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This paper studies the problems of measuring economic growth under conditions
of high inflation. Traditional bilateral index number theory implicitly assumes that
variations in the price of a commodity within a period can be ignored. To justify this
assumption under conditions of high inflation, the accounting period must be shortened
to a quarter, a month, or possibly a week. However, once the accounting period is less
than a year, the problem of seasonal commodities is encountered; i.e., in some subannual
periods, many seasonal commodities will be unavailable and hence the usual bilateral
index number theory cannot be applied. The paper systematically reviews the problems
of index number construction when there are seasonal commodities and high inflation.
Various index number formulas are justified from the viewpoint of the economic
approach to index number theory by making separability assumptions on consumers’
intertemporal preferences. We find that accurate economic measurement under
conditions of high inflation is very complex.
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Seasonal Adjustment

1. INTRODUCTION

Ever since the German hyperinflation of the 1920’s, accountants have noted that
high inflation causes historical cost accounting measures of income and wealth to
become virtually useless. One way to restore credibility to business accounts would
be to deflate current values by appropriate price indexes. However, the construction
of price indexes is not straightforward under conditions of high inflation, partic-
ularly when seasonal commodities are present. Recently, Hill (1996) addressed
some of these problems in the context of adapting the United Nations (1993) sys-
tem of national accounts to high-inflation situations. This paper can be regarded
as an extension of Hill’s contributions, taking account of seasonal commodities.

Before describing the contents of the paper, we address some preliminary
questions.
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What are seasonal commodities? They are commodities that either (1) are not
available during certain seasons or (2) are always available but there are fluctuations
in prices or quantities that are synchronized with the season or time of year.1

What are the sources of seasonal fluctuations in prices or quantities? There are
two main sources2: climate and custom. In the first category, fluctuations in tem-
perature, precipitation, wind, and hours of daylight cause fluctuations in demand
for things such as ice skates, fuel oil, umbrellas, snow tires, seasonal clothing, and
electricity. In more generic terms, climatic changes cause fluctuations in energy
demands, recreational activities, and food consumption patterns. In fact, seasonal
fluctuations are present in almost all sectors of most economies.

What are the implications of seasonality for index number theory? If we break
the year up intoM seasons (e.g.,M = 4 if the season is a quarter orM = 12 if the
season is a month), then the existence of type-1 seasonal commodities in the set of
goods that we are aggregating over means the dimension of the commodity space
will not be constant. Thus it will be impossible to apply the usual bilateral index
number theory.3

Even if all commodities were available in all seasons, the existence of type-2
seasonal commodities may mean that bilateral indexes that are exact for an under-
lying utility function cannot be justified. The economic approach assumes that the
seasonal aggregator function is the same in each season being compared, which is
not a reasonable assumption if climate and customs interact with tastes. This sug-
gests that type-2 seasonal commodities should be classified further into subtypes
a and b.

A type-2 seasonal commodity is defined to be of subtype a if its seasonal-
quantity fluctuations can be rationalized by utility-maximizing behavior over a set
of seasons where the prices fluctuate but the utility aggregator function remains
unchanged, and of type 2b if its quantity fluctuations cannot be rationalized by
maximizing an unchanging utility function over the periods in question.4 An ex-
ample may be helpful. As harvest conditions vary, the price of potatoes in my local
supermarket varies and I purchase more potatoes as the price falls and fewer as it
rises. On the other hand, the price of beer remains quite constant throughout the
year but my consumption increases greatly during the summer. Weather shifts my
seasonal demand function for beer which is a type-2b seasonal commodity and
but not for potatoes which are a type-2a seasonal commodity. The usual economic
approach to index number theory can be applied to type-2a seasonal commodities
but not to type-2b ones.

The problem of index number construction when there are seasonal commodi-
ties has a long history.5 However, what has been missing is an exposition of the
assumptions on the consumer’s utility function6 that are required to justify a par-
ticular formula. We systematically list separability assumptions on intertemporal
preferences that can be used to justify various seasonal index number formulas
from the viewpoint of the economic approach to index number theory.7

We now set out the general model of consumer behavior that we will specialize in
subsequent sections. Suppose that there areM seasons in the year and the Statistical
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Agency has collected price and quantity data on the consumer’s purchases for 1+ T
years. Suppose further that the dimension of the commodity space in each season
remains constant over theT + 1 years; i.e., seasonm has Nm commodities for
m= 1, . . . , M . For seasonm of year t , we denote the vector of positive prices
facing the consumer byptm ≡ [ ptm

1 , ptm
2 , . . . , ptm

Nm
] and the vector of commodities

consumed byqtm ≡ [qtm
1 , qtm

2 , . . . , qtm
Nm

]. It is convenient to have notation for the
annual price and quantity vectors, and so, we define these by

pt ≡ [pt1, pt2, . . . , pt M ]; qt ≡ [qt1, qt2, . . . , qt M ]; t = 0, 1, . . . , T.

