (xn)n∈N is Cauchy if limn→+∞ supp�n d(xn, xp) = 0.

3. A quasi-metric space (E, d) is complete if every Cauchy sequence is convergent relative

to the metric d̂ such that d̂(x, y) = max{d(x, y), d(y, x)}.
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4. Topological spaces associated to complete quasi-metrics with a countable topological

basis are called quasi-Polish.

Example 2.23. The Scott topology on P(N) is quasi-Polish for the quasi-metric such that

d(X,Y ) =
∑

n∈X\Y 2−n.

Theorem 2.24 (Künzi 1983). A quasi-metric space (E, d) has a countable topological basis

if and only if the metric space (E, d̂) is separable (i.e. has a countable dense subset).

The following theorem sums up some of the main results in de Brecht (2013).

Theorem 2.25 (de Brecht 2013).

1. A space is quasi-Polish if and only if it is homeomorphic to some Π0
2 subspace of

P(N) endowed with the Scott topology.

2. Polish spaces and ω-continuous domains are quasi-Polish.

3. Every quasi-Polish space E satisfies the following properties:

— (Baire property). The intersection of a sequence of dense open sets is a dense set.

— (Hausdorff–Kuratowski’s property).
⋃

α<ω1
Dα(Σ

0
β(E)) = Δ0

β+1(E) for all 0 < β < ω1.

Remark 2.26. Two examples of subspaces of P(N) illustrate the above theorem.

1. The subspace C = {X ∈ P(N) | ∀i ∈ N (2i ∈ X ⇔ 2i + 1 /∈ X)} =
⋂

i∈N(O2iΔO2i+1) is

Π0
2 in P(N) and is homeomorphic to the Cantor space 2ω (and is therefore Polish).

2. The subspace P∞(N) =
⋂

i∈N

⋃
j�i O{j} is Π0

2 in P(N) hence is quasi-Polish. It has a

countable basis but is not Polish since it is T0 and not T2. Although (P∞(N),⊆) is a

dcpo, it is not a continuous domain since its way-below relation is empty.

2.4. Topological games

The Choquet topological games have been used to characterize Polish spaces (Choquet

1969) and quasi-Polish spaces (de Brecht 2013). We shall use them to characterize

approximation spaces (cf. Definition Section 3.1 infra). Choquet games are a variant

of Banach–Mazur games. The subtlety of this variant is best understood by confronting

definitions and properties of both classes of games. Also, the interest of de Brecht’s

Theorem 2.36 and our Corollary 3.12 about convergent Markov/stationary strategies in

the Choquet game is highlighted by the counterpart (and more powerful) results by Galvin

and Telgársky for Banach–Mazur games (cf. Corollary 2.34, Remark 2.35).

2.4.1. Banach–Mazur and Choquet games. Let us recall the classical definitions.

Definition 2.27 (Choquet 1969; Galvin and Telgárky 1986). Let X be a topological space.

1. In the Banach–Mazur game BM(X) two players, Empty and Nonempty, alternate

turns for ω rounds. On round 0 (respectively i + 1), Empty moves first, choosing a

non-empty open subset U0 ⊆ X (respectively Ui+1 ⊆ Vi). Then, Nonempty responds

with a non-empty open set V0 ⊆ U0 (respectively Vi+1 ⊆ Ui+1). After all the rounds

have been played, Nonempty wins if
⋂

i∈N Vi 	= �. Otherwise, Empty wins.
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2. The Choquet game Ch(X) is the variant of the Banach–Mazur game BM(X), where

at round i Empty picks a pair (xi, Ui) such that Ui is open and xi ∈ Ui, and Nonempty

picks an open set Vi such that xi ∈ Vi ⊆ Ui.

3. A winning strategy for a player (in any of the above games) is a function that takes a

partial play of the game ending with a move by its opponent and returns a move to

play, such that the player wins any play of the game that follows the strategy.

4. A winning strategy for Nonempty is convergent if, when he follows it, the Vi’s are a

basis of neighbourhoods of some x ∈
⋂

i∈N Vi.

Note 2.28. The denominations ‘Banach–Mazur’ and ‘Choquet’ are the most commonly

used (and are historically accurate). However, in Kechris (1995) these games are called

‘Choquet’ and ‘strong Choquet’, respectively.

Remark 2.29. Every winning strategy for Nonempty in the Choquet game Ch(X) yields

one in the Banach–Mazur game BM(X).

The following theorem sums up some known results around these topological games.

Theorem 2.30. Let X be a topological space.

1. (Oxtoby 1957, cf. Kechris 1995, Theorem 8.11) X has the Baire property (i.e. the

intersection of countably many dense open sets is dense) if and only if player Empty

has no winning strategy in the Banach–Mazur game BM(X).

2. (Choquet 1969, cf. Kechris 1995, Theorem 8.18) X is Polish if and only if X has a

countable basis, is T1 and regular and player Nonempty has a winning strategy in the

Choquet game Ch(X).

3. (de Brecht 2013, Theorem 51) X is quasi-Polish if and only if X has a countable basis,

and player Nonempty has a convergent winning strategy in the Choquet game Ch(X).

2.4.2. Markov and stationary strategies. The pioneer work of Schmidt (1966) and Choquet

(1969) considered strategies of a very simple form. Then Galvin and Telgárky (1986)

obtained deep results for other strategies.

Definition 2.31. A winning strategy is stationary (respectively Markov) if it depends only

on the last move of the opponent (respectively and on the ordinal rank of the round).

Theorem 2.32 (Galvin and Telgárky 1986, Theorems 5 and 7).

Let (S,�) be a non-empty partially ordered set. Let R be a family of monotone

(non-strictly) decreasing sequences in S . In the game G(S,�, R), player I starts and plays

elements a0, a1, . . . of S , player II plays elements b0, b1, . . . of S in such a way that ai+1 � bi
and bi � ai for all i. Player II wins if and only if (a0, a1, . . .) ∈ R. Suppose R is such that

for all monotone (non-strictly) decreasing sequences (xi)i∈N, (yi)i∈N in S ,

(∀i ∃j yj � xi) ∧ (∀j ∃k xk � yj) ∧ (xi)i∈N ∈ R ⇒ (yi)i∈N ∈ R .

1. If player II has a winning strategy in G(S,�, R) then he has one that depends only on

the last move of I and the last move of II.

2. If player II has a Markov winning strategy in G(S,�, R) then he has a stationary one.
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Corollary 2.33 (Galvin and Telgárky 1986, Corollaries 9 and 14).

1. If player Nonempty has a winning (respectively and convergent) strategy in the

Banach–Mazur game BM(X) then he has one which depends only on the last move

of Empty and the last move of Nonempty (respectively and is convergent).

2. If player Nonempty has a Markov (respectively and convergent) winning strategy in

BM(X) then he has a stationary (respectively and convergent) one.

3. (Debs 1984, 1985). There exists a T2 (even completely regular) space X such that

player Nonempty has no stationary winning strategy in BM(X) but has a winning

strategy which depends only on the last two moves of Empty.

Remark 2.34. Theorem 2.32 does not apply to the Choquet game because the players do

not play in the same partially ordered set. For simple winning strategies for Nonempty

in the Choquet game Ch(X) in particular spaces X, see Section 5 of Bennett and Lutzer

(2009).

The proof of item 3 of Theorem 2.30 given by de Brecht (Theorem 51 in de Brecht 2013)

yields more:

Theorem 2.35 (de Brecht 2013).

If X is quasi-Polish then player Nonempty has a Markov convergent winning strategy

in the Choquet game Ch(X).

We shall improve this last result (replacing Markov by stationary), cf. Corollary 3.12.

3. Approximation spaces: the spaces of Choquet games

3.1. Approximation spaces

We introduce another class of topological spaces: approximation spaces. They include all

continuous domains, all Polish spaces and, in fact, all quasi-Polish spaces. The definition

is based on an approximation relation which formalizes a containment relation between

basic open sets. This containment relation ensures that inclusion-decreasing chains have

a non-empty intersection; however, this intersection may not be reduced to a singleton

set. An example of an approximation relation is obtained by lifting to basic open sets the

way-below relation in a dcpo. We borrowed the notation � from this particular example.

