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SUMMARY
This paper addresses the systematic approach to design formation control for kinematic model of
unicycle-type nonholonomic mobile robots. These robots are difficult to stabilize and control due
to their nonintegrable constraints. The difficulty of control increases when there is a requirement to
control a cluster of nonholonomic mobile robots in specific formation. In this paper, the design of the
control scheme is presented in a three-step process. First, a robust state-feedback point-to-point stabi-
lization control is designed using sliding mode control. In the second step, the controller is modified
so as to address the tracking problem for time-varying reference trajectories. The proposed control
scheme is shown to provide the desired robustness properties in the presence of the parameter varia-
tion, in the region of interest. Finally, in third step, tracking problem of a single nonholonomic mobile
robot extends to formation control for a group of mobile robots in the leader–follower scenario using
integral terminal- based sliding mode control augmented with stabilizing control. Starting with the
transformation of the mathematical model of robots, the proposed controller ensures that the robots
maintain a constant distance between each other to avoid collision. The main problem with the pro-
posed controller is that it requires all states specially velocities. Therefore, the state-feedback control
scheme is then extended to output feedback by incorporating a highgain observer. With the help of
Lyapunov analysis and appropriate simulations, it is shown that the proposed output-feedback con-
trol scheme achieves the required control objectives. Furthermore, the closed loop system trajectories
reach to desired equilibrium point in finite time while maintaining the special pattern.

KEYWORDS: Nonholonomic mobile robots; Robust control; Integral terminal sliding mode con-
trol; Stabilization; Tracking; Formation control; Graph theory; High-gain observer; Lyapunov
analysis.

1. Introduction
Over the past decade, a number of researchers have contributed toward the analysis and control
design of under-actuated and nonholonomic robotic systems. The motivation and interest have been
primarily sparked by the fact that such under-actuated and nonholonomic systems present some very
interesting, yet challenging, control problems which arise in a variety of practical applications, such
as robotics, control of autonomous vehicles as well as electromechanical systems for which the
number of actuators is smaller than the number of degrees of freedom. In today’s world, Wheeled
Mobile Robots (WMRs) are increasingly finding their presence and utilization in industrial as well
as service enterprises, particularly with respect to their capability of an accurate autonomous motion
(e.g., stabilization as well as tracking) while achieving the desired degree of obstacle avoidance,
etc. WMRs are known to be nonholonomic, that is, they are subject to some of the nonholonomic
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1034 Robust output-feedback formation design for NMRs

constraints that arise in control of a WMR due to their nonintegrable properties. The multi-robot
system exhibits more expensive but a better solution for specific tasks, which cannot be managed
by a single robot. A multi-robotic system is used for a variety of applications like rescue opera-
tions mapping of an unknown and dangerous environment, etc. In leader–follower formation control,
the leader solves the problem of planning and navigation, and the followers just follow the leader
while performing their own task. In this paper, we focus our attention on designing of a nonlinear
controller that achieves formation control objectives for a group of nonholonomic wheeled mobile
robot (NMRs).

In control theory, trajectory tracking and formation are important as well as a challenging problem,
especially when the system is exposed to unknown disturbances/parametric variations, etc. Several
researchers have contributed to the solution of this problem, thereby proposing various techniques
and solutions. Gao and Shang, in ref. [1], have addressed the state-feedback stabilization problem for
a mobile robot by transforming the system into a normal form using input-state scaling along with a
back-stepping recursive approach. Lee et al., in ref. [2], presented the unique idea of using the Radio
Frequency Identification (RFID) sensor to estimate the real posture of NMR. The scheme uses sliding
mode control for the tracking NMR to desired trajectories. Lefeber et al., in ref. [3], have suggested
the control law based on the adaptive control scheme. They used an adaptation method to make the
system more robust as compared to other algorithms. Peng et al., in ref. [4], have presented the for-
mation control for NMR utilizing the leader–follower scenario. The design of the control scheme
is based on second-order adaptive control augmented with a bioinspired neurodynamic approach.
They introduced a novel method based on input constraints. Dong et al., in ref. [5], have proposed
formation control based on the distributed technique for nonholonomic mobile robots. This approach
was proposed with the aid of cascaded systems, such as they notify the centroid state of the group of
followers which tracks the path of the leader continuously. Dongbin et al., in ref. [6], have proposed
another approach of formation control for nonholonomic mobile robots based on decentralized non-
holonomic algorithms via second-order sliding mode control. The problem of formation control is
resolved and maintains the desired separated distance and bearing angle between robots. Moreover,
they archived its stability by using (L-ϕ)-based algorithm. In this regard, another contribution from
Zhang et al., in ref. [7], has given the idea of formation control of NMR. First, the formation trajec-
tory converted into a special tracking problem, and then, a neural network-based observer is applied
to estimate the states of the leader vehicle.

In reality, the NMR is not equipped with sensors to measure velocity and position, due to the
additional cost and weight on the structure of NMR. It is desirable to design a controller that make
use of estimated states rather than measured ones. This requires the use of a suitable observer that
can estimate the required states fast enough and with a degree of robustness against model per-
turbations or parametric uncertainties. Several researchers have contributed to the solution of this
problem, thereby proposing various techniques and solutions [8, 9]. Asif et al., in ref. [8], have
addressed the problem of estimating unknown states using a high-gain observer for WMR. The
design of the controller is based on the adaptive output-feedback scheme for estimating the unknown
states. Bowska et al., in ref. [10], suggested the observer for estimating the velocity. The speed
estimation for nonholonomic portable robots associated with the environment is yet an open issue,
especially when the robot needs to take later-differing speed direction. Finally, Astolfi et al., in ref.
[9], suggested an observer for estimating velocity. They used neurodynamics observer in leaderless
formation.