(1)
To apply the economic approach to index number theory, it is necessary to assume
that the observed quantities ofqtm

n are a solution to an optimization problem
involving the observed pricesptm

n . We assume that the intertemporal quantity vector
[q0, q1, . . . , qT ] is a solution to the following intertemporal utility maximization
problem:

max
x0,x1,...,xT

{
U (x0, x1, . . . , xT ) :

T∑
t=0

δtpt · xt = W

}
, (2)

wherext ≡ [xt1, xt2, . . . , xtm] and each seasonal quantity vectorxtm has the di-
mensionality ofqtm, pt · xt ≡∑M

m=1 ptm · xtm andptm · xtm ≡∑Nm
n=1 ptm

n xtm
n ,U is

the consumer’s intertemporal preference function (assumed to be continuous and
increasing),δt > 0 is an annual discount factor and wealthW is the consumer’s
current and expected future discounted income viewed from the perspective of the
beginning of year 0. If the consumer can borrow and lend at a constant annual
nominal interest rater , thenδ0 ≡ 1 and

δt = 1/(1 + r )t , t = 1, 2, . . . , T. (3)

Because we are assuming that the quantity vector [q0, q1, . . . , qT ] is a solution
to (2), it must satisfy the intertemporal budget constraint in (2), and so, we can
replaceW by8

W ≡
T∑

t=0

δtpt · qt . (4)

The economic approach to index numbers requires strong assumptions. Some
advantages of this approach are: (i) It allows for substitution in response to changes
in the prices, (ii) it provides a concrete framework that can be used to assess op-
erational alternatives that occur when a Statistical Agency constructs an index
number, and (iii) it leads to definite recommendations about the choice of func-
tional forms for index number formulas which then can be evaluated from other
perspectives, such as the test approach.

Having made our basic economic assumptions [namely, that the observed se-
quence of annual quantity vectors [q0, q1, . . . , qt ] solves (2) withW defined by
(4)], now make additional assumptions on the structure of the intertemporal utility
functionU .
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In Section 2, we show how equation (2) can be specialized to yield the annual
indexes first proposed by Mudgett (1955, p. 97) and Stone (1956, pp. 74–75). In
Section 3, we note that our Hicksian intertemporal utility maximization problem
(2) needs to be modified when inflation is high. The annual discount factorsδt that
appear in (2) and (4) do not provide an adequate approximation to the consumer’s
intertemporal problem with even moderate inflation between seasons. We need to
introduce between-season intrayear discount rates as well. In Section 4, we show
that when there are seasonal commodities, the use of annual sums of seasonal
quantities and the corresponding annual unit values are unsatisfactory as annual
quantity and price aggregates. Section 5 concludes.

2. CONSTRUCTION OF ANNUAL INDEXES UNDER CONDITIONS OF
LOW INFLATION

In the Mudgett (1955, p. 97) and Stone (1956, pp. 74–75) approach to annual index
numbers when there are seasonal commodities, we need to restrict the consumer’s
intertemporal utility functionU as follows: there existF and f such that

U (x0, x1, . . . , xT ) = F [ f (x0), f (x1), . . . , f (xT )], (5)

wheref is a linearly homogeneous, increasing, and concave annual utility function9

andF is an intertemporal utility function that is increasing and continuous in its
T + 1 annual utility arguments. The annual utility functionf is assumed to be
unchanging over time.

If q0, q1, . . . , qT solves (2) withW defined by (4) andU defined by (5), then it
can be seen thatqt , the observed annual consumption vector for yeart , is a solution
to the following yeart utility maximization problem:

max
xt

{ f (xt ) : pt · xt = pt · qt } = f (qt ); t = 0, 1, . . . , T. (6)

Now we are in a position to apply the theory of exact index numbers.10 Assume that
the bilateral quantity indexQ(ps, pt , qs, qt ) is exact for the linearly homogeneous
aggregator functionf . Then we have

f (qt )/ f (qs) = Q(ps, pt , qs, qt ); 0 ≤ s, t ≤ T. (7)

