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In this study a linear stability analysis of shallow-water flows is undertaken for a
representative Froude number F = 3.5. The focus is on monotonic base flow profiles
U without an inflection point, in order to study critical layer instability (CLI) and its
interaction with radiative instability (RI). First the dispersion relation is presented for
the piecewise linear profile studied numerically by Satomura (J. Meterol. Soc. Japan,
vol. 59, 1981, pp. 148–167) and using WKBJ analysis an interpretation given of
mode branches, resonances and radiative instability. In particular surface gravity (SG)
waves can resonate with a limit mode (LM) (or Rayleigh wave), localised near the
discontinuity in shear in the flow; in this piecewise profile there is no critical layer.
The piecewise linear profile is then continuously modified in a family of nonlinear
profiles, to show the effect of the vorticity gradient Q′ = −U′′ on the nature of
the modes. Some modes remain as modes and others turn into quasi-modes (QM),
linked to Landau damping of disturbances to the flow, depending on the sign of
the vorticity gradient at the critical point. Thus an interpretation of critical layer
instability for continuous profiles is given, as the remnant of the resonance with the
LM. Numerical results and WKBJ analysis of critical layer instability and radiative
instability for more general smooth profiles are provided. A link is made between
growth rate formulae obtained by considering wave momentum and those found via
the WKBJ approximation. Finally the competition between the stabilising effect of
vorticity gradients in a critical layer and the destabilising effect of radiation (radiative
instability) is studied.

Key words: critical layers, free shear layers, shallow water flows

1. Introduction
Fluid mechanical phenomena in astrophysics and geosciences are a motivation

for the study of shear instability in shallow, stratified, rotating fluid layers. Many
types of waves and instabilities can occur, and the investigation of very idealised
models is relevant to teasing out mechanisms and interactions, especially in linear
regimes. In this paper we consider fluid flow governed by the shallow-water (or
Saint Venant) equations in a Cartesian geometry (without imposed rotation). Here
a natural class of problems involves understanding the instabilities of a shear flow
of constant depth bounded on one side by an impermeable boundary (here y = 0)
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and unbounded on the other side. A range of profiles U(y) can be considered as
models of possible flows adjacent to the boundary, for example modelling a boundary
current in an ocean. A piecewise linear profile was studied numerically by Satomura
(1981). In this case with an open domain, he obtained a family of surface gravity
modes (SGM) (localised near the boundary) and a single branch of modes linked
to the discontinuity in the slope U′ of the profile. He observed resonances between
these modes and the presence of radiative instability (RI), in which an unstable mode
incorporates waves that propagate to infinity, with outwards group velocity. For any
piecewise linear shallow-water flow an exact dispersion relation may be written in
terms of Kummer functions, and this is done for the Satomura (1981) profile by
Knessl & Keller (1995); those authors did not develop this further, and we note that
these dispersion relations are sufficiently unwieldy that asymptotic approximations
are needed to extract useful information. Glatzel (1985) discusses a related stability
equation for a compressible shear flow, with Kelvin–Helmholtz instability resulting
from resonances between modes localised at the two discontinuities of the profile.

When the profile U(y) is no longer piecewise linear the possibilities for instabilities
become richer, while exact solutions can no longer be written down. A key study is
Balmforth (1999) for linear and nonlinear shear flow profiles confined to a channel;
that author identifies three kinds of instabilities. First there is the classical inflectional
instability (Rayleigh 1880; Fjørtoft 1950), present in the Froude number limit F→ 0
of incompressible fluid flow, when the surface gravity (SG) wave speed is infinite.
Secondly, for F > 0 the wave speed becomes finite and waves may be destabilised
if there is a critical layer where the wave speed and the flow speed are the same. In
this case the behaviour of a mode is closely linked to the potential vorticity gradient
in the layer: if its sign is the same as that of the wave momentum M the mode will be
destabilised, otherwise it will be damped. The latter process is an example of Landau
damping, first explained in the fluid context by Briggs, Daugherty & Levy (1970), as
discussed further below. Finally, there is an unstable resonance between pairs of SGM,
localised on opposite sides of the channel. For the flows considered in the present
paper, this third instability is not present as the flow is bounded only on one side, but
a fourth type of instability is allowed, a RI with waves propagating to infinity, away
from the wall. Finally for the discontinuous profiles there is the resonance instability
obtained by Satomura.

RI was first found in compressible shear flows, in vortices by Broadbent & Moore
(1979) and in many works by Lindzen (e.g. Lindzen & Tung 1978; Lindzen & Barker
1985), who first showed that the instability is based on over-reflection. Here waves
are trapped and totally internally reflected, and at each reflection a wavepacket draws
energy from the underlying shear flow, while at the same time radiating a wavepacket
to infinity. Thereafter radiative modes were found in various open flows where both
shear and stratification are present, for example in rotating flows, boundary and shear
layers, and jets, in the presence of linear stratification, shallow-water dynamics, and
compressibility. RI is observed experimentally by Riedinger, Le Dizès & Meunier
(2011) in the case of the potential flow around a rotating cylinder in a stratified
fluid. For a Froude number and a Reynolds number at the marginal stability limit,
two networks of internal waves are generated, one corresponding to a helicoidal
wave going down the cylinder and the other going up. There are several ways of
viewing the instability mechanism: it may be seen as an over-reflection process
(Takehiro & Hayashi 1992), as a consequence of the conservation of wave activity or
pseudomomentum (Schecter & Montgomery 2004), or in terms of a reversal of the
wave group velocity (Le Dizès & Billant 2009).
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A WKBJ analysis may be employed in these linear problems to obtain growth rates
and to understand the over-reflection process and the role of the critical layer and
turning points. Stratified vortices are considered in papers by Le Dizès and co-workers,
for example Le Dizès & Billant (2009). For these flows the dominant term in the
growth rate arises from radiation and a secondary damping term results from the
critical layer. The competition between radiation and critical layer damping has also
been studied in Schecter & Montgomery (2004) and Park & Billant (2012, 2013).
In a recent work on compressible jets (Parras & Le Dizès 2010), a WKBJ analysis
for radiative modes shows that the term in the growth rate resulting from the over-
reflection at the critical level can also be destabilising.

Critical layers are better known for their stabilising effect, as for example explained
in Briggs et al. (1970). Modes are found to be damped by a fluid–wave interaction
similar to the Landau damping of plasma oscillations. In the fluid context this amounts
to the generation of vorticity fluctuations in the presence of a background vorticity
gradient, and the feedback on the mode as they are sheared out in the local flow. The
mechanism is intimately linked to conservation of potential vorticity. Mathematically
the resulting linear perturbation is not described by a normal mode and to obtain the
decay rate the linear eigenvalue problem has to be integrated on a complex contour
which cannot be deformed to the real axis. The corresponding eigenvalue is called a
Landau pole, and is associated with a quasi-mode (QM), which can be considered as
formed from the continuous spectrum, in other words a combination of singular modes
that naturally arises in the initial value problem (Briggs et al. 1970). QMs always
have a damping effect on perturbations, an effect studied for vortices, and nonlinear
effects can lead to the formation of structures such cat’s eyes or tripoles (e.g. Rossi,
Lingevitch & Bernoff 1997; Balmforth 1999; Bassom & Gilbert 1999; Schecter et al.
2000; Balmforth, Llewellyn Smith & Young 2001; Turner, Gilbert & Bassom 2008),
also observed in experiments (van Heijst 1991). Growth of unstable modes whose
structure includes a critical layer has been observed in experiments on a columnar
vortex in a stratified fluid (Riedinger, Meunier & Le Dizès 2010b). Little work has
been published on the potential destablising effect of a critical layer, in particular for
model geophysical flows, although it has been identified as the effect of a gradient in
the background potential vorticity by Kubokawa (1985), Papaloizou & Pringle (1987)
and Perkins & Renardy (1997). Otherwise the term ‘critical layer instability (CLI)’,
although it is not well established, has been used for baroclinic flows (Bretherton
1966) and two-layer flows (Iga 1999).

The goal of the present paper is to study instabilities of shallow-water shear flows,
numerically and analytically, with particular interest in resonances, CLI and RI. The
paper is organised as follows. In § 2 the governing equations are given, together
with the general WKBJ formulation. The latter leads to a classification of types of
modes, depending on the presence of critical points and turning points. Section 3
concerns the piecewise linear profile of Satomura (1981) (see also Knessl & Keller
1995) which is the basis of all our subsequent analysis. We discuss the various
modes and resonances, supported by WKBJ and related analysis. In particular we
link a branch of ‘limit’ modes to the discontinuity in the piecewise profile, and give
asymptotic formulae for these modes. In § 4 we consider a family of flows which
includes the piecewise linear profile of Satomura (1981) but allows a quadratic profile,
with non-vanishing vorticity gradient. This highlights the role of the critical layer
and, as the profile is distorted from linear, numerical results indicate the effect on
the branches and resonances. Importantly critical layer damping or destabilisation
can now take place. Some previously neutral branches of modes remain as modes,
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while others turn into QMs. To give an analytical basis to our results, the piecewise
defined profiles are inconvenient, and in § 5 we discuss several smooth profiles. Some
are bounded as y→∞ and some unbounded: in the latter case all modes become
radiative at infinity. These profiles have neutral modes that may be stabilised or
destabilised by potential vorticity gradients in the critical layer, and may be subject
to RI. Asymptotic formulae for these effects are derived using WKBJ theory and
matching to local solutions near critical points, and confirmed by means of numerical
calculations. Finally § 6 offers concluding discussion.

