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Abstract

A novel swarm intelligence approach for combinatorial optimization is proposed, which we call probability increment based
swarm optimization (PIBSO). The population evolution mechanism of PIBSO is depicted. Each state in search space has a
probability to be chosen. The rule of increasing the probabilities of states is established. Incremental factor is proposed to
update probability of a state, and its value is determined by the fitness of the state. It lets the states with better fitness have
higher probabilities. Usual roulette wheel selection is employed to select states. Population evolution is impelled by roulette
wheel selection and state probability updating. The most distinctive feature of PIBSO is because roulette wheel selection
and probability updating produce a trade-off between global and local search; when PIBSO is applied to solve the printed
circuit board assembly optimization problem (PCBAOP), it performs superiorly over existing genetic algorithm and adap-
tive particle swarm optimization on length of tour and CPU running time, respectively. The reason for having such advan-
tages is analyzed in detail. The success of PCBAOP application verifies the effectiveness and efficiency of PIBSO and
shows that it is a good method for combinatorial optimization in engineering.

Keywords: Combinatorial Optimization; Population Evolution; Printed Circuit Board Assembly; State Probability;
Swarm Intelligence

1. INTRODUCTION

Intelligent technology has increasingly influenced product
design and manufacturing (Jin & Li, 2007; Yang & Zeng,
2009; Shea et al., 2010; Maher & Fisher, 2012). Bionic intel-
ligence, including evolutionary computation, artificial neural
networks, swarm intelligence, and so on, is an indispensable
part of computational intelligence (Eberhart & Shi, 2007) and
designed to mimic one or more aspects of biological intelli-
gence. Swarm intelligence was first introduced by Beni and
Wang (1988, 1989) in the context of cellular robotic systems.
The extended definition of swarm intelligence includes any
attempt to design algorithms or distributed problem-solving
devices inspired by the collective behavior of social insect
colonies and other animal societies (Bonabeau et al., 1999).
With developed theory and its related applications, swarm in-

telligence has become an important branch of computational
intelligence.

Combinatorial optimization problems extensively exist in en-
gineering, such as optimal engineering design (Jin et al., 2005,
2009), best layout of architecture and urban planning (Koenig
& Schneider, 2012), optimum synthesis of kinematic chains
(Lipson, 2008) and selective disassembly optimization (Wang
et al., 2003). Usually, combinatorial optimization problems
are formulated as integer programs (Korte & Vygen, 2008).

The printed circuit board assembly optimization problem
(PCBAOP) is a typical combinatorial optimization problem
in electronic manufacturing industry. Approaches of computa-
tional intelligence become increasingly important for solving
this problem. Khoo and Ng (1998) proposed a genetic algo-
rithm (GA) for semiautomatic assembly system to assist pro-
cess engineers to get the near-optimal PCB component place-
ment sequence. Loh et al. (2001) implemented GA on a Quad
IIIc insertion machine to optimize the production process. Na-
jera and Brizuela (2005) adapted GA to solve the assembly
problem in a pick-and-place machine, and the experimental
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results showed that GA was better than the typewriter and
greedy search mixed algorithm. Chen and Lin (2007) proposed
an adaptive particle swarm optimization (APSO) approach to
optimize the sequence of component placements on a PCB
and the assignment of component types to feeders simultane-
ously for a pick-and-place machine with multiple heads.

In this paper, a novel swarm intelligence algorithm for
combinatorial optimization, named probability increment
based swarm optimization (PIBSO), is proposed. In general,
for a combinatorial optimization problem, the states in search
space are finite. The probabilities of states to be selected are
taken into account. The probability increment of a state is pro-
portional to the fitness of the state. Some calculations are de-
fined, and the population evolution mechanism is depicted. In
addition, PIBSO is applied to solve PCBAOP. The mathemat-
ical model for this problem is formulated, and two types of
search states are defined. The numerical results show that
PIBSO has much advantage on search capability and search
time over GA and APSO.