As an example of (7), suppose that the annual aggregator functionf is f (x) ≡
(x · Ax)1/2, whereA is a symmetricN∗ × N∗ matrix of constants satisfying certain
regularity conditions. This functional form is flexible; i.e., it can provide a second-
order approximation to an arbitrary differentiable linearly homogeneous function.
The quantity index that is exact for this functional form is the Fisher (1922) ideal
quantity indexQF :

QF (ps, pt , qs, qt ) ≡ [pt · qtps · qt/pt · qsps · qs]1/2. (8)

BecauseQF is exact for a flexible functional form, it is a superlative index.
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Given any bilateral quantity indexQ, its associated price indexP can be defined
as follows using Fisher’s (1911, p. 403) weak factor reversal test:

P(ps, pt , qs, qt ) ≡ pt · qt/ps · qsQ(ps, pt , qs, qt ). (9)

Given any linearly homogeneous, increasing, and concave aggregator function
f , its dual unit cost function can be defined for strictly positive pricespÀ 0N∗

as

c(p) ≡ min
x

{p · x : f (x) = 1}. (10)

When the utility functionf is linearly homogeneous, the Kon¨us (1939) price index
between periodss andt reduces to the ratio of the unit cost functions evaluated at
the periods andt prices,c(pt )/c(ps). If the bilateral quantity indexQ is exact for
f , then its companion bilateral price indexP defined by (9) is exact for the unit
cost functionc dual to f ; i.e., in addition to (7), we also have

c(pt )/c(ps) = P(ps, pt , qs, qt ); 0 ≤ s, t ≤ T. (11)

As an example of (11), suppose that the annual aggregator function is the homoge-
neous quadratic aggregatorf (x) ≡ (x · Ax)1/2 andc is its unit cost dual function.
Then (11) holds withP = PF where the Fisher ideal price indexPF is defined by

PF (ps, pt , qs, qt ) ≡ [pt · qtpt · qs/ps · qtps · qs]1/2. (12)

The above analysis seems to indicate that the construction of annual price and
quantity indexes when there are seasonal commodities is straightforward: simply
regard each physical commodity in each season as a separate economic commodity
and apply ordinary index number theory to the enlarged annual commodity space.
However, this does not work when there is severe or even moderate inflation
between seasons within the year.

3. CONSTRUCTION OF ANNUAL INDEXES UNDER CONDITIONS
OF HIGH INFLATION

In Section 2, a discount rateδt was used to make the prices in yeart comparable
to the base-year prices. With low inflation, this is an acceptable approximation to
the consumer’s intertemporal choice problem. However, when inflation is high,
we can no longer neglect interseasonal interest rates.

Consider the budget constraint in (2). We now interpretδt as the discount factor
that makes one dollar at the beginning of yeart equivalent to one dollar at the
beginning of year 0. From the beginning oft to the middle of seasonm in t , another
discount factor is required, e.g.,ρtm, which will make a dollar at the beginning of
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t equivalent to a dollar in the middle of seasonm of t . Thus the budget constraint
in (2) must be replaced by the following intertemporal constraint:

T∑
t=0

M∑
m=1

δtρtmptm · xtm = W, (13)

whereptm andqtm are the (spot) price and quantity vectors for seasonm of year
t andxtm is a yeart , seasonm, vector of decision variables. Similarly, definition
(4) for wealthW is now

W ≡
T∑

t=0

M∑
m=1

δtρtmptm · qtm. (14)

Making assumption (5) again, we now can derive the following counterparts to
(6):

max
xt1,...,xt M

{
f (xt1, . . . , xt M) :

M∑
m=1

ρtmptm · xtm =
M∑

m=1

ρtmptm · qtm

}

= f (qt1, . . . , qt M) ≡ f (qt ); t = 0, 1, . . . , T, (15)

where the annual yeart observed quantity vectorqt is equal to [qt1, . . . , qt M ] and
qtm is the seasonm, yeart observed quantity vector.

Note that the seasonal discount factorsρtm appear in the constraints of the
annual utility maximization problems (15). Define the vector of yeart , seasonm
discounted (to the beginning of yeart) pricesptm∗as

ptm∗ ≡ ρtmptm; t = 0, 1, . . . , T; m = 1, . . . , M. (16)

The constraints in (15) now can be written aspt∗ · xt = pt∗ · qt , where the year
t discounted price vector is defined aspt∗ ≡ [pt1∗, pt2∗, . . . , pt M∗]. Now we can
repeat the analysis in the preceding section associated with equations (7–12): We
need only replace the yeart spot price vectorspt by the yeart discounted vectors
pt∗. In particular, assuming that the bilateral index number formulaQ is exact for
the homogeneous aggregator functionf and its dual unit cost functionc, we have
the following counterparts to (7) and (11):

f (qt )/ f (qs) = Q(ps∗, pt∗, qs, qt ); 0 ≤ s, t ≤ T, (17)

c(pt∗)/c(ps∗) = P(ps∗, pt∗, qs, qt ); 0 ≤ s, t ≤ T, (18)

whereP is the bilateral price index associated with the quantity indexQ defined
using the counterpart to (9) which replacesps andpt by ps∗ andpt∗.

