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Puffing in planar buoyant plumes: BiGlobal
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The present study investigates the puffing behaviour of planar buoyant plumes by
employing linear BiGlobal stability analysis and experiments. The BiGlobal instability
characteristics of two-dimensional plumes have been explored using stability analysis
and compared with the puffing behaviour of both rectangular plumes and square
plumes obtained from experiments. In the parameter space investigated, which
spans a Richardson number range 0.03 < Ri < 960, instability analysis reveals
that planar plumes exhibit BiGlobal instability only for varicose perturbations,
while they remain stable for sinuous perturbations. The BiGlobal frequency and
growth rates of the unstable varicose mode are used to obtain Strouhal number
correlation and stability curves. An investigation into the effect of the spanwise
wavenumber on BiGlobal instability indicates that planar plumes are more unstable
to two-dimensional perturbations than to three-dimensional perturbations. An increase
in the spanwise wavenumber tends to stabilize planar plumes without affecting
their oscillation frequencies. Experiments suggest that the puffing frequencies in
rectangular plumes closely follow the power law obtained from two-dimensional
instability analysis while exhibiting a weaker dependence on inlet aspect ratio. To
further explore the effect of aspect ratio on puffing behaviour, experiments have been
carried out in plumes of aspect ratio 1, i.e. square plumes. Square plumes are found
to be more stable and to exhibit higher puffing frequencies than rectangular plumes.
The reasons for these differences in puffing dynamics between rectangular and square
plumes have been explored from the phase-locked streamwise and spanwise flow
visualizations. In addition to puffing, spanwise visualizations in both rectangular
and square plumes show the presence of secondary flows at their corners, similar
to their constant-density jet counterparts. Finally, from experiments, we deduced a
new universal puffing frequency correlation with the hydraulic diameter as the length
scale which eliminates the aspect ratio dependence, and is valid for both square and
low-aspect-ratio rectangular plumes.

Key words: buoyancy-driven instability, free shear layers, plumes/thermals

1. Introduction
A low-density fluid ejecting out vertically with an initial momentum into a

high-density quiescent environment is termed a buoyant plume when the buoyancy

† Email address for correspondence: das@iitk.ac.in
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dominates the inertial forces at its source. Under certain conditions, these buoyant
plumes exhibit self-excited oscillations nearer to their sources, which involve
repetitive formation and shedding of vortical structures at a prescribed frequency. This
phenomenon, observed in both reacting and non-reacting plumes, is termed puffing
(Malalasekera, Versteeg & Gilchrist 1996; Tieszen 2001). The study of puffing
in low-density gas plumes has received considerable attention since the vortical
structures that arise from puffing play an active role in near-field entrainment and
mixing. In reacting plumes, puffing enhances oxygen supply and thereby directly
controls combustion nearer to the source.

Among the various inlet configurations, the study of puffing in plumes emanating
from circular sources has received wide attention. The onset of puffing, flow features,
oscillation frequency correlations and mechanisms responsible for puffing were
extensively investigated in circular plumes by employing experiments (Subbarao
& Cantwell 1992; Cetegen & Ahmed 1993; Cetegen & Kasper 1996; Cetegen 1997),
numerical simulations (Jiang & Luo 2000a,b) and linear stability analysis (Bharadwaj
& Das 2017; Chakravarthy, Lesshafft & Huerre 2018). In our recent study (Bharadwaj
& Das 2017), we performed a comprehensive parametric investigation to examine the
effect of various non-dimensional parameters and inlet conditions on puffing instability
in circular plumes. Using global instability analysis, we identified instability modes,
delineated regions of global instability, obtained frequency scaling laws for these
globally unstable modes and identified mechanisms responsible for puffing. While
our study addressed the puffing instability in helium–air plumes, Chakravarthy et al.
(2018) investigated puffing in thermal plumes by employing both local and global
instability analysis. Overall, these instability studies revealed that puffing occurs in
buoyant plumes as a result of linear global instability. Similar to circular plumes,
puffing is also observed in two-dimensional (2D) line plumes (Soteriou, Dong &
Cetegen 2002) and plumes that arise out of rectangular sources (Cetegen, Dong &
Soteriou 1998). In these planar inlet configurations, this instability is characterized by
the periodic formation, growth and downstream convection of a symmetric line vortex
pair of opposite circulations (i.e. varicose mode). While circular plumes have received
considerable attention, the planar plumes lack a parametric investigation which forms
the motivation for the present study. Thus, the present work aims to investigate
the puffing behaviour observed in plumes emanating from planar configurations
following an approach similar to that of our earlier work (Bharadwaj & Das 2017),
by employing both BiGlobal linear stability analysis and experiments.

The earlier investigations of planar plumes were largely carried out by Cetegen
and co-authors. Cetegen et al. (1998) investigated the planar plumes of helium and
helium–air mixtures emanating into air from rectangular nozzles of aspect ratios (ARs)
varying in the range 2.9 6 AR 6 10. In Richardson number range 1< Ri< 100, they
found that the plume oscillation frequencies correlate well in terms of non-dimensional
parameters St and Ri with a power law St = 0.55Ri 0.45, which is different from that
of circular plumes. Also, they demarcated the non-puffing and puffing regions on the
Re–S plane, ignoring the effect of Froude number (Fr) similar to their circular plume
experiments (Cetegen 1997). In their later work, Soteriou et al. (2002) performed
Lagrangian simulations in 2D line plumes of helium and helium–air mixtures. They
ascertained that Fr plays a significant role in plume transition, and therefore cannot
be ignored. Using simulations, they demarcated regions of puffing and non-puffing on
the Re–S plane for plumes of Fr in the range 0.1 6 Fr 6 0.3. They further identified
the buoyancy to be the main mechanism responsible for puffing instability. From
the vorticity equation, they derived a condition for circulation variation in stable
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planar plumes. While these studies pertain to buoyant plumes with an initial source
momentum (i.e. 1 < Ri <∞), the onset mechanism and characteristics of near-field
oscillations that arise in pure thermal plumes (i.e. free convection plumes, Ri =∞)
are investigated in the works of Hattori et al. (2013a,b,c).

The linear stability investigations in planar plumes are confined to the far-field
regime where the plume fluid attains Boussinesq behaviour and exhibits self-similarity.
The local spatial and temporal linear stability analyses in planar plumes (Pera &
Gebhart 1971; Yang 1992; Ravier et al. 2006) reveal that their far-field, self-similar
region is convectively unstable to both symmetric (varicose) and asymmetric (sinuous)
perturbations. However, the sinuous mode always exhibited larger growth rates
than the varicose mode. The occurrence of the sinuous instability in the far field
of planar plumes had been verified in experiments by Pera & Gebhart (1971)
and in computations by Ravier et al. (2006). A review of the instability analysis
in self-similar planar plumes is given in § 11.8 of Gebhart et al. (1988). The
self-sustained oscillations that were observed in planar buoyant jets (Yu & Monkewitz
1993) were investigated theoretically using local spatio-temporal instability analysis
(Raynal et al. 1996; Ravier et al. 2006). These studies revealed that both near and
far fields of planar buoyant jets exhibit absolute instability only for varicose mode,
while they remain absolutely stable for sinuous mode. However, such investigations
are confined to buoyant jets which are momentum dominated at their inlet, whereas
such investigations are rare for the buoyant plume regime.

Therefore, the present study aims to investigate the puffing instability in planar
plumes using instability analysis and experiments. As shown in circular plumes by
Chakravarthy et al. (2018), the parallel flow assumption is not valid in the plume
regime, and hence the present work employs linear instability analysis for non-parallel,
2D base flow using the BiGlobal approach outlined in Theofilis (2003). Moreover,
this approach has been successful in predicting the global transition in low-density
He/N2 jets (Coenen et al. 2017), hot jets and thermal plumes (Chakravarthy et al.
2018) and helium–air plumes (Bharadwaj & Das 2017) that arise out of circular
sources. Here, using BiGlobal linear stability analysis, we investigated the effect
of both symmetric (varicose) and anti-symmetric (sinuous) perturbations on global
stability of planar plumes. The three inlet parameters have been independently varied
in ranges of 106Re6 600, 0.036Fr 6 1 and 0.1386 S6 0.967. The unstable modes
have been identified and the corresponding transition diagrams and frequency scaling
laws have been obtained for 2D modes (β = 0). Instability computations are also
performed for non-zero spanwise wavenumbers (i.e. β > 0) to investigate the effect of
three-dimensional (3D) perturbations that are periodic in spanwise direction on plume
BiGlobal instability.