2. PIBSO

2.1. Initialization

In the initialization of PIBSO, a population of units is gener-
ated randomly or under a rule. For a combinatorial optimiza-
tion problem, the n-dimensional search space is denoted by
Pn. A state in Pn is denoted by xi ¼ [xi1, xi2, . . . , xin]T [
Pn, where i is the sequence number of state. For the kth vari-
able of xi, xik , the search space is Pk , Pn. A state in Pk is de-
noted by skm, and the number of skm is denoted by Numk. A
unit vector, denoted by uj ¼ [uj1, uj2, . . . , ujn]T, is a xi, where
j is the sequence number of the unit in population. In Pk, each
skm has a probability to be selected as ujk, and this probability
is denoted by pkm. Here, pkm is initialized in [0, 1] randomly or
under a rule and is not necessary to satisfy

PNumk
m¼1 pkm ¼ 1,

and uj is selected from xi. Apparently, the globally optimal
uj is the best combination of skm. The population scale is
set to a suited number according to the concrete optimization
problem.

2.2. Fitness

The fitness of unit ui, denoted by fiti, evaluates the suitability
of ui for the objective of optimization, and ui, with higher fit-
ness value approaches closer to the global optimum than oth-
ers with lower fitness values do. The definition of fitness de-
pends on the concrete optimization problem.

2.3. Unit update

Each fiti is normalized by

norfiti ¼
fiti � fitmin

fitmax � fitmin
; (1)

where fitmax and fitmin are the maximum, and minimum, re-
spectively, among fiti.

The incremental factor related to ui is denoted by wi [ (0, 1)
and is calculated by

wi ¼
dr � norfiti

n
, (2)

where dr [(0, 1] is the incremental ratio. Then, for the skm in-
cluded in ui, that is, ujk, its pkm is updated by

pkm(t þ 1) ¼ pkm(t)� (1þ wi), (3)

where t denotes the population generation.
If pkq (t þ 1) . 1 for skq, where 1 , q , Numk, then pkm

(t þ 1) (m = q) is calculated by

pkm(t þ 1) ¼ pkm(t)� [pkq(t þ 1)� 1] (4)

and then set as

pkq(t þ 1) ¼ 1: (5)

If pkq (t þ 1) , 0 for skq, where 1 , q , Numk, then set

pkq(t þ 1) ¼ 0: (6)

When pkm(t) has been updated to pkm (tþ 1), each uik (t) is
updated by selecting a skm from Pk to be uik (t þ 1), based on
pkm(t þ 1) and a selection rule defined by users. Usually
roulette wheel selection is adopted. Finally, uik(t þ 1) forms
ui(t þ 1).

2.4. Procedure of PIBSO

The procedure of PIBSO is described by the following:

STEP 1. Initialize a population of ui and pkm with a suitable
scale.

STEP 2. Evaluate the fitness fiti of each ui and normalize fiti
by Eq. (1).

STEP 3. For each ui, find incremental factor wi by Eq. (2)
and update pkm of uik by Eqs. (3), (4), (5), and (6).

STEP 4. Update uik and form new ui by selecting skm based
on pkm.

STEP 5. The updated ui forms new generation.
STEP 6. Go back to Step 2 until the stop criterion is met.

2.5. Population evolution mechanism of PIBSO

In general, evolution of a ui means the combination of skm

gets better and fiti increases. Accordingly, each uik evolves
into a better skm. The unit update mechanism indicates that
a worse ui with lower fiti makes pkm of uik be increased less
than a better ui with higher fiti does. Thus, a skm selected
by more better ui has a higher probability of being selected.
It means that the difference of pkm between various skm (which
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are selected by bigger amounts of better ui) and skm (which
are selected by bigger amounts of worse ui) expands gradu-
ally with the increase of generation number. This leads to
the situation in which ui tends to select better skm and ap-
proaches the global optimum. Therefore, Steps 3, 4, and 5
of PIBSO push population to reach convergence. In contrast,
pkm is influenced by all ui, and conversely, pkm affects the
quality of ui. Therefore, ui interacts each other. In addition,
the incremental ratio dr in Eq. (2) determines the value of
incremental factor wi and controls the incremental velocity
of pkm.

3. PCBAOP

3.1. Problem statement

The typical sequential pick-and-place machine, shown sche-
matically in Figure 1, consists of a movable placement head, a
feeder carrier with slots, feeders, and a board holder. When a
PCB has been transferred inside the machine by conveyor, the
only movable mechanism, the placement head, moves from
the starting point to a feeder to pick up a component. Then,
the placement head travels to a prespecified position on the
PCB to place the component. Next, the placement head tra-
vels to a feeder to pick up another component. This pick-
and-place procedure is repeated until the assembly task has
been completed. Eventually, when the last component has
been placed, the placement head travels back to the starting
point. Prior to production, components need to be stored in
feeders and feeders need to be loaded on slots. In general,
the placement head mounts only one component in a pick-
and-place operation and moves directly between a feeder
and a placement position. Moreover, a feeder stores only
one type of components and a slot loads only one feeder.