Thus our approach to constructing annual index numbers when there are seasonal
commodities and high inflation is to use the Mudgett-Stone annual indexes with
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the yeart seasonm spot pricesptm replaced by the within-year inflation-adjusted
pricesptm∗ defined by (16).

To see why we must use inflation-adjusted prices in our annual index number
formulas, consider the situation in which there is a hyperinflation and we are using
the Fisher quantity index defined by (8). If the hyperinflation takes place only in
seasonm of year t , then the Paasche partpt · qt/pt · qs of the Fisher index will
be approximately equal toptm · qtm/ptm · qsm; i.e., only consumption in season
m of year t , qtm, and consumption in seasonm of year s, qsm, will enter into
the comparison between yearss andt if spot pricesptm are used in place of the
discounted pricesptm∗. This is obviously undesirable.

Note thatρtm+1/ρtm ≡ 1+rtm for m= 1, 2, . . . , M −1, wherertm is the average
interest rate faced when borrowing or lending money from the middle of seasonm
to m + 1 in t . If prices are expected to increase inm + 1 compared tom, then the
nominal interest ratertm can be expected to increase too. Thus, if the discounted
pricesρtmptm

n are used in place of the nominal pricesptm
n in an annual index number

formula, the effects of high inflation in any season will be nullified by the discount
ratesρtm.

The use of the seasonally discounted pricespt∗ in (17) and (18) in place of
the nominal pricespt poses difficulties for economic statisticians. Not only must
the Statistical Agency collect seasonal data on nominal prices and quantities, but
data on season-to-season interest ratesrtm also must be collected to calculate the
seasonal discount factorsρtm. In principle, the interest ratertm should be a weighted
average of all interest rates that consumers face (both borrowing and lending rates)
where the weights are proportional to the amounts of funds loaned out or borrowed
by consumers during seasonm of yeart . This is not a trivial task. Moreover, many
statisticians will object to using discounted prices in constructing annual price
and quantity indexes on the grounds that the Fisher (1930) and Hicks (1946)
intertemporal consumer theory on which (17) and (18) are based is too unrealistic.
Thus we consider some alternatives to the use of interest rates as discount factors
in forming the seasonally deflated pricesptm∗ defined by (16).

A simple alternative is to use the price of a widely traded commodity as a
discount factor. Thus ifptm

G is the price of gold in seasonm of year t , then the
gold-standarddiscount factors are

ρG
tm ≡ pt1

G

/
ptm

G ; t = 0, 1, . . . , T; m = 1, . . . , M. (19)

The gold-deflated pricesptm∗
n ≡ ρG

tm ptm
n could be used as the normalized prices

in (17) and (18).
Another alternative is to convert nominal prices into prices expressed in terms

of a stable currency. In this case, theforeign-currencydiscount factorsρE
tm are

defined by

ρE
tm ≡ etm/et1; t = 0, 1, . . . , T; m = 1, . . . , M, (20)
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whereetm is the average number of units of foreign currency required to buy one
unit of domestic currency in seasonm of yeart .

Instead of using the price of goldptm
G as the deflator in (19), we could use

any price for any commodity that is traded during each season, or, instead of
deflating by a single commodity price, the price or cost of a basket of non-
seasonal and type-2a seasonal commodities might be used as the deflator. The
seasonm year t price vectorptm could be divided into the vectors [p̃tm, p̂tm]
where p̃tm ≡ [ p̃tm

1 , p̃tm
2 , . . . , p̃tm

K ] and each of theK commodities represented
in p̃tm is either a nonseasonal commodity or a type-2a seasonal commodity.11 Let
b ≡ [b1, b2, . . . , bK ] be a vector of appropriate commodity quantity weights. Then,
the yeart seasonm price of this basket of goods is̃ptm · b and thecommodity-
standarddiscount factors are defined by

ρB
tm ≡ p̃tm · b/p̃tm · b; t = 0, 1, . . . , T; m = 1, . . . , M. (21)