Theorem 3.11 proves that a subclass of second-countable approximation spaces coin-

cides with the class of quasi-Polish spaces. This gives an ‘à la domain’ characterization

of quasi-Polish spaces. Whether the notion of approximation space captures a substantial

part of the rich theory developed by de Brecht for quasi-Polish spaces is a question still

to be investigated. In the next sections, we just show two pleasant properties: a Π0
2 Baire

property and Hausdorff’s characterization of Δ0
2.

Definition 3.1. Let E be a topological space.

— An approximation relation for E is a binary relation � on some topological basis B
such that, for all U,V , T ∈ B,

1. if U � V then V ⊆ U,
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2. if U ⊆ T and U � V then T � V (in particular, � is transitive),

3. for all x ∈ U, there exists W ∈ B such that x ∈W and U �W ,

4. for every sequence (Ui)i∈N of sets in B such that Ui � Ui+1 for all i, the intersection

set
⋂

i∈N Ui is non-empty.

— Convergent approximation relations are obtained by strengthening condition (4) to

(4+) Every sequence (Ui)i∈N of sets in B such that Ui � Ui+1 for all i, is a

neighbourhood basis of some x ∈
⋂

i∈N Ui (i.e. each open set containing x also

contains some Ui).

— An approximation relation is hereditary if, for every closed subset C of E,

�C = {(C ∩U,C ∩ V ) | U � V and C ∩U,C ∩ V 	= �}

is an approximation relation for the subspace C .

— A space E is an approximation space (respectively convergent approximation space,

respectively hereditary approximation space) if it admits an approximation (respectively

convergent approximation, respectively hereditary approximation) relation.

Example 3.2. Every subspace D of the Scott domain P(N) which is an upset (i.e. if X ⊆ Y

and X ∈ D then Y ∈ D) is a trivial approximation space: containment is an approximation

relation on the basis {D ∩ OA | α ∈ P<ω(N)}, where OA = {X | A ⊆ X} since N belongs

to all D ∩ OA’s. In particular, the dcpo (P∞(N),⊆) is an approximation space which is

neither Polish nor a continuous domain. In P(N), inclusion is a convergent approximation

relation since
⋃

i∈N Ai ∈
⋂

i∈N OAi
and the OAi

’s converge to
⋃

i∈N Ai.

Approximation relations exist on all topological basis or on none.

Lemma 3.3. Let B and C be topological basis of a space E. If there exists an (respectively

convergent; respectively hereditary) approximation relation on B then there exists one on

C.

Proof. Let � be an approximation relation on B. Consider the relation � on C such

that, for any C,D ∈ C,

(∗) C � D ⇐⇒ ∃U,V ∈ B (C ⊇ U � V ⊇ D) .

Let us check that � satisfies conditions (1) to (4) of Definition 3.1. Conditions (1) and

(2) are straightforward. We now look at Condition (3). Suppose x ∈ C ∈ C. Let U ∈ B be

such that x ∈ U ⊆ C . Applying condition (3) for �, there exists V ∈ B such that x ∈ V

and U � V . Let D ∈ C be such that x ∈ D and D ⊆ V . Then C � D so that condition (3)

holds for �. Finally, we check Condition (4). Suppose Ci � Ci+1 for all i. Let Ui, Vi ∈ B
be such that Ci ⊇ Ui � Vi ⊇ Ci+1. In particular, Vi ⊇ Ui+1 � Vi+1 hence Vi � Vi+1 by

condition (2) for �. Applying condition (4) for �, we see that
⋂

i∈N Ci =
⋂

i∈N Vi 	= � so

that condition (4) holds for �.

In case � is convergent then the Vi’s are a neighbourhood basis of some x ∈
⋂

i∈N Vi.

Hence, so are the Ci+1’s and � is convergent. Suppose, � is hereditary. To see that �
is also hereditary, observe that, for any closed subset F of E, the relation �F is obtained

from �F via condition (∗).
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3.2. Approximation spaces versus quasi-Polish spaces

Proposition 3.4. Polish spaces and continuous domains are convergent approximation

spaces.

Proof. Case of Polish spaces. Let B be the basis consisting of open balls centred in

some fixed countable dense set and having rational radius. For U,V ∈ B, let U � V if

and only if V ⊆ U and diam(V ) � diam(U)/2}, where V is the topological closure of V

and diam is the diameter. All wanted conditions on � are straightforward.

Case of continuous domains. Let B be a basis in the sense of continuous domains. The

family B = {↟b | b ∈ B and ↟b 	= �} is a topological basis. Define the relation � on B
as U � V if and only if V = ↟c for some c ∈ U. To check condition (1), observe that

if U = ↟b then c ∈ U yields b � c, so that U = ↟b ⊇ ↟c = V . As for condition (2), if

W ⊇ U � V and V = ↟c with c ∈ U then c ∈W hence W � V . As for condition (3), let

x ∈ U = ↟b, i.e. b � x. Using the interpolation property, let c be such that b � c � x

and set W = ↟c. Then x ∈ W and c ∈ ↟b = U, so that U � W . Finally, for condition

(4+), suppose Ui � Ui+1 for all i ∈ N and choose bi+1 ∈ Ui such that Ui+1 = ↟bi+1. Since

bi+2 ∈ Ui+1 = ↟bi+1, we have bi+1 � bi+2. Let x be the supremum of the bj ’s for j � 1.

Then x ∈
⋂

j�1 ↟bj =
⋂

i∈N Ui which is therefore a non-empty set. Also, the ↟bj = Uj ’s,

j � 1, are a basis of neighbourhoods of x.

Using de Brecht’s Theorem 2.25 for second-countable spaces, the above Proposition is

partly subsumed by the next theorem.

Theorem 3.5. Quasi-Polish spaces are convergent approximation spaces.

Proof. By de Brecht’s result stated in item 1 of Theorem 2.25, it suffices to show that any

Π0
2 subspace A of P(N) (with the Scott topology) is a convergent approximation space. In

this proof, we use Greek letters to denote finite sets. For α ∈ P<ω(N), let Oα = {X | α ⊆ X}.
As a basis B of the subspace A, we consider those Bα = Oα ∩A, α ∈ P<ω(N), which are

non-empty. Observe that if U ∈ B, there may be infinitely many α’s such that U = Bα.

The family A is of the form A =
⋂

n∈N(Un ∪ Fn) where Un =
⋃

α∈In Oα is open in P(N)

and Fn is closed in P(N). Since Fn is a countable intersection of closed sets of the form

P(N) \ Oα, by merging this intersection with the global one, we can reduce to the case

where Fn = P(N) \ Oαn with αn ∈ P<ω(N). Then,

X ∈ A⇔ ∀n (αn 	⊆ X ∨ ∃γ ∈ In γ ⊆ X) ⇔ ∀n (αn ⊆ X ⇒ ∃γ ∈ In γ ⊆ X) .

Let us call clause n the clause αn ⊆ X ⇒ ∃γ ∈ In γ ⊆ X. Thus, a set X ⊆ N is in A if and

only if it satisfies clause n for all n. We introduce two notions:

— clause n is a U-clause if U ⊆ Oαn (i.e. the premiss αn ⊆ X of clause n is satisfied by all

X ∈ U),

— clause n is U-solved if U ⊆ Oγ for some γ ∈ In. (i.e. the conclusion ∃γ ∈ In γ ⊆ X of

clause n is satisfied by all X ∈ U with the same witness γ).

Observe that if W ⊇ U then any W -clause is a U-clause and any W -solved W -clause

is a U-solved U-clause. We denote by nU the least n such that clause n is a U-unsolved
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U-clause or +∞ if there is no such clause. We now define the relation � on B : for

U,V ∈ B,

U � V ⇐⇒ V ⊆ U and

⎧⎪⎪⎨
⎪⎪⎩

(i) either nU = +∞
(ii) or nU < +∞ and clause nU is V -solved

(iii) or nU < +∞ and, for some m < nU , clause m

is not a U-clause and is a V -solved V -clause.

We check conditions (1), (2), (3) and (4+) of Definition 3.1. Condition (1) is trivial.

Condition (2). Suppose W ⊇ U � V . If nW = +∞ then W � V holds by condition (i).