2. Governing equations
Our study concerns fluid motion governed by the shallow-water equations, which

we write in a standard dimensionless form,

∂tu+ u · ∇u+ F−2
∇h = 0, (2.1)

∂th+∇ · (hu) = 0, (2.2)

where F is the Froude number based on the SG wave velocity (with F2 = U2/gH
in dimensional quantities) (e.g. Balmforth 1999), u and h are the disturbances of
velocity and depth. The shallow-water dynamics gives material conservation of
potential vorticity q,

∂tq+ u · ∇q= 0, q= h−1ẑ · ∇× u. (2.3)

We consider an unperturbed, or basic, state of a steady shear flow with uniform depth,

u=U≡U(y)x̂, h=H ≡ 1, q=Q≡−U′, (2.4a–c)

in a half-plane given by y > 0 with an impermeable boundary y = 0. The velocity
profiles we consider have U(0) = 1 and do not have inflection points, which rules
out the inflectional instabilities discussed in Balmforth (1999) and Mak, Griffiths &
Hughes (2014). Such instabilities are linked to the classical Rayleigh theory, since in
the limit F→ 0 the shallow-water equations reduce to those for incompressible two-
dimensional fluid flow. We consider flows with different limits as y→∞, with U→ 0
for the flows in § § 2–5.2 and unbounded U(y) in § 5.3.

We take the equations for small-amplitude perturbations, make the substitutions

u→ (U, 0)+ (u(y), v(y))eik(x−ct), h→H + h(y)eik(x−ct), q→Q+ q(y)eik(x−ct),
(2.5a–c)

in (2.1), (2.2), and linearise to obtain

ik(U − c)u+U′v + F−2ikh = 0, (2.6)
ik(U − c)v + F−2∂yh = 0, (2.7)

ik(U − c)h+ iku+ ∂yv = 0 (2.8)

(Balmforth 1999). These govern normal modes of the perturbation fields u, v and h
with wavenumber k> 0 in the x direction and (possibly complex) wave speed c= cr+
ici. We use a prime to denote a y-derivative of the basic state (only). The perturbation
potential vorticity q is given by

q= ikv − ∂yu−Qh (2.9)
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and satisfies
ik(U − c)q+Q′v = 0. (2.10)

The term Q′v gives the generation of perturbation potential vorticity in a background
gradient Q′=−U′′. For a purely linear shear flow, Q′=−U′′= 0, and this generation
term is absent, making q identically zero.

A useful quantity is the wave momentum which in the full time-dependent problem
is defined by M exp(2kcit), with

M = 1
2

∫ ∞
0
(uh∗ + hu∗) dy. (2.11)

This is given in Balmforth (1999), together with the wave energy E which we do
not need here. M is quadratic in the disturbance fields and its time evolution under
(2.6)–(2.8) is linked to the transport of perturbation potential vorticity through

2kciM =−1
2

∫ ∞
0
(vq∗ + qv∗) dy, (2.12)

for modes that are evanescent as y→∞. For a purely linear profile, U′′ = 0, q is
zero and so M is conserved; in this case a growing or decaying mode, ci 6= 0, must
have zero total momentum M. This is relevant to unstable resonances in bounded shear
flows (Hayashi & Young 1987; Takehiro & Hayashi 1992).

2.1. WKBJ formulation
The key to understanding numerical results, as well as giving approximations to
growth rates and frequencies, is a WKBJ analysis in the limit of large wavenumber
k � 1. Equations (2.6)–(2.8) are a second-order system of ODEs, which may be
written in various forms. We first eliminate in favour of h to give

∂2
y h− 2U′(U − c)−1∂yh− k2∆0h= 0. (2.13)

Here ∆0 is a function of y defined by

∆0(y)= 1− F2(U − c)2. (2.14)

Although our numerical work is based on (2.13), for analysis in the limit of large
k we eliminate the term in ∂yh by setting

g(y)= (U − c)−1h, (2.15)

to give
∂2

y g= k2∆ g, (2.16)

where the function ∆(y) is

∆(y)= 1− F2(U − c)2 − k−2U′′(U − c)−1 + 2k−2U′2(U − c)−2. (2.17)

WKBJ approximations to (2.16) then involve ∆(y) in (2.17) in the standard form,

g(y)= |∆(y)|−1/4 exp
(
±k
∫ y √

∆(s) ds
)
. (2.18)
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With reference to (2.14) we may write the quantity ∆(y) as

∆=∆0 + k−2∆1, ∆1 =−U′′(U − c)−1 + 2U′2(U − c)−2. (2.19)

For large k, the first term ∆0(y) in (2.19) is nominally the largest. This gives rise to
oscillatory solutions in regions where ∆0 is negative and evanescent behaviour where
∆0 is positive. Two adjacent regions are separated by a turning point yt with

∆0(yt)= 0, (2.20)

and when a mode has two we label them as yt1 and yt2 with yt1 < yt2. The other
significant feature of (2.19) is the possible presence of a critical point yc, where the
wave speed is equal to the flow velocity and the term involving ∆1 can increase, given
by

U(yc)= c. (2.21)

Except close to a critical point yc, the terms in ∆1 in (2.19) may be neglected
compared with ∆0. However within a distance of order k−1 of the critical point, ∆1
increases to become comparable with ∆0 and a new expansion must be sought.

For some solution branches, modes are purely oscillatory with real wave speed c,
in which case any relevant turning points yt and critical point yc will lie on the real
y-axis. In other situations, where there is instability or damping, c becomes complex
and these points lie in the complex plane. However despite this, our asymptotic
calculations are based on c = cr + ici being approximately real (cr = O(1), ci � 1).
For this reason it is helpful to work on the basis that c is real together with real
points yt and yc, all correct at leading order, and then calculate the small correction
ci perturbatively. In what follows we often speak as if yt and yc are real, even though
these points may be ‘pushed’ above or below the real axis by small values of ci. This
approximation is valid, as the magnitude of ci is found to be exponentially small in
terms of k when WKBJ solutions are linked across an evanescent region of finite
width (independent of k).

Given a profile U(y), the problem then is to solve (2.13) or (2.16) subject to the
boundary condition at the origin of no normal flow, v = 0, amounting to

h′(0)= 0 or g′(0)/g(0)=−U′(0)(U(0)− c)−1, (2.22a,b)

and to the condition as y→∞ that

h(y)→ 0 or g(y)→ 0 (y→∞), (2.23a,b)

for evanescent modes, decaying at infinity. For radiative modes, which are oscillatory
as y→∞, we need instead the radiation condition that waves propagate outwards,

h(y)(U − c)−1 = g(y)∼ |∆(y)|−1/4 exp
(
±ik

∫ y √
−∆(s) ds

)
, (2.24)

with the upper/lower sign for positive/negative cr. For each applicable set of boundary
conditions there results an eigenvalue problem giving branches of modes c(k) for a
given value of the Froude number F.

As well as discrete normal modes, there are two branches of continuous spectrum,
namely,

Scrit = {c : c=U(y), y ∈R}, (2.25)
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FIGURE 1. Location of turning and critical points, and sign of ∆0, in the (y, cr)–plane
with c= cr real, according to the profile U2 = 1− tanh y with F= 3.5. The shaded zones
correspond to ∆0 < 0 and oscillatory modes. The turning points yt1, yt2 are marked by
thick curves and the critical point yc by a thinner curve.

Srad = {c :∆0(∞) < 0} = {c : c>U(∞)+ F−1 or c<U(∞)− F−1}. (2.26)

The first branch is linked to the presence of critical points yc on the real axis where
the differential equation is singular and the second is a range of values of c for which
there are outward-going waves at great distances (cf. Riedinger, Le Dizès & Meunier
2010a). These branches correspond to an integration contour y∈R for (2.13) or (2.16),
but they can be deformed in the complex plane by distorting this contour.

2.2. Classes of modes
For a given profile U(y) there are several distinct classes of WKBJ solutions
depending on the presence and location of turning and critical points. To illustrate
this and establish notation, we take the smooth profile U(y) = 1 − tanh y (shown as
U2 in figure 2(b) below) with F = 3.5 as an example, and consider real values of
c = cr, plotted on the vertical axis in figure 1. For each value of c we show the
location of the turning points yt1, yt2 given by (2.20) (solid curves) on the horizontal
axis, together with the critical point yc from (2.21) (thin curve). In the shaded regions
∆0 < 0 and the WKBJ solution is oscillatory; otherwise the solution is exponential.

Given a value of c we may read horizontally to find turning and critical points, and
so identify the following classes of modes:

(a) class A, cr ∈ (−F−1, 0): modes that are oscillatory for [0, yt1], evanescent for
larger values of y and with no critical point;

(b) class B, cr ∈ (0, F−1): as for class A but with a critical point yc in the open
evanescent region;

(c) class C, cr ∈ (F−1, 1− F−1): modes that are oscillatory in [0, yt1] and for y> yt2
with an evanescent region in between; these are radiative modes.