As a further refinement to (21), we could replace the fixed basket indexp̃tm · b
with a general price index,̃P( p̃t1, p̃tm, q̃t1, q̃tm), which compares the prices of
commodities (excluding type-1 and type-2b seasonal commodities) in seasonm of
yeart, p̃tm, to their prices in the base period,p̃t1. Now theindex numberdiscount
factor is

ρP
tm ≡ 1/P̃( p̃t1, p̃tm, q̃t1, q̃tm); t = 0, 1, . . . , T; m = 1, . . . , M. (22)

Each of the choices for the seasonal discount factorsρtm represented by (19–22)
has advantages and disadvantages. All of these choices seem somewhat arbitrary.
However, each of these will lead to sensible index number comparisons in the
presence of hyperinflation. If we make use of the observation that nominal rates
of interest are approximately equal to real rates plus the rate of inflation, it can
be seen that the inflation-rate choices that are imbedded in the discount-factor
choices (19–22) will be approximately equal to the interest-rate choice forρtm that
we advocated originally, provided that the season-to-season real rates of return are
small.

The important conclusion that we should draw from the analysis presented in
this section is that when constructing annual quantity indexes in high-inflation
situations, seasonal pricesmustbe deflated for general inflation that occurred from
season to season throughout the year. If this deflation is not done, the quantities
corresponding to high-inflation seasons will receive undue weight in the annual
quantity index.

We conclude this section by discussing the interpretation of the annual price
index P(ps∗, pt∗, qs, qt ) in (18). We assume that the price and quantity indexesP
and Q that appear in (17) and (18) satisfy the weak factor reversal test (9) with
normalized pricespt∗ used in place of nominal pricespt . Thus,P andQ satisfy

M∑
m=1

ptm∗ · qtm

/
M∑

m=1

psm∗ · qsm = P(ps∗, pt∗, qs, qt )Q(ps∗, pt∗, qs, qt ); (23)
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i.e., using our original seasonal interest-rate discount factorsρtm, (23) says that
the discounted (to the beginning of yeart) sum of seasonal values

∑M
m=1 ptm∗ ·qtm

divided by the discounted (to the beginning of years) sum of seasonal values∑M
m=1 psm∗ · qsm is decomposed intoP(ps∗, pt∗, qs, qt ) timesQ(ps∗, pt∗, qs, qt ).

The price indexP(ps∗, pt∗, qs, qt ) captures the change in discounted yeart prices
relative to discounted years prices. The interpretation ofP(ps∗, pt∗, qs, qt ) when
the specific commodity discount factors defined by (19–22) are used is less clear.
If we use the discount factors defined by (19), then the normalized prices in season
1 of each yeart, pt1∗

n , are equal to the corresponding nominal pricespt1
n , but the

normalized prices for later seasonsm> 1, ptm∗
n , are equal to the corresponding

nominal prices,ptm
n , divided by the yeart , seasonm to 1, gold price relative,

ptm
G /pt1

G . P(ps∗, pt∗, qs, qt ) is a measure of price-level change going from years
to t with the seasonal prices within each year stabilized in terms of season-1 prices
using the price of gold as the deflator of post-season-1 prices. This index does not
have a clear interpretation as a measure of the average level of nominal prices in
yeart versus years.

In Section 4, we discuss the possible use of annual unit values as prices in the
construction of annual price and quantity indexes.

4. ANNUAL UNIT VALUE INDEXES UNDER CONDITIONS
OF HIGH INFLATION

The reader may well feel that the annual index number model that we developed
in the preceding section is too complex. One simpler alternative is the following:
Instead of distinguishing commodities by season, add up consumption of each
physically distinct commodity over the seasons and use these annual total con-
sumptions as the quantities to be inserted into an index number formula. The price
corresponding to each such annual quantity would be the total annual value of ex-
penditures on that physical commodity divided by the annual quantity—an annual
unit value.

This is a reasonable proposal, particularly when we consider that at some stage of
disaggregation, unit values must be used to aggregate individual transactions, if we
want to apply bilateral index number theory.12However, an important characteristic
of a unit value is the time period over which it is calculated. The time period should
be short enough that individual variations of price within the period can be regarded
as unimportant. In periods of rapid inflation or hyperinflation, nominal prices vary
substantially between seasons. Seasonal values that correspond to high-inflation
seasons will be weighted too heavily in the annual unit value.