So we shall suppose nW < +∞. Suppose nW < nU . Then clause nW , being a W -clause

hence a U-clause, is U-solved (by definition of nU), hence it is also V -solved (since U ⊇ V ),

so that W � V holds by condition (ii). We now assume nU � nW < +∞. Since nU is

finite, U � V cannot hold by condition (i). If U � V holds by condition (iii) then the

witnessing clause m is not a U-clause hence is not a W -clause, so that W � V holds

by condition (iii). Suppose now that U � V holds by condition (ii). If nW = nU then

W � V also holds by condition (ii). Suppose nW > nU . If clause nU were a W -clause then

it would be W -solved (by definition of nW and inequality nU < nW ) hence it would be a

U-solved U-clause, contradicting the definition of nU . Thus, clause nU is not a W -clause

and W � V holds by condition (iii).

Condition (3). Let X be in U ∈ B. If nU = +∞ then it suffices to set V = U. Suppose,

now that nU < +∞. Since clause nU is a U-clause and X ∈ U, we have αnU ⊆ X so that

X satisfies the premiss of clause nU . Then, X being in A, satisfies all clauses, in particular

clause nU . So, there exists some γ ∈ InU such that γ ⊆ X. Now, U ∈ B hence U = A ∩ Oβ

for some β ∈ P<ω(N). Set V = U ∩ Oγ . Then V = A ∩ Oβ ∩ Oγ = A ∩ Oβ∪γ ∈ B. Also,

X ∈ V since X ∈ U and γ ⊆ X. Finally, V solves clause nU , hence U � V by condition

(ii) of �.

Condition (4). Let (Ui)i∈N be a sequence of families in B such that Ui � Ui+1 for all i.

Let βi be any set in P<ω(N) such that Ui = A ∩ Oβi . Set δi =
⋃

j�i βj (so that the δi’s are

increasing with i). Since Uj ⊇ Ui for j < i, we have Ui = A ∩
⋂

j�i Oβi = A ∩ Oδi . To

finish the proof, we show that the set X =
⋃

i∈N δi is in the family
⋂

i∈N Ui = A∩
⋂

i∈N Oδi

(which is therefore non-empty). Clearly, X ∈
⋂

i∈N Oδi . To show that X ∈ A, i.e. X satisfies

clause n for all n, we argue by contradiction. Suppose clause n is the first clause not

satisfied by X. Then, X satisfies clause m for all m < n. This means that if αm ⊆ X then

there is γX,m ∈ Im such that γX,m ⊆ X. Also, X satisfies the premiss of clause n (but not

its conclusion), i.e. αn ⊆ X. Since αn and those αm’s, γX,m’s included in X (for m < n) are

finite, they are all included in δi for some i. Thus,

— for each m < n, clause m is a Ui-clause if and only if it is a Ui+1-clause (if and only if

αm ⊆ X),

— for each m < n, if clause m is a Ui-clause then it is Ui-solved,

— clause n is a Ui-clause and is not Uj-solved for any j � i.

Then, clause n is the first Ui-unsolved Ui-clause and no clause m, m < n, can be a Ui+1-

solved Ui+1-clause without being a Ui-clause. As a consequence, the assumed property
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Ui � Ui+1 necessarily comes from condition (ii) in the definition of �, i.e. clause n is

Ui+1-solved. Since X ∈ Ui+1, clause n is satisfied by X. This is a contradiction.

Condition (4+). To show that the Ui’s are a basis of neighbourhoods of X in A, it

suffices to prove that, for all β ∈ P<ω(N) such that X ∈ Oβ , there exists i such that

A∩Oβ ⊆ A∩Oδi . Since X =
⋃

i∈N δi ∈ Oβ we have β ⊆ δi for some i hence Oδi ⊆ Oβ and

the wanted inclusion A ∩ Oδi ⊆ A ∩ Oβ .

Example 3.6. Applied to the quasi-Polish space P∞(N) and its basis {OA ∩ P∞(N) | A ∈
P<ω(N)} (cf. Examples 2.11 and 2.20), the previous proof gives an approximation relation

which is not the containment relation (cf. Example 3.2). Clause n is ∃j � n j ∈ X (i.e. An

is empty). It is an OA ∩P∞(N)-clause and it is OA ∩P∞(N)-solved if and only if n � maxA.

Then, for A,B ∈ P<ω(N), we have OA ∩ P∞(N) � OB ∩ P∞(N) if and only if A ⊆ B and

max(A) < max(B), with the convention: max� = −1.

The converse of Theorem 3.5 is false.

Proposition 3.7. There exists a Hausdorff convergent approximation space with a count-

able basis which is not a hereditary approximation space hence is not quasi-Polish.

Proof. Consider the topology τ on the reals generated by the usual open sets and the

set R \Q of irrational numbers. A topological basis B is {]a, b[, ]a, b[\Q | a < b}. Consider

the relation � on B defined by the following clauses:

]a, b[ � ]c, d[ ⇐⇒ a < c < d < b (i.e. [c, d] ⊂]a, b[)

]a, b[ � ]c, d[\Q ⇐⇒ a < c < d < b

]a, b[\Q � ]c, d[\Q ⇐⇒ θ(]a, b[\Q) �Baire θ(]c, d[\Q),

where d− c � (b−a)/2 and θ is the usual homeomorphism (given by continued fractions)

between R \ Q and the Baire space Nω and �Baire is any convergent approximation

relation on the family of images by θ of bounded open real intervals (cf. Propositions 3.4

infra and 3.3 supra). It is easy to check that � makes (R, τ) an approximation space.

However, Theorem 3.13 infra ensures that (R, τ) is not a hereditary approximation space

since Q is closed in (R, τ) and, as a subspace, has the usual topology induced by R hence

fails the Baire property.

Open Problem 3.8. Suppose, a space is (T0 or T1) hereditary approximation space and

has a countable topological basis. Is it convergent (hence quasi-Polish)?

3.3. Characterization as spaces of Choquet games

The next theorem asserts that approximation relations on a topological basis of X are

essentially normalized strategies for player Nonempty in the Choquet game Ch(X).

Theorem 3.9. If X is a topological space with a well-orderable topological basis (in

particular, if X has a countable basis) then X is an approximation (respectively convergent

approximation) space if and only if player Nonempty has a stationary (respectively and

convergent) winning strategy in the Choquet game Ch(X).

https://doi.org/10.1017/S096012951300025X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951300025X


Borel and Hausdorff hierarchies in topological spaces of Choquet games 1505

Proof. Suppose � is an approximation relation on some topological basis B of X.

Fix some well ordering of B. Define a stationary strategy σ for player Nonempty in

the Choquet game Ch(X) as follows. If U is a non-empty set and x ∈ U then define

σ(x,U) = B where, letting C be least in B such that x ∈ C ⊆ U, applying condition (3) of

Definition 3.1, B is least in B such that C � B and x ∈ B. If

(x0, U0), B0, (x1, U1), B1, . . .

is a play where Nonempty follows this strategy σ, there are open sets C0, C1, . . . in B such

that

U0 ⊇ C0 � B0 ⊇ U1 ⊇ C1 � B1 . . .

Applying condition (2), we see that B0 � B1 � . . .. Condition (4) of Definition 3.1 ensures

that
⋂

i∈N Ui =
⋂

i∈N Bi 	= �. Thus, σ is a winning strategy for player Nonempty. In case

� is convergent, condition (4+) ensures that σ is convergent.

Conversely, suppose that τ is a winning stationary strategy for Nonempty in the Choquet

game Ch(X). In particular, x ∈ τ(x,U) ⊆ U for all open set U and x ∈ U. Fix some basis

B of X and define a relation � on this basis as follows: for B,C ∈ B

B � C ⇐⇒ ∃D ∈ B ∃x ∈ D (B ⊇ D ∧ x ∈ C ⊆ τ(x, D)) .

Let us check the four conditions of Definition 3.1. Condition (1) is trivial since C ⊆
τ(x, D) ⊆ D ⊆ B. Condition (2) is obvious from the definition of �. As for condition (3),

if x ∈ B then x ∈ τ(x, B) so that, for any C ∈ B such that x ∈ C ⊆ τ(x, B), we have B � C .

We now show condition (4). Suppose that Bn � Bn+1 for all n. Let Dn ∈ B, xn ∈ Dn be

such that Bn ⊇ Dn and xn ∈ Bn+1 ⊆ τ(xn, Dn). Observe that the infinite sequence

(x0, D0), τ(x0, D0), (x1, D1), τ(x1, D1), (x2, D2), τ(x2, D2), . . .

is a legal play of the Choquet game Ch(X) in which Nonempty follows his winning strategy

τ. Since τ(xn, Dn) ⊇ Bn+1 ⊇ Dn+1 ⊇ τ(xn+1, Dn+1), we have
⋂

n∈N Bn =
⋂

i∈N Dn 	= �. In

case τ is a convergent stationary strategy, it is clear that � is a convergent approximation

relation.