In this paper, we demonstrate a systematic development of a robust formation control scheme
for NMRs. First, a robust stabilizing controller is designed using SMC technique that addresses the
stabilization as well as tracking problem of the NMR. In the next step, we augment the SMC-based
stabilizing controller with an integral terminal-based sliding mode control (ITSMC)-based formation
controller that addresses the problem of formation control for multiple NMRs in a leader–follower
scenario. This work can resemble in term of their dynamics with the past researches. However, the
main difference lies in the designing of switching surface with the added term of integral. In a prac-
tical scenario, NMR may not be equipped with sensors to measure velocity and position, due to the
additional cost and weight on the structure of NMR. To reduce this problem, the proposed control
scheme is extended to output feedback by using high-gain observer. The novelty of this paper is to
estimate those states which are unavailable to incorporate the effects of the kinematic model during
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Robust output-feedback formation design for NMRs 1035

Fig. 1. Configuration of a unicycle robot.11

the design of nonlinear control to enhance robustness properties for better stability and accuracy.
The complexity of control is reduced with the help of graph theory constraint. The closed-loop sys-
tem performance analysis is carried out using Lyapunov stability methods. Convergence of system
trajectories to the desired set while maintaining the special pattern is shown analytically as well as
by simulation.

The remaining structure of the paper is organized as follows: Kinematic modeling of NMR is
discussed in Section 2. The design of the desired control law for stabilization and tracking of NMR
is established in Section 3. Section 4 discusses the formation model based on the graph theory con-
straint. It follows by the designing of the desired proposed control scheme. Section 5 presents the
design of high-gain observer for estimating the position and velocity of NMR. Finally, concluding
remarks and future recommendation are drawn in Section 6.

2. Problem Formulation
Consider a basic model of unicycle mobile robot with nonintegrable constraints, which can be seen
in Fig. 1. The mathematical model of NMR is derived in Cartesian coordinate system (x, y).2 The
model is defined under the hypothesis of pure rolling and nonslipping surface as

ṗ = f (p, u)= τ(p)u (1)

where p = [x j , y j , θ j ] is the state vector, u = [v j , w j ] is the input vector and τ(p) is the rotation
matrix expressed as

τ(p)=
⎡
⎣cosθ j 0

sinθ j 0
0 1

⎤
⎦ (2)

By substituting Eq. (2) in Eq. (1) equivalently, the kinematic model can be written as

ẋ j = v j cosθ j

ẏ j = v j sinθ j

θ̇ j =w j

(3)

where (x j , y j ) denotes the position of the center of mass of the robot and θ j is the heading angle
of the robot, respectively, v j and w j represent as linear and angular forward velocity of the robot.
(x j (0), y j (0), θ j (0))T represent as the initial values of the parameters, respectively.

The possibility of modeling the kinematic equation of a wheeled mobile robot by so-called canon-
ical chained form has been used in different papers.3 For the purpose of designing a control scheme
using SMC technique, it is desirable to convert the system (3) in a suitable canonical chained form
such that desired control objectives can be achieved in a systematic manner. In this regard, we use
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1036 Robust output-feedback formation design for NMRs

the input transformation approach as presented in ref. [1], to bring the system (3) in the following
form: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ0 = u0

ẋ1 = x2u0

ẋ2 = u1 − x0u0
...

ẋn = u2

For the system equation (1), by taking the following state and input transformation, the model
converted as

x0 = θ j , x1 = x j sinθ j − y j cosθ j

x2 = x j cosθ j + y j sinθ j , u0 =w j , u1 = v j

one obtains

ẋ0 = u0

ẋ1 = x2u0

ẋ2 = u1 − x1u0

y1 = x0, y2 = x1, y3 = x2

(4)

The chained form in Eq. (4) has a strong underlying linear structure. The above system can be
described in two subsystem as

Ẋ0 = u0

Ẋ = AX + Bu1 + D
(5)

where D = [d1, d2, d3] is defined as the disturbance vector and X is defined as

X0 = x0

X = [x1 x2 ... xn]T

Assumption 1. It is assumed that D can be upper bounded as shown below:

|D(t)| ≤ ς
The matrix (A, B) in Eq. (3) can be defined as

A =

⎡
⎢⎢⎣

0 u0(t) ... 0

0 0
. . . 0

... ... ... u0(t)
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎦

This clearly appears the second part of Eq. (5) becomes a single-input time-varying linear system
when u0 is taken as a function of time and no longer as a control variable. The selection of u0 is very
important to make sure the system is controllable in finite time. However, it can be uncontrollable
due to the first part of Eq. (5) depends upon the selection of u0. The second part of Eq. (5) is a state
equation of linear system. We can apply the SMC to this system based on linear system theory.