From the figure, radiative modes in class C exist when F−1< 1−F−1, that is F> 2,
and modes in class B exist when 1 − F−1 > 0, that is F > 1. For the present study
we fix a representative value of the Froude number F = 3.5 for all our simulations,
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FIGURE 2. Basic flow profiles. (a) Flow profiles U1 that are zero for y > 1 and given
by (4.1). The case µ = 0 gives the piecewise linear profile U in (3.1). (b) Everywhere
smooth profiles U2 and U3 in (5.1), U4 in (5.19), U5 in (5.20), and U6 in (5.21).

as this gives all three classes of modes. The sketch of modes in figure 1 is similar
to the one obtained by Parras & Le Dizès (2010) for a study of instability in a
compressible round jet: class A modes correspond to counterflow waves, class B to
subsonic coflow waves, and class C to supersonic coflow waves. Note that in figure 1
the characteristics of the modes are plotted according to the real part of the velocity
cr, but also constitute the leading-order approximation when ci � 1 and modes are
weakly damped or destabilised

3. Piecewise linear profile
The starting point for our study is the piecewise linear profile of Satomura (1981),

U(y)=
{

1− y (0 6 y 6 1),
0 (y> 1).

(3.1)

This is the profile with µ = 0 shown in figure 2(a). The piecewise linear property
means that there is zero potential vorticity gradient Q′ = −U′′, except for a delta-
function concentration at y = yd = 1. This allowed Knessl & Keller (1995) to write
down an exact but awkward dispersion relation in terms of Kummer functions. We
will not proceed in this way, but instead apply WKBJ approximations from the outset
below; this allows easier generalisation to profiles that are not piecewise linear in later
sections.

As U = 0 for y> 1 we may write g in (2.16) as a decaying exponential satisfying
(2.23),

g∝ exp
(−ky

√
1− F2c2

)
, (3.2)

or a wave with the appropriate sign for the radiation condition given in (2.24),

g∝ exp
(±iky

√
F2c2 − 1

)
. (3.3)

The solution is required to have h and h′ continuous across y = 1; the latter makes
the normal flow component v continuous there but there is generally a discontinuity
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FIGURE 3. (a) Frequency cr and (b) growth rate ci for F= 3.5 and the piecewise linear
profile (3.1). In each case the solid lines give the numerical solutions, and the dotted lines
the WKBJ approximations. Radiative (‘rad’) and resonant (‘res’) instabilities are present.

in tangential flow u. We are then left with the problem on the reduced range 06 y6 1,
to solve the differential equation for g in the case of constant shear,

∂2
y g= k2∆ g, ∆=∆0 + k−2∆1, (3.4)

∆0 = 1− F2(1− y− c)2, ∆1 = 2(1− y− c)−2, (3.5a,b)

subject to

g′(0)/g(0)= (1− c)−1, g′(1)/g(1)=−c−1 − k
√

1− F2c2 or − c−1 ± ik
√

F2c2 − 1.
(3.6a,b)

3.1. Numerical results
The eigenvalue problem was solved using a shooting code for (2.13) and the
eigenmode branches, that is cr and ci (solid curves), are shown in figure 3 as
functions of k. When a mode is neutral, ci = 0, any critical point yc lies on the real
axis and makes the differential equation singular there. Although the singularity is
easily treated analytically for this piecewise linear profile, the shooting has to be
done on a path in the complex plane, for example a parabolic arc from zero to one
above or below yc.

This figure reproduces results of Satomura (1981) and shows a variety of eigenmode
branches. We turn first to frequencies plotted in figure 3(a). Ignoring for a moment
resonances near to branch crossings, we have two different types of branches. There
is a single branch (somewhat broken up by resonances) with dcr/dk < 0, tending
to the horizontal axis as k→∞: we refer to these modes as ‘limit modes (LM)’.
These modes are localised on the discontinuity at y = 1 and continue to exist in
the incompressible limit F→ 0; these can be interpreted as Rayleigh waves or edge
modes on a piecewise linear profile (e.g. Sutherland 2010). There is also a sequence
of branches with increasing frequency as k→∞, dcr/dk > 0, and we refer to these
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FIGURE 4. Structure of the three neutral modes for the piecewise linear profile (3.1) with
k= 8, (a) scaled by their maximum amplitude, and (b) view zoomed in near the critical
points with solutions scaled by their values at y= 1. The (real) h(y) field is plotted against
y for the LM with c= 0.0581 (solid), the third discrete mode for c= 0.152 (dashed), and
fourth discrete mode for c = 0.0235 (dotted). The positions of critical points yc (•) are
shown in (a,b) and turning points yt ≡ yt1 (∗) in (a) only.

as SG wave modes, since branches show increasing numbers of oscillations in the
fluid domain adjacent to the boundary y= 0. We observe all three classes of modes
discussed at the end of § 2, leaving aside resonances at branch crossings.

First, for cr ∈ (−F−1, 0) the branches of SGM are all neutral and there is no
critical point: these modes belong to class A. Secondly, for cr ∈ (0, F−1) and away
from branch crossings, the branches of SGM are again neutral, and so is the limit
branch: these fall in class B. In this case there is a critical point yc in the domain
(with 0 6 yc < 1) but this does not lead to damping or destabilisation of the mode.
This is a consequence of the piecewise linear profile: the background potential
vorticity gradient Q′ is zero at the critical point, and there is none of the feedback
from vorticity transport in a critical layer. Linked to this, a Frobenius development of
(3.4), (3.5) near to the critical point yc gives a simple pole in g(y) and a non-singular
height field h(y) (Satomura 1981). This means that numerical eigenvalues can be
obtained equally from shooting above or below yc in the complex plane.

For cr ∈ (F−1, 1 − F−1) the SGM are radiative and fall in class C. They have a
positive or negative growth rate which pushes the critical point yc off the real axis.
In figure 3(b) they correspond to long, low elongated ‘bubbles’ with growth rates of
O(10−3) or less; however only the first can be seen, clinging to the axis for k> 2.7,
labelled ‘rad’. For the growing radiative mode, the boundary condition (3.6) is used
with the sign chosen to correspond to an outgoing wave as y→∞. However for the
decaying mode it is an incoming wave with the opposite sign of the square root taken
in (3.6). Thus it is only the upper portion of the bubble which corresponds to the
physically important case of RI.

The structure of three neutral modes, namely LM, and third and fourth SGM, is
shown in figure 4 for k = 8. The curves were obtained by integrating along the real
axis on both sides of the critical point, using the eigenvalue c first obtained by means
of shooting along a complex path. Note that the SGM (dashed and dotted lines) are
oscillatory up to their turning points yt1 (∗) and then die away rapidly to very low
amplitude at their critical points yc (•). On the other hand the LM (solid line) has
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a peak at its critical point yc; although it decays only a little for y< yc, for large k
this branch of solutions is represented at leading order by evanescent decay as y is
reduced below yc. We will pick up this structure in the WKBJ analysis below.

Where the branches for cr cross in figure 3(a), the corresponding modes become
resonant, giving the tall, narrow bubbles of instability labelled ‘res’ in figure 3(b).
There are two solutions with positive or negative growth rate and each solution
corresponds to a mixture of the two individual non-resonant modes. For these
resonant bubbles, the two solutions with opposite growth rates can again be obtained
by shooting above or below the critical point yc, which is now pushed off the real
axis.

3.2. WKBJ theory for surface gravity modes
We now turn to analysis of the features seen in figure 3, and in the remainder of
this section are interested in modes in class B, with wave speed cr ∈ (0, F−1). Our
aim is to describe limit and SGM using WKBJ analysis for large k (e.g. Bender &
Orszag 1978) and to give a description of the resonances that occur when branches
cross. At the outset, in this subsection and § 3.3 we seek the two separate families
of SGM, localised near the boundary, and LMs, localised near the discontinuity,
as separate branches by requiring exponential decay in the evanescent region that
separates them. We then investigate resonant interactions by connecting solutions
through the evanescent region, giving effects exponentially small in k as k→∞, in
§ 3.4.

Supposing first that c= cr is real, we have a single real turning point yt and a real
critical point yc, with 0 < yt < yc < 1. We divide space into three regions, defined
loosely as region I, 0 6 y< yt, region II yt < y< yc and region III y' yc. We start in
region I with the standard oscillatory form of the WKBJ solution in (2.18). For large
k the solution satisfying the boundary condition at y = 0 in (3.6), which at leading
order in k simply amounts to g′(0)=O(1)� k, is

gI = A(−∆)−1/4 cos
(

k
∫ y

0

√−∆ dy
)
. (3.7)

This is valid in region I, in which ∆'∆0 < 0, and may be rewritten as

gI = A(−∆)−1/4 sin
(

k
∫ yt

y

√−∆ dy−Φ +π/4
)
, (3.8)

with a phase defined by

Φ = k
∫ yt

0

√−∆ dy−π/4. (3.9)

We move to region II where ∆0 > 0 and suppose that we are sufficiently far from
the critical point that the WKBJ approximation remains valid. We may write this
solution in the form

gII =∆−1/4

[
C exp

(
k
∫ y

yt

√
∆ dy

)
+D exp

(
−k
∫ y

yt

√
∆ dy

)]
. (3.10)

To find branches of solutions we now ignore the effect of the critical point and just
require evanescent solutions in region II. In fact the presence of a critical point can
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have a weak destabilising effect, but only near to mode crossings as we will discuss
below. A standard argument (e.g. Bender & Orszag 1978) involves matching the
oscillatory solution (3.7) to the evanescent solution with C= 0 (via an Airy function
approximation) and gives the leading-order dispersion relation for these modes as
Φ = nπ or

k
∫ yt

0

√−∆ dy= nπ+π/4. (3.11)

Away from any critical point we may approximate ∆ by ∆0 up to corrections of order
k−2. Evaluating the integral then gives the dispersion relation explicitly as

1
2 kF−1

[
F(1− c)

√
F2(1− c)2 − 1− cosh−1(F(1− c))

]
= nπ+π/4. (3.12)

This approximation (dotted lines) gives the SG branches depicted in figure 3(a) with
excellent agreement for large k. The two SGM shown in figure 4 (dotted and dash
curves) have the correct qualitative structure, in particular the exponential decay
beyond the turning points (∗).