Remark 3.10. The above proof fails if we consider the Banach–Mazur game in place of

the Choquet game: we fail to obtain condition (3) for the relation � associated to τ.

3.4. Quasi-Polish and second countable convergent approximation spaces coincide

Theorem 3.11. Quasi-Polish spaces coincide with T0 convergent approximation spaces

with a countable basis.

Proof. By Theorem 3.5, quasi-Polish spaces are convergent approximation spaces. If X is

a convergent approximation space then, using Theorem 3.9, Nonempty has a convergent

winning strategy in the Choquet game Ch(X). By de Brecht’s result (cf. item 3 of

Theorem 2.30), if X is also T0 and has a countable basis then it is quasi-Polish.

Putting together Theorems 3.11, 3.9 and 2.35 we can complement Corollary 2.33.
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Corollary 3.12. Let X be a T0 space with a countable basis. The following conditions are

equivalent:

1. Nonempty has a convergent winning strategy in the Choquet game Ch(X),

2. Nonempty has a stationary convergent winning strategy in the Choquet game Ch(X),

3. X is a quasi-Polish space.

3.5. The Π0
2 Baire property in approximation spaces

The Baire property holds in Polish spaces and in compact T2 (i.e. Hausdorff) spaces, and

it is also true in quasi-Polish spaces (de Brecht 2013): the intersection of countably many

dense open sets is dense. It trivially implies that the intersection of countably many dense

Gδ sets is dense. The next result is a formulation of the Baire property for spaces, where

the Π0
2 and Gδ classes do not coincide. As a corollary, we see that the classical Baire

property on ω-continuous domains and also that on quasi-Polish spaces (cf. Theorem 2.25)

can be strengthened from Gδ to Π0
2.

Theorem 3.13. If X is an approximation space with a well-orderable topological basis (in

particular, if X has a countable basis) then it satisfies the Baire property for Π0
2(E) sets:

the intersection of countably many dense Π0
2(E) sets is dense.

Proof. Using Lemma 3.3, consider a well-orderable basis B and an approximation

relation � on B. We fix some well order on B, and we will speak freely of the least U in

B satisfying a given property. Since Π0
2(E) sets are intersections of countably many sets

in co-D2(E) (i.e. unions of an open and a closed sets), and any superset of a dense set is

dense, it suffices to prove the Baire property for co-D2 sets. Suppose X =
⋂

n∈N Un ∪ Fn

where, for each n, Un is open, Fn is closed and Un ∪Fn is dense. We prove that X is dense,

i.e. X meets O for each O ∈ B. Fix some π : N → N such that π−1(j) is infinite for each

j ∈ N. Fix some O ∈ B. We inductively define a sequence of basic open sets (On)n∈N such

that O � O0 and On � On+1 for all n.

a. Let O0 be the least W ∈ B such that O � W (there exists such a W : take any

element x in O and apply condition (3) of Definition 3.1).

b. Suppose n � 1, On−1 is defined and let W ∈ B be least such that On−1 � W (as

above there exists such a W ). If Uπ(n) contains some W ∗ such that W � W ∗ then

set On = W ∗. Otherwise, set On = W . The following Claim finishes the proof of the

Theorem.

Claim. The set
⋂

n∈N On is non-empty and is included in O ∩
(
∩j∈NUj ∪ Fj

)
.

Proof of Claim. Since� is transitive, On � On+1 holds for all n’s and the non-emptiness

of
⋂

n∈N On is ensured by condition (4) of Definition 3.1. Let x ∈
⋂

n∈N On. By clause (a)

we have O � O0. Thus, O0 ⊆ O and x ∈ O. Let j ∈ N. Suppose x /∈ Uj , we show that

x ∈ Fj . Since x /∈ Uj we have On 	⊆ Uj for all n ∈ N. Let n be such that π(n) = j, clause

(b) ensures that On = W (instead of W ∗) and

(*) Uj contains no V ∈ B such that On � V .

Since Fj is closed, to show that x ∈ Fj , it suffices to prove that x is adherent to Fj .

Consider T ∈ B such that x ∈ T , we have to prove that T meets Fj . Let n be such that
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π(n) = j. Since Uj ∪ Fj is dense and T ∩ On is non-empty (it contains x), there exists

xn ∈ (Uj ∪ Fj) ∩ T ∩ On. By way of contradiction, suppose xn is in Uj . Then let S ∈ B be

such that xn ∈ S ⊆ Uj ∩ T ∩ On. Condition (3) yields some V ∈ B such that xn ∈ V and

S � V . Using condition (2) and inclusion S ⊆ On we have On � V . Now, we also have

V ⊆ S ⊆ Uj , contradicting (*). Thus, xn ∈ Fj; hence, T meets Fj .

Remark 3.14. The fact that every continuous domain D satisfies the Π0
2(D) Baire property

questions on a possible relation with the Lawson topology. Recall that the Lawson

topology on a continuous domain is the refinement of the Scott topology such that the

complement of the uppercone set ↑x is open, for each x in D. The Lawson topology is

T2 and compact, so it satisfies the usual Baire property with Gδ sets. Also, the Scott Π0
2

class is included in the Lawson class Gδ . However, the Π0
2 Baire property for the Scott

topology differs from the usual Gδ Baire property for the Lawson topology because the

notion of dense set is not the same in the two topologies.

3.6. Hausdorff ’s theorem and the Π0
2 Baire property

Hausdorff–Kuratowski’s theorem establishes that for Polish spaces the inclusion in

Proposition 2.9 is an equality:
⋃

α<ω1
Dα(Σ

0
β(E)) = Δ0

β+1(E). One of the properties of

Polish spaces used in the proof of this result is the classical Baire property. De Brecht

(2013) has proved that Hausdorff–Kuratowski’s theorem holds for quasi-Polish spaces.

Our next theorem gives conditions of approximation spaces to establish the case β = 1

i.e. Hausdorff’s theorem Δ0
2(E) =

⋃
α<ω1

Dα(E). The theorem pinpoints some topological

properties that suffice to prove this equality. These properties are true in second countable

hereditary approximation spaces. A similar result was obtained in Tang (1981) for the

Scott domain P(N). Using a different proof Selivanov (2005) proved it for ω-algebraic

domains.

Theorem 3.15. Let E be a topological space satisfying the following properties.

i. There exists a countable basis of open sets.

ii. Every closed subspace F of E satisfies the Π0
2(E)-Baire property: the intersection of

countably many Π0
2(E) subsets of F which are dense in F is also dense in F .

Then,
⋃

α<ω1
Dα(E) = Δ0

2(E).

Proof. The ⊆ inclusion is Proposition 2.9. For the ⊇ inclusion, we follow, mutatis

mutandis, Hausdorff’s original proof with residues and adjoins, as exposed in Kechris

(1995), Theorem 22.27 pages 176–177. For any subset A ⊆ E, we define by transfinite

recursion a family (Fα)α<ω1
:

F0 = E, F2α+1 = A ∩ F2α , F2α+2 = (E \ A) ∩ F2α+1 , Fλ =
⋂
α<λ

Fα if λ is limit.

Applying property (i), let (On)n∈N be a countable basis of open sets of E. The Fα’s are a

decreasing sequence of closed sets. If Fξ+1 = Fξ then Fα = Fξ for all α � ξ. If Fα+1 is

https://doi.org/10.1017/S096012951300025X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951300025X


V. Becher and S. Grigorieff 1508

a strict subset of Fα then there is some On which meets Fα but not Fα+1. Since there are

countably many On’s, this implies that there is some countable θ such that Fθ = Fα for

all α � θ. We shall consider the least even such θ.

Claim. If A is Δ0
2(E) then Fθ = �.

Proof of Claim. Suppose Fθ 	= �. Applying property (ii), the subspace Fθ is in E hence

it satisfies the Baire property. Since Fθ = Fθ+2, we have Fθ = A ∩ Fθ = (E \ A) ∩ Fθ . Thus,

arguing in the subspace Fθ , the sets A ∩ Fθ and (E \ A) ∩ Fθ are Π0
2(Fθ) dense subsets of

Fθ . Since they are disjoint, this contradicts property (ii) in Fθ .