The objectives of research in this paper are presented as follows:

• To design a stable point-to-point control law to stabilize the NMR at its equilibrium point.
• To design a tracking controller, which tracks the constant reference trajectory.
• To design an integral-based sliding mode formation control for NMR.
• To design an output-feedback formation control for estimating the states for better transient

performance.
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3. Robust Stabilization and Trajectory Tracking Control Design

3.1. Stabilization control
To achieve stabilization, we design a control law based on SMC. The proposed control scheme com-
piled in two steps. First, we determine a control u1 which drive the system to its desired value in
finite time. In second step, we choose a switching control u0 which ensures system boundedness.
Such a control law can be written as

u = u0 + u1 (6)

The main goal of this paper is to drive the system states to its equilibrium point. For that, a switching
function is defined for the system equation (5):

s = C ∗ X (7)

For sliding mode control, one of the most important things is to select a suitable matrix C for switch-
ing surface. The proposed control scheme is forcing the system states to slide along the surface and
drive them to their desired states. For that, this following condition needs to be fulfilled:

S(t)= C = [
C1 C2

] [
X1

X2

]
(8)

Suppose the matrix C is so designed that the matrix C B is nonsingular. Therefore, the equivalent
control law equation is defined as

u1 = (C B)−1C AX − D (9)

In order to force the system dynamics to converge into the switching surface, impose the following
sliding manifold that is defined as

ṡ = − a ∗ sgn(s) (10)

where a > 0.

Remark 1. This discontinuous function can be often used as a replacement of Eq. (10):

ṡ =
⎧⎨
⎩

−asgns |s|> ε
−a s

ε
|s|< ε

The selection of the value of ε is important to overcome the problem of chattering. This will affect
the accuracy of the controller. The equivalent control equation is defined as

u1 = (C B)−1(−C AX − a ∗ sgn(s)) (11)

For X0 subsystem, we take the following control law as

u0 = −k0β (12)

where

β

{
sgn(X0), |X0|> ε

X0, |X0| ≤ ε
ε > 0 is a small constant. It can clearly be observed that the control law u0 is bounded by a
constant k0ε.

Lemma 1. For any arbitrary condition X0(t0) �= 0, where t0 ≥ 0, the equivalent solution X0(t)
exists and globally regulated to zero.12
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Proof. Taking the Lyapunov function V = 1
2 X2

0, a simple computation gives:

V̇

{−k0 |X0| , |X0|> ε
−k0 X2

0, |X0| ≤ 0
(13)

Refer from Lemma 1, we conclude that X0 exists and X0 → 0 as t → ∞.
The final control law equation is expressed as

u = (C B)−1(C AX − a ∗ sgn(s))− k0 X0 (14)

The switch function of the system is taken as

s = C X = x1

u0
+ x2 (15)

The final control inputs are

u0 = − k0x0

u1 = − x2 − a ∗ sgn(s)
(16)

The closed-loop system is defined, after substituting Eq. (16) in Eq. (4):

ẋ0 = − k0x0

ẋ1 = − k0x0x2

ẋ2 = − x2 − a ∗ sgn(s)+ k0x0x1

(17)

3.1.1. Stability analysis. The closed loop system is stable under the proposed control scheme
when considering the above sliding surface equation (10) s. Let a Lyapunov function be
V = 1

2 sT s. After taking the derivative, the equation becomes

V̇ = sT ṡ

V̇ = sT (−a ∗ sgn(s))

V̇ = − asT sgn(s)

V̇ = − a ‖s‖ ≤ 0

(18)

For the stability analysis of the closed-loop system (17), we choose the Lyapunov function V =
1
2 x2

0 + 1
2 x2

1 + 1
2 x2

2 . Taking the derivative of the above equation, this new equation is stated as

V̇ = x0 ẋ0 + x1 ẋ1 + x2 ẋ2

V̇ = x0[−k0x0] + x1[−k0x0x2] + x2[−x2 − a ∗ sgn(s)

+ k0x0x1]
= − k0x2

0 − x2
2 − x2a ∗ sgn(s)

= − g0 ‖x‖2 − x2a ∗ sgn(s)

V̇ < 0 	 ‖x2‖ .= 0

(19)

The above analysis is summarized in the following theorem:

Remark 2. For the system (4), under the control law (16), make the system stable at certain
equilibrium point.

3.1.2. Implementation. This section presents the implementation of proposed control law estab-
lished in subsection 3.1. The objective is to stabilize the single robot at the desired equilibrium point
consider as origin. For the x0 subsystem, we can choose the below control law:

u0(x0)

{
sign(x0), |x0|> 0.5

x0, |x0| ≤ 0.5
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Fig. 2. NMR trajectories stabilize at origin.

Fig. 3. Stabilzation control input.

Fig. 4. NMR stabilzation in X -Y plane.

The performance results of the proposed controller have been shown through simulations in
Figs. 2–6. The NMR initial state is being set as p(0)= [2, 1, 1]T , whereas the controller parame-
ters in Eq. (16) are defined as k0 = 5, k1, k2 = 6, a = 6. State trajectories converge to zero over finite
time are shown in Fig. 2. From which, it can be concluded that the system states are asymptotically
regulated to zero. Figure 3 shows the graphical representation of the linear and angular velocities; the
amplitude of the control input u0(w j ) is bounded by 0.5. Figure 4 shows the trajectory of the robot
stabilized at the origin point. The system has proven to be globally uniformly stable (GUS). Figure 5
shows the trajectories in three-axis coordinates; it shows the trajectory stabilized at origin.
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Fig. 5. NMR trajectories in three-axis plane.

Fig. 6. Reference coordinate of NMR [6, 7].