In experiments, plumes are generated using helium and helium–air mixtures
emanating from rectangular orifices of ARs 3.4, 4.1 and 5. The effect of AR on plume
puffing frequencies and transition is investigated, and the results are compared with
those obtained from instability analysis with 2D perturbations. Spanwise visualizations
have been performed to investigate the three dimensionality in these low-AR plumes.
Further, we also performed fewer experiments for plumes of AR = 1, i.e. square
plumes. To the best of the authors’ knowledge, this is the first investigation that
reports the puffing characteristics of square plumes. We obtained puffing frequency
scaling for square plumes which deviates from that for rectangular plumes. We
discuss the possible reasons for the differences regarding the plume transition and
puffing frequencies observed between square and rectangular plumes in the light of
our inferences from phase-locked streamwise and spanwise visualizations. In the end,
we obtained a St–Ri correlation based on the hydraulic diameter that is valid for both
square and low-AR rectangular plumes from our experiments.
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2. Problem formulation
The stability characteristics of isothermal, variable-density, 2D buoyant plumes of

helium and helium–air mixtures with source density, velocity, viscosity and helium
mass fraction of ρ0, w0, µ0 and YHe0 respectively emanating into quiescent ambient
air of density ρ∞ and viscosity µ∞ are investigated in the present study. These
correspond to the 2D line plumes of width B or plumes emanating from large-AR
rectangular sources of length L and width B, where AR = L/B and L � B. Since
the flow involves significant density gradients, the governing equations are the
compressible equations simplified in the low-Mach-number limit (Nichols, Schmid
& Riley 2007; Chandler et al. 2012). These equations only account for the density
variations due to the mixing of different species but neglect the density variations
because of pressure. Thus, the plume is effectively modelled by the mass, momentum
and species conservation equations given in their non-dimensional form as

∂ρ

∂t
+∇ · (ρv)= 0, (2.1)

ρ
Dv

Dt
=−∇p+

S
Reµ∗

{
∇ · [µ(∇v +∇vT)] −

2
3
∇(µ∇ · v)

}
+ (1− ρ)

1
Fr2

ez, (2.2)

ρ
DYHe

Dt
=

1
Re Sc

∇ · (ρ∇YHe), (2.3)

together with the state equation simplified under low-Mach-number approximation
which relates the density to the helium mass fraction as

1
ρ
=

(
1
S
− 1
)

YHe + 1 (2.4)

and Wilke’s (1950) law that relates viscosity to helium mass fraction as

µ=µ∗He/A
1

1+
Y−1

He0 − YHe

YHe
φHe−A

+
1

1+
YHe

Y−1
He0 − YHe

φA−He

, (2.5)

where φHe−A and φA−He are constants that depend on helium and air molar masses
(see (2.5) in Bharadwaj & Das 2017). These equations are formulated over a
domain chosen in Cartesian coordinates (x, y, z), with x, y and z axes aligned
in lateral (i.e. along the width), spanwise (i.e. along the length) and streamwise
directions respectively (figure 2). In these equations, v = (u, u, w), ρ, p, YHe and
µ are dimensionless velocity, density, pressure, helium mass fraction and viscosity
respectively. The primitive variables are scaled as follows and their dimensionless
forms are obtained as

v =
ṽ

w0
, YHe =

ỸHe

YHe0
, p=

p̃
p∞
, ρ =

ρ̃

ρ∞
, µ=

µ̃

µ∞
,

∇= B∇̃, t=
t̃w0

B
, g=

g̃
g
=−ez.

 (2.6)

The non-dimensional equations obtained using the above scalings yield the non-
dimensional Reynolds number Re, Froude number Fr, density ratio S, viscosity ratio
µ∗ and Schmidt number Sc in the following form:

Re=
ρ0w0B
µ0

, Fr=
w0
√

gB
, S=

ρ0

ρ∞
, µ∗ =

µ0

µ∞
, Sc=

µ0

ρ0D
, (2.7a−e)
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YHe0 1 0.420 0.226 0.130 0.072 0.033 0.006
S 0.138 0.276 0.414 0.552 0.691 0.829 0.967
µ∗ 1.073 1.115 1.104 1.080 1.054 1.028 1.005
Sc 1.686 0.876 0.578 0.424 0.331 0.269 0.226
Re 10 6 Re 6 600
Fr 0.03 6 Fr 6 1

TABLE 1. Parameter space for the present instability analysis.

where g and D are acceleration due to gravity and mass diffusivity respectively. The
inlet density ρ0 depends on the mass fraction of helium injected as ρ0 = [YHe0/ρHe +

(1 − YHe0)/ρAir]. The density ratio has been varied in range 0.138 6 S 6 0.967
by injecting the helium–air mixtures with inlet helium mass fractions as listed in
table 1. At each density ratio, the Reynolds number and Froude number are varied
independently in ranges 10 6 Re 6 600 and 0.03 6 S 6 1 respectively. The other two
non-dimensional parameters, µ∗ and Sc, which also depend on YHe0, take the values
listed in table 1 for each density ratio.

Sometimes, it is a common practice to combine the parameters Fr and S into
a single buoyancy parameter, the Richardson number, Ri, though it is not directly
obtained from the non-dimensional governing equations (2.1)–(2.5). The Richardson
number is defined as

Ri=
ρ∞ − ρ0

ρ∞

gB
w2

0
=

1− S
Fr2

. (2.8)

Here, we considered Fr and S separately in our analysis instead of combining
them into Ri, without limiting the generality. However, the oscillation frequencies
were found to correlate well with the combined parameter Ri (Cetegen et al. 1998;
Soteriou et al. 2002). Therefore, we present the Strouhal number variation in terms
of the combined parameter Ri instead of Fr and S separately, to be consistent with
the correlations obtained in earlier experiments. The Fr and S variation shown in
table 1 results in an overall Ri variation in the range 0.03< Ri< 960.

2.1. Base flows

The laminar base flow solutions (u,w, p, YHe) are obtained by solving the steady 2D
version of the governing equations (2.1)–(2.5) using the finite volume code ANSYS
Fluent, similar to the axisymmetric case in Bharadwaj & Das (2017). A schematic
of the planar domain chosen for obtaining the base flow is depicted in figure 1. The
pressure and convective terms are discretized using a second-order scheme and the
equations are solved using a pressure-based coupled algorithm (ANSYS, Inc. 2013)
along with the boundary conditions shown in figure 1. At the inlet boundary, top-hat-
shaped axial velocity and mass fraction profiles of the form

w(x, 0)= YHe(x, 0)=
1
2
+

1
2

tanh
[

25
(

1
2x
− 2x

)]
(2.9)

are imposed as boundary conditions, where the initial shear layer momentum thickness
is 1 % of the inlet half-width. Note that in the earlier (Cetegen & Kasper 1996;
Cetegen et al. 1998) and present experiments, a flat mesh screen is placed across the
plume inlets to attain uniform plug flow inlet conditions. Therefore, steeper top-hat
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FIGURE 1. Schematic of 2D domain for steady base flow computations along with
boundary conditions.

velocity and mass fraction profiles have been used in the present instability analysis
to simulate inlet conditions similar to those of the experiments. Along the centreline,
the symmetry boundary condition has been imposed. The exit and radial far-field
boundaries are specified as pressure outlets, where a Dirichlet condition is specified
on pressure and the other flow variables on these boundaries are extrapolated from
the interior. The steady-state calculations were performed using the pseudo-transient
approach as outlined in § 8.8 of Versteeg & Malalasekera (2007). This method uses
an implicit under-relaxation in which the under-relaxation is controlled by a pseudo
time step size. The equations are solved until the computations yielded a steady
converged solution. The solution is considered to be converged when the scaled
residuals ((26.13-4) in ANSYS, Inc. 2009) of continuity, momentum and helium mass
fraction equations tend to attain values less than 10−6.

These solutions are obtained for a mesh size of 231 000 quadrilateral cells
(1540(z)× 150(x)), where 150 000 cells are concentrated in the region 0< z< 30 and
0 < x < 1. The results are converged with respect to further mesh refinements. The
independence of base flow solution on the domain size is also verified. A further
increase in domain size in the lateral far field, i.e. x> 8, has negligible effect on the
base flow solution. Similarly, it is verified that an increase in the box length does not
impact the base flow solution for z> 40. To assess the effectiveness of the numerical
model in accurately predicting the base flow solution, the velocity field measured
using particle image velocimetry (PIV) in a typical laminar plume has been used
to validate the numerically obtained base flow solution, whose details are given in
appendix A.