Letting θ = 2ζ and B =
⋃

α<ζ F2α+1 \ F2α+2, we claim that A = B. Indeed, suppose

x ∈ A and let η be least such that x /∈ Fη . The inductive definition of the Fα’s ensures

that η = 2α + 2 for some α. Therefore, x ∈ F2α+1 \ F2α+2 hence x ∈ B. Similarly, if x /∈ A

and η is least such that x /∈ Fη then η = 2α + 1 for some α. Thus, x ∈ F2α \ F2α+1

hence x /∈ B. Observe that, for λ limit, we have (E \ Fλ) \
⋃

α<λ(E \ Fα) = �. Thus,

A = B =
⋃

α<ζ(E \ F2α+2) \ (E \ F2α+1) = Dθ+1((E \ Fα)α�θ) hence A is in Dθ+1(E).

Corollary 3.16. Equality
⋃

α<ω1
Dα(E) = Δ0

2(E) holds in any hereditary approximation

space having a countable basis.

Open Problem 3.17. What topological conditions ensure higher levels of Hausdorff–

Kuratowski’s theorem?

4. The Hausdorff hierarchy in continuous domains

Selivanov made a fine analysis of the Hausdorff difference hierarchy in ω-algebraic

domains and he proved Hausdorff’s theorem for these spaces (Selivanov 2005). He also

showed the non-existence of ambiguous sets in the Hausdorff hierarchy, provided there

is a least element in the ω-algebraic domain. As stated in Selivanov (2008, Theorem 3.4),

the methods in his paper of 2005 can be pushed from ω-algebraic to ω-continuous

domains.

In this section, we reconsider the question of the non-existence of ambiguous sets in the

Hausdorff hierarchy for continuous domains (possibly not ω-continuous). We prove that

the hypothesis of a least element considered by Selivanov can be removed for successor

levels of the Hausdorff hierarchy, but not for limit levels. Although this improvement

is a modest addition to Selivanov’s result (proofs being, mutatis mutandis, the same), it

requires to use the machinery of well-founded alternating trees developed in Selivanov

(2005). The extension from ω-continuous domains to continuous domains led us to

consider possibly non-countable alternating trees. In fact, the countability of the domain

basis is useful only to ensure that the tree is countable, hence the rank of an alternating

tree is countable. But this hypothesis appears directly as an assumption on the ordinal α

in Theorems 4.7 and 4.8.

4.1. Alternating trees

First, we recall some simple notions about possibly uncountable trees.
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Definition 4.1.

1. A tree is any non-empty set of finite sequences closed under prefix. The root of a tree

is the empty sequence nil. If σ is in a tree T we let Tσ be the tree {τ | στ ∈ T }.
2. A tree T is well founded if it has no infinite branch. The ranks of the elements in a

well-founded tree T are defined inductively: rankT (σ) = sup{rankT (σn) + 1 | σn ∈ T }
(convention for leaves of T : sup � = 0). The rank of T is that of its root.

3. An alternating tree is a map f : T → {0, 1} such that T is a tree and f(τ) 	= f(σ)

whenever σ is a son of τ (i.e. τ is a prefix of σ and the length of σ is the successor of

that of τ). We say f is ε-alternating if f(nil) = ε.

4. An embedding of an alternating tree g : S → {0, 1} into an alternating tree f : T →
{0, 1} is a monotone increasing (with respect to the prefix ordering on finite sequences)

injective map θ : S → T such that g(σ) = f(θ(σ)). We write g � f.

The next basic result is taken from Selivanov (2005), Lemma 3.6 page 48.

Lemma 4.2. Let f : T → {0, 1} be a well-founded alternating tree with rank α. For every

β < α and every ε ∈ {0, 1}, there exists an ε-alternating tree gε � f with rank β.

Proof. We reproduce Selivanov’s proof. Argue by induction on α. If α is finite then take

a branch of length α and remove an appropriate tail and/or the root. If α is limit then,

for some x, T(x) (cf. Definition 4.1) has rank γ such that β < γ < α. Use the induction

hypothesis with f(x) : T(x) → {0, 1} such that f(x)(σ) = f(xσ). Finally, suppose α = λ+m+1

with λ limit and m ∈ N. If β < λ+m then let x such that T(x) has rank λ+m and use the

induction hypothesis. Suppose now β = λ + m. Let s with length m + 1 such that Ts has

rank λ. Let η be the cofinality of λ and let (λξ)ξ<η be strictly increasing with supremum λ

and xξ be such that Tsxξ has rank λξ . Let gξ,δ � fsxξ+1
for δ ∈ {0, 1} be δ-alternating with

rank λξ . Set gε(0
p) = f(s�p) for p � m and gε(0

mξσ) = gξ,δ(σ) where δ is chosen so as to

get alternation from 0m to 0mξ.

4.2. Alternating trees and the Hausdorff hierarchy

The following notion plays the role of intervals [p, x] in Selivanov (2005).

Definition 4.3. Let b, x be elements of the domain D. We let �b, x] = {y | b� y � x}.

Proposition 4.4. Let (D,�) be a dcpo and A ∈ Σ0
2(D). If (xi)i∈I is a directed system with

supremum in A then xi ∈ A for all i large enough. In particular, if D is a continuous

domain with basis B ⊆ D and x ∈ A then there exists b ∈ B such that b � x and

�b, x] ⊆ A.

Proof. Let A =
⋃

n∈N Un \ Vn, where Un, Vn are open. Let x = �ixi. Since x ∈ Un and

Un is Scott open, the xi’s are in Un for i large enough. Since x /∈ Vn and Vn is an upset,

no xi is in Vn. Thus, the xi’s are in Un \ Vn hence in A for i large enough.

To keep the presentation self-contained, we prove the extensions to continuous domains

of Theorems 3.10 and 3.14 in Selivanov (2005). Proofs are almost the same: compact

elements are replaced by elements of some fixed basis B and the countability of the basis
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(which ensures the countability of the rank of alternating B-trees, cf. Definition 4.5) is

replaced by the assumed countability of the considered ordinal α.

Definition 4.5. Let (D,�) be a dcpo and B ⊆ D. If A is any subset of D we let χA : A→
{0, 1} be the characteristic function of A (which takes value 1 on A).

1. A B-tree is a map f : T → B where T is a tree.

2. A B-tree f : T → B is (A, ε)-alternating if the tree χA ◦ f : T → {0, 1} is ε-alternating

in the sense of Definition 4.1, i.e. f(σn) ∈ A⇔ f(σ) /∈ A for all n ∈ N and σ, σn ∈ T .

3. Let � be � or �. A B-tree f is �-increasing if f(σ) � f(σn) for all σ, σn ∈ T .

Proposition 4.6. Let (D,�) be a dcpo and B ⊆ D. If A is Δ0
2(D) then every A-alternating

�-increasing B-tree f : T → B is well founded.

Proof. Let (ni)i∈N be an infinite branch of f. The f(n0 . . . ni)’s are �-increasing. Let x be

their supremum. Suppose x ∈ A. Proposition 4.4 establishes that f(n0 . . . ni) is in A for all

i large enough, contradicting alternation of f. Idem if x /∈ A.

The next result is a slight variant of Selivanov (2005, Proposition 3.8 and Theorem 3.10).

Theorem 4.7. Let (D,�) be a dcpo, B ⊆ D, A ∈ Δ0
2(D) and 0 < α < ω1.

1. If A ∈ Dα(D) then there is no �-increasing (A, 1)-alternating B-tree with rank α.

2. If D is a continuous domain with basis B, the following conditions are equivalent.

i. A ∈ Dα(D).

ii. There is no �-increasing (A, 1)-alternating B-tree with rank α.

iii. There is no �-increasing (A, 1)-alternating B-tree with rank α.

Proof.

1. We argue by induction on α. Let A = Dα((Aβ)β<α) where the Aβ ’s are a monotone

increasing α-sequence of open sets. By way of contradiction, suppose there exists an

increasing (A, 1)-alternating B-tree f : T → B with rank α. Since f(nil) ∈ A we have

f(nil) ∈ Aβ \
⋃

γ<β Aγ for some β < α, β 	∼ α. Since f(nil) � f(σ) for all σ ∈ T and

Aβ is open (hence, an upset), we see that the range of f is included in Aβ . If (n) ∈ T

then f((n)) /∈ A hence f((n)) ∈ Aβ \ A ⊆
⋃

γ<β Aγ . Since
⋃

γ<β Aγ is open (hence, an

upset) we see that f(σ) ∈
⋃

γ<β Aγ for all σ ∈ T , σ 	= nil. Let A− = Dα((Aγ)γ<β).