3.2. Robust tracking control
In this subsection, the problem of tracking is addressed again for time-varying reference trajectories.
In order to attain tracking of known time-varying trajectories, we also incorporate an additional con-
trol component to the control law to enable stabilization of an equilibrium that changes with respect
to tracking signal. Starting with the mathematical equation of NMR, we demonstrate a systematic
approach of robust tracking control scheme for NMR. The proposed control design objective is to
follow the reference trajectory defined as follows:

ẋ jr = v jr cosθ jr

ẏ jr = v jr sinθ jr

θ̇ jr = w jr

(20)

x jr , y jr are the position reference of the NMR, whereas θ jr is the reference orientation angle.
Proposed design of controller attempts to enable the robot to track itself to matchup the reference
and stabilize at certain equilibrium point. For simplicity, we convert the system into an error model.
Now, the global change of coordinates is introduced as

ẋ = Ax + Bu + E(r)

e = x − E(r)
(21)

E(r) is defined as reference trajectories. From Fig. 2, the error variable can be written as⎡
⎣e j x

e jy

e jθ

⎤
⎦ =

⎡
⎣ cosθ j sinθ j 0

−sinθ j cosθ j 0
0 0 1

⎤
⎦ ∗

⎡
⎣x j − x jr

y j − y jr

θ j − θ jr

⎤
⎦ (22)
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By taking the derivative of Eq. (22), ė = Ae + B[x1 − r ]u. These new coordinates of the error model
for a single NMR are described as

ė j x =w j e j y + v j − v jr cose jθ

ė j y = −w j e j x + v jr sine jθ

ė jθ =w j −w jr

(23)

To simplify the problem, e j x = 0 is selected as the first switching function. To find out the other
switching function, we can use Lyapunov function that is expressed as V = 1

2 e2
j y . By taking

derivative, the equation can be written as

V̇ = e jy ė j y

V̇ = e jy[−w j e j x + v jr sine jθ ]
V̇ = −e j x e jyw j − v jr e jysin(atan(v jr e jy))

(24)

where e jθ = sin(atan(v jr e jy)) chosen as switching function. V̇ < 0 if v jr e jysin(atan(v jr e jy) > 0.
Notice that, when e j x converges to 0 and e jθ converges to atan(v jr e jy), then this switching function
can be obtained as

s1 = e j x

s2 = e jθ + atan(v jr e jy)
(25)

This approach not only forces the system states to reach the desired trajectory but also specifies the
dynamic characteristics of the system. In order to reduce chattering which is caused by finite time
delay and commutation, this switching function can be defined as

ṡ = −ksat (s) (26)

The control equation can be derived from

ṡ =
[

ṡ1

ṡ2

]
=

[
ė j x

ė jθ + ∂β

∂v jr
v̇ jr + ∂β

∂e jy
(−e j xw+ v jr sine jθ )

]
(27)

where ∂β

∂v jr
= e jy

1+(v jr e jy)

2
and ∂β

∂e jy
= v jr

1+(v jr e jy)

2
. The equation of the control law can be obtained with

the above equation

v j = e jyw j + v jr cose jθ + k1sat (s1)

w j =w jr + e jy

1 + (v jr e jy)2
˙v jr + v jr

1 + (v jr e jy)2
v jr sine jθ

+ k2sat (s2)

(28)

3.2.1. Stability analysis. This section discusses the stability analysis using Lyapunov function as
V = 1

2 sT s. By taking derivative, the equation can be expressed as

V̇ = sT [−ksat (s)]
V̇ = −k ‖s‖< 0

(29)

From the above analysis, it can be observed that s(0)= 0 and V̇ ≤ 0, the system states converges on
the sliding surface s(t) and the trajectory tracking errors goes to zero in finite time.

3.2.2. Implementation. This section shows the implementation of the proposed SMC through sim-
ulation for constant reference trajectories. The NMR initial state is being set as p(0)= [2, 1, 1]T ,

whereas the controller parameters in Eq. (28) are defined as k1 = −8, k2 = −8. The circular motion
utilized in this simulation is considered as the reference trajectory. The linear velocity is undeviating,
while the angular velocity is bounded at circular motion. Figure 7 shows the position error trajecto-
ries of NMR approaches toward zero. Figure 8 shows the control input which is continually varying
as to matchup with the reference velocities. Figure 9 shows the trajectory tracking results of NMR for
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1042 Robust output-feedback formation design for NMRs

Fig. 7. NMR error trajectories convergence.

Fig. 8. Tracking control input.

Fig. 9. NMR tracks reference trajectories in X -Y plane.

the circular reference. The robot follows the reference trajectory well in time. Figure 10 shows the
sliding surface convergence. According to the simulation results for the circular motion, the motion
of NMR remains in a stable position while it generates the position tracking error simultaneously.
That is, the position of the robot converges to the desired trajectory. This demonstrates the efficacy
of the sliding control algorithm hypothetically. Compare with the other solution mentioned in the
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Fig. 10. Sliding surface.

Fig. 11. L-ϕ formation model.

reference section, this control law remains in a certain bound, and the switch function varies with
parameter according to the reference trajectory.

4. Formation Control
Consider two nonholonomic mobile robots shown in Fig. 11. Let the front robot be the leader and
the other be the follower. The separation distance Loj between the robots is measured from the origin
of the two rear wheels of the leader robot to the front of the follower robot. The bearing angle ϕoj is
measured from the heading angle of the leader robot to the distance line between the two robots. We
assume that the offset d is large enough to avoid the collision among the follower robots.