2.2. Linear BiGlobal modes
To perform the stability analysis, the flow variables are decomposed into a 2D steady
base flow field and a 3D time-varying perturbation field as

q(x, y, z, t)= q(x, z)+ q′(x, y, z, t), (2.10)
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where q = [v, p, ρ, YHe, µ]. Assuming infinitesimally smaller perturbations when
compared to the base flow, the governing equations can be linearized in terms of the
perturbations about the steady state, yielding the linearized perturbation equations (see
equations (2.9)–(2.13) in Bharadwaj & Das 2017). Note that the perturbations Y ′He
and µ′ in the linearized equations can be eliminated by expressing them in terms of
ρ ′ in the same way as in Bharadwaj & Das (2017). Following normal mode approach,
the perturbations are assumed to be of the form

q′(x, y, z, t)= q̂(x, z)ei(βy−ωt), (2.11)

where β is the wavenumber in the spanwise coordinate, ω= ωr + iωi is the complex
frequency and q̂(x, z) is the 2D complex-valued amplitude. The linearized equations
obtained after substituting the ansatz constitute a 2D eigenvalue problem (EVP) of the
form

Aq̂=ωBq̂, (2.12)

where q̂=[û v̂ ŵ p̂ ρ̂]T is the eigenfunction and A and B are linear operators as
given in appendix C. For a given steady base flow, linear temporal BiGlobal modes
with ω as eigenvalue and q̂ as corresponding eigenvector are obtained by discretizing
and solving the EVP (2.12) along with perturbation boundary conditions (2.13)–(2.17).
The linearized equations are discretized in space by a spectral method using
Chebyshev polynomials in both streamwise and lateral coordinates. The collocation
grid Nx×Nz has been mapped from the Chebyshev domain ([1,−1] × [1,−1]) to the
physical domain ([0, xmax] × [0, zmax]) using the mapping functions. In the streamwise
direction, the collocation points are mapped linearly from [1,−1] to [0, zmax]. In the
lateral direction, the stretching function proposed by Lesshafft & Huerre (2007) has
been used to map the collocation points from [1,−1] to [0, xmax] and to concentrate
more points in the region x< 0.5. A detailed description regarding the discretization
for instability computations can be found in § B.2 of Bharadwaj & Das (2017).

The perturbation boundary conditions imposed over inlet, outlet and lateral far field
are

Inlet (at z= 0): û= v̂ = ŵ=
∂ p̂
∂z
= ρ̂ = 0, (2.13)

Outlet (at z= zmax):
∂ û
∂z
=
∂v̂

∂z
=
∂ŵ
∂z
= p̂=

∂ρ̂

∂z
= 0, (2.14)

Lateral far field (at x= xmax): û= v̂ = ŵ= p̂= ρ̂ = 0. (2.15)

Along the centreline, the boundary conditions depend upon the type of modes
considered for instability analysis, i.e. varicose mode or sinuous mode:

Centreline (at x= 0): û=
∂v̂

∂x
=
∂ŵ
∂x
=
∂ p̂
∂x
=
∂ρ̂

∂x
= 0 (varicose mode), (2.16)

∂ û
∂x
= v̂ = ŵ= p̂= ρ̂ = 0 (sinuous mode). (2.17)

After discretizing the differential operators in (2.12) and imposing boundary
conditions according to the mode considered, the generalized EVP can be expressed
as a set of linear algebraic equations as

Aq̂=ωBq̂, (2.18)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1022


824 K. K. Bharadwaj and D. Das

Mesh
screens

Mini
CTA

Settling
chamber

Mesh
screen

Flow
straighteners

Orifice

Orifice

280

CCD camera

HW

Acrylic
platform

Acrylic platform
(size: 770 ÷ 770 ÷ 9)

Acrylic enclosure
(size: 1250 ÷ 1250 ÷ 2500)

HW: hot wire probe
MFC: mass flow controller All dimensions in mm

Synchronizer

DAQ

Laser

Phase
shifter

Silencer

Mixing
chamber Sound absorbing

foam

Seed 
generator

Phase locked visualizations schematic

Span
wise

 vi
sua

liz
ati

on
 pl

ane

Streamwise visualization plane

z

z

y
B

L
xx

MFC 1

MFC 2

MFC 3

High pressure tubes

Pressurized
air

Pressurized
helium

70
0

20
0

25
0

FIGURE 2. (Colour online) Schematic of the experimental set-up. The inset on the right
shows the streamwise and spanwise planes in which flow visualizations are performed in
a phase-locked manner.

where A and B are matrices of size 5NxNz×5NxNz, in which Nx and Nz are the number
of nodes in x and z directions respectively. These matrices correspond to discretized
versions of differential operators A and B in (2.12) along with the boundary conditions.
To recover BiGlobal modes, the EVP (2.18) has been solved using an iterative Arnoldi
method by employing shift and invert strategy (Juniper, Hanifi & Theofilis 2014).

3. Experimental set-up

Experiments are performed to verify the results obtained from the BiGlobal linear
stability analysis and to investigate the effect of AR on puffing. Figure 2 shows a
schematic of the experimental set-up. The experimental arrangement is the same as
that used in our earlier study on circular plumes (see § 3 of Bharadwaj & Das (2017)
for a detailed description of the experimental set-up) in which the circular orifices
have been replaced with rectangular or square ones. The set-up comprises pressurized
sources of helium and air, three mass flow controllers, a mixing chamber which houses
the silencers and sound-absorbing foam, a settling chamber with honeycomb section
and screens, and a rectangular/square orifice through which the plume mixture ejects
out. The helium and air mass flow rates are precisely set and controlled using three
mass flow controllers to generate helium–air plumes of desired flow rates and densities.
The dimensions of the orifices used are listed in table 2.
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Orifice Rectangle Rectangle Rectangle Square

Width B (mm) 42 52 62 62
Length L (mm) 211 211 211 62
Aspect ratio AR= L/B 5 4.1 3.4 1

TABLE 2. Dimensions of orifices used for plume experiments.

It is known that planar plumes are prone to sinuous meandering in addition to
puffing instability (Soteriou et al. 2002). The velocity measurements performed at
50 Hz using PIV are used to characterize the near-field instabilities, segregate the
puffing plumes from non-puffing ones and evaluate their puffing frequencies. Details
regarding these PIV measurements, analysis and the uncertainties involved in the
velocity estimation are presented in detail in Bharadwaj & Das (2017).

Unlike the instability analysis which has been performed for 2D plumes that extend
infinitely in the spanwise direction, real-world plumes possess a finite spanwise
length L where 3D effects may become important and may influence puffing. Earlier
investigations in non-circular jets have revealed the presence of streamwise vortices
aligned with the corners (Gutmark & Grinstein 1999). Therefore, to further investigate
the three-dimensionality in rectangular plumes, flow visualizations are performed in
both streamwise and spanwise planes (see inset in figure 2). To obtain streamwise
and spanwise visualizations at the same time instants, these visualizations have been
performed in a phase-resolved manner. The puffing phenomenon is highly periodic
in the near field. Therefore, taking the advantage of this near-field flow periodicity,
a voltage signal, obtained from a hot-wire positioned nearer to the plume centreline
at (x, z)≈ (0.1B, 0.5B), is fed to a custom-designed phase shifter to resolve various
phases/time instants during a single puffing cycle, and to perform streamwise and
spanwise visualizations at similar puffing phases. The phase shifter could resolve
different phases during a puffing cycle within an accuracy of ±0.5 ms.

4. Results and discussion
4.1. BiGlobal instability analysis

We first discuss the results obtained from the BiGlobal linear stability formulation
presented earlier in § 2.2. In the parameter space listed in table 1, the eigenvalues
and the corresponding eigenfunctions are evaluated at each discrete parameter set
(Re, Fr, S) for both varicose and sinuous modes and for the spanwise wavenumber
β= 0, i.e. 2D perturbations. A brief discussion of 3D perturbations, i.e. β > 0, follows
in § 4.1.3.

4.1.1. Instability modes
The eigenvalue spectrum for the 2D varicose perturbations for the plume case

(Re, Fr, S) = (180, 0.5, 0.276) is shown in figure 3(a). The spectrum contains an
isolated unstable eigenvalue at ω = 5.70+ 0.92i, and an arc branch with eigenvalues
along the real frequency that are unstable in the range 9 < ωr < 20. In the earlier
studies on the global instability of circular buoyant jets and plumes (Coenen et al.
2017; Chakravarthy et al. 2018), similar features were observed. These studies had
shown that while the isolated eigenvalue is responsible for global instability, the
eigenvalues of the arc branch are artifacts that arise because of domain truncation in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1022


826 K. K. Bharadwaj and D. Das

5

0

-5

-10

-15

-20

-250 10 20 30

øi

ør

40 50

Without absorbing layer
With absorbing layer 30

25

20

15

10

5

0 0.5
x

z

30

25

20

15

10

5

0 0.5
x

30

25

20

15

10

5

0 0.5
x

30

25

20

15

10

5

0 0.5
x

-2 0 2 -0.5 0 0.5 -1 0 1 -2 0 2
Re(w) Re(u) Re(p) Re(®)^ ^ ^ ^(a) (b)

FIGURE 3. (Colour online) (a) BiGlobal eigenvalue spectrum for the case (Re, Fr, S)=
(180, 0.5, 0.276) obtained for 2D (β = 0) varicose perturbations. (b) Eigenfunctions of the
isolated BiGlobal mode.

the streamwise direction and resulting spurious pressure feedback from the outflow
boundary. In a recent study, Lesshafft (2018) showed that the growth rates of these
unphysical arc branch modes can be reduced by adding an absorption layer near the
outflow boundary.