The above argument does not rule out the use of annual unit values, provided that
nominal pricesptm

n are replaced by the within-year inflation-adjusted normalized
prices ptm∗

n defined by (16),and provided that these prices are approximately
constant across seasonsm for each commodityn. This proviso will not be satisfied
if there are seasonal commodities.
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The problem with the use of (normalized) annual unit values when there are
seasonal commodities can be illustrated as follows. Imagine two years, where in
the second year, after transportation and storage improvements, a constant quantity
of a seasonal fruit, e.g., bananas, is consumed at a constant price. In the first year,
the same total annual quantity is consumed mostly in one season at a price slightly
lower than the second-year constant price. In the other seasons of the first year,
one banana is consumed at a very high price. The prices are such that the value
of banana consumption is constant over the two years. The unit value for bananas
also would be constant over the two years as would the corresponding total annual
quantity index. However, most economists would feel that the utility of banana
consumption is higher in the second year than in the first year and an index number
comparison ought to show this. Given low seasonal real interest rates, under the
above conditions the use of a Mudgett-Stone Fisher ideal quantity index would lead
to a banana quantity index greater than 1. Thus there generally will be real biases
in using annual (normalized) unit value indexes if there are substantial seasonal
fluctuations in quantities and (normalized) prices.

To compare more formally the use of annual unit value indexes using normal-
ized prices with the Mudgett-Stone annual indexes in the preceding section, we
make the simplifying assumption that there are no type-1 and no type-2b seasonal
commodities. Thus, the dimensionality of the commodity space is constant over
each season so thatNm = N for m= 1, . . . , M and we can aggregate commodities
over seasons.

Define the year-t quantity for commodityn as the sum over the season-m
quantities:

Qt
n ≡

M∑
m=1

qtm
n ; n = 1, . . . , N; t = 0, 1, . . . , T. (24)

Using the inflation-adjusted normalized pricesptm∗
n , an annual normalized value

for commodityn in yeart is defined as

Vt∗
n ≡

M∑
m=1

ptm∗
n qtm

n ; n = 1, . . . , N; t = 0, 1, . . . , T. (25)

The normalized unit value for goodn is defined as

Pt∗
n ≡ Vt∗

n

/
Qt

n; n = 1, . . . , N; t = 0, 1, . . . , T. (26)

Define the year-t vector of normalized unit values asPt∗ ≡ [ Pt∗
1 , . . . , Pt∗

N ] and
the year-t vector of total quantities consumed asQt ≡ [Qt

1, . . . , Qt
N ] for t = 0,

1, . . . , T .
The annual price and quantity vectorsPt∗ andQt can be used in calculating

annual quantity indexes. We want to justify the use of such an index. We assume
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that intertemporal utility function satisfies the assumptions (5). One assumption
that appears to be necessary for total annual year-t quantitiesQt = ∑M

m=1 qm to
solve (15) is

f (x1, x2, . . . , xM) = g

(
M∑

m=1

xm

)
, (27)

where g is an increasing, concave, and linearly homogeneous function ofN
variables.13 However, to ensure that the quantity vectors [qt1, . . . , qt M ] are solu-
tions to (15) whenf is defined by (27), we also require equality of the normalized
price vectors; i.e., we require14

pt1∗ = pt2∗ = · · · = pt M∗; t = 0, 1, . . . , T. (28)

To see why this is so, rewrite (15) whenf is defined by (27) as follows:

max
x1,...,xM

{
g

(
M∑

m=1

xm

)
:

M∑
m=1

ptm∗ · xm =
M∑

m=1

ptm∗ · qtm

}
= g

(
M∑

m=1

qtm

)
,

t = 0, 1, . . . , T. (29)

If (28) were not true for somet , then in (29), we would find thatall of the sea-
sonal purchases in yeart for any commodity for which unequal prices prevailed
would have to be concentrated in the seasons with the lowest prices, which would
contradict the observed data.

Assuming that (27) and (28) are satisfied, we can apply exact index number
theory and derive the following annual index number equalities:

g(Qt )/g(Qs) = Q∗(Ps∗, Pt∗, Qs, Qt ); 0 ≤ s, t ≤ T (30)

for any index number formulaQ∗ that is exact for the annual aggregator functiong.
Thus, we have provided an economic justification for the use of annual normalized
unit valuesPt∗ and total annual quantitiesQt in an index number formula.

Suppose thatQ∗ in (30) andQ in (17) are both Fisher ideal quantity indexes.
Under what conditions will the annual unit value approach (which leads to (30)
with Q∗ = Q∗

F ) give us the samenumericalanswer as the less restrictive Mudgett-
Stone approach (which leads to (17) withQ = QF )?