4.1. Robust formation control
Stabilization and trajectory tracking of a single NMR with constant reference trajectories and its
control based on sliding mode are discussed in earlier section. These results are verified analytically
as well as by simulation. Once the stabilization and tracking are achieved, now we can consider the
problem of formation control for a group of NMRs. The systematic model of NMR is reformulated
as a formation model in a leader–follower scenario. A more robust control design technique is being
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Fig. 12. Posture model of NMR.

developed based on the ITSMC. The proposed design of control ensures the tracking of the target
point in the rigid structure while moving in a specific pattern. The zeroth robot is the virtual/leader
robot and others are the followers. The problem is to design a control based on the neighbor states for
each follower such that each robot comes into the formation while tracking the reference trajectory
to reach desired target.

4.2. Graph theory
To address the communication limitations, which often cause major problems for each robot [5, 11],
our proposed control law exploits following graph theory constraint. We represent n NMR as n
vertices of a digraph G(V, E). E is denoted as the edge on the vertices V . These edges are directed
from the leader to the follower. The unidirectional symmetry protocol (directed graph) is used in this
paper.

Node 0 represented the exogenous signal or leader robot which generates the reference signal for
the followers. There will be a non-negative adjacency matrix. Adjacency matrix basically describes
the flow of the instruction defined by the leader and map them in matrix form for the mathemati-
cal formulation. A = A(G)= (ai j ) is the nxn matrix, where ai j = 1 if there is one edge ( j, i) ε E
otherwise ai j = 0. The adjacency matrix ai j for this problem is:⎡

⎢⎢⎢⎢⎢⎣

L
F1

F2

F3

F4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

4.3. Leader–follower formation model
In this section, the model is reformulated as formation model using the full states of leader robot as
shown in Fig. 12. Starting from the actual posture (initial condition) to the desired posture (the final
position), let

[x0, y0, θ0] be the actual posture of the leader
[x j , y j , θ j ] be the actual posture of the follower

[xd
j , yd

j , θ
d
j ] be the desired posture of the follower

L0 j and ψ0 j are the actual separation and bearing among the robots, respectively. The desired posture
qd

j of NMR expresses as

qd
j = [xd

j , yd
j , θ

d
j ]

=

⎡
⎢⎢⎣

xi − dcosθd
j + Ld

i j cos(ϕd
i j + θd

j )

xi − dsinθd
j + Ld

i j sin(ϕd
i j + θd

j )

θd
j

⎤
⎥⎥⎦ (30)
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The actual posture of the follower NMR satisfies as

q j = [x j , y j , θ j ]

=
⎡
⎣xi − dcosθ j + Li j cos(ϕi j + θ j )

xi − dsinθ j + Li j sin(ϕi j + θ j )

θ j

⎤
⎦ (31)

Projection of the relative distance Li j can be calculated as

Li j =
√

L2
0 j x + L2

0 j y (32)

Relative distance can be written as Cartesian coordinates as

Li j x = x0 − x j − dcosθ j

Li j y = y0 − y j − dsinθ j

By taking the derivative of the above equation, the dynamic is stated as

L̇ i j x = v0cosθ0 − v j cosθ j + dwj sinθ j

L̇ i j y = v0sinθ0 − v j sinθ j + dwj sinθ j

Assumption 2. The physical configuration of each robot is same and it is stabilized at certain
equilibrium point.

Assumption 3. The desired angular velocity of the robot is bounded over finite time, and it is
defined by the following equation:

−wmax ≤w j ≤wmax where wmax is a positive constant

Assumption 4. For each of the possible interaction topologies, Gσ (t) at any followers, there
exists a path from the leader the follower j. Moreover, the interaction between the robots is directed.

Based on the above assumptions, we transformed the model equation (4) into the error model
using relative distance and bearing angle. Ld

oj , ϕ
d
oj are defined as constants. Thus, one can obtain the

error dynamics equation as

ė j x = v0cosθ0 j +w j e j y − v j − Ld
0 jw0sin(ψd

0 j + θ0 j )

ė j y = v0sinθ0 j −w j e j y − dw j + Ld
0 jw0cos(ψd

0 j + θ0 j )

ė jθ =wd
j −w j

(33)

where θ0 j = θ0 − θ j . Due to characteristic of the error dynamic system equation (33), as per
Assumption 4, the feedback controller can tackle this model. Another major problem is to control the
orientation angle as the angle between robots will not be equal, while the formation is turning either
side. For that problem, we must choose the desired posture angle as

θd
j = (v0sinθ0 + Ld

0 j cos(ψd
0 j + θ0 j )+ 2k2e jy)/(e j x + d)

4.4. Integral terminal sliding mode control design
In this section, we present the systematic approach of designing a control scheme. The key idea is
to establish a sliding variable composed of tracking error and then drive these variables to zero via
ITSMC. Let a singular continuous integral sliding surface be

s(t)= e(t)+ k1

∫ t

0
e()d() (34)

where k1 is the positive coefficient and e is the formation tracking error which is defined as e =
[e j x , e jy].
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Remark 3. The surface in Eq. (34) includes the integral action for tackling the position and orien-
tation error trajectories and converges them to zero, keeps the system state close to the equilibrium
point.