3.3. Asymptotic theory for limit modes
The branch of LMs which approaches the horizontal axis of figure 3(a) has its origin
elsewhere. As seen in figure 4 such a mode (solid curve) has a peak close to y= 1
and from figure 3, c is real (except at the mode crossings), positive and tends to zero
for large k. Experimentation suggests that c = cr = O(k−1) is the appropriate scaling
and we take this as a working assumption. In this case a critical point, with U(yc)= c,
given by yc= 1− c approaches y= 1 as k tends to infinity and we seek an eigenmode
localised there. We call this region III, which is defined formally by y − yc� k−1/2

and includes the point y= 1. In region III we can no longer ignore ∆1 in (3.4), (3.5)
but it is now legitimate to approximate ∆0, so that

∆' 1+ k−2∆1 = 1+ 2k−2(y− yc)
−2, (3.13)

and then the resulting differential equation

∂2
y g= [k2 + 2(y− yc)

−2]g (3.14)

transforms to a Whittaker equation for w= 2k(y− yc),

∂2
wg+ (− 1

4 − 2w−2)g= 0. (3.15)

This equation is discussed in § 13.14 of Olver (2010) and in its standard form ((5.7)
below) has two parameters which here take the values κ = 0, µ= 3/2. The solution
may be expressed as

gIII = EW0,3/2(w)+GW0,3/2(−w), (3.16)

or explicitly

gIII = E[1+ k−1(y− yc)
−1]e−k(y−yc) +G[1− k−1(y− yc)

−1]ek(y−yc). (3.17)

It may be checked that this solution matches to the exponential WKBJ solution
(3.10) in region II. Note that the solution gIII has a simple pole at y = yc whereas
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the corresponding height field h (2.15) is regular there. We will later see that the
situation becomes more complicated for profiles where Q′ =−U′′ is non-zero at the
critical point and the Whittaker functions gain branch cuts.

We can now impose the boundary condition (3.6) at y = 1 on the solution (3.17),
and we may neglect F2c2 on the right-hand side as c=O(k−1), leaving us to require
only g′(1)/g(1)=−c−1 − k. Some rearrangement gives

E/G= (1− 2kc)e2kc. (3.18)

Finally, for a solution localised about the critical point we require exponential decay
as y decreases below yc, in other words E = 0, leaving the branch described by the
approximation

c= (2k)−1, (3.19)

valid for large k, independent of Froude number. This approximation is shown in
figure 3(a) (dotted curve) and shows good agreement with increasing k. These LMs
have a peak localised close to y= 1 for large k, as illustrated in figure 4 (solid curve),
and so can be thought of as driven by the jump in potential vorticity Q at y = 1,
much like a normal mode on a Rankine vortex in the analogous problem in plane
polar geometry (Ford 1994).

3.4. WKBJ theory for resonances
We have identified a set of branches of SGM, trapped between y= 0 and y= yt and a
branch of LMs, localised at a critical point yc close to the boundary y = 1 of the
shear flow. We observe resonances between these modes where the branches cross
in figure 3, and now sketch the analysis of these following Knessl & Keller (1995).
This involves keeping track of both exponential components of the evanescent WKBJ
solution (3.10) in yt < y< yc, even though we neglect terms of order k−1 in each one;
we need to keep the two independent solutions at leading order (no matter how weak
one is) to capture an effect that is exponentially small as k→∞ (Shepard 1983).

Matching the WKBJ solutions (3.8) and (3.10) across the turning point yt gives

C/D=−2 tanΦ (3.20)

and matching the solution (3.17) for y< yc to (3.10) for y> yt yields (omitting details),

G=C exp( 1
4πkF−1), E=D exp(− 1

4πkF−1). (3.21a,b)

Using also (3.18), the resulting dispersion relation is found to be

(kc− 1
2) tanΦ = 1

4 exp(− 1
2πkF−1 − 2kc). (3.22)

The right-hand side is exponentially small for large k and, if neglected, we regain the
SG and limit branches we already have, namely (3.11) and (3.19). We work near to
a branch crossing, labelled by n, where simultaneously both conditions are satisfied,

Φn = nπ, kncn = 1
2 , (3.23a,b)

and set c= cn + δc, k= kn + δk. The dispersion relation (3.22) takes the form

(δc+ α δk)(δc+ β δk)+ γ = 0 (3.24)
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to leading order in δc, δk, where the coefficients are

α = cnk−1
n = 1

2 k−2
n , β =−k−2

n (F
2 − 1)−1/2(nπ+π/4), (3.25a,b)

γ = 1
4 k−2

n (F
2 − 1)−1/2 exp(− 1

2πknF−1 − 1). (3.26)

The approximate dispersion relation (3.24) is solved as

2δc=−(α + β)δk±
√
(α − β)2δk2 − 4γ . (3.27)

Now γ > 0 as F > 1 for class B modes (see figure 1) and so for small δk we
obtain a pair of complex roots and instability. We have an interval about kn given
by |δk|< 2

√
γ |α− β|−1 in which we have complex roots. The maximum growth rate

will occur at δk= 0 and is given by δc=±i
√
γ . The theoretical calculation is plotted

on figure 3(b) (dotted curve), with the resonance bubbles centred on the crossings
(kn, cn) of the approximate branches in (3.23). We observe improving agreement as
k increases.

The resonant interaction presented in this part is very similar to the resonant
instability of a purely linear shear flow, with Q′ = −U′′ = 0, between two walls. In
this case two neutral SGM, with the same frequencies and localised on opposite
walls interact (Balmforth 1999). The resulting instability has been explained as
a coupling between two SG waves with opposite signs of wave action, energy
or momentum (Hayashi & Young 1987), or as an over-reflection process, or as
two waves propagating energy in opposite directions (as they have opposite group
velocities) with the region of the critical point acting as an energy source (Le Dizès
& Billant 2009).

To link this case of a linear profile with the piecewise linear profile of this section
and Satomura (1981), note first that the existence of the LM is a result of the
discontinuity of Q at y= 1. Its existence as a neutral mode is also linked to the finite
limit U(∞). If U(y) is unbounded as y→∞ then all modes radiate at infinity, and
none of the modes would be neutral. Secondly arguments based on coupling of modes
with opposite signs of wave momentum cannot be applied here. The discontinuity
in Q also gives a contribution to the rate of change of M in (2.12) through a
delta-function source of q. Thus M is no longer conserved and wave momentum
can now be extracted from the background shear flow. Whereas for a strictly linear
profile, with Q = 0 everywhere, any unstable mode must have zero M and so can
only arise from the resonance between modes with positive and negative M, for the
piecewise linear profile this is no longer the case. Both SGM and LM have negative
M, as discussed below.

4. Nonlinear profiles

In our analysis of the LMs in the piecewise linear profiles in the previous section,
the gradient of potential vorticity at the critical point is zero, and this is a key
simplification. In this section we allow nonlinear shear in the region 0< y< 1, using
members of the family of profiles

U1(y)=
{
(1−µy)(1− y) (0 6 y 6 1),
0 (y> 1),

(4.1)
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FIGURE 5. First SGM (thick solid) and limit quasi-mode (LQM) (thick dashed) for the
profile U1 in (4.1) with µ = 0.5: (a) cr and (b) ci. The thin curves in (b) result from
integrating below the critical point yc in the complex y-plane.

depicted in figure 2(a). The parameter µ gives the potential vorticity gradient and the
curvature of the profile with U′′ = −Q′ = 2µ, and µ = 0 is the previous piecewise
linear case. We consider how frequencies cr and growth rates ci are changed as |µ| is
increased from zero. Note that the situation has some similarities with that discussed
by Balmforth (1999) for a finite channel, but in that case the symmetry of the channel
increases the number of modes. We focus on just the first SGM and the LM; further
branches of SGM show similar behaviour.

Referring to the classification of § 2.2, modes in class A do not have a critical point
and so remain neutral. However this slight change in the profile results in significant
effects on modes in classes B and C. First the critical point is slightly moved in the
complex plane. For radiative modes ci > 0 already and so this is just a modification
to the growth rate. However for the previously neutral modes there is the appearance
of a small imaginary part ci, and this is the origin of CLI.

Secondly, the eigenvalue problem now has different solutions depending on whether
the path of integration is taken above or below a critical point of the governing
differential equation in the complex plane. When µ 6= 0, the U′′ term of ∆1 in (2.19)
is non-zero, and the height field h at the critical point is singular, generally gaining
a branch cut. For this reason the two branches of solutions for µ= 0 in figure 3(b)
become four branches, shown in figure 5 for µ > 0 and figure 6 for µ < 0. Solid
lines give the modes and dashed lines the QMs. Thick lines correspond to integrating
above the critical point and thin lines below, giving complex-conjugate values of c
and so stable/unstable pairs. The resonant bubbles from figure 3 leave a clear imprint
in each case, but to explain the overall structure it is more helpful to focus on a case
in between such bubbles, where the original µ= 0 modes are neutral in figure 3.