In the present work, the absorption layer has been modelled by following an
approach stated in Chakravarthy et al. (2018). The EVP has been solved by adding a
damping term −λ(z)q̂ on the left-hand side of (2.18). Following Chomaz (2003), the
damping coefficient λ(z) is set to zero for z< zab, and it increases smoothly from 0
to λmax over a streamwise distance zab < z< zmax as

λ(z)= λmax

[
1+ exp

(
zmax − zab

z− zab
+

zmax − zab

z− zmax

)]−1

, (4.1)

where λmax is the maximum damping coefficient, zab is the streamwise distance where
the absorption layer starts and zmax is the outflow boundary. The eigenvalue spectra
obtained by adding the absorption layer with damping parameters λmax= 10 and zab=

20 are presented in figure 3(a). With the absorption layer, the growth rates of the arc
branch modes decrease and these eigenvalues recede to the stable half-plane as seen
from figure 3(a). It can also be observed that the addition of the absorption layer has
a negligible effect on the isolated mode. In the parameter space investigated, only one
isolated symmetric mode has been observed. This is in contrast to the case of circular
plumes where two such isolated modes had been observed in a similar parametric
space (Bharadwaj & Das 2017).

Further, we performed instability computations for larger domain lengths to
investigate the dependence of isolated BiGlobal mode and the arc branch modes
on domain length, and to check if the addition of the absorption layer produces any
unintended effects. These computations are performed for the plume case presented
in figure 3(a) and the corresponding results are included in appendix B. The analysis
reveals that the isolated BiGlobal mode is converged with respect to domain length
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FIGURE 4. (Colour online) BiGlobal eigenvalue spectrum obtained for 2D (β= 0) sinuous
perturbations for the case shown in figure 3(a).

(figure 21a) and the use of an absorption layer does not affect its frequency and
growth rate.

Figure 3(b) shows the real parts of eigenvectors obtained for the unstable BiGlobal
mode in figure 3(a). These eigenvectors show spatially periodic structures which is a
characteristic of oscillatory instability. The imaginary parts of these eigenfunctions are
similar to the real parts with a phase shift of about 90◦, i.e. the zeros of the imaginary
parts are located at the extrema of the corresponding real parts and vice versa. This
phase shift indicates that these structures convect downstream as they grow. Overall,
their characteristics are found to be similar to those of the global unstable modes of
circular plumes (Bharadwaj & Das 2017; Chakravarthy et al. 2018).

In the parameter space investigated, the eigenvalue spectra obtained for sinuous
perturbations do not contain any isolated modes. However, they contain an unstable
arc branch which stabilizes on the addition of an absorption layer near the outflow
boundary, as shown in figure 4. Thus, the planar plumes are BiGlobally unstable only
for varicose perturbations and are stable for sinuous perturbations. This observation
is consistent with the earlier experimental and numerical works on planar plumes.
Cetegen et al. (1998) and Soteriou et al. (2002) revealed that the planar plumes
undergo an instability in their near field which is characterized by self-sustained
periodic oscillations that involve formation, growth and shedding of a symmetric
vortex pair from the plume source at a unique frequency. Since it is observed that
the planar plumes are BiGlobally stable for asymmetric perturbations, we confine
our further discussion to symmetric perturbations only. The frequencies ωr and
growth rates ωi of the unstable BiGlobal symmetric mode, evaluated at each discrete
parameter set (Re, Fr, S) over the entire parameter space, are used to obtain the
BiGlobal frequency scaling and transition diagrams respectively.

4.1.2. Transition diagram and frequency scaling of the BiGlobal mode
The neutral curves obtained from the growth rates of the symmetric BiGlobal mode

are presented in figure 5. These curves correspond to the contour lines of ωi = 0
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FIGURE 5. Neutral stability curves of the BiGlobal mode in Re–Fr space for various
density ratios, obtained for spanwise wavenumber β = 0.

mapped in the Re–Fr space, for each S. The critical Re decreases with a decrease in
Fr as well as with a decrease in S. That is, plumes with larger buoyancy destabilize
earlier at lower Reynolds numbers.

In earlier planar plume experiments, Cetegen et al. (1998) reported that the
oscillatory plumes are not observed beyond a value of density ratio S = 0.5–0.6.
However, similar to our observation in circular plumes, the present stability analysis
shows that the planar plumes also exhibit the oscillatory instability beyond the
threshold limit proposed by Cetegen et al. (1998). However, it is to be noted that
with an increase in S, the unstable region gets confined to the plumes of higher Re
and lower Fr. In § 4.5 of Bharadwaj & Das (2017), we estimated that the perturbation
growth rates are governed by the relative strengths of buoyancy and viscous forces as
buoyancy/viscous diffusion ∼O(Reµ∗/SFr2). While the buoyancy tends to destabilize
the plumes, the viscous diffusion tends to stabilize them. Therefore, plumes with
higher S exhibit instability only at higher Re and lower Fr where buoyancy dominates
the viscous diffusion. As the density difference vanishes, plumes become globally
stable as shown by Garnaud et al. (2013).

A plausible reason for the absence of puffing for plumes of S > 0.6 in the
experiments of Cetegen et al. (1998) is that their experiments would have been
confined to low Re and high Fr, at higher S. While the Fr range of Cetegen et al.
(1998) is not readily available from their paper, their experiments were confined to
Re < 150 (one can infer this from figures 6 and 7 of Cetegen et al. 1998). The
neutral curves obtained from the present instability analysis (figure 5) show that the
plumes of Re< 150 largely remain stable for density ratios higher than 0.6. Since the
experiments of Cetegen et al. (1998) are confined to Re< 150, they did not observe
puffing for S> 0.6. Nevertheless, the present study shows that plumes exhibit puffing
at any density ratio until S≈ 1.

The non-dimensional frequency, or Strouhal number (St=ωr/(2π)), of the unstable
BiGlobal mode, obtained for all the cases in the investigated parameter space, is
plotted in figure 6 in terms of its variation with the plume source Richardson number,
Ri. The St correlates well with Ri, and the least-squares fit to the data yields a power
law St = 0.54Ri0.44 (R-square = 0.998). Cetegen et al. (1998) measured oscillation
frequencies in planar plumes of inlet Ri range 1–100 and obtained a frequency
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FIGURE 6. Variation of St with Ri for the unstable BiGlobal mode with spanwise
wavenumber β = 0.

correlation St = 0.55Ri 0.45 from their experiments. The frequency correlation of the
BiGlobal mode obtained from the present instability analysis is in excellent agreement
with that obtained in the earlier experiments (Cetegen et al. 1998).

4.1.3. Three-dimensional perturbations: effect of spanwise wavenumber β
The results presented above consider the perturbations to be 2D, i.e. β = 0. In this

section, we briefly consider the effect of 3D perturbations, i.e. non-zero β, on stability
characteristics of planar plumes. To accomplish this, linear stability analysis has been
performed by gradually increasing β, for plumes of three Froude numbers Fr = 0.1,
0.5 and 1, and keeping Re = 180, S = 0.276. The frequency and growth rate of the
most unstable BiGlobal mode obtained for various β are plotted in figure 7. The
analysis reveals that an increase in the spanwise wavenumber β leads to a decrease
in growth rates (figure 7b) and eventually to stabilization of the plumes. However, its
impact on the BiGlobal mode frequencies is negligible (figure 7a). More importantly,
this analysis shows that the 2D perturbations (i.e. β= 0) always exhibit higher growth
rates than the 3D perturbations (i.e. β > 0). Therefore, the natural transitions in planar
plumes that lead to BiGlobal instability will always be 2D.

4.2. Experimental observations
Experiments are performed in plumes emanating from rectangular orifices of various
finite ARs as listed in table 2 and their puffing dynamics is compared with the
predictions from BiGlobal instability analysis with β = 0.

4.2.1. Onset of oscillatory instability in rectangular plumes
The evolution of a rectangular plume with increase in inlet velocity w0, i.e. increase

in inlet Re and Fr keeping S constant, is presented to investigate the nature of
instabilities that arise in these plumes. Velocity fields measured at 50 Hz using PIV
are employed to characterize these instabilities, and the corresponding seed particle
images are presented here as flow visualizations.
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FIGURE 7. (Colour online) Variation of BiGlobal mode oscillation frequency and growth
rate with spanwise wavenumber β for plumes of Re= 180 and S= 0.276.

