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Abstract

Objective: To determine whether volumetric measures of the hippocampus, entorhinal cortex, and other cortical
measures can differentiate between cognitively normal individuals and subjects with mild cognitive impairment (MCI).
Method: Magnetic resonance imaging (MRI) data from 46 cognitively normal subjects and 50 subjects with MCI as
part of the Boston University Alzheimer’s Disease Center research registry and the Alzheimer’s Disease Neuroimaging
Initiative were used in this cross-sectional study. Cortical, subcortical, and hippocampal subfield volumes were
generated from each subject’s MRI data using FreeSurfer v6.0. Nominal logistic regression models containing these
variables were used to identify subjects as control or MCI. Results: A model containing regions of interest (superior
temporal cortex, caudal anterior cingulate, pars opercularis, subiculum, precentral cortex, caudal middle frontal cortex,
rostral middle frontal cortex, pars orbitalis, middle temporal cortex, insula, banks of the superior temporal sulcus,
parasubiculum, paracentral lobule) fit the data best (R2= .7310, whole model test chi-square= 97.16, p < .0001).
Conclusions: MRI data correctly classified most subjects using measures of selected medial temporal lobe structures in
combination with those from other cortical areas, yielding an overall classification accuracy of 93.75%. These findings
support the notion that, while volumes of medial temporal lobe regions differ between cognitively normal and MCI
subjects, differences that can be used to distinguish between these two populations are present elsewhere in the brain.
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INTRODUCTION

The prevalence of Alzheimer’s disease (AD) continues to
rise as the global population ages. In recent years, research-
ers have come to view AD as a continuum, rather than a
sequence of distinct phases of cognitive and neuropatholog-
ical changes (Aisen et al., 2017). During the “preclinical”

aspects of the continuum, individuals are generally cogni-
tively asymptomatic. However, many “preclinical” individ-
uals go on to develop symptoms, such as episodic memory
loss, and this is referred to as mild cognitive impairment
(MCI). In recent years, MCI has been clinically character-
ized by criteria such as self- or informant-reported cognitive
complaints, objective cognitive impairment, preserved
independence in functional abilities, and the absence of
dementia (Petersen et al., 2014). As the disease progresses,
cognitive impairment worsens and functional impairment
becomes increasingly apparent in everyday life. At this
point, a person is considered to have AD dementia (Aisen
et al., 2017). With the growing understanding of AD as a
continuum, identifying biomarkers of pathophysiological
changes has become paramount.
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Morphometric magnetic resonance imaging (MRI) stud-
ies have established that the areas of the brain often first
damaged in MCI and AD are the hippocampus and the ento-
rhinal cortex (Du et al., 2001; Killiany et al., 2000, see
reviews Pini et al., 2016; Zhou, Zhang, Zhao, Qian, &
Dong, 2016). The pathophysiological changes present in
AD include the accumulation of amyloid-beta that form
plaques, as well as the aggregation of tau-proteins that
form neurofibrillary tangles. Such tangles induce neuronal
death, resulting in morphometric changes that start in the
medial temporal lobe (Gómez-Isla et al., 1996, see review
Spires-Jones & Hyman, 2014). In order to obtain sensitive
and specific measures of these structures and the various
changes that occur, researchers have begun to segment
the hippocampus into subfields (de Flores, La Joie, &
Chételat, 2015; Pini et al., 2016).

Previous studies reported reductions in the volumes of the
whole hippocampus, hippocampal subfields, and entorhinal
cortex in the brains of MCI and AD subjects compared with
controls (Mueller et al., 2010; Pennanen et al., 2004, see
review de Flores et al., 2015). Such studies utilized a
cross-sectional approach to affirm subjects as controls,
MCI, or AD based upon the characteristics of various regions
of interest (ROIs) (Colliot et al., 2008; Du et al., 2001;
Hanseeuw et al., 2011; Khan et al., 2015; Mueller et al.,
2010; Xu et al., 2000). Many of these studies focused on
subjects who already had MCI in order to best predict who
with MCI will convert to AD (Khan et al., 2015; Killiany
et al., 2000; Plant et al., 2010;Westman et al., 2011) with less
emphasis on creating models that accurately classify subjects
as control or MCI. These classification studies often use the
characteristics of only one ROI as a classifier variable, such as
the hippocampus, entorhinal cortex, or a specified hippocam-
pal subfield, and have failed to achieve classification
accuracies which exceed 80% (Colliot et al., 2008; Du et al.,
2001; Hanseeuw et al., 2011; Mueller et al., 2010; Pennanen
et al., 2004; Westman et al., 2011, see review Weiner et al.,
2015). Thus, there remains a significant need for models
that can correctly classify subjects in the earlier stages of
the AD continuum.

