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SUMMARY
This work presents an approach to motion planning for
robotic manipulators that aims at improving path quality
in terms of safety. Safety is explicitly assessed using the
quantity called danger field. The measure of safety can
easily be embedded into a heuristic function that guides the
exploration of the free configuration space. As a result, the
resulting path is likely to have substantially higher safety
margin when compared to one obtained by regular planning
algorithms. To this end, four planning algorithms have
been proposed. The first planner is based on volume trees
comprised of bubbles of free configuration space, while
the remaining ones represent modifications of classical
sampling-based algorithms. Several numerical case studies
are carried out to validate and compare the performance of
the presented algorithms with respect to classical planners.
The results indicate significantly lower danger metric for
paths obtained by safety-oriented planners even with some
decrease in running time.

KEYWORDS: Motion Planning; Path Planning; Redundant
Manipulators; Safety.

1. Introduction
Ensuring safety for humans is certainly the highest priority
in all applications where humans and robots may interact,
particularly in those where robots can cause harm to
humans. In industrial environment, robotic manipulators
can have significant amounts of mechanical energy that
can, in case of undesired contact, inflict severe injuries to
human operators. Traditional safety measures, defined for
instance by ANSI/RIA R15.06-1999 (American National
Standard for Industrial Robots and Robot Systems—
Safety Requirements)1 prescribe that safety is achieved
by physically separating personnel from the robots. This
standard is written specifically for industrial robots, and is
not applicable to autonomous or service robots.25 A more
elaborated standard ISO 10218-1:20062 was introduced as an
attempt to define new collaborative operation requirements
for industrial robots. However, the results reported in ref.
[15] demonstrated that these requirements are unnecessarily
conservative, and therefore strongly limit the performance of
the robot.

A large attention is devoted to the problem of safety
in the literature. In the work of Ikuta et al.,18, 19, 39 the

* Corresponding author. E-mail: bakir.lacevic@etf.unsa.ba

safety strategies were classified as pre-contact or post-
contact strategies. Moreover, the minimization of the risk
in interaction by means of mechanical design and by means
of control is discussed. Although the main issue was safety
in human-care robotics, they introduced the first systematic
quantitative method called danger index in safety evaluation,
concerning human–robot interaction in general.

In ref. [15], Haddadin et al. give an overview of their
systematic evaluation of safety in human–robot interaction,
covering various aspects of the most significant injury
mechanisms. Zinn et al.52 used empirical formulas developed
by the automotive industry to correlate head acceleration
to injury severity (head injury criteria) in order to evaluate
the potential for serious injury due to impact. The work
was mainly oriented towards new actuation concepts in
the human-friendly robot design. They stressed out the
importance of joint torque control approach and series elastic
actuation.

Heinzmann and Zelinsky16 proposed a control scheme for
robotic manipulators that restricts the torque commands of a
position control algorithm to values that comply to predefined
quantitative safety restrictions. For that purpose, they defined
a quantity called impact potential as a maximum impact force
that a moving mechanical system can create in a collision
with a static obstacle.

In the successive publications of Kulic and Croft,26–28

several specific safety strategies were presented as
components of an extensive methodology for safe planning
and control in human–robot interaction. They addressed the
important issue of estimating the human intent and affective
state during the interaction. The information about the intent
or the state of the human is used within a planning and control
strategy to improve safety and intuitiveness of the interaction.
Further, several danger indices have been formulated and
used as an input to a real-time trajectory generation. A
motion strategy consists of minimizing the danger index
during a stable robot operation. The information about the
human state, intent, and the environment is acquired using a
computer vision-based system and the measurement of some
physiological signals.

In ref. [9], Brock and Khatib propose a general framework
for motion planning and execution in human environment. It
is based on the notion of elastic strips—structures deformable
according to external influences. Elastic strips are built upon
the initial path that is considered a priori known. Safety is
not addressed explicitly.

As far as the path planning problem is concerned,
the exact algorithms that are based on the a priori
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knowledge of the complete configuration space (C-space)
are proven to be exponential in the dimensionality of the
C-space.11 Due to the questionable applicability of such
an approach for the problems with high dimensionality,
a sampling-based paradigm has gained more popularity.
The two most prominent methods are: rapidly exploring
random tree (RRT) algorithm24, 35 and probabilistic roadmap
(PRM) planner.23 Although incomplete, these methods
have been proven capable of efficiently solving many
challenging, high-dimensional motion planning problems.13

Both methods rely on randomly sampling the C-space,
constructing a graph upon these samples via local collision-
free paths, and outputting the solution as the path from
the initial to goal configuration across the graph edges.
Since their invention, both PRM and RRT have subsequently
undergone many modifications to become extremely efficient
tools for solving specific motion planning problems
(see e.g., refs. [8,17,42,45–48,51]). For a large overview
of motion planning methods, the reader is referred to
refs. [12,34,36].