Using definitions (24–26), it is easy to see that

pt∗ · qt =
M∑

m=1

ptm∗ · qtm = Pt∗ · Qt ; t = 0, 1, . . . , T. (31)

Hence a Fisher ideal index used in (17) will equal a Fisher ideal index used in (30);
i.e.,

Q∗
F (Ps∗, Pt∗, Qs, Qt ) = QF (ps∗, pt∗, qs, qt ); 0 ≤ s, t ≤ T, (32)
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if and only if

Ps∗ · Qt = ps∗ · qt for 0 ≤ s, t ≤ T. (33)

A simple set of conditions that will ensure the equalities in (33) are the following
Leontief-type aggregation conditions:

qtm = αtβmq̄; t = 0, 1, . . . , T; m = 1, . . . M, (34)

whereαt > 0 is a year-t growth factor,βm > 0 is a shift factor for seasonm, and
q̄ ≡ [q̄1, . . . , q̄N ] is a fixed-quantity vector. If theβm form an increasing sequence,
they may be interpreted as monthly growth factors. If theβm fluctuate with mean
1, they can be interpreted as pure seasonal fluctuation factors withall commodities
subject to thesamepattern of fluctuations.

We now verify that assumptions (34) imply the equalities (33). Using the defi-
nition of an inner product, we have for 0≤ s, t ≤ T ;

Ps∗ · Qt =
N∑

n=1

Ps∗
n Qt

n

=
N∑

n=1

[
M∑

m=1

psm∗
n qsm

n

/
M∑

j =1

qsj
n

][
M∑

i =1

qti
n

]
using definitions (24–26)

=
N∑

n=1

[
M∑

m=1

psm∗
n αsβmq̄n

/
M∑

j =1

αsβ j q̄n

][
M∑

i =1

αtβi q̄n

]
using (34)

=
N∑

n=1

M∑
m=1

psm∗
n αtβmq̄n

=
N∑

n=1

M∑
m=1

psm∗
n qtm

n using (34)

= ps∗ · qt ,

where the last equality follows from the definitions of the annual vectorsps∗ and
qt .

Thus, assumptions (34) do indeed imply the equality of the Fisher indexes in (32)
but they are not consistent with the simultaneous existence of both seasonal and
nonseasonal commodities or with the existence of nonconstant monthly growth
rates.

Another set of conditions that will ensure that the equalities in (33) hold are the
following Hicks aggregation conditions:

ptm∗ = γt p̄; t = 0, 1, . . . , T; m = 1, . . . , M, (35)
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whereγt > 0 is a year-t price-level factor and̄p ≡ [ p̄1, . . . , p̄N ] is a constant price
vector.

We now verify that assumptions (35) imply the equalities (33). Using definitions
(24–26) again, we have, for 0≤ s, t ≤ T ,

Ps∗ · Qt =
N∑

n=1

[
M∑

m=1

psm∗
n qsm

n

/
M∑

j =1

qsj
n

][
M∑

i =1

qti
n

]

=
N∑

n=1

[
M∑

m=1

γs p̄nqsm
n

/
M∑

j =1

qsj
n

][
M∑

i =1

qti
n

]
using (35)

=
N∑

n=1

[γs p̄n]

[
M∑

i =1

qti
n

]

=
N∑

n=1

M∑
m=1

γs p̄nqtm
n

=
N∑

n=1

M∑
m=1

psm∗
n qtm

n using (35)

= ps∗ · qt .

Thus conditions (35) imply the equalities in (33) and (32). Note that conditions
(35) are just a different way of writing our earlier conditions (28). These conditions
are very restrictive: They require absolute equality of all discounted seasonal price
vectorsptm∗ within each yeart . In particular, these conditions rule out seasonal
fluctuations in prices.

The above analysis indicates that the existence of seasonal commodities gener-
ally will cause the annual unit value index numbers to differ (perhaps substantially)
from the Mudgett-Stone annual indexes studied in the preceding two sections. Be-
cause the assumptions on the underlying annual aggregator function needed to
derive exact indexes are much less restrictive for the Mudgett-Stone indexes, we
recommend the use of these indexes over the use of annual unit value indexes.

5. CONCLUSION

We have discussed the problem that Statistical Agencies face when constructing
price and quantity aggregates under conditions of high inflation when there are
seasonal commodities. Without seasonal commodities, the index number prob-
lem is still straightforward (but expensive): the Statistical Agency must collect
subannual price and quantity (or value) information more frequently in order to
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make the subannual periods of time short enough that variations in prices within
the periods can be neglected.15 However, when there are seasonal commodities,
this solution to the high-inflation index number problem is not valid: We cannot
make meaningful bilateral index number comparisons (from the viewpoint of the
economic approach) between consecutive months or quarters if the dimensionality
of the commodity space varies from period to period.