Then, f is an (A−, 0)-alternating B-tree. Now, f has rank α and Lemma 4.2 implies

that there exists g � f which is an (A−, 1)-alternating B-tree with rank β. Since A−

is in Dβ , the inductive hypothesis is contradicted.

2. Since i ⇒ ii is item 1 and ii ⇒ iii is trivial, it remains to prove iii ⇒ i. For

each b ∈ B, let Sb be the family of finite sequences (b, b1, . . . , bk) of elements of B

satisfying the following conditions:

— b� b1 � · · · � bk ,

— bi ∈ A⇔ bi+1 /∈ A for all 0 � i < k (with b0 = b).
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Fix some bijection θ between B and an initial segment of N. Applying θ, transform Sb
into an A-alternating B-tree fb : Tb → B such that

Tb = {nil} ∪ {(θ(b1), . . . , θ(bk)) | (b, b1, . . . , bk) ∈ Sb}

and fb(nil) = b, fb((θ(b1), . . . , θ(bk))) = bk . Since A is assumed to be Δ0
2(D), Proposition 4.6

ensures that fb is well founded. Suppose there is no (A, 1)-alternating B-tree with rank α.

Then, fb has rank � α if b /∈ A and rank < α if b ∈ A. For β < α define the open sets

Aβ =
⋃
{↟fb(σ) | b ∈ B, rankTb

(σ) � β, fb(σ) ∈ A⇔ β 	∼ α}.

To conclude we prove that A = Dα((Aβ)β<α). First, we show that A ⊆
⋃

β<α Aβ . Suppose

x ∈ A. Applying Proposition 4.4, we get �b, x] ⊆ A for some b � x, b ∈ B. Since b ∈ A,

we have rank(Tb) < α. A fortiori, rank(Tb) � β with β < α and β 	∼ α. Since fb(nil) = b

we have ↟b ⊆ Aβ hence x ∈ Aβ . For β < α, let A′β = Aβ \
⋃

γ<β Aγ . Since A ⊆
⋃

β<α Aβ ,

to show A = Dα((Aβ)β<α) it suffices to prove that β 	∼ α ⇒ A′β ⊆ A and β ∼ α ⇒ A′β ⊆
D \ A.

Case β 	∼ α. By way of contradiction, suppose A′β 	⊆ A and let x ∈ A′β \ A. By

Proposition 4.4, we have �c, x] ⊆ D \ A for some c � x, c ∈ B. Now, since x ∈ Aβ ,

there exist b ∈ B and σ ∈ Tb such that x ∈ ↟fb(σ), rankTb
(σ) � β, fb(σ) ∈ A. Since

c, fb(σ) � x, the interpolation property gives an e ∈ B such that c, fb(σ) � e � x.

Since e ∈ �c, x] we have e /∈ A. Let σ = (θ(b1), . . . , θ(bk)) where (b, b1, . . . , bk) ∈ Sb. Since

bk = fb(σ) ∈ A, fb(σ)� e and e /∈ A, the sequence (b, b1, . . . , bk, e) ∈ Sb. Hence, σθ(e) ∈ Tb.

Now, rank(σθ(e)) < rank(σ) � β. Since β 	∼ α, there is some γ < β such that γ ∼ α

and rank(σθ(e)) � γ. Summing up, we have ↟e ⊆ Aγ . Since e � x we get x ∈ Aγ which

contradicts x ∈ A′β .

Case β ∼ α. The proof that A′β ⊆ D \ A is similar.

4.3. Ambiguous sets in the Hausdorff hierarchy

We now come to the question of whether there are ambiguous sets in the Hausdorff

hierarchy. Item 1 of the next Theorem was obtained by Selivanov (2005) for ω-algebraic

domains.

Theorem 4.8. Let D be a continuous domain and 0 � α < ω1.

1. If D has a least element ⊥ then Dα(D) ∩ co-Dα(D) =
⋃

β<α Dβ(D) ∪ co-Dβ(D).

2. Dα+1(D) ∩ co-Dα+1(D) =
⋃

β�α Dβ(D) ∪ co-Dβ(D) for all 1 � α < ω1.

3. In general, equality Dα(D) ∩ co-Dα(D) =
⋃

β<α Dβ(D) ∪ co-Dβ(D) fails for α = 1 and

for α limit.

Proof.

1. Inclusion right to left comes from Proposition 2.6. Inclusion left to right is proved

by induction on α. Case α = 0 is trivial since both members are empty.

Suppose, α = β + 1 and A ∈ Dα(D) ∩ co-Dα(D). Towards a contradiction, suppose

A /∈ Dβ(D) ∪ co-Dβ(D), i.e. neither A nor D \ A is in /∈ Dβ(D). Theorem 4.7 proves
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the existence, for ε = 0, 1, of an increasing (A, ε)-alternating B-tree fε : Tε → B

with rank β. Observe that every domain basis contains ⊥, hence ⊥ ∈ B. Let

τ = 0 if ⊥ ∈ A and τ = 1 otherwise, so that fτ(nil) 	= ⊥. Let S = {0σ | σ ∈
Tτ} and g : S → B be such that g(nil) = ⊥ and g(0σ) = fε(σ). Then g is

an increasing (A, 1 − τ)-alternating B-tree with rank β + 1 = α. Applying again

Theorem 4.7, if τ = 0 this contradicts A ∈ Dα(D), if τ = 1 this contradicts

A ∈ co-Dα(D).

Suppose, now α is a limit ordinal and (αn)n∈N is increasing with α as supremum.

Towards a contradiction, suppose A /∈
⋃

β<α Dβ(D) ∪ co-Dβ(D). Then, for every

n and ε = 0, 1, there is a monotone increasing (A, ε)-alternating B-tree fn,ε :

Tn,ε → B with rank αn. Let τ ∈ {0, 1} be as above. Set S = {nσ | σ ∈ Tn,ε}
and g : S → B be such that g(nil) = ⊥ and g(nσ) = fn,ε(σ). Then g is a

monotone increasing (A, τ)-alternating B-tree with rank α. As above, this gives a

contradiction.

2. Let A = Dα+1((Aβ)β�α) and D \ A = Dα+1((Eβ)β�α), where the Aβ, Eβ ’s are α + 1

increasing sequences of open sets. Set D+ = D ∪ {⊥α} and extend the order of

D by setting ⊥α < x for all x ∈ Aα. Set A+ = A ∪ {⊥α}. Then, in D+, we

have A+ = Dα+1((A
∗
β)β�α) where A∗α = Aα ∪ {⊥α} and A∗β = Aβ for β < α. Also,

D+ \ A+ = D \ A. Observe that the A∗β ’s and Eβ ’s are open in D+. Thus, A+ is

ambiguous at level α+1 in D+. Though ⊥α is not a least element in D+, it is smaller

than Aα hence smaller than all elements labelling an (A, 1)-alternating B-tree with

rank α. Arguing as in item 1, we see that A+ must have level at most α in D+.

If D+ \ A+ = D \ A has level α in D+ then D \ A is obtained via open sets not

containing ⊥α hence D \ A has level α in D. Suppose, now that A+ has level α in

D+. Then, A+ = Dα((Cδ)δ<α) where the Cδ ’s are open in D+. Since ⊥α ∈ A+ there

is some β < α with parity different from α such that ⊥α ∈ Cβ hence Cβ ⊃
⋃

δ<α Aδ .

This yields A = Dα((C
−
γ )γ<α) where C−γ = Cγ for γ < β and C−γ = Cγ ∩ D for

γ � β. So, A has level β in D. Finally, observe that the argument breaks down if

α = 0.

3. In 2�ω , the set 02�ω is in D1(D) ∩ co-D1(D) but not in D0(D) ∩ co-D0(D). Let α be

a countable limit ordinal. Let (aβ)β<α be a strictly decreasing α-sequence of reals

with no lower bound and which is continuous: aλ = infδ<λ aδ for all limit λ < α. In
−→
R (cf. Example 2.11), consider the set A = Dα((Aβ)β<α) where Aβ =]aβ,+∞]. Then,
−→
R \A = Dα((A

∗
β)β<α) where A∗0 = � and A∗β+1 = Aβ and A∗λ = Aλ for λ limit. Thus,

A is ambiguous at level α. It is easy to check that A is not in a lesser level.