Most of the planning algorithms provide feasible paths
when considering solely the “hard constraints,” taking care
only that no intersections between the robot and the obstacles
occur.43 Some efforts to impose additional requirements upon
the path, like staying away from certain areas as much
as possible, can be found in refs. [38,43]. In ref. [14],
authors propose an algorithm for improving a clearance
along an already given path in a post-processing phase. The
method is rather elaborate, but computationally expensive
and not easily reproducible. Moreover, improving clearance
does not necessarily imply the safety enhancement.29 In
ref. [49], authors perform an incremental exploration of
the configuration space to generate high-quality paths that
are comparable with probabilistic methods and can even
improve some aspects, such as the completeness. Jaillet
et al.20 provide a framework for RRT-based path planning
that considers a generic cost function defined over the
configuration space. The proposed algorithm uses transition
tests to accept or reject new potential states. Unfortunately,
such transition tests appear to be a limiting factor in
terms of performance when considering bidirectional RRT.20

Berenson et al.4 combined gradient descent search with the
approach from ref. [20] to navigate cost space chasms, which
are loosely defined as narrow, low-cost regions surrounded
by increasing cost. In ref. [37], Mainprince et al. presented a
method to increase the quality of the human–robot interaction
at motion planning level. The method accounts for three
constraints: distance, visibility, and comfort that capture
relevant properties like position, kinematics, and field of view
of the human. In ref. [41], visibility-graph-based heuristic
algorithm for safe path planning in 2D and 3D space has been
proposed. The method relies on the concept of formidable
zones to prevent unsafe joint angle configurations. Karaman
and Frazzoli22 provided a strong theoretical result by
rigorously analyzing the asymptotic behavior of the cost
of the solution returned by stochastic sampling-based
algorithms as the number of samples increases. They
proposed PRM∗ and RRT∗—the asymptotically optimal
extensions of the classical algorithms—that have been proved
to lack the feature of optimality.

Fig. 1. (Colour online) Path in C-space and the corresponding
manipulator motion.

This work integrates the authors’ contributions on
design of safety-oriented path planning algorithms.1 Four
algorithms are presented and tested within a unique case
study that is used to evaluate and compare their performance.
For illustrating the performance enhancement, corresponding
classical planning algorithms are also considered. The main
idea behind the presented approach is to use a meaningful
measure of safety/danger, the danger field, in order to bias the
exploration of the configuration space within the planning
phase. Consequently, the planning algorithm outputs safer
path.

The remainder of the paper is organized as follows. In
Section 2, the problem of safety-oriented planning is defined.
Safety/danger assessment is described in Section 3. Section
4 brings the description of the algorithms: the one based on
bubbles of free configuration space, PRM-based planner, and
two algorithms based on RRT. Case studies and discussion
of results are given in Section 5 while conclusions and future
work directions are given in Section 6.

2. Problem Description
The proposed planning algorithms are designed to find a
path in C-space from the start configuration qs to the goal
configuration qg (or to a goal region if the task is defined in the
workspace). It is desirable that the path is collision-free while
at the same time minimizing the danger field (or keeping it
below a certain value) induced by the robot’s configuration at
the obstacles’ locations. An example of a collision-free path
in C-space and a consequent motion of a 3-degree of freedom
(DOF) planar manipulator is shown in Fig. 1. The C-space
is represented as a cube [−π, π]3 whose axes correspond
to joint angles. It includes the C-space obstacles—the set
of all configurations that cause the intersection between the
robot and the obstacles.7 The initial and final positions (p(qs)
and p(qg) respectively), as well as the path described by the
end-effector are indicated.

For redundant manipulators, the goal configuration qg ,
can be extended to the goal region, i.e., the set of all
configurations that enable the robot to complete the task (e.g.,
grasp the object).5–7 For instance, if the goal is equivalent to
the end-effector reaching the point p in the workspace, the
goal region in C-space is the collision-free portion of the
self-motion manifold corresponding to p.10

1 Partial results of this paper can be found in refs. [31–33].
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3. Danger Assessment
In ref. [30], the concept of the danger field as a safety
assessment tool is introduced. For the alternative ways
to assess the danger in the environment of the robotic
manipulator, the reader is referred to refs. [16,18,27,28].
In this work, the danger field is used as an ingredient for
the heuristic function of the path planner. For the sake of
completeness, we give a brief definition of the static version
of the danger field.2

Let T be a point mass whose position is given with rt =
(xt yt zt )T . For convenience, we put ρt = ‖r − rt‖, where
r = (x y z)T is a generic point in the world frame.

Definition 3.1. A differentiable scalar function DF =
DF (r, rt ) is called a static danger field (SDF) if it satisfies
the conditions:

(i) ∃f : R3 → R+, such that DF (r, rt ) ≡ f (ρt ),

(ii) ∂f (ρt )
∂ρt

< 0, ∀ρt > 0,

We now extend the principle of SDF in the sense that the
danger source is no longer a point, but a part of curve in
R3. Let rt : [0, S] → R3 be the mapping that represents the
piecewise smooth curve rt (t) = (x(t) y(t) z(t))T , where t is
the natural parameter and S is the length of the curve.