During PCB production, the sequential pick-and-place ma-
chine completes two types of work: assigning feeders to slots
and placing components onto the board in a sequence. To im-
prove efficiency and cut down cost, the traveling time of the
placement head, equivalently, the total length of the place-

ment head traveling paths, need be reduced to the minimum.
Consequently, optimization of PCB assembly is essentially a
combinatorial optimization problem to find the shortest loop
of the placement head.

3.2. Mathematical model

According to Ho and Ji (2007), the integer program model for
PCBAOP on the sequential pick-and-place machine can be
formulated as minimize

z ¼
Xn

i¼0

Xn

j¼1,j=i

Xm

t¼1

Xm

l
(dil þ dlj)� xij � ytjl þ

Xn

i¼1
di0 � xi0, (7)

subject to

Xn

i¼0
xij ¼ 1, 8j ¼ 0, 1, . . . , n; i = j (8)

Xn

j¼0
xij ¼ 1, 8i ¼ 0, 1, . . . , n; i = j (9)

ui � uj þ n� xij � n� 1, 8i, j ¼ 1, 2, . . . , n; i = j (10)

Xm

t¼1
ytl ¼ 1, 8l ¼ 1, 2, . . . , m (11)

Xm

l¼1
ytl ¼ 1, 8t ¼ 1, 2, . . . , m (12)

where i, j are the components (i, j¼ 0, 1, . . . , n); t is the com-
ponent types (t¼ 1, 2, . . . , m); l are feeders (l¼ 1, 2, . . . , m);
d0l is the distance traveled from starting point to feeder l; dlj is
the distance traveled from feeder l to position of component j
on PCB; dil is the distance traveled from the position of com-
ponent i to feeder l; di0 is the distance traveled from the posi-
tion of component i to starting point; ui is the placement order
of component i; xij ¼ 1 if component i is placed immediately
prior to component j and 0 otherwise; and ytjl ¼ 1 if compo-
nent j with component type t is stored in feeder l and 0 other-
wise.

3.3. A PCB assembly example

The PCB assembly example PAT is used here to help under-
stand the definitions and PIBSO application. Suppose in
PAT, five components of three types will be mounted and
four slots are on the feeder carrier. The distance between
placement positions and slots, the distance from the starting
point to slots, and the distance from the starting point to place-
ment positions are shown in Table 1.Fig. 1. The typical pick-and-place placement machine.
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3.4. Definitions

A tour of a placement head is a feasible loop of placement
head travel, that is, the placement head travels from the starting
point, picks and places all components repeatedly, and even-
tually returns to the starting point. In a tour, a path from a
slot to a placement position is called a placement path, and
a path from a placement position to a slot is called a pick
path. Apparently, a tour is composed of placement paths,
pick paths, and the path from the starting point to a slot as
well as the path from a placement position to the starting point.

The placement distance is defined as the distance from a slot
to a type of components, which is the sum of distances from the
slot to placement positions on which components of the type
are placed. For example, for PAT, according to Table 1, the
placement distance from slot 1 to components of type 1 is the
sum of the distance from slot 1 to position 1 and the distance
from slot 1 to position 2, equal to 10. The placement distance
matrix (PDM) is defined as the matrix in which each entry is a
placement distance. Moreover, the rows correspond to the slots
and the columns correspond to the types of components. As an
example, the PDM of PAT is depicted as

10 22 12
9 12 7

11 9 2
17 13 6

2
664

3
775

The pick distance matrix (PiDM) is defined as the matrix in
which the rows and columns correspond to slots and placement
positions, respectively, and each entry is a pick distance. The
starting point corresponds to the last column, with the assump-
tion that the starting point is a placement position when the
placement head starts a travel from it to a feeder to pick a com-
ponent; meanwhile, it corresponds to the last row, with the as-
sumption that it is a slot when the placement head travels from
the placement position of the last mounted component back to
it. The distance from the starting point to itself is set to positive
infinity. As an example, the PiDM of PAT is depicted as