The derivative of Eq. (34) will give

ṡ(t)= ė(t)+ k1e(t)

In order to keep the trajectory closed to the sliding surface s, the equivalent control can be derived
when ṡ(t)= 0

ṡ(t)= ė(t)+ k1e(t)= 0 (35)

where ė(t) defined as

ė(t)= F1 + G1uequ (36)

Adding the external locally Lipschitz continuous disturbance η in prescribed system (33), we can
rewrite the above Eq. (36) as

ė(t)= F1 + G1uequ + η (37)

where F1 and G1 is formulated as

F1(e j x , e jy, e jθ )=
[
v0cosθ0 j −Ld

0 jw0sin(ϕd
0 j + θ0 j )

v0sinθ0 j Ld
0 jw0cos(ϕd

0 j + θ0 j )

]

and G1(e j x , e jy, e jθ )=
[−1 y je

0 −x je − d

] (38)

F1 and G1 are the velocity matrix of leader and follower, respectively. As the det of
(G1(x je, y jeθ je))= x je + d �= 0, the inverse of G1 always exists in this condition.

Substituting ė into Eq. (36) yields the equivalent control law as

uequ = −G−1
1 (F1 + k1e(t)+ η) (39)

To assure the system states are on the sliding surface under the disturbance, the switching control
law uswt can be expressed as

u̇swt = −G−1
1 (−asat (s(t))) (40)

where a is the switching gain parameter for compensating the system uncertainties and the turning
effect of NMR. The sat (.) is the saturation function used to eliminate chattering phenomenon. The
sat (.) function is given as

sat (s(t))=
⎧⎨
⎩

s(t)
ε

i f
∣∣∣ sk(t)
ε

∣∣∣ ≤ 1

sgn
(

s(t)
ε

)
i f

∣∣∣ sk(t)
ε

∣∣∣> 1
k = 1, 2

where sgn(.) is the standard signum function. The complete control law can be written as

u(t)= uequ + uswt

u(t)= −G−1
1 (F1 + k1e(t)+ η− uswt)

(41)

where u = [v j , w j ]
The final equation of control input [v j , w j ] is

v j = v0cosθ0 j − Ld
0 jw0sin(ϕd

0 j + θ0 j )+ k1e j x + uswt

+ e jy

e j x + d
(v0sinθ0 j − Ld

0 jw0cos(ϕd
0 j + θ0 j )+ k1e jy

+ k3e jθ + uswt)

w je = 1

x je + d
(v0sinθ0 j − Ld

0 jw0cos(ϕd
0 j + θ0 j )+ k2e jy

+ k3e jθ + uswt)

(42)
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The closed-loop system after substituting Eq. (42) in Eq. (33):

˙e j x = −k1e j x

˙e jy = −w j e j x − k2e jy − k3e jθ

˙e jθ = (k2e jy − k3e jθ )

(e j x + d)

(43)

Remark 4. The desired control law in Eq. (42) does not contain any singular term. It ensures the
system error goes to zero and provides faster convergence of states to the equilibrium point near the
sliding surface.

4.4.1. Stability analysis. Lyapunov analysis is used to carry out the stability of the proposed control
law. Taking Lyapunov function as

V = 1

2
sT (t)s(t) (44)

Taking the derivative of the above equation yields

V̇ = sT (t)ṡ(t)

V̇ = sT (t)(F1 + G1u(t)+ k1e(t)+ η)
(45)

Substituting the equation of u(t) in it, then the equation becomes

V̇ = sT (t)(uswt)

V̇ = sT (t)(−asat (s(t)))

V̇ = −asT (t)sat (s(t))

V̇ = −a ‖s(t)‖ ≤ 0

(46)

From Eq. (46), it can be observed that for s(0)= 0, V̇ ≤ 0, it means the system converge to terminal
sliding surface s(t); therefore, the system force to remain in bound

These conditions satisfy the inside or outside boundary layers of the proposed controller{− a
ε

‖s‖2 < 0 ‖s‖ ≤ ε
−asign ‖s‖ 1

2 ‖s‖ ≥ ε
Remark 5. The kinematic model in Eq. (3) satisfying all the Assumptions 2–4, the closed-loop

system (33) will be bounded under the sliding mode control law (42).

4.4.2. Implementation. In this section, we demonstrate the performance of designed controller by
use of five NMR (one leader and four followers), which can be seen in Fig. 13. We use leader vehicle
as a reference. The controller gains and parameters used for simulation are selected as k1, k2, k3 = 8,
a1 = −0.11, and the external disturbance (uncertainties) changes with respect to time described as

η=
[

0.01
2+t

0.01
1+ 1

t+1

]
. From Fig. 13, it shows that F1 and F2 follow the leader L, F4 follows F2 and F3

follows F1. It can be seen clearly F2 will be leader for F4 and F1 will be leader for F3. The offset
distance between the followers is d = 0.6 cm. The reference trajectory can be obtained with the help
of the following equation:

vi = sin(0.005π)+ 1, wi = 0.1sin(0.02π) (47)

The desired separation-bearing are set as z1 = [Ld
01, ϕ

d
01] = (1, 240), z2 = [Ld

02, ϕ
d
02] = (2, 480),

z3 = [Ld
13, ϕ

d
13] = (1, 240) and z4 = [Ld

24, ϕ
d
24] = (2, 480). The initial position of each robot is set

as L = (0.3, 05, 100), F1 = (2.5666,−1.7, 90), F2 = (1.5, 3, 0), F3 = (−0.5331,−2.5026, 45) and
F4 = (−1.1356, 1.1, 30).

The desired trajectory assures the Assumption 4, and for reducing the difficulty, we assume the
communication topology G to be fixed using the proposed control scheme extracted from Remark.
The simulation results are shown in Figs. 14–20. Figures 14–17 show the convergence of tracking
error of all the four followers toward zero. The errors converge to zero quickly less than 2 s under
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Fig. 13. Geometrical V -shaped formation.