Definition 3.2. If DF (r, rt ) is SDF, then the cumulative
static danger field (CSDF) is defined as:

CDF (r) =
∫ S

0
DF (r, rt )dt. (1)

CSDF captures the contribution of the curve’s position
in R3. It is now possible to define the CSDF of the rigid
robot manipulator using Eq. (1), where the curve over which
the integration is performed is the line approximation of the
kinematic chain. Knowing the position of the link endpoints,
one could evaluate the position of any point on the chain just
by using forward kinematics. Further, it is natural to compute
the contribution of each link separately and then obtain the
CSDF as the superposition of these contributions. Let ri and
ri+1 be the positions of the endpoints of link i. Any point rt

on the link i could be represented as:

rt = ri + t (ri+1 − ri) , t ∈ [0, 1]. (2)

Now, we can express some characteristic quantities that play
role in the expressions for CSDF. First of all:

r − rt =
[

x
y
z

]
−

[
rix + t(ri+1 x − rix)
riy + t(ri+1 y − riy)
riz + t(ri+1 z − riz)

]
≡

[
α1 + α2t
β1 + β2t
γ1 + γ2t

]
. (3)

The module of the above vector is ρ2
t = ‖r − rt‖2 = at2 +

bt + c, where a = α2
2 + β2

2 + γ 2
2 , b = 2(α1α2 + β1β2 +

γ1γ2), and c = α2
1 + β2

1 + γ 2
1 .

2 The general version of the danger field takes into account both
the robot’s position and velocity, while in this paper we consider
only the position.

Fig. 2. (Colour online) Elements that play role in the computation
of elementary danger field.

Fig. 3. (Colour online) Snapshots of the danger field’s contour plot:
a 2-DOF example (the robot base is marked).

The CSDF of the link i is given with:

CDFi(r) =
∫ 1

0
DF (r, rt )dt =

∫ 1

0
f (ρt )dt. (4)

Consequently, the CSDF of the n-DOF robot arm is:

CDF (r) =
n∑

i=1

CDFi(r). (5)

We propose the elementary CSDF, induced by the motion of
infinitesimal portion of the link as:

DF (r, rt ) = k1
‖r−rt‖ , (6)

where k1 is a positive constant, r is a point in space at which
the field is being computed, and rt is the position of the link’s
element (see Fig. 2). The CDF induced by the motion of the
complete link can be expressed as:

CDF (r, ri , ri+1) = k1

∫ 1

0

dt√
at2 + bt + c

. (7)

The integral (7) is solvable analytically and hence, the value
of the danger field at any point of the space can be evaluated
via an algebraic expression. Inputs to the expression are ri

and ri+1 (obtainable from forward kinematics) and a generic
position r. As previously stated, by the simple superposition
of the influences of many arbitrarily articulated links, one
could obtain the danger field induced by the complete
kinematic chain. Figure 3 shows the contour plot of the field
induced by the motion of a 2-DOF planar manipulator. To
make it presentable as a function of two variables, the danger
field is restricted to the plane in which the robot moves. The
field CDF (r) is by definition a scalar field. Nevertheless,
a vector field can easily be constructed upon it. The most
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natural way to do so is by using its gradient:

−−−→
CDF (r) = CDF (r)

∇CDF (r)

‖∇CDF (r)‖ . (8)

Thus,
−−−→
CDF (r) is a vector, anchored in r, with the magnitude

CDF (r), pointing in the direction defined by ∇CDF (r).

4. Planning Algorithms
In this section, an approach to path planning that seeks for
safe paths using a suitably tailored heuristic function that
embeds the safety assessment is described. In particular, four
versions of the planner are considered. The first version is
based on the tree expansion via so-called bubbles of free
configuration space that are first introduced in ref. [40]. The
algorithm simultaneously chains the bubbles both from initial
and goal configurations until these chains intersect. The chain
growth is guided by the danger field information. The second
version of the planner is designed within a PRM context. A
bidirectional, safety-oriented heuristic search is applied to
obtain a path between initial and goal configurations. The
third planner is based on RRT paradigm. Two modifications
of classical RRT planners are proposed. The first is based
on Jacobian Transpose-directed RRT algorithm48 that grows
a single tree from the start configuration towards the goal
defined in the workspace. The second is a modification of
the standard bidirectional RRT-connect planner24 where the
inputs to the algorithm are the start and the goal configuration
that serve as seeds for the tree’s growth. Parts of the work
from this section can be found in refs. [31–33].

4.1. Safe path planning based on bubbles of free C-space
The algorithm is based on the concept of so-called bubbles of
free configuration space, introduced in ref. [40]. The bubble
B(q) at the current configuration q is a compact region
computed using a distance dc of the robot in configuration
q from the closest obstacle in the workspace. For the robots
with n revolute joints, it takes a diamond shape:40

B(q) =
{

x :
n∑

i=1

ri |xi − qi | < dc

}
. (9)

The quantity ri is the radius of the cylinder whose axis is
collocated with the axis of the ith joint and that encloses all
the links starting from ith joint to the end-effector. Changing
the configuration from q to an arbitrary configuration within
a bubble implies that no point on the kinematic chain
will move more than dc and thus no collision will occur.
An elaborate assertion of the simplicity in computing the
bubbles can be found in ref. [40]. Figure 4 shows a couple
of configurations for the 2-DOF planar manipulator and
the corresponding bubbles of free configuration space. The
proposed algorithm tries to connect initial configuration qs

and the goal configuration qg by simultaneously chaining
bubbles both from initial and goal configurations until these
chains intersect. Its principle is given with the pseudocode
for the procedure BUBBLE PLANNER.