3 7 6 16 12 1
5 4 3 9 7 2
8 3 5 4 2 3

12 5 10 3 6 4
4 8 7 17 13 1

2
66664

3
77775

4. APPLY PIBSO TO PCBAOP

4.1. Initialization of probabilities of substates

If the path from the starting point to a slot and the path from a
placement position to the starting point are assumed to be
pick paths, a tour includes two parts: length of placement
paths and length of pick paths. Each entry in PDM denotes
a substate of placement paths. Each entry in PiDM denotes
a substate of pick paths. According to Eq. (7), shorter paths
are better and should have higher probabilities to be selected.
Consequently, the probabilities of two types of substates are
initialized as the reciprocals of placement distances and pick
distances, respectively. The probability matrix of substates of
placement paths is called feeder assignment probability
matrix (FAPM). As one example in PAT, it is

0:100 0:045 0:083
0:111 0:083 0:143
0:091 0:111 0:500
0:059 0:077 0:167

2
664

3
775

The probability matrix of substates of pick paths is called
pick probability matrix (PPM). As one example in PAT,
it is

0:333 0:143 0:167 0:063 0:083 1
0:200 0:250 0:333 0:111 0:143 0:500
0:125 0:333 0:200 0:250 0:500 0:333
0:083 0:200 0:100 0:333 0:167 0:250
0:250 0:125 0:143 0:059 0:077 0

2
66664

3
77775

4.2. Unit generation rules

A unit includes two parts: a feeder assignment subunit
(FASU) and a pick subunit (PSU). The former determines
placement paths and the latter determines pick paths. The
generation rules of two subunits are described below.

4.2.1. Generating FASU

The FASU is a vector, in which indexes denote slots and its
elements are feeders (component types). In the procedure of
generating a FASU, a slot is selected randomly, and then a
feeder (component type) is selected for the slot by using rou-

Table 1. The distances among placement positions, slots, and the starting point in PAT

Position 1
(Type 1)

Position 2
(Type 1)

Position 3
(Type 2)

Position 4
(Type 2)

Position 5
(Type 3)

Starting
Point

Slot 1 3 7 6 16 12 1
Slot 2 5 4 3 9 7 2
Slot 3 8 3 5 4 2 3
Slot 4 12 5 10 3 6 4
Starting point 4 8 7 17 13

Note: PAT, a printed circuit board assembly example.
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lette wheel selection. This process is repeated until all feeders
are loaded. In roulette wheel selection, the roulette wheel con-
sists of probabilities of types of components, that is, the re-
lated entries of the row (the row corresponds to the slot) in
FAPM. When a feeder is selected by a slot, it will not be
put in the roulette wheels for selecting feeders for other slots.
In FASU, for the unused slots, the elements are set to zeros.

As one example in PAT, the process of generating a FASU
denoted by fasu1 is described as follows. Slot 3 is selected,
and the roulette wheel consists of 0.091, 0.111, and 0.500.
Thus, the feeder of type 1 is selected. Next, slot 2 is selected,
and the roulette wheel consists of 0.083 and 0.142. Thus, the
feeder of type 3 is selected. At the end, slot 4 is selected, and
the feeder of type 2 is assigned to slot 4. Consequently, fasu1

is worked out as

0 Type3 Type1 Type2

4.2.2. Generating a PSU associated with a FASU

When a FASU has been generated, an associated PSU needs
to be generated. The PSU is a vector in which the indexes de-
note placement positions and the last index denotes the starting
point, and its elements are the slots selected in the FASU. In
the procedure of generating a PSU, a placement position is se-
lected randomly, and then a slot is selected for the placement
position by using roulette wheel selection. This process is re-
peated until all placement positions are assigned slots. In rou-
lette wheel selection, the roulette wheel consists of probabil-
ities of slots that are the related entries of the column (the
column corresponds to the placement position) in PPM.

For PAT, as shown in Table 1, position 1 and 2 are of
type 1, position 3 and 4 are of type 2, and position 5 is of
type 3. Accordingly, for fasu1 in its associated PSU, slot 3
and 4 occur twice and slot 2 occurs once. As an example,
the process of generating a PSU associated with fasu1, de-
noted by psu1, is described as follows. Position 4 is selected,
and the roulette wheel consists of 0.111, 0.250, 0.333, and
0.059. Thus, slot 3 is selected. Next, position 1 is selected,
and the roulette wheel consists of 0.200, 0.125, 0.083, and
0.250. Thus, slot 2 is selected. Next, position 2 is selected,
and the roulette wheel consists of 0.250, 0.333, 0.200, and
0.125. Thus, slot 4 is selected. Next, position 3 is selected,
and the roulette wheel consists of 0.200, 0.100, and 0.143.
Thus, slot 3 is selected. Next, position 5 is selected, and the
roulette wheel consists of 0.167 and 0.077. Then, the starting
point is selected. At the end, slot 4 is assigned to the starting
point. Thus psu1 is worked out as

slot2 slote4 slot3 slot3 startingpoint slot4

When a FASU and an associated PSU are generated, a unit
is formed. For instance, the placement paths and the pick
paths of the above generated unit are shown in Figure 2.
For a unit, the length of tour is fixed no matter what the com-
ponent placement sequence is. For example, as shown in