Fig. 14. Follower 1 error trajectories convergence.

Fig. 15. Follower 2 error trajectories convergence.

the formation control strategy. As we compare with the existing result, it converges faster than the
previous algorithms. Figure 18 shows the angular and linear velocities required for formation control.
It shows the control input which is continually varying as to matchup with the reference velocities in
the presence of disturbance. Figure 19 shows formation trajectories using ITSMC. Figure 20 shows
the sliding surface convergence.

4.4.3. Comparison. The four follower’s robot tracks the leader with better accuracy compared to
other researches mentioned in the reference section. It is much better and more robust while main-
taining the desired separation and orientation. It can be seen that the robots form a desired fixed
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Fig. 16. Follower 3 error trajectories convergence.

Fig. 17. Follower 4 error trajectories convergence.

Fig. 18. Intergral sliding based control input.

triangle structure in their motion after a finite time, which concludes that the formation is well estab-
lished and the system is stable under the proposed control scheme. It also can be an observer that the
desired control provides better stability against the time-varying uncertainties.

5. Robust Output-Feedback Control Design
In reality, the NMR is not equipped with the sensors to measure velocity and position, due to the
additional circuitry for velocity measurement. For this, it required additional cost and weight on the
structure of NMR. It is desirable to design a controller that makes use of estimated states rather than
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Fig. 19. NMR formation trajectories in X -Y plane.

Fig. 20. Sliding surface trajectories.

measured ones. Therefore, an output-feedback controller is used to estimate the position and velocity
of the NMR. It has been observed that a high-gain observer can recover the transient properties
of ITSMC in the presence of disturbances. The most important part is to incorporate the effects
of the kinematic model during the design of nonlinear control to enhance robustness properties for
better stability and accuracy. To design a high-gain observer, the error model equation (33) can be
transformed into an observer form as

ˆ̇e j x = v0cosθ0 j +w j ê j y − v j − Ld
0 jw0sin(ψd

0 j + θ0 j )

+ h1(e j x − ê j x)

ˆ̇e jy = v0sinθ0 j −w j ˆe j x − dw j + Ld
0 jw0cos(ψd

0 j + θ0 j )

+ h2(e jy − ê j y)

ˆ̇e jθ = wd
j −w j + h3(e jθ − ê jθ )

(48)

The equation of the desired orientation angle can be transformed as

θd
j = (v0sinθ0 + Ld

0 j cos(ψd
0 j + θ0 j )+ 2k2ê j y + u12)

(ê j x + d)

The high-gain observer-based error model can be described as

ẽ j x = e j x − ê j x

ẽ j y = e jy − ê j y

ẽ jθ = e jθ − ê jθ

(49)
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By taking the derivative of Eq. (49) and substituting Eqs. (33) and (48) in Eq. (49)

˜̇e j x = vocosθ0 j +w j e j y − v j − Ld
0 jw0sin(ψd

0 j + θ0 j )

− v0cosθ0 j −w j ê j y + v j + Ld
0 jw0sin(ψd

0 j + θ0 j )

− h(e j x − ê j x)

˜̇e j x =w j ẽ j y − h1ẽ j x

˜̇e jy = −w j ẽ j x − h2ẽ j y

˜̇e jθ = 1

e j x + d
(k2e jy − k3e jθ )− 1

ê j x + d
(k2ê j y − k3ê jθ )

− h3ẽ jθ

Let a = 1
x je+d , then the system becomes

˜̇e j x =w j ẽ j y − h1ẽ j x

˜̇e jy = −w j ẽ j x − h2ẽ j y

˜̇e jθ = a(k2e jy − k3e jθ )− â(k2ê j y − k3ê jθ )− h3ẽ jθ

˜̇e jθ = k2(ae jy − âê j y)− k3(ae jθ − âê jθ )− h3ẽ jθ

˜̇e jθ = k2ãẽ j y − k3ãẽ jθ − h3ẽ jθ

˜̇e jθ = 1

ẽ j x + d
(k2ẽ j y − k3ẽ jθ )− h3ẽ jθ

(50)

The kinematic control equation (42) can be written as

v j = v0cosθ0 j − Ld
0 jw0sin(ϕd

0 j + θ0 j )+ k1ẽ j x + u11

+ ẽ j y

ẽ j x + d
∗ (v0sinθ0 j − Ld

0 jw0cos(ϕd
0 j + θ0 j )

+ k1ẽ j y + k1ẽ jθ + u12)

w je = 1

ẽ j x + d
(vosinθ0 j − Ld

0 jw0cos(ϕd
0 j + θ0 j )

+ k2ẽ j y + k3ẽ jθ + u12)

(51)

5.1. Stability analysis
To prove the stability of the desired system in Eq. (50) we can use an energy function (Lyapunove
function) to carry out the perfromace of the design controller.