The effect of introducing a background potential vorticity gradient is then shown
schematically for class B modes in figure 7 which indicates the locations of
eigenvalues for c and corresponding values of yc in the complex c-plane (a–c)
and complex y-plane (d–f ). In figure 7(a,d) the two neutral modes (LM, SGM) are
depicted for µ= 0 (away from resonance and with, say, k> 2 for definiteness). Now
for µ > 0 an integration path is taken well (b,e) above or (c,f ) below the complex
y-axis and the two neutral modes in (a,d) move off the real axis; the sense in which
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FIGURE 6. First surface gravity quasi-mode (SGQM) (thick dashed) and LM (thick solid)
for the profile U1 in (4.1) with µ=−1: (a) cr, and (b) ci. The thin curves in (b) result
from integrating below the critical point yc in the complex y-plane. The radiative mode
for cr ∈ (0.28, 0.47) becomes a QM for cr ∈ (0.47, 0.71).
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FIGURE 7. (Colour online) Schematic picture of eigenvalues in the complex c-plane (a–c)
and critical points yc in the complex y-plane (d–f ) for surface gravity (SG) and limit (L)
modes (M) and quasi-modes (QM). (a,d) µ= 0, (b,e) µ> 0 with y-contour taken above
yc, and (c,f ) µ> 0, with contour taken below yc. Branch cuts are also indicated.

they are tipped off is opposite in c- and y-planes since U′(y)6 0 for this and other
flows we consider. Because the solutions gain a branch point at yc and a branch cut
in the y-plane, the neutral SGM in (a,d) becomes a pair of normal modes (SGM)
in (b,e) and (c,f ), but the neutral LM becomes a pair of limit quasi-modes (LQM).
For µ < 0, the situation is reversed and we gain a pair of SGQM and a LM (not
depicted). The two modes and the two QMs have the same value for cr but have
opposite growth rates: see figure 5 for positive µ, and figure 6 for negative µ. Note
that in general a solution is called a QM when the critical point yc lies between the
real axis and the complex y-path used to obtain it; an attempt to distort the contour to
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the real axis would encounter the branch cut and so give a discontinuous solution for
the physical fields (Briggs et al. 1970). This discontinuity would signal the need for
a critical layer, in which the vorticity field is sheared to small scales, for a complete
description of the time evolution. For a normal mode there is no barrier (i.e. critical
point) between distorted contour and the real axis.

We make some further remarks. First the situation is complicated because of the
presence of the two branches of continuous spectrum noted in (2.25), (2.26). When
a neutral mode for µ = 0 turns into two quasi-modes, these are really on separate
Riemann surfaces of the dispersion relation, only apparent by either going through a
branch cut of continuous spectrum, or by distorting the y-contour so as to shift this
branch cut and so reveal the quasi-mode (Briggs et al. 1970). Related to this is the
issue of causality. In our discussion so far, both branches of quasi-modes are given
on an equal footing, as in Balmforth (1999), to show how solutions of the eigenvalue
problem are modified because of the nonlinearity of the profile and how modes are
connected to quasi-modes as the parameter µ is taken to pass through zero. However
considering an initial value problem using a Laplace transform setting (Briggs et al.
1970; Schecter & Montgomery 2004), requires a inversion contour sitting above any
singularities in the c-plane. Then, to reveal a quasi-mode on another Riemann sheet,
it is necessary to raise the y-contour so as to lower the continuous spectrum in the
c-plane (in our flows with U′6 0), as depicted in figure 7. Note that as a Landau pole
can be considered as a component of the continuous spectrum, it dominates the full
evolution during a transient period before being overtaken by other components that
decay only algebraically. This period increases the closer the pole is to the cr-axis,
i.e. the less the quasi-mode is damped; however information about Landau poles is
relevant for the evolution of disturbances and processes such as cat’s eye formation
and mixing, even when the quasi-mode is not weakly damped (Schecter et al. 2000;
Turner et al. 2008).

In any case, only the damped quasi-mode is relevant to the initial value problem
and we can discard quasi-modes obtained with a path taken below the y-axis (for
example the thin, dashed curves in figures 5(b) and 6(b)). While quasi-mode damping
can be considered as a result of fine structure being sheared to finer and finer scales
in a critical layer, the possibility of quasi-mode amplification would correspond to
indefinitely fine structure being unsheared in the critical layer, at odds with the nature
of a (smooth) initial condition. Similar considerations apply to the robustness of modes
in the presence of weak viscosity (Lin 1945; Balmforth 1999), and we have confirmed
this by time-stepping (2.1) (with an additional viscous term). From here onwards we
only consider the physical solutions obtained with the path taken above critical points
in the y-plane (thick curves). With this, for class B modes, cr ∈ (0, F−1), the mode
and the quasi-mode have independent dispersion relations: profiles with µ > 0 have
amplified SGM and damped LQM; for µ< 0 it is the opposite way round.

Introducing nonlinearity µ 6= 0 has a similar effect on radiative modes as on a SGM:
µ > 0 leads to amplification and µ < 0 leads to damping. Note that, as for class B
modes, there are again two solutions for a given cr in the interval of class C modes.
In fact the solution for ci > 0 is obtained with the boundary condition of an outgoing
wave and the other with ci < 0 with that of an incoming wave. For small µ the
growing outgoing solution is a mode and the damped incoming solution a quasi-mode.
If µ is large, positive or negative, the sign of ci can change and hence the mode
change to quasi-mode or conversely. This can be seen in figure 5 and in figure 6 for
cr > 0.47. Note that in figure 5 the growing mode associated with an incoming wave
boundary condition is not physically relevant.
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We can summarize the effect of weak nonlinearity of the profile according to the
range of wave speed cr. For class B, neutral modes become a mode/quasi-mode
pair with two very different structures and frequencies. For class C, radiative modes
become a mode/quasi-mode pair with very close frequencies corresponding to a
growing radiative mode with an outgoing wave and a damped quasi-mode with an
incoming wave. An approximate formula for CLI of a smooth flow may be obtained
by integrating (2.12) along the real y-axis (Kubokawa 1985; Balmforth 1999) linking
the growth rate ci to the wave momentum M and the characteristics of the flow at
the critical point,

|ci| = πQ′c|vc|2
2k2M|U′c|

. (4.2)

These modes split into growing/decaying pairs or disappear entirely depending on
whether Q′c/M is positive or negative. When the modes disappear, for Q′c/M< 0, they
become quasi-modes and the left-hand side of (4.2) is to be replaced by −|ci|, from
integrating on the other side of the critical point in the y-plane (Balmforth 1999). In
fact for the profiles we study, the limit and SGM both have both negative momentum
M and the same sign for Q′c=−2µ. However they appear and disappear for opposite
values of µ, in apparent contradiction with (4.2). The reason is that this formula does
not apply to the profiles in (4.1) because U′ is discontinuous at y= 1. Incorporating
a term Q′(y)=Qdδ(y− yd) in the vorticity gradient (see appendix A) gives instead

|ci| = πQ′c|vc|2
2k2|U′c|

(
M − Qd|vd|2

2k2c2
r

)−1

, (4.3)

and predictions from this formula are in line with our results. So, for example, the
µ = 0 SGM is weak near the discontinuity (i.e. in the evanescent region), has |vd|
small, and so (4.3) becomes the same as (4.2), this mode disappearing for µ < 0.
For the LM, localised near the discontinuity, |vd| is larger giving a key sign change
between the right-hand sides of (4.2) and (4.3).

5. Smooth profiles
We have determined the structure and growth rates of disturbances to the piecewise

linear profile (3.1) of Satomura (1981), and how introducing curvature to the flow
profile leads to CLI and the creation of quasi-modes. However (unless µ= 1) these
profiles have a discontinuity in derivative U′(y) at y= 1 which has two implications.
First the LM discussed above and given explicitly by (3.17) for µ= 0 is localised near
to the discontinuity of U′(y). Smoothing the profile will have a big impact on this
mode and it may disappear entirely. Secondly, it is is difficult to present an analysis
because of having to impose the boundary condition (3.6) at y = 1: this point sits
in the region where the solution is described by Whittaker functions and imposing a
boundary condition here does not lead to useful or explicit formulae. For these reasons
we consider profiles that have continuous U′(y) in this section. The focus is on profiles
with finite limiting velocity U(∞) as y→∞ in § 5.1 and unbounded profiles in § 5.3.

5.1. Profiles with bounded velocity
We consider the piecewise profile U1(y) in (4.1) with µ= 1, and the smooth profiles,

U2(y)= 1− tanh y, U3(y)= (1+ y)−1. (5.1a,b)
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FIGURE 8. CLI: (a) cr and (b) ci for first SGM (solid) and limit quasi-mode (LQM)
(dashed) for F = 3.5 and profiles U1, µ= 1 in (4.1) (thickest), U2 (thick) and U3 (thin)
in (5.1). Note that the thinnest dashed lines are absent (see text).

U1, U2 and U3 tend to zero increasingly slowly for large y; see figure 2(b). As
in Riedinger et al. (2010a) results were obtained using the spectral code on a
complex path defined by the variable arg y= π/10. Results were checked afterwards
using a shooting code. The phase velocity cr and growth rate ci are given for the
unstable mode and the limit quasi-mode in figure 8 for the three profiles. Using
the spectral code on this complex path has the effect of lowering both branches
of continuous spectrum (2.25), (2.26) in the c-plane, and revealing quasi-mode
eigenvalues (Riedinger et al. 2010a). The integration path is always taken above
critical points, so imposing causality or effects of weak viscosity.