Figure 2, the tour starting point ! slot4 ! position4 !
slot3! position2! slot4! position3! slot3! position1
! slot2! position5! starting point, and the tour starting
point! slot4! position3! slot3! position2! slot4!
position4! slot3! position1! slot2! position5! start-
ing point have the same length. The reason is that each place-
ment path and pick path need be passed once in a tour.

4.3. Population update

The fitness is defined as the reciprocal of the length of a tour,
that is, 1/z [z from Eq. (7)]. When a slot selects a feeder in
FASU or a placement position selects a slot in PSU, the rel-
evant substate probabilities increase in FAPM and PPM. The
following example shows how FAPM, PPM, and population
update.

For PAT, assume the scale of population is 5; in the first
generation, the unit unit1 with length of 67 is

0 ty3 ty1 ty2 ðFASUÞ

S2 S4 S3 S3 Stp S4 ðPSUÞ

The lengths of other four units, unit2, unit3, unit4 and unit5,
are 70, 56, 71, and 80, respectively. For each unit, the length
of tour is normalized by Eq. (1), with fitmax ¼ 80 and fitmin ¼

56. The results of normalization are

norfit1 norfit2 norfit3 norfit4 norfit5
0:46 0:58 0 0:63 1

Set dr to 1, and then the incremental factors of units are

w1 w2 w3 w4 w5

0:09 0:12 0 0:13 0:2

Next, in FAPM and PPM, the entries relevant to each unit are
updated. For unit1, in FAPM, entries (2, 3), (3, 1), and (4, 2)

Fig. 2. The placement paths (solid lines) and the pick paths (dash lines) of
the unit of fasu1 and psu1. Here, (1), (2), and (3) denote Type 1, 2, and 3
feeders, respectively, andj;k;l;m, andn denote Positions 1, 2, 3, 4,
and 5, respectively.
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need to multiply (1þ w1) by Eq. (3), and in PPM, entries
(1, 2), (2, 4), (3, 3), (4, 3), (5, 5), and (6, 4) need to multiply
(1þ w1) by Eq. (3). The results are

0:100 0:045 0:083
0:111 0:083 0:156
0:099 0:111 0:500
0:059 0:084 0:167

2
664

3
775

and

0:333 0:143 0:167 0:063 0:083 1
0:218 0:250 0:333 0:111 0:143 0:500
0:125 0:333 0:218 0:273 0:500 0:333
0:083 0:218 0:100 0:333 0:167 0:273
0:250 0:125 0:143 0:059 0:084 0

2
66664

3
77775

,

respectively. In the same way, FAPM and PPM are modified
by unit2, unit3, unit4, and unit5 in sequence. In the next gen-
eration, new units are generated by using the updated FAPM
and PPM so that population updates.

4.4. The process of PIBSO for PCBAOP

Set the scale of population to a suitable number. Initialize
i ¼ 0. Set the threshold thr to a suited value empirically.
The process of PIBSO for PCBAOP is described as follows:

STEP 1. Let i¼ iþ 1, and generate units to form a new gen-
eration of population denoted by gi.

STEP 2. Find the average tour length of units, denoted by
avei. Find the best unit with the shortest tour and denote its
length by besti.

STEP 3. Find incremental factors of all units and use them
to modify FAPM and PPM.

STEP 4. If i , 0, go back to Step 1; else go to Step 5.
STEP 5. Let c ¼ i. Find the average of javec – avec21j,
javec21 – avec22j, . . . , javec218 – avec219j, and denote it
by Ata.

STEP 6. If Ata , thr, then end the process and output the
minimum among besti as the near-optimum result; otherwise,
return to Step 1.