Consider a Lyapunov function as

V (t)= 1/2 ∗ (ẽ2
j x + ẽ2

j y)+ (ẽ j x + d)
k3ẽ2

jθ

2k2
(52)

By taking derivative, the equation can be written as

V̇ (t)= ẽ j x
˙̃e j x + ẽ j y

˙̃e jy + (ẽ j x + d)
k3ẽ jθ

˙̃e jθ

k2
(53)

V̇ (t)= ẽ j x(w j ẽ j y − h1ẽ j x)+ ẽ j y(−w j ẽ j x − h2ẽ j y)

+ ẽ jθ (ẽ j x + d)
k3ẽ jθ

k2

(
(k2 ˜e jy − k3ẽ jθ )

(ẽ j x + d)
− h3ẽ jθ

)
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Fig. 21. Comparison between state-feedback and output-feedback system.8

V̇ (t)= − h1ẽ2
j x − h2ẽ2

j y + k3ẽ jθ ẽ j y − k3ẽ2
jθ

k2

− h3k3

k2
ẽ jθ ẽ j x − h3k3

k2
ẽ2

jθ ∗ d

V̇0(t)= − h1e2
j x − h2e2

j y − k3e2
jθ − h3k3

k2
ẽ2

jθ ≤ −g0 ‖x‖2

V̇ (t)= − g0 ‖x‖2 + k3ẽ j y ẽ jθ − h3ẽ2
jθ ẽ j x

To prove the system stabilty, we assume k3 and the conversion of the above equation into matrix form
is as follows:

V̇ (t)= − [
ẽ j x ẽ j y

] [
β ẽ jθ 0

0 −αẽ jθ

] [
ẽ j x

ẽ j y

]
< 0

let �=
[
β ẽ jθ 0

0 −αẽ jθ

]

V is the positive function. For ensuring system stability, V̇ (t) should be negative definite, under the
assumption that α < 0 and β, d > 0. If the det(�) > 0 (positive definite), the system will be stable.
Taking the derivative, the equation becomes

�=
[
β ẽ jθ 0

0 αẽ j x

]
det(�)= β ẽ jθ ∗ −αẽ jθ

det(�)= −βαẽ2
jθ

˙V (t)≤ 0 for det(�) > 0 	 α < 0

The Lyapunov analysis shows that the proposed control scheme addresses in this section eliminates
the tracking error, under the condition that some gains are positive constants.

5.1.1. Implementation. This section provides the simulation results to show the robustness of
the desired proposed approach. A descriptive comparison between the state-feedback and output-
feedback control can be seen in Fig. 21. It can be concluded that from Fig. 21, the desired proposed
approach removes the inner-feedback loop, and the control input velocities are estimated using the
high-gain observer. The simulation is illustrated on the same reference sine trajectory, which is used
earlier in Section IV. The NMR gains and parameter use for simulation in the desired control law
selected as k3 = −10, hi > 0, i ε [1, 3] are set as 6.
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Fig. 22. Follower 1 error trajectories convergence.

Fig. 23. Follower 2 error trajectories convergence.

Fig. 24. Follower 3 error trajectories convergence.

The sine trajectory is defined with the following equations, which can be stated as

vi = sin(0.005π)+ 1, wi = 0.1sin(0.02π) (54)

The desired separation-bearing are set as z1 = [Ld
01, ϕ

d
01] = (1, 240), z2 = [Ld

02, ϕ
d
02] = (2, 480), z3 =

[Ld
13, ϕ

d
13] = (1, 240) and z4 = [Ld

24, ϕ
d
24] = (2, 480) with the initial position of each robot is set

as L = (0.3, 05, 100), F1 = (2.5666,−1.7, 90), F2 = (1.5, 3, 0), F3 = (−0.5331,−2.5026, 45) and
F4 = (−1.1356, 1.1, 30) .

Figures 22–25 describe the position tracking trajectories of the followers, which are approached
to zero in finite time of <1.2 s. Figure 26 presents the comparison of linear and angular velocities of
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Fig. 25. Follower 4 error trajectories convergence.

Fig. 26. High gain observer based control input comparision.

Fig. 27. NMR trajectories in X -Y plane.

state-feedback and the output-feedback control. It can be seen that there are less perturbations in the
output feedback estimated control input, and it recovers the performance of state-feedback controller
in finite time. Figure 27 demonstrates the tracking performance of NMR with an output-feedback
controller; It can conclude the formation is well stable and robust compared to existing techniques.
Figure 28 shows the comparison of state-feedback control (ITSMC) with output-feedback control
High Gain Observer (HGO). It clearly shows the output-feedback control recover the performance
of state-feedback control in the presence of uncertainties, in the region of interest.
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Fig. 28. Comparison between SFB and HGO.

6. Conclusion
In this paper, we present a systematic approach to design a robust formation control for NMRs.
We use the properties of the system structure together with the SMC basic theory and augmented
with the ITSMC to design a suitable formation control. The mathematical model exploits and refor-
mulated into the formation model with the help of graph theory constraint. The proposed control
scheme provides for desired robustness properties in the presence of the parametric variations, in the
region of interest. The geometrical V -shaped formation has been simulated, and successive results
are shown. The state-feedback control scheme is extended to output feedback by incorporating a
high-gain observer. With the help of Lyapunov analysis and appropriate simulations, it is shown that
the proposed output-feedback control scheme achieves the required control objectives and provides
for the desired performance in the presence of parametric variations.

7. Future Recommendation
In this paper for simplicity, the communication topology is assumed to be fixed and connected.
Hence, in the future, the first recommendation is to consider the formation control with time-varying
delays. Another recommendation is to add an obstacle avoidance algorithm in the proposed control
scheme with the extended high-gain observer for achieving robustness in the transient performance.
This will definitely improve the practicality of NMR navigation. The last recommendation for exten-
sion is to make a decoupled reconfigurable formation control using digraph, which will enhance the
consistency of the NMR formation.
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