The code is based on the bidirectional A∗ search
algorithm.21, 36 Lists named “Closed()” stand for the lists

Fig. 4. (Colour online) Two configurations q1 and q2 of the 2-DOF
planar manipulator and the corresponding bubbles B(q1) and B(q2)
shown in C-space.

procedure BUBBLE PLANNER(qs , qg)
Closed(1) ← [qs];
Closed(2) ← [qg];
Open(1) ← [qs];
Open(2) ← [qg];
dir ← 1; qcurrent goal ← qg;
for k = 1 to kmax do

if INTERSECT (Closed(1), Closed(2)) then
return PATH (Closed(1), Closed(2));

end if
qnew ← argmin

x ∈ Open(1)

f (x);

REMOVE (Open(1), qnew);
ADD (Closed(1), qnew);
ADD (Open(1), BUBBLE ENDPOINTS (qnew));
SWAP (Closed(1), Closed(2));
SWAP (Open(1), Open(2));
dir ← 3 − dir;
qcurrent goal ← qnew;

end for
return Failure

end procedure

of visited nodes (configurations), while the waiting lists of
nodes yet to be considered are labeled “Open().” Index 1
stands for the list (tree) that is currently being processed.
At each iteration, function INTERSECT checks whether
there are q1 ∈ Closed(1) and q2 ∈ Closed(2) such that
B(q1) ∩ B(q2) = ∅. If that is the case, there is a collision-
free path between the trees expanded from qs and qg and
hence a path between qs and qg . Otherwise, the most
promising node qnew is selected from the list Open(1) that
minimizes the heuristic function f (described later). The
configuration qnew is deleted from the list Open(1) and
is added to the list of visited nodes Closed(1). Then the
bubble B(qnew) is computed and its vertices are added to
the list Open(1). The search direction is then reversed by
swapping the corresponding lists. The variable dir preserves
the information about the search direction. If we expand the
tree originating from qs then dir = 1, otherwise dir = 2.
If the collision-free path is not obtained within a predefined
number of iterations kmax , the algorithm returns failure.
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The heuristic function f is defined as:

f (x) = g(x) + h(x) + α ˆCDF (x) − β min
z∈C

‖x − z‖, (10)

where g(x) is a cost function of a traversed path from root
to x, and h(x) = ‖x − qcurrent goal‖1 is the underestimate of
the distance between x and the current goal qcurrent goal . The
term ˆCDF (x) serves as the estimate of the maximum value of
the danger field CDF induced by the robot in configuration
x over all of the relevant subjects/obstacles locations. The
last term in Eq. (10) represents the contribution of the point
x to the spatial diversity of the samples (in the corresponding
tree with a list of visited nodes C = Closed(dir)) already
processed during the search. The point is considered better
if it has a larger minimum distance from the set of already
visited nodes. The idea is to increase the tendency of the
algorithm to explore less-visited parts of the configuration
space. Variables α and β are positive tunable parameters.

Unlike the planners that are based on RRT paradigm, the
proposed algorithm updates the search trees in a deterministic
manner. As for the computational effort needed to extend the
tree towards the new configuration, the proposed algorithm
does not require the collision-checking routine (unlike the
RRT algorithm) because the entire edge that is being added
to the tree lies within the bubble of free configuration space.
On the other hand, the computation of the bubble around
a given configuration requires only marginally more effort
than determining solely whether a configuration is collision-
free.40 The only additional requirement is the memory space
needed for maintaining the Open() lists. Partial resolution
to this problem may be the substitution of the A∗ search
with the iterative deepening A∗ algorithm.21, 36 If the original
diamond-shaped bubble is replaced by its smaller subset—a
largest inscribed axis-aligned hypercube—the completeness
of the algorithm can be proved.32

4.2. PRM-based safe path planning
As in the bubble-based planner, the algorithm is based
on the bidirectional A∗-search algorithm.21, 36 It builds
two graphs simultaneously from the initial and the goal
configurations using random samples as milestones. When
the two graphs meet, the algorithm outputs the collision-
free path. The expansion of the graphs is dictated by the
modified heuristic function f , similar to that used within
the BUBBLE PLANNER, but without the diversity term. In
a similar fashion as in refs. [8,42], the algorithm is lazy
in collision checking, i.e., the collision-checking routine
is invoked only when the algorithm tries to establish an
edge that connects the current milestone to its candidate
neighbors. The principle of the algorithm is given in the
procedure SAFE PRM PLANNER. Note that some of the
details typical for A∗-search are omitted for brevity.

At each iteration, function CONNECTED checks whether
there are q1 ∈ Closed(1) and q2 ∈ Closed(2) such that q1 =
q2. If that is the case, there is a collision-free path between
the graphs expanded from qs and qg and hence a collision-
free path between qs and qg . Otherwise, the most promising
node qnew is selected from the list Open(1) that minimizes
the heuristic function. The function NEIGHBORS picks the

procedure SAFE PRM PLANNER(qs , qg)
Samples←RANDOM SET();
Samples←Samples ∪ {

qs, qg

}
Closed(1) ← [qs];
Closed(2) ← [qg];
Open(1) ← [qs];
Open(2) ← [qg];
qcurrent goal ← qgoal;
while ¬EMPTY(Open(1))∧¬EMPTY(Open(2)) do

if CONNECTED (Closed(1), Closed(2)) then
return PATH (Closed(1), Closed(2));

end if
qnew ← argmin

x ∈ Open(1)

f (x);