Figure 8 shows the evolution of a plume emanating from a rectangular orifice
of B = 0.042 m (AR = 5), with an increase in inlet velocity w0 from 0.032 to
0.194 m s−1, resulting in a simultaneous variation of Re and Fr in the ranges
226Re6 126 and 0.056Fr 6 0.3. At each inlet velocity, the behaviour of the plume
with time is also presented to show its unsteady nature. At lower inlet velocities, the
plume develops a long laminar column which is relatively steady near the inlet. It
undergoes a whiplash-like instability away from the source which involves sinuous
meandering (figure 8a,b). With an increase in inlet velocity, beyond a critical value,
the plume undergoes a periodic instability in the near field which involves shedding
of a pair of symmetric vortices with opposite circulation, as observed in figure 8(c,d).
Additionally, away from the plume source, the central stem exhibits asymmetric
undulations similar to that observed at lower inlet velocities. Overall, we observe
two types of instabilities in planar plumes: (1) asymmetric instability away from
plume source which involves sinuous meandering and (2) symmetric instability near
the plume source which involves periodic formation and shedding of vortex pairs of
opposite circulation.

To characterize these two behaviours, we follow the criterion proposed by
Sreenivasan, Raghu & Kyle (1989) who investigated the instabilities in variable-
density jets. Sreenivasan et al. (1989) differentiated the occurrence of absolute
instability and convective instability in momentum-dominated variable-density jets
by investigating their frequency spectra. They observed that the frequency spectrum
of the absolute instability is characterized by very sharp peaks at a characteristic
frequency and its harmonics. Whereas, the convective instability is characterized by a
broadened spectrum, with much less prominent and distributed spectral peaks. Note
that the absolute instability is a local analogue to the globally unstable, oscillatory
behaviour (Schmid & Henningson 2012). The presence of a finite region of absolute
instability is a necessary condition for a flow to be globally unstable (Huerre &
Monkewitz 1990), i.e. flows that are absolutely unstable tend to become globally
unstable. Therefore, in the present study, we calculated the frequency spectra from
the velocity fields obtained from PIV to identify the global instability. Figure 9 shows
the time traces of velocity at three streamwise locations z = 1, 2 and 3 along the
plume centreline (x = 0) and their corresponding fast Fourier transforms (FFTs), for
the four plume cases shown in figure 8.
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FIGURE 8. (Colour online) Evolution of a planar plume from non-puffing to puffing
state with an increase in inlet velocity: (a) w0 = 0.032 m s−1 (Re = 22, Fr = 0.05), (b)
0.064 m s−1 (Re= 45, Fr= 0.1), (c) 0.128 m s−1 (Re= 86, Fr= 0.2) and (d) 0.194 m s−1

(Re= 126, Fr= 0.3). The plume emanates from a rectangular orifice of width B= 0.042 m
(AR= 5). Time gap between two successive snapshots is 0.04 s. The density ratio is kept
constant at S= 0.276.

At lower inlet velocities (figures 8a,b and 9a,b), the FFTs show a broadband
frequency spectrum with the peaks distributed over a set of frequencies, which is
a characteristic of convective instability. Therefore, the sinuous meandering or the
asymmetric instability observed in plumes corresponds to the convective instability.
This observation is consistent with the earlier works of Pera & Gebhart (1971), Yang
(1992) and Ravier et al. (2006) concerning planar plumes. From local-spatial and
local-temporal linear stability analysis in planar plumes, they obtained that these
plumes are convectively unstable for both varicose and sinuous perturbations, with
the sinuous perturbations always exhibiting higher growth rates than the varicose
perturbations. The occurrence of sinuous instability in the far field of the planar
plumes was also observed in earlier experiments (Pera & Gebhart 1971) and
computations (Ravier et al. 2006). The spectral behaviour changes beyond the critical
inlet velocity, i.e. at higher inlet velocities (figures 8c,d and 9c,d) the FFTs show
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FIGURE 9. For caption see next page.

sharper peaks at a characteristic frequency and its harmonics, with higher amplitudes,
which implies that the symmetric periodic instability observed in the near field
corresponds to the global instability. The periodic nature of this instability is evident
from the near-field (x=0 and z=1) velocity traces presented in figure 9(c,d). The flow
visualizations (figure 8c,d) show that this global oscillatory instability is symmetric
in nature consistent with our observation from the present BiGlobal linear stability
analysis. This oscillatory instability in plumes is commonly termed ‘puffing’. The
dominant frequency of pulsation in the near field is termed the ‘puffing frequency’ of
the plume. Further away from the plume source, the flow becomes more complex and
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FIGURE 9. (cntd). The time traces of streamwise velocity along the centreline (x= 0) at
three different heights z= 1, 2 and 3, and corresponding FFTs for the four planar plume
cases shown in figure 8, i.e. (a) w0 = 0.032 m s−1, (b) 0.066m s−1, (c) 0.128m s−1 and
(d) 0.194m s−1.

additional frequencies which correspond to the sub/super harmonics of the puffing
frequency dominate the flow (z= 3 in figure 9c,d).

Note that although the plumes at low inlet velocities are convectively unstable to
asymmetric perturbations, they are globally stable since these perturbations eventually
convect downstream away from the plume source, thereby stabilizing the plumes in
the near field in the long-time limit. Since the present study is only confined to global
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FIGURE 10. (Colour online) Mapping of plume behaviour on Re–Fr plane for various S,
for both rectangular and square plumes. The open and filled markers correspond to non-
puffing and puffing plumes respectively. The dashed lines are the neutral curves obtained
from BiGlobal linear stability analysis with β = 0 (shown in figure 5). The continuous
lines are the transition curves obtained by Soteriou et al. (2002) from their simulations.

instability, we consider these plumes to be globally stable, and refer to them as ‘non-
puffing plumes’ in our further discussion.

4.2.2. Effect of AR
The effect of AR on puffing has been examined by comparing the plume states and

puffing frequencies of rectangular plumes with those of the results obtained from the
BiGlobal instability analysis with β = 0. The case of AR= 1, i.e. square plumes, will
be discussed separately in § 4.2.4.

The plume states are classified as non-puffing and puffing as described in § 4.2.1,
and are mapped in the Re–Fr plane at each density ratio S. Figure 10 shows the
plume states for rectangular plumes of two ARs, 3.4 and 5, and four density ratios,
S=0.138, 0.276, 0.414 and 0.552. The filled markers in figure 10 represent the puffing
plumes, whereas the non-puffing plumes are denoted by open markers. It is evident
from figure 10 that in spite of their low ARs, the rectangular plumes closely follow the
transition criterion obtained from BiGlobal instability analysis with β = 0. This shows
that the neutral curves obtained from instability analysis could effectively delineate
the puffing and non-puffing regions for rectangular plumes of low AR. However, the
square plumes (discussed in § 4.2.4) deviate from the predictions of the instability
analysis, which indicates that there is an AR limit for the validity of these BiGlobal
instability predictions.

Further, we compare our transition curves with those obtained earlier by Soteriou
et al. (2002). By performing Lagrangian simulations in planar plumes, Soteriou
et al. (2002) obtained transition Re at which the plumes become puffing based on
a transition criterion. The stability boundaries obtained by them in Fr range 0.1–0.3
(extracted from figure 14 of Soteriou et al. 2002) are also presented in figure 10
for comparison. A comparison of their transition curves with that of the present
instability analysis and experiments shows that their transition criterion yielded a
more conservative estimate of critical Re at which the planar plumes turn puffing,
while the present work reasonably delineates these regions. The reason for this
difference between the earlier work of Soteriou et al. (2002) and the present work

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1022


Puffing in planar buoyant plumes: BiGlobal instability 835

101100

100

102

St = 0.65Ri0.44

Rectangular, AR = 5
Rectangular, AR = 4.1

Rectangular, AR = 3.4
Square
BiGlobal LSA

Ri

St

FIGURE 11. (Colour online) Strouhal number variation with Richardson number for
rectangular and square plumes.

lies in the transition criterion chosen by them for demarcating non-puffing and puffing
regions, which is briefly described here.

For a fixed Fr and S, Soteriou et al. (2002) performed simulations by incrementing
Re, starting from the lowest possible value (see figure 13 in Soteriou et al. 2002).
At each Re, they tested for unsteadiness at various streamwise locations along the
plume column, and considered the plume to be non-puffing as long as the plume
column remained steady. As the plume column turned unsteady, they considered the
plume to be puffing. However, in figures 8 and 9, we have seen that the unsteadiness
in these plumes can arise as a result of asymmetric instability as well. This is
also supported by the fact that the initial instability observed in their work is also
asymmetric (second and third columns in figure 13 of Soteriou et al. 2002), which
arises because of convective instability. Also, in the present experiments, we observed
the appearance of asymmetric instability at low flow rates (figure 8a,b) prior to the
occurrence of symmetric puffing mode at high flow rates (figure 8c,d). Therefore,
the transition criterion of Soteriou et al. (2002) yielded a more conservative estimate
of critical Re. The FFT-based criterion of Sreenivasan et al. (1989) followed here
seems to be a robust transition criterion to separate the puffing plumes from unsteady
non-puffing plumes.