Looking first at the curves for the piecewise profile U1 in figure 8 (which can
also be compared with figure 5 for µ = 0.5) the gravity wave mode (thickest solid)
becomes unstable as soon as cr becomes positive, when the critical layer is present for
k> 1.99. The maximum ci = 0.0157 is obtained for k' 2.8 a little after the crossing
of cr branches in figure 8(a) at k' 2.475. The ci branch for the limit quasi-mode in
figure 8(b) (thick dashed) shows a similar but inverted bump, i.e. a trough, for these
values of k, corresponding to increased damping. Returning to the SGM, there is now
no obvious distinction between this and the resonance which we had in figure 3(b) and
this allows us to draw a new interpretation of the CLI in these smoother profiles with
U′′ 6= 0 as the remnant or ‘ghost’ of the interaction between the SGM and the LM in
the piecewise linear profile. Informally, in the latter case all of the U′′ is concentrated
in a delta function at y = 1, and the unstable resonance with the resulting LM is
analogous to the CLI when the non-zero U′′ is distributed, over the critical layer.

The U2 and U3 profiles are entirely smooth, but tend to zero exponentially and
algebraically, respectively. For U2 the curves for cr (thick) in figure 8(a) are similar to
those for U1, but the growth rate for the limit quasi-mode figure 8(b) (thick dashed)
becomes increasingly negative as k is increased, and so is strongly damped. The
SGM (thick solid) is amplified, but more weakly now. For U3 these effects are more
pronounced: the SGM is amplified (thin solid) but cannot be seen on the figure as
the maximum of ci is 1.6 × 10−4. We have not been able to obtain the quasi-mode
for U3, indicated by the absence of thin dashed curves in the figure; indeed the
critical point that must be circumnavigated is expected to be far above the real axis.
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In summary, the smoother the profile, i.e. the smaller is U′′, the lower is the CLI
growth rate for the SGM and the stronger is the damping of the limit quasi-mode, to
the point where it cannot easily be detected numerically.

5.2. WKBJ theory for critical layer instability
We now develop a theoretical framework for the above numerical results in the case
of smooth profiles. We work on 0 6 y 6∞ and return to the full set of equations
(2.16)–(2.19) for any smooth profile U(y), with boundary conditions (2.23) and (2.24).
We assume we have a single turning point yt and a critical point yc with 0 < yt <
yc <∞. The difficulty for a nonlinear profile is the more complicated form of ∆1 in
(2.19) which generally gives a branch cut in the solution at a critical point yc if U′′
is non-zero there, i.e. Q′c =−U′′c 6= 0.

In line with our discussion in § 3.2, we specify region I as 0 6 y< yt, region II as
yt < y< yc, region III as a neighbourhood of yc and region IV as y> yc. In regions I
and II we have the WKBJ solutions (3.7) and (3.10) exactly as before and these are
connected through the turning point via (3.20). In region IV we have an evanescent
wave

gIV ∝∆−1/4 exp
(
−k
∫ y√

∆ dy
)
. (5.2)

The key problem is to link up the solutions in regions IV and II across the critical
point. As before we consider region III, defined formally by |y − yc| � k−1/2, and
approximate

∆' 1+ k−2∆1. (5.3)

Using the smoothness of the profile and a Taylor series expansion, the term ∆1 has
the following singular component as yc as approached:

∆1 = 2ỹ−2 + (U′′c /U′c)ỹ−1 + · · · , (5.4)

where we have set ỹ= y− yc for convenience. Thus in region III (2.16) for g becomes
at leading order

∂2
y g= [k2 + (U′′c /U′c)ỹ−1 + 2ỹ−2]g, (5.5)

or, with
w= 2kỹ, κ =−U′′c /2kU′c, µ= 3/2, (5.6a–c)

we obtain the standard form of the Whittaker equation (Olver 2010)

∂2
wg+ [− 1

4 + κw−1 + ( 1
4 −µ2)w−2]g= 0. (5.7)

The general solution may be written

g= EWκ,3/2(2kỹ)+GW−κ,µ(e±iπ2kỹ), (5.8)

using (13.14(v)) of Olver (2010). Either sign can be taken, giving different but related
branches of the Whittaker function.

For |z|→∞, Whittaker functions have the dominant asymptotic behaviour

Wκ,µ(z)∼ e−z/2zκ (−3π/2< arg z< 3π/2) (5.9)

(Olver 2010, (13.14.21)) and so in (5.8) we set G= 0 to match to evanescent decay
in region IV (5.2). The resulting solution in (5.8) also matches to an exponential
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solution in region II (3.10) with C = 0 and this gives the leading-order structure of
a neutrally stable mode. However to pick up the effect of the critical layer on the
stability of the mode we need also to keep track of the subdominant component of the
Whittaker function. Although this is an exponentially small contribution, by stabilising
or destabilising the mode, this pushes c below the real axis, ci < 0, or above, ci > 0.
Similarly yc is pushed below the real axis if U′cci < 0 or above if U′cci > 0. As we
integrate above the critical point for reasons of causality and U′ 6 0, we obtain a
normal mode if ci > 0 and a quasi-mode if ci < 0 in what follows (cf. figure 7).

We relegate the details to appendix B and give the connection formula, from region
IV to region II above the critical point in region III, written in terms of ỹ:

e−kỹ(2kỹ)κ −→ e−kỹ(−2kỹ)κeiπκ + iπκ ekỹ(−2kỹ)−κeiπκ . (5.10)

This indicates that (5.8) for ỹ> 0 (and G= 0) connects to

g= E exp[−kỹ+ κ log(−2kỹ)+ iπκ] + iπκE exp[kỹ− κ log(−2kỹ)+ iπκ], (5.11)

which includes both the dominant and subdominant components, valid for ỹ< 0.
The approximation (5.11) needs to be matched to (3.10) and we do this first quickly

and then more carefully. We let ỹ< 0 be in an overlap region k−1� ỹ� k−1/2 where
both the WKBJ form (3.10) and the Whittaker function form (5.11) are valid. In (3.10)
we approximate ∆ by ∆0 and evaluate

I1 ≡ k
∫ y

yt

√
∆ dy' k

∫ y

yt

√
∆0 dy= Vtc − k

∫ yc

y

√
∆0 dy' Vtc + kỹ, (5.12)

where
Vtc = k

∫ yc

yt

√
∆0 dy. (5.13)

Comparing the leading-order k terms (3.10) and (5.12) with (5.11) yields

CeVtc = iπκE, De−Vtc = E, (5.14a,b)

which with (3.20) gives
tanΦ =− 1

2 iπκe−2Vtc . (5.15)

This corresponds to a shift in the complex wave speed c, with

tan(Φ + δΦ)' δΦ = ∂Φ
∂c

δc,
∂Φ

∂c
'−F2k

∫ yt

0
(U − c)(−∆0)

−1/2 dy. (5.16a,b)

The result is a non-zero leading-order value of ci,

ci =− 1
2πκe−2Vtc(∂Φ/∂c)−1. (5.17)

This formula derived by WKBJ theory is equivalent to (4.2) derived by considering
the evolution of wave momentum, as discussed in appendix A.

In matching the solutions in (3.10) and (5.11) we ignored the prefactors and
concentrated on the exponential parts to obtain (5.14). Further analysis in appendix C
confirms that this is correct at leading order, but also gives a better connection
formula including a term in k−1 log k, which is the above with Vtc replaced by

V ′tc = Vtc + κ
∫ yc

yt

ỹ−1(1−∆−1/2
0 ) dy+ κ log[2k(yc − yt)]. (5.18)
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FIGURE 9. Comparison between numerical results (solid) and WKBJ theory for the profile
U3= 1− tanh(y). (a) Frequency cr with formula (3.11) (dashed) for the first four SG wave
branches, and (b) the growth rate ci for the first branch and the critical layer term using
(5.18) (dashed), and the radiative term using (5.22) (dotted), and combined effects (5.23)
(dash–dotted).
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FIGURE 10. Effect of potential vorticity gradient on radiative modes: (a) growth rate ci
for U4 (middle curves), U5 (right-hand curves), and U6 (left-hand curves) with numerical
results (solid) and formula (5.23) (dashed), and (b) close-up view for the profile U6, with
amplifying radiative term (5.22) (dotted), damping critical layer term (5.17) (dashed) and
combined effects, (5.23) (dash–dotted).

Figure 9 shows a comparison between numerical and analytical results for U3,
showing gravity wave mode branches (but with no LM present – see figure 8).
Notably, in figure 9(b) there is good agreement between the growth rate obtained
from (5.18) (dash) and the numerical result (solid), especially given that k is not
very large. We have also checked this agreement, and likewise for figure 10, on plots
of log |ci| (not shown). As the frequency cr increases above F−1 the mode becomes
radiative at large y, and this gives a corrected growth rate (dash-dotted). As this is a
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small correction here and both curves are consistent with the numerical results, we
defer discussion of the combined effects of critical layer and radiation until the next
section.

5.3. Profiles with unbounded velocity
Finally we consider three profiles in which the velocity is unbounded at infinity: a
linear profile and two with opposite signs of U′′,

U4 = 1− y, (5.19)
U5 = 1− y− 0.1 tanh y (U′′ > 0, κ > 0), (5.20)
U6 = 1− y+ 0.1 tanh y (U′′ < 0, κ < 0). (5.21)

For these profiles, modes are radiative for all speeds cr. The first, linear profile was
discussed by Knessl & Keller (1995), in terms of reflection and transmission of waves
incident from infinity. We will provide a WKBJ formula for the growth rate including
the destabilisation due to radiation. The numerical results used for comparison were
obtained using the pseudospectral code outlined in § 5.1.