REMOVE (Open(1), qnew);
ADD (Closed(1), qnew);
ADD (Open(1), NEIGHBORS (qnew));
SWAP (Closed(1), Closed(2));
SWAP (Open(1), Open(2));
qcurrent goal ← qnew;

end while
return Failure

end procedure

nearest neighbors of the node qnew and puts them to the list
Open(1). It is done as follows. The nearest K nodes (K ∈ N)
to qnew from the set Samples\Closed(1) are chosen as the
candidate neighbors of qnew. The choice is made with respect
to the metric:

D(q1, q2) =
M∑
i=1

‖pi(q1) − pi(q2)‖2, (11)

where pi represents the world coordinate for the distal
point of the ith link of the M-DOF manipulator. This
metric function captures the area swept by the robot while
moving from the configuration q1 to the configuration q2.
The smaller this metric is, the more likely it is that the
corresponding local path defined by the straight line from
q1 to q2 will be collision-free. Now, for each of the candidate
neighbors, an attempt is made by a local planner to connect
it to its parent qnew. The local planner simply connects the
two given configurations by a straight line (in C-space)
and subsequently checks this line for collisions.23 If the
line segment is collision-free, the corresponding candidate
neighbor is added to the list Open(1) via the function
NEIGHBORS. The search direction is then reversed by
swapping the corresponding lists.

4.3. Safe path planning based on JT-RRT algorithm
SAFE JT-RRT algorithm is a modification of Jacobian
Transpose-directed RRT (JT-RRT) algorithm48 that grows a
single tree from the start configuration and uses the transpose
of the Jacobian to guide the sampling towards the goal defined
in the workspace. The modified algorithm accounts for safety
in the tree expansion. Note that the goal is not a single
point in C-space, but any configuration that is mapped by

https://doi.org/10.1017/S0263574713000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000143


866 Safety-oriented path planning for articulated robots

procedure SAFE JT-RRT(qs , xg)
Q ← [qs];
while (WS DISTANCE(Q, xg) ≥ DT hreshold ) do

p ← RAND(0, 1);
if p < pg then

Q ←EXTEND TOWARDS GOAL(Q,xg);
else

Q ←EXTEND RANDOMLY(Q);
end if

end while
end procedure

forward kinematics into a desired workspace position xg .
The pseudocode of the algorithm is given by the procedure
SAFE JT-RRT.

The core of the algorithm is the unidirectional RRT
where the tree comprised of already processed nodes
(configurations) is represented by Q. As in ref. [48],
the tree expansion switches between two modes until the
robot becomes close enough to its workspace-defined goal
(defined by the function WS DISTANCE). The first mode
(procedure EXTEND RANDOMLY) is similar to a common
random tree extension. When a random configuration qrand

is generated, the tree is extended from the node q that has the
smallest value of the function ‖q − qrand‖ + α‖−−−→

CDF (q)‖,
where α is a positive parameter. The term ‖−−−→

CDF (q)‖ stands
for the maximum value of the danger field induced by the
robot in configuration q over all of the relevant obstacle
locations. The choice of node q, from which the tree is
extended, represents the compromise between the distance
to qrand and the measure of danger.

The second mode is the extension from the current config-
uration towards the one that reduces the distance measured in
the workspace (procedure EXTEND TOWARDS GOAL).
Thus, the algorithm has both exploitation features in terms
of the biased search towards the goal and the capability to
efficiently explore the configuration space.48

Within the EXTEND TOWARDS GOAL mode, a
pseudoinverse J† of the Jacobian matrix J is used to compute
the desired displacement �q in the C-space that should
ensure the decrease of the corresponding position error in
the workspace. It draws motivation from the closed-loop
inverse kinematics algorithm (CLIK).44, 50 Unlike the original
JT-RRT algorithm, the modified one uses the information
about the danger field to shape the null-space motion in
order to exploit the robot’s kinematic redundancy in a way
that the robot takes safer postures without compromising the
prescribed motion of the end-effector. Clearly, this approach
will take effect only if the manipulator is functionally
redundant with respect to a given task. Note that the original
JT-RRT does not require a pseudoinverse J† but uses JT

instead to emulate the inverse kinematics solution from ref.
[50].

At first, the configuration qold with the smallest value of
the function

WS DISTANCE
(
fk(q), xg

) + α‖−−−→
CDF (q)‖

procedure EXTEND TOWARDS GOAL(Q, xg)

qold ←argmin
q ∈ Q

{
WS DISTANCE

(
fk(q), xg

)+α‖−−−→
CDF (q)‖

}
;

while 1 do
�x ← xg − f (qold );

�q0 ← k1
∑N

j=1

∑n
i=1 JT

i,j

−−−→
CDF (rj );

�q ← k2
[
J†�x + (

I − J†J
)
�q0

]
;

qnew ← qold + �q;
if COLLISION FREE(qold , qnew)) then

if (‖−−−→
CDF (qnew)‖ < CDFT hreshold ) then
Q ← Q ∪ qnew;

else return Q;
end if

else return Q;
end if
if (‖xg − f (qnew)‖ < DT hreshold ) then

return Q;
end if
qold ← qnew;

end while
end procedure

Fig. 5. (Colour online) Mapping the vector of the danger field
into desired displacements �p0 of several points of interest on the
manipulator.