The puffing frequencies measured for various rectangular plumes are represented
as their Strouhal number variation with Richardson number in figure 11. The St–Ri
correlation obtained from BiGlobal linear stability analysis, i.e. St= 0.54Ri0.44, is also
plotted for comparison. Overall, the rectangular plumes of various ARs closely follow
the St–Ri correlation obtained from the BiGlobal stability analysis. However, at a fixed
Ri, it can be observed that the Strouhal numbers exhibit a marginal scatter with respect
to the plume ARs. For instance, in figure 11, the St values of AR = 3.4 largely lie
above the St–Ri correlation of the unstable BiGlobal mode, whereas the St values of
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FIGURE 12. Streamwise visualizations. Evolution of a rectangular plume of Re = 480,
Fr= 0.3 and S= 0.553, emanating from an orifice of B= 62 mm (AR= 3.4), at various
instants during a single puffing cycle. Puffing frequency for this case is 4.3 Hz. The
dashed lines correspond to the z locations at which the spanwise visualizations (figure 13)
are performed.

AR= 5 lie below it. Also, this scatter can be prominently observed at low Richardson
numbers. Thereby, rectangular plumes exhibit a weaker dependence on AR.

Overall, the global dynamics of rectangular plumes is in reasonable agreement with
that of the BiGlobal instability predictions, which are obtained assuming these plumes
to be 2D in nature. This shows that the puffing dynamics in rectangular plumes largely
remains 2D even at such low ARs. To further verify this inference, we performed both
streamwise and spanwise flow visualizations (figure 2) in puffing rectangular plumes
to examine their three-dimensionality. These measurements are performed in a phase-
resolved manner to resolve various time instants during a puffing cycle, as explained
in § 3. The streamwise visualizations assist in identifying the flow features observed
in spanwise visualizations (e.g. puffing vortex (PV), central stem (CS), etc.).

4.2.3. Three-dimensionality: phase-locked streamwise and spanwise visualizations
Figure 12(a–h) shows the streamwise evolution of a typical puffing rectangular

plume in the x–z plane at various time instants during a single puffing cycle.
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FIGURE 13. Spanwise visualizations performed at various z locations for the case shown
in figure 12. Panels (a–h) correspond to the same time instants as in figure 12.

Figure 13(a–h) shows the corresponding spanwise visualizations in the x–y plane,
at four different heights (i.e. z= 0.08, 1, 2 and 3). The position of PV in figure 13
has been identified by correlating it with figure 12. The spanwise visualizations show
that the flow remains uniform near the plume inlet at all time instants of a puffing
cycle, as observed at z= 0.08 in figure 13. As the plume fluid convects downstream,
two phenomena occur. First, the global instability leads to the periodic formation
of spanwise vortex pair as discussed earlier and leads to puffing (marked as PV in
figures 12 and 13). Second, the distortion of shear layer at the corners (marked as
D in figure 13) leads to the formation of four streamwise vortices, aligned with the
corners (shown as corner vortices (CVs) in figure 13). These CVs are also observed
in non-puffing steady laminar plumes, demonstrated here in figure 14 for a laminar
rectangular plume of AR= 10. This implies that these vortices are not related to the
global instability in plumes.
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FIGURE 14. Spanwise visualization of a non-puffing steady plume of AR = 10 at two
arbitrary time instants (a,b). The visualizations show the presence of CVs even in the
absence of puffing.

In constant-density jets ejecting from rectangular orifices and ducts, the formation
of CVs had been widely reported in earlier works (Quinn 1992; Zaman 1996;
Gutmark & Grinstein 1999; Sau 1999, 2002). They concluded that these streamwise
vortices represent the Prandtl secondary flow of first kind that occurs due to unequal
flow acceleration and resulting shear layer distortion nearer to the corners. In
orifice-generated homogeneous jets, this secondary flow occurs as a result of flow
acceleration because of vena-contracta (Quinn 1992). A secondary flow phenomenon,
similar to that observed in orifice-generated constant-density jets, occurs in the
present case as a result of buoyancy, which leads to the formation of these CVs. This
phenomenon will be briefly described below.

As the plume fluid ejects out into the atmosphere, it undergoes a lateral contraction
due to buoyant acceleration as observed at all time instants in figure 12. However,
the buoyant acceleration, and thereby the lateral contraction, is not uniform over the
entire span as observed from spanwise visualizations at z = 0.08 in figure 13. The
plume fluid near the shorter edges accelerates more slowly than the plume fluid at
the centre. This is evident from spanwise visualizations at z = 0.08 in figure 13 in
which the plume fluid converges laterally all along the span, while it remains intact
near the shorter edges, on either extremes of the span. This unequal acceleration of
plume fluid results in the distortion/skewing (D) of the shear layer near the corners as
highlighted at z= 0.08 in figure 13(d), which results in the generation of streamwise
vorticity at the corners. Further downstream, this skewed shear layer at four corners
rolls up into four streamwise vortices aligned with plume corners, similar to that
observed by Zaman (1996) and Sau (1999) in the case of free rectangular jets. Thus,
it can be inferred that the CVs correspond to the secondary flow superposed over the
primary plume flow because of the presence of corners. Zaman (1996) had shown
that the orientation of these CVs influences the downstream development of the jet
by promoting or resisting the axis-switching phenomenon, observed in non-circular
jets (Gutmark & Grinstein 1999). In the present buoyant plumes, the CVs formed are
of ‘outflow’ type as shown at z= 1 in figure 13(d), exactly similar to that observed
by Zaman (1996) in the case of free rectangular homogeneous jets. In this ‘outflow’
configuration, the two CV pairs located at either side of the span tend to elongate the
plume cross-section along the span as shown at z=1 in figure 13(d), thus resisting the
axis-switching of plume cross-section in buoyant plumes. Therefore, no axis-switching
phenomenon has been observed in the present buoyant plumes.

Now, we revert back to our inference drawn previously in § 4.2.2 regarding puffing
dynamics in rectangular plumes. In spite of smaller ARs, we had observed in the
previous section that the puffing frequencies and plume transition in rectangular
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plumes are in good agreement with those obtained from BiGlobal instability analysis
with β = 0. The spanwise visualizations of puffing plumes in the near field, i.e.
z 6 1 in figure 13, show that, barring secondary flow, the plume CS and the PVs
indeed remain largely 2D without any spanwise variations. This 2D nature CS and
PV is more pronounced for higher AR plumes. This shows that puffing is 2D in a
rectangular plume, even at such low AR. However, further downstream, the spanwise
undulations develop along the plume stem as observed at z = 2 in figure 13, which
leads to a rapid breakdown of plume fluid and transition to turbulence.

Up to now, we have investigated the puffing behaviour in rectangular plumes of
AR> 3. These plumes exhibited a weaker dependence on the ARs. Next, we consider
the effect of a further decrease in AR by investigating the puffing dynamics in square
plumes, i.e. AR= 1.

4.2.4. Square plumes
Experiments are performed using a square orifice of dimensions B = L = 62 mm,

at four density ratios S= 0.138, 0.276, 0.414 and 0.552, by systematically increasing
the plume inlet velocity at each density ratio, similar to that performed in the case of
rectangular plumes. These square plumes are categorized into non-puffing and puffing
states based on temporal flow visualizations and FFT approach as explained in § 4.2.1,
and the resulting plume states are presented in figure 10 along with rectangular plumes.
Also, the Strouhal numbers of the puffing square plumes are presented in figure 11.

Overall, it is observed that the puffing dynamics in square plumes differs from that
in 2D or rectangular plumes. Figure 10 shows that square plumes are more stable than
2D/rectangular plumes, i.e. puffing tends to initiate in square plumes at higher critical
Re when compared to 2D/rectangular plumes. Also, for a fixed Ri, the puffing Strouhal
number in a square plume is higher than that in a 2D/rectangular plume. The puffing
frequencies in square plumes correlate as St= 0.65Ri0.44 as shown in figure 11. It is
interesting to note that the power-law exponent for square plumes is same as that for
the rectangular plumes, i.e. St∝Ri0.44. However, the proportionality constant is higher
for square plumes. We further highlight the differences observed between rectangular
and square plumes in both non-puffing and puffing regimes.

Figure 15 compares the flow field of a non-puffing rectangular (AR = 3.4) and
square plume with similar inlet conditions, i.e. same (Re, Fr, S). From the time
evolution of these plumes, it can be observed that the rectangular plumes undergo
asymmetric instability as observed in figure 15(a) and as discussed earlier in § 4.2.1.
Whereas, the square plumes remain stable even in the far field as observed from
their time evolution in figure 15(b). The far field asymmetric convective instability
observed in rectangular plumes disappears as AR→ 1.