5. Effective Borel and Hausdorff hierarchies

5.1. Effective topological spaces

The first step to deal with the effective Borel hierarchy is the definition of effective topolo-

gical space. We follow the book of Weihrauch (2000), Definition 3.2.1,

page 63.
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Definition 5.1. An effective topological space is a pair (E, (On)n∈N), where E is a topological

space admitting a countable basis and (On)n∈N is an enumeration (not necessarily injective)

of some topological basis of E.

Remark 5.2. For the notion of computable topological space, one also requires that

the equivalence relation {(m, n) | Om = On} be computably enumerable. For instance,

this is the case if n �→ On is injective, which is usually true. We shall not need this

notion.

Definition 5.3. An effective approximation space is a triple (E, (On)n∈N,�) such that

(On)n∈N enumerates a topological basis B, the relation {(i, j) | Oi � Oj} is computably

enumerable and � is an approximation relation on B (cf. Definition 3.1).

5.2. Effective ω-continuous domains

Definition 5.4. An ω-continuous domain is effective if it admits a basis B = {bn | n ∈ N}
such that {(i, j) | bj � bi} is computably enumerable.

Example 5.5. (P∞(N),⊆) is not a continuous domain (cf. Example 3.6) but it is an effective

approximation space. Other spaces in Example 2.11 are effective ω-continuous domains.

Proposition 5.6. Every effective ω-continuous domain is an effective approximation space

(hence, an effective topological space).

Proof. Immediate from the proof of Proposition 3.4.

5.3. Borel codes

There are several ways to code Borel sets by elements in the Baire space Nω , cf.

Moschovakis (1979/2009) Sections 3H and 7B and Marker (2002) Section 7. We choose

a coding adapted to the context of effective topological spaces.

Definition 5.7. Let (E, (On)n∈N) be an effective topological space. We code Borel sets by

well-founded trees (cf. Definition 4.1). To any σ in a well-founded tree T we attach a

Borel subset [[ σ ]] of E by induction on the rank.

i. If rankT (nil) = 0 (i.e. the tree T is reduced to its root) then [[ nil ]]T = �.

ii. If rankT (σ) = 0 and σ 	= nil and σ has last element n then [[ σ ]]T = On.

iii. If rankT (σ) = 1 then [[ σ ]]T =
⋃

n∈N:σn∈T On.

iv. If rankT (σ) � 2 then [[ σ ]]T =
⋃

n∈N:σ�2n,σ�2n+1∈T [[ σ�2n ]]T \ [[ σ�2n + 1 ]]T .

The Σ-Borel and Π-Borel sets coded by T are [[T ]]Σ = [[ nil ]]T and [[T ]]Π = E \ [[ nil ]]T .

Observing that the above inductive definition of [[ σ ]]T follows exactly that of the Borel

hierarchy, a straightforward induction on the ordinal α shows the following result.

Proposition 5.8. Let (E, (On)n∈N) be an effective topological space. A subset of E is in

Σ0
α(E) (respectively Π0

α(E)) if and only if it is of the form [[T ]]Σ (respectively [[T ]]Π) for

some well-founded tree with rank at most α.
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5.4. The effective Borel hierarchy

Borel codes lead to a definition of the effective Borel hierarchy. First, we recall some

classical results about computable ordinals which imply that there is a huge latitude to

represent them: from computability with very low resource complexity up to hyperarith-

meticity.

Proposition 5.9. There exists an ordinal ωCK
1 (the Church–Kleene ordinal) such that, for

every countable ordinal α, the following properties are equivalent.

i. α < ωCK
1 ,

ii. α is the rank of some computable well-founded tree,

iii. α is the rank of some hyperarithmetical (i.e. Δ1
1) well-founded tree (Spector 1955),

iv. α is the order type of some computable linear order on N, i.e. α is computable,

v. α is the order type of some hyperarithmetical linear order on N, i.e. α is Δ1
1,

vi. α is the order type of some linear order on N which is computable in real time and

logarithmic space (Dehornoy 1986; Grigorieff 1990).

Moreover, in (iv)–(vi), one can suppose that, for each n ∈ N, the set of elements with rank

exactly n and that with ranks in {ωα + n | α < ωCK
1 } are computable.

Remark 5.10. The last assertion in Proposition 5.9 is a simple trick in Ershov (1968). If

(N, R) has type α then the lexicographic product of (N, R) and (N, <) has type ωα and the

(computable) set N× {n} consists of all elements of rank ≡ n mod ω.

The definition of the effective version of Borel hierarchy for countably based spaces, and

the basic properties appeared previously in Selivanov (2008).

Definition 5.11 (effective Borel hierarchy). Let (E, (On)n∈N) be an effective topological

space and α an ordinal such that 1 � α < ωCK
1 .

1. The effective Borel classes Σ0
α(E), Π0

α(E), Δ0
α(E), are defined as follows:

— A set is in the class Σ0
α(E) (respectively Π0

α(E)) if and only if it is of the form [[T ]]Σ
(respectively [[T ]]Π) for some well-founded tree T with rank at most α such that

both T and the rank order relation on T (i.e. {(s, t) ∈ T×T | rankT (s) � rankT (t)})
are computable.

— The class Δ0
α(E) = Σ0

α(E) ∩Π0
α(E).

2. A sequence (Xn)n∈N of subsets of E is uniformly Σ0
α(E) if there exists a computable

sequence of well-founded trees (Tn)n∈N with ranks at most α such that Xn = [[Tn ]]Σ.

Idem with uniformly Π0
α(E).

3. Gδ and Fσ are the classes of intersections of uniformly Σ0
1(E) sequences (respectively

unions of uniformly Π0
1(E) sequences).

Remark 5.12.

1. If � is an order on N isomorphic to the ordinal α then the set of sequences (n1, . . . , nk)

such that n1  n2 . . .  nk is a well-founded tree with rank α and computable rank

order relation (i.e. it satisfies the above condition (a)).
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2. The requirement that the rank order relation on T is computable (in condition 1)

allows to get the usual definition of Σ0
α(E) for finite α’s. For instance, a subset X of

E is Σ0
2(E) (respectively Σ0

3(E)) if and only if there exists computably enumerable sets

A,B ⊆ N2 (respectively A,B ⊆ N3) such that X = ∪i∈N

(
∪j:(i,j)∈AOj

)
\

(
∪j:(i,j)∈BOj

)
(respectively, X = ∪i∈N ∩j∈N

(
E \ ∪k:(i,j,k)∈AOk

)
∪

(
∪k:(i,j,k)∈BOk

)
).

Proposition 5.13. All assertions in Proposition 2.2 hold for the effective Borel classes with

the proviso that 1 � α < ωCK
1 and countable unions (respectively intersections) are relative

to uniformly Σ0
α(E) (respectively Π0

α(E)) sequences of sets.

5.5. Hausdorff codes and the effective Hausdorff hierarchy

The definition of the effective difference hierarchy for countably based spaces and their

basic properties appeared previously in Selivanov (2008).

Definition 5.14. Let (E, (On)n∈N) be an effective topological space.

1. A Hausdorff α-code for a set X in Dα(Σ
0
β(E)) is a triple (�, P , (Tn)n∈N) such that

— � is a well order of type α on N or on a finite initial segment of N,

— P = {n ∈ dom(�) | ϕ(n) ∼ α}, where ϕ is the unique isomorphism from (dom(�),�)

onto the ordinal α,

— (Tn)n∈N is a family of well-founded trees with ranks at most β,

— X = ∪p∈P [[Tp ]]Σ \ ∪ϕ(q)<ϕ(p)[[Tq ]]Σ.

2. The effective Hausdorff classes Dα(Σ
0
β(E)) are defined as follows: for 1 � α < ωCK

1 , a

set X is in Dα(Σ
0
β(E)) if and only if it admits an α-code (�, P , (Tn)n∈N) such that �

and P are computable and the Tn’s and the rank relations on the Tn’s are uniformly

computable, (i.e. {(n, s) | s ∈ Tn} and {(n, s, t) | s, t ∈ Tn, rankTn
(s) � rankTn

(t)} are

computable).

The effective class Dα(Σ
0
1(E)) is also denoted by Dα(E).