is chosen, where the function fk stands for the forward
kinematics mapping. For efficient implementation, a sorted
list of configurations with respect to cost function may be
maintained. Picking larger α in general yields safer paths, in
a similar manner to the safety-oriented PRM approach (see
ref. [31]). This choice of qold represents the compromise
between the vicinity to a workspace-defined goal and the
measure of danger. If qold has been chosen before, the next
best configuration is taken. Then, the position error �x
in the workspace is computed. Moreover, a configuration
displacement �q0 whose role is to decrease the danger is
obtained via expression given in the pseudocode. The idea
is to map the danger field vector

−−−→
CDF into the desired

Cartesian displacement �p0 for each link (see Fig. 5).
These displacements are then easily mapped into

configuration displacements via corresponding Jacobian
matrices. The matrix Ji,j represents the first three rows of
the Jacobian associated to a relevant point on the link i,
i = 1, 2, . . . , n, where n is the number of links. An intuitive
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Fig. 6. (Colour online) First scenario: typical solution paths for the considered planners. First row: BUBBLE PLANNER without
safety heuristic (left) and BUBBLE PLANNER with safety heuristic (right). Second row: Classical PRM planner (left) and
SAFE PRM PLANNER (right). Third row: RRT-Connect planner (left) and SAFE RRT-Connect planner (right). Fourth row: JT-RRT
planner (left) and SAFE JT-RRT planner (right).

choice for a relevant point is the point on the link that is the
closest to the obstacle3 rj (as in Fig. 5). A computationally
more convenient option, which is indeed used for the
validation of the algorithm, is to choose these points as
the endpoints of the links. Extensive simulations show that
such a choice does not compromise the performance of the
algorithm.

An update of the configuration �q comprises two parts.
The first part J†�x leads the robot towards the workspace
goal. The second part is responsible for guiding the robot to
safer posture. Note that the vector �q0 does not affect the
position/orientation of the end-effector because a suitable
null-space projection is performed via matrix I − J†J. If
the danger in the new configuration qnew does not exceed
a certain threshold and the local path from qold to qnew

3 Note that in the expression for �q0, the summation is performed
over all of j = 1, . . . , N relevant obstacles. Moreover, the notation
of the configuration qold , at which the Jacobian matrix J is
computed, is omitted for brevity.

is collision-free, the node qnew is added to the tree.
Otherwise, the loop is terminated. Lowering the threshold
for the danger field usually increases the safety of the
resulting path but may also increase the running time of the
algorithm.

As pointed out in ref. [48], the step taken along the
direction defined by �q should not be too large before the
Jacobian is re-evaluated. The norm of such a step is directly
controlled by positive tunable parameters k1 and k2. Picking
k1 and k2 too large may cause significant oscillations in the
path. The approach used within the case study is to set k1 and
k2 as large as possible provided that the oscillations do not
occur.

4.4. Safe path planning based on RRT-Connect algorithm
An alternative version of RRT-based safe planning algorithm
relies on the classical RRT-connect planner.24 The original
RRT-connect algorithm grows two RRTs, rooted at start and
goal configurations, and tries to merge them in each iteration
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Fig. 7. (Colour online) Scenario 1: averaged danger field profiles
vs. the path’s natural parameter.

using greedy Connect heuristic (see ref. [24] for details). The
modified algorithm (SAFE RRT-CONNECT) differs in the
way the trees are expanded whereas the Connect heuristic
remains the same.

When a random configuration qrand is generated, the best
node qold from the tree Q1 is chosen and an attempt is made
to expand the tree Q1 from qold to qrand . If such an expansion
is possible, the new node qnew is added to the tree Q1. In the
original algorithm, the node qold represents the configuration
from Q1 that is the closest to qrand with respect to some
metric function ρ, defined in C-space. In the SAFE RRT-
CONNECT algorithm, the configuration qold minimizes
the function ρ(q, qrand ) + α‖−−−→

CDF (q)‖ that captures both
the distance from qrand and the danger assessment of the
configuration q. Thus, the trees are expanded from safer
regions. Like within the SAFE JT-RRT algorithm, larger
α in general yields safer but longer paths. Each time the
configuration qnew is obtained, an attempt is made to merge
the trees Q1 and Q2 via nodes qnew and q̄old , where q̄old

is the configuration from the tree Q2 that minimizes the
function ρ(q, qnew) + α‖−−−→

CDF (q)‖. If the connection is
possible, the collision-free path can be constructed from
the trees Q1 and Q2. Otherwise, the roles of trees Q1

and Q2 are reversed by swapping them and the expansion
continues. If the collision-free path is not obtained after
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Fig. 8. (Colour online) Scenario 1: mean, median, 15th, and 85th percentiles of the danger field along the path’s natural parameter. Top
row: PRM (left) and SAFE PRM (right). Middle row: RRT-Connect (left) and Safe RRT-Connect (right). Bottom row: JT-RRT (left) and
Safe JT-RRT (right).
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procedure SAFE RRT-CONNECT(qs , xg)
Q1 ← [qs];
Q2 ← [qg];
for k=1 to K do

qrand ← RANDOM CONFIG();

qold ← argmin
q ∈ Q1

{
ρ(q, qrand ) + α‖−−−→

CDF (q)‖
}

;

qnew ← EXTEND(qold , qrand );

q̄old ← argmin
q ∈ Q2

{
ρ(q, qnew) + α‖−−−→

CDF (q)‖
}

;

if CONNECT(q̄old , qnew) = Successful then
RETURN PATH(Q1, Q2)

end if
SWAP(Q1, Q2)

end for
return Failure

end procedure

the predefined number of iterations K , the algorithm returns
failure.