Further, we compare the PV of a square plume with that of a rectangular plume and
attempt to explain the reason for higher Strouhal numbers observed in square plumes.
Figure 16 shows the streamwise visualizations of a puffing square plume at various
time instants during a single puffing cycle. The corresponding spanwise visualizations
performed at various heights are shown in figure 17. It is evident from the spanwise
visualizations that the structure of the PV (shown in figures 16 and 17) is highly 3D,
whereas a PV in rectangular plumes remains largely 2D as seen earlier in figure 13.
Cetegen & Ahmed (1993) investigated the puffing mechanism in circular plumes by
introducing various mechanisms that prevent the formed PV from interacting with
the plume fluid nearer to the source. From their experiments, they proposed that the
puffing frequencies are strongly coupled with the downstream development of the PV.
They observed that the perturbations introduced by the downstream convecting PV

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1022


840 K. K. Bharadwaj and D. Das

Rectangular
plume

AR = 3.4

Square
plume

AR = 1

Time evolution(a)

(b)

FIGURE 15. Flow field in non-puffing (a) rectangular and (b) square plumes of Re= 60,
Fr= 0.05 and S= 0.414.

act as source of instability to the plume fluid nearer to the source, which result in
the formation of the next PV. That is, the induction and convection of the formed
PV provide the coupling to sustain these periodic oscillations. Therefore, we attribute
the difference observed in puffing frequency correlations of square and rectangular
plumes to their PV dynamics. We conjecture that the 3D structure and dynamics of
PVs in square plumes might have resulted in an increase in their puffing frequencies
compared to those of the rectangular plumes.

Additionally, the flow field in square plumes is dominated by four corner vortex
pairs (as shown in figure 17) similar to that observed in momentum-dominated
homogeneous square jets (Quinn 1992; Gutmark & Grinstein 1999).

4.3. Strouhal number similarity at low ARs
In § 4.2.2, we observed that the puffing Strouhal numbers in rectangular plumes
exhibited a weaker dependence on plume inlet AR. This dependence on AR grew
stronger with a further decrease in its value to AR = 1, where the square plumes
exhibited higher Strouhal numbers than the rectangular plumes, which correlated as
St= 0.65Ri0.44. Also, the puffing dynamics undergoes a change in range of 3>AR> 1
as the PV changes from near 2D to 3D as seen from figures 13 and 17. These
observations clearly suggest that the puffing Strouhal numbers exhibit a dependence
on the AR, at such low AR.

However, it has been observed that this Strouhal number dependence on AR
can be eliminated by using the hydraulic diameter (DH) and its equivalent velocity
(wH =Q/(πD2

H/4), where Q is the inlet volume flow rate) as the length and velocity
scales respectively, instead of the plume width B and the mean inlet velocity w0. That
is, puffing frequencies at these low ARs exhibit similarity and collapse on to each
other when the Strouhal and Richardson numbers are expressed in terms of hydraulic
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FIGURE 16. Streamwise visualizations. Evolution of a square plume of Re = 235, Fr =
0.3 and S = 0.28, emanating from an orifice of width B = 62 mm, at various instants
during a single puffing cycle. Puffing frequency for this case is 6.2 Hz. The dashed lines
correspond to z locations at which the spanwise visualizations (figure 17) are performed.

diameter (DH) and its equivalent velocity (wH). The modified Strouhal number (StDH )
and Richardson number (RiDH ) are defined in terms of DH and wH as

StDH =
fDH

wH
and RiDH =

ρ∞ − ρ0

ρ∞

gDH

w2
H
. (4.2a,b)

The present experimental data for square and rectangular plumes, expressed in terms
of StDH and RiDH , are plotted in figure 18. The experimental data of Cetegen et al.
(1998), extracted from figure 9 of their paper and expressed in terms of StDH and RiDH ,
are also presented in figure 18 for comparison. The experimental data for plumes of
1 6 AR 6 10 collapse onto a single line, following a power law StDH = 0.66(RiDH )

0.44

(R-square = 0.99). This frequency correlation eliminates the dependence of AR on
puffing dynamics, and serves as a universal law for both rectangular and square
plumes. Using the new scaling law StDH = 0.66(RiDH )

0.44, by expressing StDH in terms
of St and RiDH in terms of Ri, we can derive an St–Ri correlation which includes an
AR-dependent correction term in its coefficient as

St= {0.39(1+AR−1)0.8AR0.12
}Ri0.44. (4.3)
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FIGURE 17. Spanwise visualizations (in x–y plane) at various z locations for the case
shown in figure 16. Panels (a–h) correspond to the same time instants as in figure 16
(CVP, corner vortex pairs).

5. Conclusions

The BiGlobal instability characteristics of planar plumes have been investigated in
parameter ranges 106Re6 600, 0.036Fr 6 1 and 0.1386 S6 0.967, thereby varying
the plume Richardson number in range 0.03 < Ri < 960. Planar plumes contain
only one unstable BiGlobal mode that corresponds to symmetric perturbations, while
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FIGURE 18. (Colour online) Puffing frequency similarity for low-AR plumes in the range
1–10.

asymmetric perturbations are BiGlobally stable in the parameter space investigated.
The characteristics of this unstable mode are qualitatively similar to those of
circular plumes. Similar to that in circular plumes, instability regions and frequency
correlations are obtained for planar plumes using BiGlobal instability analysis. The
oscillation frequencies of BiGlobal unstable mode scale as St = 0.54Ri0.44, which
is in excellent agreement with the experimental scaling law obtained by Cetegen
et al. (1998). Planar plumes turn oscillatory at low Re when compared to circular
plumes. Planar plumes are found to be more unstable to 2D perturbations than 3D
perturbations, while their puffing frequencies remain the same for both.

Further, experiments are performed in rectangular plumes of ARs 3.4, 4.1 and
5 and square plumes, and their puffing dynamics is compared with the predictions
from the instability analysis. In spite of the lower AR, the puffing characteristics
of rectangular plumes are found to be in reasonable agreement with the BiGlobal
instability theory. This agreement shows that puffing instability is nearly 2D even
for low-AR rectangular plumes. This has been further verified using spanwise flow
visualizations which have shown that, barring the secondary flows at the corners, the
flow field and the PV remain largely 2D in rectangular plumes. Nevertheless, the
puffing Strouhal numbers exhibited a weaker dependence on inlet ARs. Also, from
instability analysis and experiments, we have shown that the numerical simulations
of Soteriou et al. (2002) arrived at a more conservative estimate of the critical Re
for the onset of puffing.

For the first time, puffing characteristics of square plumes have been studied. The
puffing dynamics of square plumes is found to differ from that of rectangular plumes.
Square plumes tend to be more stable and display higher puffing frequencies than
rectangular plumes for the same inlet parameters. From the present experiments,
a frequency correlation has been obtained for square plumes as St = 0.65Ri0.44.
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From spanwise visualizations, it is observed that the PV dynamics in square plumes
is highly 3D, which might have resulted in an increase in their puffing frequencies
when compared to rectangular plumes. In addition to puffing instability, the spanwise
visualizations also revealed that both rectangular and square plumes exhibit secondary
flows at their corners similar to their constant-density counterparts.

Finally, using the present experiments and the experiments of Cetegen et al. (1998),
and by employing the hydraulic diameter as the length scale and its corresponding
mean inlet velocity as the velocity scale, we obtained a universal scaling law for
puffing frequencies in both rectangular and square plumes. This correlation, StDH =

0.66(RiDH )
0.44, eliminates the dependence of AR on plume global dynamics.
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Appendix A. Base flow validation with experiments
The velocity field measured using PIV in a steady laminar plume is used to validate

the numerical model (see § 2.1) employed for obtaining the base flows. The validation
case corresponds to a steady laminar plume of (Re,Fr, S)= (341, 0.3, 0.69) generated
in an experiment using a rectangular orifice of B = 0.042 m and L = 0.211 m
(AR= 5). Figure 19(a) shows the laminar plume and its mean velocity field obtained
by averaging 100 instantaneous velocity fields measured using PIV. Note that the
measurement window in the streamwise direction is limited to z= 3.7 in the present
experiments. The sectional velocity profiles and centreline velocity obtained from the
base flow computations are compared with the ones obtained from the experiment, and
plotted in figures 19(b) and 20(b) respectively. The comparison shows a reasonably
good agreement between the computations and the experiments which proves the
reliability of the numerical model in predicting the steady base flow.

For the validation case presented in figure 19, the streamwise velocity, lateral
velocity and mass fraction fields obtained using base flow computations are shown in
figure 20(a). Near to their source, these plumes undergo a rapid acceleration along
the centreline and converge to a minimum width before diverging again downstream,
a typical characteristic of the so-called ‘lazy plumes’ which have excess buoyancy
and deficit momentum at their source when compared to their self-similar region. The
rapid convergence accompanied by the dominant lateral flow near the source makes
the flow highly non-parallel with non-negligible streamwise gradients.