If the presence of a critical point is ignored and the WKBJ expansion matched
across the two turning points, the resulting growth rate is

ci =− 1
4 e−2V12(∂Φ/∂c)−1, V12 = k

∫ yt2

yt1

√
∆0 dy. (5.22)

For the linear profile U4, this is the complete formula, as U′′c = 0 and κ = 0, and
comparison with numerics is given in figure 10(a) (middle curves). This shows good
agreement in this case of outwards propagating radiated waves at infinity (positive
group velocity) giving a positive growth rate (noting that ∂Φ/∂c < 0 for the modes
considered).

For the nonlinear profiles U5 or U6 with U′′c 6= 0, the effects of radiation and critical
layer may be summed within a perturbative expansion, as in Parras & Le Dizès (2010),
giving

ci =
[− 1

2πκe−2V ′tc − 1
4 e−2V12

]
(∂Φ/∂c)−1, (5.23)

with V ′tc defined in (5.18). The radiative contribution is always positive (for outward
waves at infinity), whereas the critical layer term is positive when U′′c > 0 and negative
when U′′c < 0. These can be considered the combined effect of the two overlapping
branches of continuous spectrum given in (2.25), (2.26). A parallel may also be
drawn between our study and a similar result from Parras & Le Dizès (2010) for
compressible round jets: U′′c can have a stabilising or destabilising effect. However
note that for stratified vortices, the equivalent of U′′c , the radial derivative of the axial
vorticity at the critical point, always has a stabilising effect on the RI (Schecter &
Montgomery 2004; Le Dizès & Billant 2009).

For all three profiles U4, U5 and U6, we show in figure 10(a) the combined effects
of a gradient of potential vorticity and the RI with good agreement as k is increased.
For all of these profiles and moderate k the origin of the instability is mainly radiative.
However the critical layer contribution tends to zero more slowly than the radiative
term and becomes dominant for large k, which corresponds to large speed cr, when
yc is close to the boundary. To really test the theory developed, the crucial case is
when the radiative and critical layer effects have a opposite signs. This is the case
for U6 and we zoom in on the growth rate as a function of k in figure 10(b). Here
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the RI, dominant for moderate k is taken over by critical layer stabilisation at k= k0'
7.52. The agreement between the numerical results (solid) and the combined formula
(dash–dotted) is clear. Below k0 the branch corresponds to an unstable normal mode,
which becomes a stable quasi-mode for k> k0. (Note that unlike in § 4, no radiative
quasi-mode associated with an incoming wave at infinity is presented in this section
as these grow spatially as y→∞ and so cannot be obtained with the pseudospectral
code.)

We could not find an equivalent of the branch of LMs (or quasi-modes) seen for
other profiles with more pronounced curvature, for example branches for U1 and U2
in figure 8. These modes are evanescent at infinity and for the present profiles all
modes are radiative at infinity. However there seems no reason why one could not
have a LM that is evanescent for small y, but as y increases becomes radiative after a
turning point. Such modes would be strongly damped though, for profiles with small
values of U′′ such as U5 and U6, as found for U3. We may also speculate on the
existence of radiative wave quasi-modes when κ > 0 as for the broken profiles with
µ< 0 (see figure 6); we have not seen these and suspect that if they exist they must
be strongly damped.

6. Conclusion

We have given an analysis of the CLI and RI in shallow-water fluid flows, for a
representative Froude number F= 3.5 and varying the shape of the base flow velocity
profile. We have considered both piecewise (linear and nonlinear) profiles and smooth
profiles, as these give different perspectives on stability in a wide range of fluid
flows; for example, a piecewise linear profile, although idealised, is a useful model
for understanding instabilities in flows on scales greater than that of a concentrated
vorticity gradient. Numerical results were obtained for a range of profiles, with
growth rates in agreement with WKBJ analysis in the limit of large wavenumber
k, and linked to arguments based on evolution of wave momentum. Across regions
where all waves are evanescent, effects which are exponentially small in k can damp
or destabilise what would otherwise be neutral modes. In this way, a wave-free or
‘balanced’ shear flow can spontaneously generate waves, that is become imbalanced,
through exponentially small effects, a topic recently reviewed in Vanneste (2013).

For a piecewise linear profile (Satomura 1981), instability occurs in the form
of a resonance between SG wave modes and a limit (or Rayleigh) mode, whose
structure has been determined. In the absence of resonance this LM is neutral, and
its presence is not only a result of the discontinuity in the vorticity, but also of the
infinite extension of the evanescent domain which follows from a finite limit U(∞)
of the velocity profile. For more general profiles the neutral LM becomes an unstable
normal mode or a damped quasi-mode depending on the sign of the gradient of
vorticity in the critical layer. The mode remains as a quasi-mode for the hyperbolic
tangent profile (5.1) which does not present any discontinuity. For the profile (5.2)
with algebraic fall-off, any LM would become strongly damped and we were unable
to obtain it. In this case, the SGM remain unstable but the instability becomes much
weaker.

Turning now to the smooth profile we find a useful description of CLI of SGM in
this case, as the remnant of the resonance between such modes and the LM in the
piecewise case. In both cases it is the presence of vorticity gradients (a delta function
at the discontinuity in the piecewise case) that is linked to the destabilisation of the
SGM. The description of CLI as the remnant of the resonance between bounded waves
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and the LM (or Rayleigh wave) is reminiscent of the instability of a piecewise linear
shear layer where the resonant interaction of two Rayleigh waves gives an instability
of Kelvin–Helmholtz type.

However, note that the description of CLI as an interaction between discrete SG
wave modes and an isolated quasi-mode has limited general applicability. Indeed when
we consider the profiles with unbounded velocity U(y) as y→∞ in § 5.3, the growth
rate of the radiative modes is modified by the critical layer term. For these profiles
we cannot obtain an equivalent of the quasi-mode. Perhaps an equivalent would be
a surface wave in the distant fluid with evanescence before the critical point. If so,
the RI would be explained with two effects: (i) destabilisation because of radiation at
the second turning point, and (ii) the interaction with a surface wave in the far distant
flow, which gives the stabilising or destabilising effect of over-reflection at the critical
point. Such a description would bring into agreement two independent views of RI,
namely as an over-reflection process in papers such as Le Dizès & Billant (2009), or
as a wave/mean flow resonance in, for example, Schecter & Montgomery (2004).

Recent works on stratified vortices show similarities with the system we have
studied. For the Rankine vortex presented in Billant & Le Dizès (2009), there is
also an isolated mode residing on the discontinuity in vorticity. However this case
is very different as the critical point is at a greater radius than the discontinuity
and the mode does not interact with the branches of bounded SG waves. Moreover
there are no unstable modes that are not radiative. In addition smoothing a Rankine
vortex leads to stabilisation whereas for our piecewise linear profile smoothing can
lead to amplification. Recent work by Yim & Billant (2013) shows that a bending,
non-radiative instability can also exist for an isolated vortex in a stratified anticyclonic
fluid, and that this instability is due to a critical layer. Finally, it would be interesting
to investigate the existence of CLI for other types of flows, in particular for coherent
vortices in shallow water, extending the study of Ford (1994) to smooth profiles with
critical layers.
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Appendix A. Formulae for growth rates
In this appendix we derive the formulae (4.2) and (4.3), and show that (4.2) and

(5.17) are equivalent. Recall the definition of M in (2.11): informally introducing time-
dependence with fields proportional to exp(−ikct), this satisfies

2
dM
dt
=−

∫ ∞
0
(vq∗ + v∗q) dy−

[
uv∗ + u∗v

]∞
0
≡ I + B, (A 1)

say. The wave momentum M can change by virtue of transport of potential vorticity
through the integral term I, or by radiation through the boundary term B. We consider
only the former process, taking a mode that is evanescent as y→∞. We may write
the first, integral term I exactly as

I =
∫ ∞

0
ik−1|v|2Q′ [(U − c∗)−1 − (U − c)−1] dy, (A 2)
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using (2.10). There is a contribution Id to this integral from any discontinuity in Q
that may be present, and a contribution Ic from integrating above or below a pole at
y= yc.

For a contribution from integrating around the critical point, it is crucial whether
the singular point in the complex y-plane, yc, lies above or below the real axis. In
the former case (upper sign below) we have Im yc 'U′cci < 0, and we must integrate
above yc. In the latter case (lower sign), Im yc 'U′cci > 0, and we integrate below yc.
We write

(U − c∗)−1 − (U − c)−1 = −2ici

(U − cr)2 + c2
i
' −2ici

U′2c ỹ2 + c2
i
, (A 3)

with ỹ = y − yr, where U(yr) = cr. The latter approximation follows from the
assumption that ci is small, so that the function is sharply peaked in the vicinity
of y = yr. As other quantities in the integral vary slowly we simply integrate this
expression (evaluating other quantities at y= yc at leading order) to give

Ic =∓2π|vc|2Q′c
kU′c

. (A 4)

Putting this into (2.12) with appropriate attention to signs gives formula (4.2). Another
contribution Id to I in (A 2) is obtained if Q has a step jump at a location yd, for
example for the profile U1 in (4.1). In this case we have locally Q′ ' Qd δ(y − yd),
and (assuming the discontinuity is not too close to the critical point) the integral I
includes a contribution

Id = 2Qd|vd|2ci

k(Ud − cr)2
. (A 5)

If we have both effects we combine (A 4), (A 5) with (2.12) to give the modified
formula (4.3) (noting that Ud = 0 for our example profiles).