Proposition 5.15. Propositions 2.6, 2.9 and 2.10 hold with the effective Hausdorff classes

and effectively continuous maps.

5.6. Does Hausdorff ’s theorem fully effectivize?

Open Problem 5.16. Equality ∪α<ωCK
1

Dα(E) = Δ0
2(E) holds in computable Polish spaces,

(cf. Selivanov 2003, pages 76–79 for the Baire space). Is this also true for more general

spaces including effective ω-continuous domains endowed with the Scott topology?

Contrary to what was the case with the other results, the proof of Theorem 3.15 does

not effectivize. The reason is that although the topological closure of a Δ0
2 set is closed,

hence Π0
1, it may not be Π0

1. For instance, let X be any countable Δ0
2(N) subset of N. In

the real line, X is Δ0
2(R) and closed hence Π0

1(R), but X is not Π0
1(R). Idem in the Baire

space with the set {f ∈ Nω | f(0) ∈ X}. This difficulty is mentioned in Selivanov (2005),

page 53, lines 6–7, with open sets: in the proof of his Theorem 3.10 page 50, open sets
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Aβ ’s are defined using some Δ0
2 set A: this is a stumbling block to get Σ0

1 sets. For the

Baire space Nω , Selivanov (2003) uses a proof different from Hausdorff’s original one. We

adapt it to get the following weak effective version of Hausdorff’s theorem.

Theorem 5.17. Let (E, (On)n∈N,�) be an effective topological approximation space. Then

(Fσ ∩ Gδ)(E) ⊆
⋃

α<ωCK
1

Dα(E) ⊆ Δ0
2(D). In particular, if (Fσ ∩ Gδ)(E) = Δ0

2(E) then the

effective Hausdorff’s theorem holds.

Proof. Without loss of generality, we suppose that the family (On)n∈N is effectively

closed under finite union: Oi1 ∪ . . . ∪ Oik = Oλ({i1 ,...,ik}) for some computable function

λ : P<ω(N) \ {�} → N. Using Remark 5.12, for ε = 0, 1, let (Iεn)n∈N be a family of subsets

of N such that {(n, i) | i ∈ Iεn} is computably enumerable and

(∗) A =
⋂
n∈N

⋃
i∈I1

n

Oi , E \ A =
⋂
n∈N

⋃
i∈I0

n

Oi .

We can suppose that the Iεn’s are closed under the above function λ. Let R be the

computably enumerable set R = {(i, j) | Oi � Oj}. Let R(t), Iε,tn be the finite parts of R

and Itn obtained after t steps of enumeration. Let Fε : N2 → N be the function such that

Fε(m, t) = max{p | 0 � p � t and ∀q < p (m, λ(Iε,tq )) ∈ R(t)}.

In particular,

(†) Om ⊆
⋂

q<Fε(m,t)

⋃
i∈Iε,tq

Oi ⊆
⋂

q<Fε(m,t)

⋃
i∈Iεq

Oi.

We define a family T of finite sequences of integers in N. The empty sequence is in T . A

sequence (t0, . . . , tk) is in T if and only if the following conditions are satisfied:

a. m0 < · · · < mk and t0 < · · · < tk ,

b. (m�+1, m�) ∈ R(t�+1) for all � < k. In particular, this says that the sequence of subsets

(Om�
)�=0,...,k is decreasing.

c. For all � � k, F0(m�, t�) 	= F1(m�, t�). For all � < k, if Fε(m�, t�) < F1−ε(m�, t�) then

F1−ε(m�+1, t�+1) < Fε(m�+1, t�+1).

It is clear that, as a family of finite sequences, T is a tree and is computable.

Claim 1. The tree T is well founded (i.e. it has no infinite branch).

Proof of Claim 1. Else consider an infinite branch (m�, t�)�∈N. Condition (3) of the

Definition 5.11 and condition (b) of the definition of T imply that the set
⋂

�∈N Om�

contains at least one element x. Observe that condition (c) implies that Fε(m�, t) � !�/2".
Using (†) for even and odd n’s, we see that x ∈

⋂
q<!�/2"

⋃
i∈Iεq Oi for all � and for ε = 0, 1.

Thus, x is in both A and E \A, a contradiction. Let us say that a pair (m, t) ∈ X has type

ε if Fε(m, t) > F1−ε(m, t).

Claim 2. Suppose, x ∈ A and (m, t) ∈ X has type 0 and x ∈ Om. Then, there exists

(p, u) ∈ X such that (p, u) has type 1 and x ∈ Op and (p, m) ∈ R, m < p and t � u.

Switching types 0 and 1, the same is true with x /∈ A.

Proof of Claim 2. We treat the sole case x ∈ A, the other one being trivial modification.

Since x /∈ E\A, condition (∗) insures that there exists n such that x /∈
⋃

i∈I0
n
Oi. Since x ∈ A,

using again (∗), we see that x ∈
⋂

r�n

⋃
i∈I1

r
Oi. Choose i1, . . . , in, p such that x ∈ Oir and
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(ir, p) ∈ R for all r � n. Let u > t, n, i1, . . . , in . Then, F0(p, u) < n whereas F1(p, u) � n hence

(p, u) has type 1 and satisfies Claim 2. We extend à la Kleene–Brouwer the computable

well-founded reverse prefix partial ordering on T into a computable total well-ordering

� on T : let σ, τ ∈ T ,

— If the sequences σ and τ are prefix comparable, then we �-compare them relative to

the reverse prefix partial order.

— If the sequences σ and τ are not prefix comparable, then we compare the first elements

on which they differ relative to the usual order on N.

Using Ershov’s trick, cf. Remark 5.10, we consider the set S = T × (ω + 2) well-

ordered lexicographically using � on T and the ordering on the ordinal ω + 2 =

{0, 1, 2, . . . , ω, ω + 1}. In other words, S is obtained from T by replacing each element of

T by a chain of ω + 2 copies of that element. We also denote by � the well ordering on

S . The following Claim is straightforward.

Claim 3. (S ,�) is a computable well ordering and its order type is an even ordinal.

Moreover, the parity of the rank relative to � of an element (σ, γ) ∈ S is equal to the parity

of the ordinal γ. In particular, this parity function is computable. Attach to any element

(σ, θ) ∈ S an open set U(σ, θ) as follows: if σ is the empty sequence then U(σ, θ) = �.

Else, if the last pair (mk, tk) of σ has type ε ∈ {0, 1} then

∀n < ω U(σ, n) = �, U(σ, ω + ε) = Omk
, U(σ, ω + (1− ε)) = � .

If α is the rank of the element (σ, θ) in T then let Aα = U(σ, θ). The family (Aα)α<ξ is an

effective family of open sets in the sense of Definition 5.14. Let ξ be the (limit) ordinal to

which (S ,�) is isomorphic. The following Claim finishes the proof.

Claim 4. Dξ((Aα)α<ξ) = A.

Proof of Claim 4. Suppose x ∈ A. By Claim 2 there exists a pair (m, t) such that the one

element sequence τ = ((m, t)) is in T , has type 1 and x ∈ U(τ, ω+1). Thus, we can consider

the least ordinal α which is the rank of some (σ, γ) ∈ S such that x ∈ U(σ, γ). First, we

show that α is odd. Since U(σ, γ) is not empty, its rank is of the form (ω + 2)δ + ω + ε,

where ε is the type of σ. If ε = 0 then Claim 2 would allow to extend σ to σ (p, u) ∈ T
such that x ∈ Op and σ (p, u) has type 1. Since σ (p, u) extends σ it has lesser rank in T .

Thus, x ∈ U(σ (p, u), δ) where (σ (p, u), δ) has lesser rank than (σ, γ), a contradiction. By

definition of α, we have Aα = U(σ, γ) hence x ∈ Aα. The choice of α insures that x is in no

Aβ for β < α. Thus, x ∈ Aα\
⋃

β<α Aβ with α odd. This shows that x ∈ D((Aμ)μ<ξ). A similar

argument shows that if x /∈ A then x ∈ Aα \
⋃

β<α Aβ with α even hence x /∈ D((Aμ)μ<ξ).

Summing up, we see that A = D((Aμ)μ<ξ).

Corollary 5.18. In every effective ω-continuous domain D,

Gδ(D) ∩ Fσ(D) ⊆
⋃
α<ω1

Dα(D) ⊆ Δ0
2(D).
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