The goal of the present study was to utilize morphometric
MRI measures to identify a broader set of variables that can
classify controls and MCI subjects using logistic regression.
The first step was to determine the utility of the whole hippo-
campus, hippocampal subfields, and entorhinal cortex as
classifiers. Next, less studied cortical regions outside the
medial temporal lobe were added to the model to determine
whether any of these regions could improve the model fit and
classification accuracy. While these regions are not as
commonly used in classification models, researchers have
begun to find consistent patterns of atrophy in MCI and
AD in regions beyond the medial temporal lobe, including
gyri within the frontal, parietal, and temporal lobes
(Hänggi, Streffer, Jäncke, & Hock, 2011; Karas et al.,
2004). Knowledge regarding the classification value of these
regions in cognitively normal subjects and those with MCI
could enhance our understanding of the disorder.

MATERIALS AND METHODS

Subjects

This study utilized MRI scans from 96 subjects selected from
two sources. Forty-two scans were obtained from the Boston
University Alzheimer’s Disease Center (BU-ADC) Clinical
Core Registry: Health Outreach Program for the Elderly
(HOPE). The BU-ADC is a center (of 30) funded by the
National Institute on Aging that contributes data to the
National Alzheimer’s Coordinating Center. The BU-ADC
registry, including subject recruitment and inclusion/exclu-
sion criteria, has previously been described (Ashendorf
et al., 2017; Galetta et al., 2017). All HOPE subjects’ diag-
noses weremade at consensus conferences, following presen-
tation and discussion of all medical history and evaluation
results, such as clinical interview, informant input, neuro-
psychological test scores, and MRI scans viewed for clinical
criteria (hippocampal atrophy, white matter signal abnormal-
ities, and evidence of microbleeds). No formal biomarker
(amyloid, tau, or genetic) data is presented at such consensus
conferences. Subjects were determined to be cognitively
normal (n= 19) if their objective neuropsychological test
scores were within the normal range and they had a
Clinical Dementia Rating (Morris, 1993) global score of
0.0. All MCI diagnoses (n= 23) were amnestic and followed
published criteria (Petersen et al., 2014).

Fifty-four scans were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (for more
information, refer to adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by
Principle Investigator, Michael W.Weiner, MD. The primary
goal of the ADNI has been to elucidate clinical, genetic,
imaging, and biochemical biomarkers of AD, and to better
understand the progression from normal cognition to MCI
to AD (Weiner et al., 2015). Twenty-seven of these subjects
were cognitively normal controls and the other 27 subjects
were amnestic MCI single domain. All ADNI scans were
selected to have come from a Philips 3T scanner to ensure
comparable imaging parameters as HOPE scans, and to bal-
ance the demographic data of HOPE subjects. All procedures
were approved by local IRBs, and subjects gave informed
consent at the time of their enrollment in both studies in
accordance with the Declaration of Helsinki. In total, there
were 96 scans analyzed (46 control and 50 MCI; 54 females
and 42 males) in this study. All MCI scans came from sub-
jects that had the amnestic form of MCI. Eight also showed
impairment in another domain such as language, executive
function, or visuospatial functioning in addition to the impair-
ment of memory.

Both HOPE and ADNI collect demographic data, includ-
ing age, education, and APOE ε4 status, as well as neuro-
psychological test scores from the Mini-Mental State Exam
(MMSE), Geriatric Depression Scale (GDS), Logical
Memory Recall (modified from the Wechsler D. Wechsler
Memory Scale-Revised, San Antonio, Texas: Psychological
Corporation; 1987), and Part B of the Trailmaking Test
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(Table 1). The neuropsychological tests and diagnostic
procedures utilized in both studies were based on comparable
protocols. Given that these neuropsychological measures
were utilized to differentiate and define groups, none of these
measures could again be used as outcomes.

Imaging Assessments

The scans we used were 3D magnetization-prepared rapid
acquisition of gradient echo sequences. These were acquired
on 3T Philips scanners. For the BU-ADC scans, a 32-channel
headcoil and sense factor of 2 was used with the following
imaging parameters: TR = 6.7 ms, TE= 3.1 ms, flip angle
= 9°, reconstructed and acquisition voxel size = .98 × .98
× 1.2 mm, FOV= 250 × 250 × 180 mm, 150 sagittal slices.
For the ADNI scans (Jack et al., 2008), an 8-channel headcoil
and a sense factor of 1.8 was used with the following imaging
parameters: TR= 6.7 ms, TE = 3.1 ms, flip angle= 9°,
reconstructed voxel size= 1.05 × 1.05 × 1.20 mm, acquisi-
tion voxel size= 1.11 × 1.11 × 1.20 mm, FOV= 270 × 252
× 204 mm, 170 sagittal slices. DICOM scans were down-
loaded from the ADNI database.

The MRI scans were segmented with FreeSurfer version
6.0 (http://surfer.nmr.mgh.harvard.edu; for additional
details, see Desikan et al., 2006; Iglesias et al., 2015).
FreeSurfer v6.0 utilizes an improved atlas that can automati-
cally segment hippocampal regions into a greater number of
subfields than previous versions have allowed (Iglesias
et al., 2015).