5. Numerical Experiments
In this section, all the planning algorithms are tested
within two different scenarios. For validation purposes, a
model of a 6-DOF robotic arm (anthropomorphic arm with
spherical wrist44) is considered. It is worth pointing out
that the efficiency of tested algorithms has also been shown
using other types of robotic manipulators, e.g., a 3-DOF
planar robot,32 a 6-DOF robot with alternative kinematic
structure,32, 33 and a 7-DOF robotic manipulator.31 The

algorithms are implemented within MATLAB, including the
geometrical models of the robot and the environment. All
the simulations are performed on Intel(R) Core(TM) i3-
2100 CPU @ 3.10 GHz PC with 4 GB RAM. For a single
scenario, each algorithm is executed 1000 times because
of the innate randomness within the algorithms. This does
not hold for the BUBBLE PLANNER, which is inherently
deterministic. The numerical study also considers classical
algorithms: PRM, RRT-Connect, and JT-RRT. Figure 6
shows a simple scenario with the typical solution paths
obtained by the tested algorithms. The manipulator has to
reach the goal from a given initial configuration qs . For JT-
RRT and SAFE JT-RRT planners, the goal is defined by the
desired Cartesian position of the end-effector without the
specified orientation. For the remaining algorithms, the goal
is defined by the desired configuration qg . According to Fig.
6, safety-oriented versions of the planning algorithms provide
considerably safer postures of the manipulator along yielded
paths. Figure 7 shows the averaged profiles of the danger
field (over 1000 runs, except for the algorithms based on
bubbles that have been run once) as the function of the path’s
scaled natural parameter s ∈ [0, 1]. Not surprisingly, the
safety-oriented versions of the considered planners provide
substantially safer paths. Another interesting indicator of
the algorithm performance is the deviation of the danger
field profiles from the averaged one. A smaller deviation
implies the higher robustness of the planner with respect to
inherent randomness within the algorithm in the sense that
paths obtained under the same conditions are more likely to
exhibit the same or similar safety features. Figure 8 shows
mean, median, 15th, and 85th percentiles of the danger field
along the path’s natural parameter. Clearly, safety-based
algorithms appear to output solution paths whose danger

Table I. Scenario 1: some numerical results.

Coll. checks/
Algorithm Avg. time (s) Nodes Dist. computations DF computations

BUBBLES (safety OFF) 3.1668 545 5268 –
BUBBLES (safety ON) 0.2808 181 550 206
PRM 0.8076 106 1545 –
SAFE PRM 0.8427 90 1597 268
RRT-Connect 0.1387 28 359 –
SAFE RRT-Connect 0.1636 19 379 46
JT-RRT 0.1604 103 328 –
SAFE JT-RRT 0.1583 40 309 63
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Fig. 9. (Colour online) Scenario 1: box plots for running times of considered algorithms. Mean value (·) and the outliers (+) are also
indicated. Since the running times for PRM and SAFE PRM are considerably higher in comparison with the remaining algorithms, they
are shown separately for scaling purposes.
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Fig. 10. (Colour online) Second scenario: typical solution paths for the considered planners. First row: BUBBLE PLANNER
without safety heuristic (left) and BUBBLE PLANNER with safety heuristic (right). Second row: Classical PRM planner (left) and
SAFE PRM PLANNER (right). Third row: RRT-Connect planner (left) and SAFE RRT-Connect planner (right). Fourth row: JT-RRT
planner (left) and SAFE JT-RRT planner (right).

profiles deviate less from the expected one. Table I shows
some relevant parameters for all of the algorithms for the first
scenario. Figure 9 shows how running times of the
tested algorithms (except for those based on bubbles) are
distributed within the set of 1000 runs. For a convenient
representation of distributions, the box plots are used to
report the lower quartile, the median, and the upper quartile
(solid lines), and whiskers that quantify the dispersion
of the data.3 Clearly, there is no substantial difference
between the safety-oriented planners and the original
algorithms.

Figure 10 shows another scenario with the typical solution
paths obtained by the tested algorithms.

As in the previous example, safety-oriented versions of the
planning algorithms provide much safer paths. This is clearly
supported by the averaged profiles of the danger field shown
in Fig. 11.
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Fig. 11. (Colour online) Scenario 2: averaged danger field profiles
vs. the path’s natural parameter. The peak of the danger field profile
for BUBBLE PLANNER without safety heuristic function has
a value of cca 35. It is not included for better depiction of the
remaining profiles.
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Fig. 12. (Colour online) Scenario 2: mean, median, 15th, and 85th percentiles of the danger field along the path’s natural parameter. Top
row: PRM (left) and SAFE PRM (right). Middle row: RRT-Connect (left) and Safe RRT-Connect (right). Bottom row: JT-RRT (left) and
Safe JT-RRT (right).

Figure 12 shows how danger field profiles deviate from the
average one, while Table II shows some relevant numerical
indicators for the second example.

Box plots in Fig. 13 give some insight about the distribution
of running times for second scenario. It appears that, in
average, safety-based planners need considerably less time
to output a path. Moreover, the corresponding deviation is
fairly smaller as well.