Finally we consider a smooth profile, and link the formula (4.2) derived above for
damping connected with the critical point, to the formula (5.17) based on the full
WKBJ analysis and matching. We start by evaluating (4.2) in the WKBJ framework.
We need M and vc. First, we have, exactly

v = iF−2k−1(∂yg+U′(U − c)−1g), (A 6)

u=−U′(U − c)−1F−2k−2(∂yg+U′(U − c)−1g)− F−2g. (A 7)

Substituting these into M (2.11) and retaining only the leading-order terms for the
WKBJ approximation yields, with c' cr,

M =−F−2
∫ ∞

0
(U − cr)|g|2 dy'−1

2
|A|2F−2

∫ yt

0
(U − cr)(−∆0)

−1/2 dy, (A 8)

using the leading form (3.7), the fact that the solution is exponentially small outside
region I (in which ∆'∆0) and that the average of the modulus squared of the cosine
oscillations in (3.7) is one half. These approximations are good for large k. From this
we may note from (3.9) and (2.14) that

M ' 1
2 F−4|A|2k−1 ∂Φ/∂c. (A 9)

This completes our evaluation of M in the WKBJ framework.
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Next we need vc: we substitute g from (5.8) with G = 0. We take κ = 0 as we
evaluate the growth rate by perturbing about the case where there is no critical layer.
This gives

g' EW0,3/2(z)= E(1+ 2z−1)e−z/2, z≡ 2kỹ. (A 10)

Substituting into (A 6) yields

v ' 2iF−2E(W ′0,3/2 + z−1W0,3/2)=−iF−2Ee−z/2, (A 11)

and so calculating at the critical layer with ỹ= 0, z= 0 gives vc =−iF−2E. Now we
substitute vc and M from (A 9) into (4.2) (noting that κ is given in (5.6)) to obtain

ci =∓ 2πκ

∂Φ/∂c
|E|2
|A|2 . (A 12)

Finally, in going through the turning point from region I to region II we have D =
(1/2)A cosΦ and so |D| = (1/2)|A| while in (5.14) we have D in terms of E. Putting
these together yields precisely (5.17).

Appendix B. Connection formulae for Whittaker functions

In this appendix we consider connection formulae for Whittaker functions, which
are multiple branched. We use formulae (13.14.13) of Olver (2010) for analytic
continuation,

(−1)m+1Wκ,µ(ze2miπ)= amWκ,µ(z)+ bmW−κ,µ(zeiπ), (B 1)

where we do not give the general forms of am(κ, µ) and bm(κ, µ) here. We note that
for m= 1,

Wκ,µ(ze2iπ)= a1Wκ,µ(z)+ b1W−κ,µ(zeiπ), (B 2)

which is equivalent to

Wκ,µ(z) = a1Wκ,µ(ze−2iπ)+ b1W−κ,µ(ze−iπ), (B 3)
Wκ,µ(z) = c1Wκ,µ(ze2iπ)+ d1W−κ,µ(zeiπ), (B 4)

with c1 = 1/a1 and d1 =−b1/a1. For our case µ= 3/2, Olver (2010) gives

a1 = c∗1 = e2iπκ, b1 = d∗1 = 2πieiπκ/[Γ (2− κ)Γ (−1− κ)]. (B 5a,b)

Consider a solution
g1(z)=Wκ,µ(z) (B 6)

of the differential equation (5.7). We have the following asymptotic estimate as z→∞:

g1(z)∼ e−z/2zκ ≡G1(z) (−3π/2< arg z< 3π/2) (B 7)

by (13.14.21) of Olver (2010). A second solution of the differential equation may be
taken in either of the forms

g±2 (z)=W−κ,µ(ze±iπ). (B 8)
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These second solutions have the asymptotic behaviours

g±2 (z)∼ ez/2z−κe∓iπκ ≡G2(z)e∓iπκ (−3π/2∓π< arg z< 3π/2∓π). (B 9)

We note the presence of Stokes lines arg z=mπ where the exponential terms in the
two asymptotic forms G1 and G2 are maximally disparate in modulus, and anti-Stokes
lines arg z=mπ+π/2 where the two exponentials have purely imaginary arguments.

Now suppose that a boundary condition requires exponential decay in the right half-
plane given by RHP = {z : −π/2 6 arg z 6 π/2} as is the case in § 5.2. The exact
solution then is g1(z) in (B 6). Suppose furthermore that we are analysing a mode
with U′cci< 0. This means that the critical point yc in the y-plane is pushed below the
real axis, and if we are taking our integral along the real y-axis in search of a normal
mode, this corresponds to continuing the Whittaker function above the origin in terms
of z. This means increasing arg z, into the left half-plane defined by LHP+={z :π/26
arg z 6 3π/2}. As we increase the argument of z we encounter Stokes phenomenon
(Berry 1989): the subdominant asymptotic term G2(z) in (B 9) becomes ‘switched on’
as we cross the Stokes line arg z=π and takes over the solution at the next anti-Stokes
line arg z= 3π/2. We then have

g1(z)∼G1(z)+ bG2(z) (π< arg z< 2π), (B 10)

where b is a Stokes multiplier. To find b we use the formula (B 3). For z in LHP+

we have also −3π/2 6 arg ze−2iπ 6−π/2 and −π/2 6 arg ze−iπ 6π/2 so we can use
(B 7) for the two terms in (B 3) to give

Wκ,µ(z)∼ a1e−z/2(ze−2iπ)κ + b1ez/2(ze−iπ)−κ = e−z/2zκ + b1ez/2(ze−iπ)−κ . (B 11)

As well as the exponentially growing part in LHP+ we gain an exponentially decaying
part and the Stokes multiplier is b= b1.

Note that ci is so small that the z- and y-axes practically coincide provided one
traverses the origin in the correct sense and that it is appropriate to use half of the
Stokes multiplier for the solution on the Stokes line (Berry 1989). The resulting
connection formula is

RHP e−z/2zκ −→ e−z/2zκ + 1
2 b ez/2(z e−iπ)−κ (arg z=π). (B 12)

A similar argument for integration below a critical point, U′cci > 0, using (B 4) yields

RHP e−z/2zκ −→ e−z/2zκ + 1
2 d ez/2(zeiπ)−κ (arg z=−π). (B 13)

Here b= d∗ = b1 are given in (B 5) for µ= 3/2. To clarify the branch of z±κ to be
taken, we rewrite these so that the power is taken of a positive real quantity,

RHP e−z/2zκ −→ e−z/2(ze−iπ)κeiπκ + 1
2 bez/2(ze−iπ)−κ (arg z=π), (B 14)

RHP e−z/2zκ −→ e−z/2(zeiπ)κe−iπκ + 1
2 dez/2(zeiπ)−κ (arg z=−π). (B 15)

We note that for small κ as in our analysis in § 5.2, the Stokes multipliers b = b1,
d= d1 in (B 5) may be taken at leading order as simply b= d∗ = 2iπκeiπκ . With the
imposition of causality or weak viscosity for flows with U′ 6 0, as in § 4 we always
integrate above a critical point, and so the connection formula used is (5.10).
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Appendix C. Matching Whittaker and WKBJ solutions

Here we undertake a more careful matching of the WKBJ solution in (3.10) and
the Whittaker function approximation in (5.11), and so derive (5.18). First we keep
the leading-order effects of ∆1 by expanding binomially, to write in place of (5.12),

I1 = k
∫ y

yt

√
∆ dy= k

∫ y

yt

√
∆0 dy+ k−1

∫ y

yt

1
2
∆1∆

−1/2
0 dy+ · · · . (C 1)

Now the first integral on the right-hand side gives Vtc + kỹ+ · · · as before in (5.12).
The last integral on the right-hand side becomes, using the form of ∆1 in (5.4),

I2 = k−1
∫ y

yt

1
2
∆1∆

−1/2
0 dy=

∫ y

yt

(−κ ỹ−1 + k−1ỹ−2)∆
−1/2
0 dy'−κ

∫ y

yt

ỹ−1∆
−1/2
0 dy, (C 2)

neglecting the small contribution from the ỹ−2 term to the integral. The remaining
integrand has a singularity of the form ỹ−1 as y approaches yc from below (bearing
in mind that ∆0→ 1). We may subtract this off by writing

I2 ' κ
∫ y

yt

ỹ−1(1−∆−1/2
0 ) dy− κ

∫ y

yt

ỹ−1 dy. (C 3)

Allowing the upper limit to tend to yc in the first integral and evaluating the second
(noting that ỹ is negative in the appropriate range) gives

I2 ' κ
∫ yc

yt

ỹ−1(1−∆−1/2
0 ) dy− κ log(−ỹ)+ κ log(yc − yt). (C 4)

Assembling these results and redoing the matching process leads to (5.14)–(5.17)
again but with Vtc replaced by V ′tc in (5.18). Note that the corrections in going from
Vtc to V ′tc go to zero as k−1 log k for large k, thus justifying the form of Vtc as the
leading-order approximation. Nonetheless matching the prefactors gives an improved
approximation to ci.
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