When there are seasonal commodities and high inflation, Statistical Agencies
first mustundertake a preliminary deflation of the quarterly or monthly prices,
using either seasonal nominal interest rates or an index of nonseasonal commodity
prices as the deflators. Once these deflated seasonal prices or normalized prices of
the form (16) have been constructed, then annual Mudgett-Stone price and quantity
indexes of the form (17) and (18) in Section 3 can be constructed. Alternatively,
the approach outlined in Section 4 could be used, which involves constructing
annual quantity series [recall (24)] and annual normalized unit values [recall (26)]
and then using these annual quantities and prices in an index number formula.
However, the Mudgett-Stone approach is preferable to the annual normalized unit
value approach because the former approach requires much weaker assumptions
on preferences. Moreover, the latter approach is not consistent with the existence
of seasonal commodities.

NOTES

1. This classification corresponds to Balk’s (1980a, p. 7; 1980b, p. 110; 1980c, p. 68) narrow- and
wide-sense seasonal commodities.

2. This classification is due to Mitchell (1927, p. 236). See Mitchell (1927, p. 237) and Granger
(1978, p. 33) for examples of seasonal fluctuations due to custom.

3. A bilateral index number formula uses the price and quantity information that pertains to only
two periods or two countries. A multilateral formula uses information that pertains to many periods.

4. Using the nonparametric tests for maximizing behavior due to Afriat (1967) and Diewert (1973,
p. 424), we can test whether a given set of price and quantity data is consistent with the maximization of a
homothetic or linearly homogeneous utility function; see Diewert (1981, pp. 198–199). If a combination
of seasonal and nonseasonal data pass this test, then the seasonal commodities are of type 2a.

5. See Flux (1921, pp. 184–185), Bean and Stine (1924), Crump (1924, p. 185), Mudgett (1955),
Stone (1956), Rothwell (1958), Zarnowitz (1961), Turvey (1979), and Balk (1980a,b,c, 1981).

6. See Diewert (1980, pp. 506–508; 1983c) on the economic approach to seasonal indexes. This
paper focuses on the theory of the seasonal consumer price index. An analogous theory exists for the
seasonal producer price index with separability assumptions on the producer’s intertemporal production
function or factor requirements function. See Fisher and Shell (1972) and Diewert (1980, 1983b).

7. The present paper generalizes Diewert’s (1983c) earlier economic approach.
8. Our assumptions are admittedly unrealistic. The consumer is assumed to know future spot prices

pt , know his or her future income streams, be able to freely borrow and lend between years at the same
rates, and have unchanging tastes over years. Under these assumptions, the consumer at the beginning
of year 0 chooses a sequence of annual consumption plans,qt , t = 0, 1, . . . , T , and sticks to them.

9. The function f is defined over the annual commodity space of dimension
∑M

m=1Nm ≡ N∗;
i.e., each physical commodity in each season is treated as a separate economic commodity from the
perspective of the annual utility functionf . The concavity assumption onf can be replaced by the
weaker condition of continuity; see Diewert (1974, p. 111).

10. See Diewert (1976, p. 116; 1981, pp. 180–193; 1983a, p. 184; 1993, pp. 45–50).
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11. Because it is difficult to distinguish type-2a from type-2b seasonal commodities, it may be
more practical to stick with nonseasonal ones. Of course, there may be difficulties in distinguishing
nonseasonal from seasonal commodities as well.

12. See Dal´en (1992, p. 135), Diewert (1995, pp. 20–24), and Balk (1995).
13. Assumption (27) is restrictive: It says that the consumer is indifferent to the annual consumption

of each commodity taking place in a single season or spread across seasons.
14. These conditions are Hicksian aggregation conditions which guarantee the existence of annual

aggregates [See Hicks (1946, p. 312)]. In fact, if conditions (28) hold, we do not have to make the
restrictive assumption (27) to determine that [qt1, qt2, . . . , qt M ] solves (15). To determine the annual
aggregator functiong∗ under conditions (28), letc( pt1∗, . . . , pt M∗) be the unit cost function dual to
f (x1, . . . , xM ). Define theN variable unit cost functionc∗( pt ) ≡ c( pt

1, . . . , pt
N). Then,g∗(∑M

m=1xm)

is dual toc∗.
15. Diewert (1995, p. 22) advocated this solution to the index number problem under high inflation

but he neglected the seasonal commodities problem.
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