5.1. Discussion of results and future work directions
Apart from inferring that safety-oriented planners
substantially enhance path quality in terms of safety, it is
worth pointing out that this improvement is not dearly paid
by noticeable deterioration of some other important aspects
of the presented approach, such as running time. On the
contrary, in most cases, safety-oriented algorithms need even
less expected time to find the solution path, though they
comprise additional computational burden—danger/safety
evaluation. This can be partly explained by tendency of
safety-oriented algorithms to explore less cluttered regions of

C-space, which results in less nodes and less collision checks
or distance computations needed to eventually complete the
path (see Tables I and II). Some empirical evidence that
supports this assertion can be also found in ref. [33].

It is also interesting to compare the performance of the
safety-oriented algorithms. Based on Figs. 7 and 11, clearly
the safe BUBBLE PLANNER yielded the safest path in
both scenarios. However, in terms of running time, it is
outperformed by both SAFE RRT-Connect and SAFE JT-
RRT algorithm in both example scenarios, particularly in
the second one. Besides this, one important drawback of
safe BUBBLE PLANNER, that has been noticed within a
broader set of simulation setups than actually presented in
this paper, is its inconsistent performance (mostly in terms
of running time) with respect to various test scenarios with
comparable complexity. We presume that this is due to
algorithm’s sensitivity to parameters in the heuristic function.
The equalization of performance toward the improvement
could be achieved indeed, yet this would require particular
tuning of the parameters for individual scenarios. Such
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Table II. Scenario 2: some numerical results.

Coll. checks/
Algorithm Avg. time (s) Nodes Dist. computations DF computations

BUBBLES (safety OFF) 1.6640 474 2093 –
BUBBLES (safety ON) 1.4040 436 1778 454
PRM 2.3915 86 6599 –
SAFE PRM 1.8768 90 6259 265
RRT-Connect 0.7296 54 2526 –
SAFE RRT-Connect 0.6280 39 2427 84
JT-RRT 0.7221 127 2071 –
SAFE JT-RRT 0.4267 37 1124 47

performance inconsistency and sensitivity to parameters has
not been observed during the validation of remaining safety-
oriented algorithms.

As for sampling-based safety-oriented planners covered
in this paper, a slight advantage can be attributed
to RRT-based algorithms over PRM-based one for
several reasons. Considering current implementations, the
running times are considerably lower. Furthermore, when
dealing with the high-dimensional configuration space,
SAFE PRM PLANNER needs a large number of samples
to “populate” it. On the other hand, safety-oriented RRT-
based planners inherit all the advantages from classical RRT
algorithms, such as efficient and fast exploration of high-
dimensional spaces. Some drawbacks attributed to classical
RRTs, e.g., unsuccessfully coping with narrow passages
problem, do not represent an issue here, since pathological
scenarios with narrow passages are not expected in human–
robot interaction applications. Among two proposed safety-
oriented RRT planners, it is straightforward to choose the
proper one by the way how the goal of the planner is defined.
If the goal is defined in the workspace, than SAFE JT-RRT
algorithm should be used. However, if the goal is represented
as a desired configuration, SAFE RRT-CONNECT planner
is a logical choice.

Further research will address the problem of robustness
of bubble-based planner by improving the heuristic function
in order to decrease the sensitivity to design parameters. It
would be also interesting to use the slightly more elaborated
algorithms that comprise a generic cost function, like those
in refs. [4,20,47], to explicitly address the problem of safety.
A problem where the goal is defined in the workspace will
be also tackled by the safety-oriented modifications of the

algorithms described in refs. [5,6,45]. Finally, an idea to
further enhance the path safety in smoothing phase seems
attractive as well.

6. Concluding Remarks
This paper presented several different approaches to
obtaining safe collision-free paths for robotic manipulators.
A deterministic approach to path planning for robotic
manipulators is described first. The planner searches for a
collision-free path via bubbles of free C-space while trading
off the path length with a defined degree of danger. The
algorithm is based on bidirectional A∗-search technique
with a heuristic function that makes account of the danger
assessment. The danger degree is estimated using the danger
field. In addition, a sampling-based method for safe path
planning is presented. It relies on the classical PRM context.
The planning algorithm is based on the bidirectional search
with a heuristic function that takes account of the safety
measure. Hence, the planner strives for collision-free paths
that are safe at the same time. Moreover, two safety-oriented
modifications of RRT-based planners are proposed. The first
is unidirectional RRT algorithm that uses Jacobian transpose
(or pseudoinverse) to guide the tree growth towards the goal
defined in the workspace. The second is an extension of
the classical RRT-connect planner where the inputs to the
algorithm are the start and the goal configurations that serve
as the seeds for the tree’s growth.

All the planners have been tested within a simulation study,
where they have been compared with respect to their tendency
toward safety, running time, and the deviation of path safety.
Safety-oriented planners have consistently outperformed the
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Fig. 13. (Colour online) Scenario 2: box plots for running times of considered algorithms. Mean value (·) and the outliers (+) are also
indicated. Since the running times for PRM and SAFE PRM are considerably higher in comparison with the remaining algorithms, they
are shown separately for scaling purposes.
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original algorithms, indicating how a simple, straightforward
extension have substantially improved the quality of solution
paths.
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