The condition of convergence is defined as the average of
javei – avei21j for the last 20 generationis less than his consid-
eration derives from the following observation. During the

Fig. 3. Comparisons between probability increment based swarm optimization (PIBSO) and two benchmark algorithms on the length of
tour.
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process of evolution of units, the difference among units tails
off and local optima occur frequently. However, it hardly
happens that the population falls into a local optimum and
cannot jump out in 20 consecutive generations. Thus, if units
have little change for 20 consecutive generations, PIBSO
reaches a nearly global optimum solution.

5. NUMERICAL EXPERIMENTS AND RESULTS

The effectiveness and efficiency of PIBSO in solving
PCBAOP were tested by numerical experiments on a Pentium
1.7-GHz CPU with 1 GB of RAM using MATLAB 7.0. A
program generating PCB assembly instances was developed
and used to produce PDM and PiDM of an assembly instance
on PCB with the size of 300�500 mm2. In order to inspect
performance of PIBSO comprehensively, PCB assembly in-
stances with component number of 50, 100, 150, 200, 250,
300, 350, 400, 450, and 500 are generated, respectively.
For a certain component number, three types of assembly in-
stances with different component type numbers and slot num-
bers are generated. For example, when component number is
set to 50, three pairs of component type number and slot num-
ber, that is, (5, 10), (8, 15), and (10, 20), are used to produce
assembly instances of three cases.

PIBSO is compared with two benchmark algorithms: GA
(Najera & Brizuela, 2005) and APSO (Chen & Lin, 2007).
The parameters of PIBSO are set as population scale is 40
(dr ¼ 1.0, thr ¼ 0.01). A PCB instance is generated by the
aforementioned program first. Then three algorithms are run
30 times on it. The average length of tour and CPU running
time are recorded and graphically shown in Figure 3 and
Figure 4, respectively.

It is easy to observe from Figure 3 that for each assembly
instance, no matter what settings of component type number,
slot number, and component number are, PIBSO can find a
shorter tour than GA and APSO do. Moreover, tours found
by GA are always the longest. The reason could be analyzed
as follows. Crossover and mutation operators of GA are
wholly stochastic, while selection strategy leads GA to search
global optimal solution through iterations. Instead, APSO
memorizes the current and historic optima so that it finds bet-
ter solution than GA. The critical weakness of GA and APSO
is easy to fall into local optimum. However, the mechanism of
PIBSO avoids local optimum by roulette wheel selection and
probability updating. Roulette wheel selection increases the
randomness of a search, while a probability updating operator
makes better states more likely to be chosen. The exploitation
and exploration in search process are balanced, and thus

Fig. 4. Comparisons between probability increment based swarm optimization (PIBSO) and two benchmark algorithms on CPU running
time.
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PIBSO has superior search performance and gets a shorter
tour.

As shown in Figure 4, when component number is less
than 100, GA is faster than APSO and PIBSO; and PIBSO
has shorter search time than GA and APSO with growth of
component number. As mentioned before, GA has powerful
stochastic search operators, crossover and mutation; thus,
when the search space is not very large for a small-scale
PCBAOP with component number less than 100, GA can
find optimum quickly. However, when component number
increases, search space grows tremendously and GA cannot
find global optimum in a short time. Conversely, roulette
wheel selection and probability updating of PIBSO produce
a trade-off between global and local searches, which makes
PIBSO more stable and free from influence of optimization
scale growth. Thus, as component number increases, PIBSO
costs less time than GA to get near-global optima. In addition,
APSO spends longer time than GA, as shown in Figure 4. Its
reason is that when search space grows, the velocity calcula-
tion in APSO becomes more complicated.

6. CONCLUSIONS

In this paper, a novel swarm intelligence approach for combi-
natorial optimization, named PIBSO, is proposed. It has a
complete mechanism of population evolution. Each state of
search space has a probability to be selected, and the probabil-
ity is updated by incremental factor and related operators. In-
cremental factor is determined by fitness of the state and rel-
evant operators. PIBSO searches the optimal state based on
the probabilities of states, and usually roulette wheel selection
is used.

When PIBSO is applied to PCBAOP, PDM and PiDM are
defined. Accordingly, FAPM and PPM are defined as well.
PIBSO finds the near-optimal solution by updating the two
probability matrices and roulette wheel selection. Experi-
mental results indicate that PIBSO not only gets shorter
tour but also costs less CPU running time than GA and
APSO. The superior performance of PIBSO attributes to
the population evolution mechanism in which roulette wheel
selection and probability updating make a trade-off between
global and local search.
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