The density field in figure 20(c) shows that as the plume fluid convects away
from the source, it gets diluted rapidly because of mass diffusion and its density
approaches the ambient density in the far field. Thus, the plume follows the
Boussinesq approximation in the far field. The similarity formulation reveals that,
in self-similar planar Boussinesq laminar plumes, the centreline velocity wcl and mass
fraction YHe,cl variations follow the power laws wcl∝ z1/5 and YHe,cl∝ z−3/5 respectively
(Gebhart et al. 1988). For the validation case, variations of velocity and helium mass
fraction along the centreline are plotted in figures 20(b) and 20(c) respectively. The
laminar plume follows these power-law variations from z ≈ 10 for this case. Thus,
these plumes eventually attain self-similarity in the far field.
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FIGURE 19. (Colour online) Validation of base flow solution with an experimentally
generated steady laminar plume of (Re, Fr, S) = (341, 0.3, 0.69). (a) Flow visualization
and velocity field obtained from PIV measurements. (b) Comparison of sectional velocity
profiles.

Appendix B. Effect of domain length on isolated and arc branch modes
The instability computations have been performed for different box lengths zmax=30,

50 and 70 without using the absorbing layer at the outlet boundary. The eigenvalue
spectra obtained for these cases are presented in figures 21(a) and 21(b) for varicose
and sinuous perturbations respectively. These figures show that the isolated BiGlobal
mode converged with respect to the domain length. Also, a comparison of the
isolated mode in figures 3(a) and 21(a) reveals that it is unaffected by the use of the
absorption layer.

However, it can be observed that the growth rates of the arc branch eigenmodes
increase with an increase in the domain length. Lesshafft (2018) showed that an
increase in domain size will result in an increase in growth rates of the arc branch
modes if the flow is convectively unstable at the outflow boundary. Note that the
plume far field is convectively unstable to both varicose and sinuous perturbations,
and thereby longer domain sizes will lead to an increase in arc branch mode growth
rates as observed in figure 21(a,b).

Appendix C. Stability equations
This appendix gives various terms in the dispersion relation (2.12) for planar plumes

written in matrix form as given below:

Aeq,var q̂=ωBeq,var q̂, (C 1)

where the subscripts eq and var are rows and columns that correspond to equations
and variables respectively. In matrices A and B, equations eq = {xm, ym, zm, co, sp}
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FIGURE 20. (Colour online) (a) Steady solution obtained from base flow computations
for the validation case shown in figure 19. The corresponding (b) velocity and (c) mass
fraction variations along the centreline.
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FIGURE 21. (Colour online) Effect of domain length on eigenvalue spectra for (a)
varicose and (b) sinuous perturbations. The plume case is the same as presented in
figures 3 and 4. The isolated BiGlobal mode is independent of domain length, while the
arc branch modes exhibit higher growth rates for longer domain lengths.

form the rows where xm, ym, zm, co and sp correspond to x-momentum, y-momentum,
z-momentum, continuity and species transport equations respectively, and variables
var= {u, v,w, p, ρ} form the columns. The terms in A and B are given as follows:

Axm,u = ρ
∂u
∂x
+ ρw

∂

∂z
+ ρu

∂

∂x
+

S
µ∗Re

[
µβ2
−

4µ
3
∂2

∂x2
−µ

∂2

∂z2
−

4
3
∂µ

∂x
∂

∂x
−
∂µ

∂z
∂

∂z

]
,

(C 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1022


Puffing in planar buoyant plumes: BiGlobal instability 847

Axm,v =
S

µ∗Re

[
2
3

iβ
∂µ

∂x
−

1
3

iβµ
∂

∂x

]
, (C 3)

Axm,w = ρ
∂u
∂z
+

S
µ∗Re

[
2
3
∂µ

∂x
∂

∂z
−
∂µ

∂z
∂

∂x
−
µ

3
∂2

∂z∂x

]
, Axm,p =

∂

∂x
, (C 4a,b)

Axm,ρ = u
∂u
∂x
+w

∂u
∂z
+H

S
µ∗Re

[
−
∂2u
∂z2
−

1
3
∂2w
∂z∂x

−
4
3
∂2u
∂x2

]
+H

S
µ∗Re

[
−
∂w
∂x

∂

∂z
−
∂u
∂z
∂

∂z
+

2
3
∂w
∂z

∂

∂x
−

4
3
∂u
∂x

∂

∂x

]
+

S
µ∗Re

[
−
∂w
∂x
∂H
∂z
−
∂u
∂z
∂H
∂z
+

2
3
∂w
∂z
∂H
∂x
−

4
3
∂u
∂x
∂H
∂x

]
, (C 5)

Aym,u =
S

µ∗Re

[
−iβ

∂µ

∂x
−

1
3

iβµ
∂

∂x

]
, (C 6)

Aym,v =
S

µ∗Re

[
4µ
3
β2
−µ

∂2

∂x2
−
∂µ

∂x
∂

∂x

]
+ ρu

∂

∂x
+ ρw

∂

∂z
, (C 7)

Aym,w =
S

µ∗Re

[
2
3

iβµ
∂

∂z

]
, Aym,p = iβ, (C 8a,b)

Aym,ρ =H
S

µ∗Re

[
2iβ
3
∂w
∂z
+

2iβ
3
∂u
∂x

]
, (C 9)

Azm,u = ρ
∂w
∂x
+

S
µ∗Re

[
2
3
∂µ

∂z
∂

∂x
−
∂µ

∂x
∂

∂z
−
µ

3
∂2

∂z∂x

]
, (C 10)

Azm,v =
S

µ∗Re

[
2
3

iβ
∂µ

∂z
−

1
3

iβµ
∂

∂z

]
, (C 11)

Azm,w = ρ
∂w
∂z
+ ρu

∂

∂x
+ ρw

∂

∂z
+

S
µ∗Re

[
β2µ−

∂µ

∂x
∂

∂x
−µ

∂2

∂x2
−

4
3
µ
∂2

∂z2
−

4
3
∂µ

∂z
∂

∂z

]
,

(C 12)

Azm,p =
∂

∂z
, (C 13)

Azm,ρ = u
∂w
∂x
+w

∂w
∂z
+ g+H

S
µ∗Re

[
−

1
3
∂2u
∂z∂x

−
∂2w
∂x2
−

4
3
∂2w
∂z2

]
+H

S
µ∗Re

[
−
∂w
∂x

∂

∂x
−

4
3
∂w
∂z

∂

∂z
−
∂u
∂z

∂

∂x
+

2
3
∂u
∂x

∂

∂z

]
+

S
µ∗Re

[
−
∂w
∂x
∂H
∂x
−

4
3
∂w
∂z
∂H
∂z
−
∂u
∂z
∂H
∂x
+

2
3
∂u
∂x
∂H
∂z

]
, (C 14)

Aco,u =
∂ρ

∂x
+ ρ

∂

∂x
, Aco,v = iβρ, Aco,w =

∂ρ

∂z
+ ρ

∂

∂z
, (C 15a−c)

Aco,p = 0, Aco,ρ =
∂u
∂x
+
∂w
∂z
+ u

∂

∂x
+w

∂

∂z
, (C 16a,b)
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Asp,u = ρ
∂YHe

∂x
, Asp,v = 0, Asp,w = ρ

∂YHe

∂z
, Asp,p = 0, (C 17a−d)

Asp,ρ = −
1

Re Sc

[
∂2YHe

∂x2
+
∂2YHe

∂z2
+
∂YHe

∂x
∂

∂x
+
∂YHe

∂z
∂

∂z

]
+

1
Re Sc

F
[
β2ρ −

∂ρ

∂x
∂

∂x
−
∂ρ

∂z
∂

∂z
− ρ

∂2

∂x2
− ρ

∂2

∂z2

]
−

1
Re Sc

[
∂ρ

∂x
∂F
∂x
+
∂ρ

∂z
∂F
∂z
+ ρ

∂2F
∂x2
+ ρ

∂2F
∂z2
+ 2ρ

∂F
∂x

∂

∂x
+ 2ρ

∂F
∂z

∂

∂z

]
+

[
u
∂YHe

∂x
+w

∂YHe

∂z

]
+ F

[
ρu

∂

∂x
+ ρw

∂

∂z

]
+

[
ρu
∂F
∂x
+ ρw

∂F
∂z

]
, (C 18)

Bxm,u = iρ, Bxm,v = 0, Bxm,w = 0, Bxm,p = 0, Bxm,ρ = 0, (C 19a−e)

Bym,u = 0, Bym,v = iρ, Bym,w = 0, Bym,p = 0, Bym,ρ = 0, (C 20a−e)

Bzm,u = 0, Bzm,v = 0, Bzm,w = iρ, Bzm,p = 0, Bzm,ρ = 0, (C 21a−e)

Bco,u = 0, Bco,v = 0, Bco,w = 0, Bco,p = 0, Bco,ρ = i, (C 22a−e)

Bsp,u = 0, Bsp,v = 0, Bsp,w = 0, Bsp,p = 0, Bsp,ρ = iρF. (C 23a−e)
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