Statistical Analysis

Independent samples one-tailed t-tests were used to assess
differences between the control and MCI groups in
terms of neuropsychological outcome and MRI measures.
Independent samples two-tailed t-tests were used to assess
demographic factors, such as age and education, as there
was no expected direction to any group differences. A chi-
square test was performed to determine if a difference existed
in APOE ε4 status between the groups. In terms of these analy-
ses, we had two goals in mind. The first was to establish
whether the groups were matched in terms of demographics
and APOE ε4 status. To assess the significance of these tests,
we used a p-value of .01 without correction to increase the
stringency of not finding a difference. Our second goal was
purely exploratory and involved looking for differences
between the groups with the expectation that neuropsychologi-
cal performance and size of brain regions would be less in the
MCI group. The analyses conducted towards this goal were
meant to help us know the data – selection into regression
models was made independent of these exploratory analyses.
These tests were interpreted using an arbitrary p-value of .01.
Measures generated from FreeSurfer v6.0 included estimated
total intracranial volume (eTIV), 68 cortical volumes, 12 sub-
cortical volumes, right and left hippocampal volumes, and 24
hippocampal subfield volumes (for additional segmentation T
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details, see Iglesias et al., 2015). All volumes generated by
FreeSurfer v6.0 were examined and then used in subsequent
models. For a complete list of the variables collected from
FreeSurfer v6.0, see http://www.bumc.bu.edu/mri/personnel-
and-students/renee-devivo/. Data were visually inspected for
errors and edited as needed. ANCOVAwas performed to deter-
minewhether eTIV, age, gender, education, APOE ε4 status, or
study (i.e., HOPE orADNI) had an effect on anymorphometric
MRI variables. Age and eTIV had an effect on the majority of
ROI volumes, while gender, education, APOE ε4, and study
had no impact. In order to correct for age and eTIV, residuals
were computed based upon the values of all subjects included
in this study. Additionally, an overallMANOVAwas run using
study (HOPE or ADNI) as a between-subjects variable and
brain ROIs as a repeated measure to ensure that the use of dif-
ferent headcoils in the two studies did not have any overall
effect on the outcome. This analysis was run because different
headcoils were used in theADNI andHOPE (8 vs. 32 channels,
respectively) studies.

Using these residuals, targeted nominal logistic regression
models were created to determine how well the volumes of
individual regions, such as entorhinal cortex, whole hippo-
campus, and hippocampal subfields, could classify subjects.
These regions were utilized first due to their importance in
cognitive impairment. To follow up, additional stepwise
variable logistical models (mixed, probability to enter/leave
p < .25) were run using subgroups of ROIs (subcortical,
cortical, and hippocampal subfields) to determine which
ROIs classified subjects best. To control for multicollinearity,
correlations were calculated between the subcortical and cort-
ical regions. Regions that had intercorrelated values >.7 with
one or more other regions were excluded from the stepwise
models. A series of stepwise logistic models were used as
steps for data reduction. The preliminary stepwise logistic
models were computed using separate classes of variables
as follows: (1) left hippocampal subfield variables, (2) right
hippocampal subfield variables, (3) left subcortical variables,

(4) right subcortical variables, (5) left cortical variables, and
(6) right cortical variables. From the results of these prelimi-
nary analyses, mid-level analyses were conducted using (1)
hippocampal subfield variables and (2) combined cortical and
subcortical group variables. No bilateral regions were
included in mid-level stepwise analyses, rather the unilateral
region with the most predictive value, or the lowest p value,
was used. Following the mid-level stepwise models, an upper
mid-level stepwise logistic model was created using the
selected cortical and subcortical variables and selected hippo-
campal subfield variables. Finally, a nominal logistic model
was generated to create an optimal classification model of
group membership. For a schematic of this data reduction
process, see Figure 1. Within each of the logistic models,
false discovery rate (FDR) correction was used to establish
the significant contributors to each model. Across models,
Bonferroni correction (p-value divided by the number of
models) was used to determine the appropriate p-value for
significance. As a final check, the nominal logistic model
was regenerated using a “backward” approach to ensure
the order of variable selection was not driving the model.

A leave-one-out prediction of the one-out validation
technique was conducted to better estimate how the model
would perform on a different dataset (Fan, Batmanghelich,
Clark, & Davatzikos, 2008; Misra, Fan, & Davatzikos,
2009). Essentially, we re-ran the upper mid-level stepwise
and final nominal logistic regression models leaving one
subject out each time until all subjects had been left out once.
All statistical analyses were conducted with JMP Pro 13.0 on
a Mac Pro running macOS Sierra operating system.

RESULTS

Demographic Data

There were no differences between the groups in terms of age,
years of education, or APOE ε4 status (p’s > .01) (Table 1).

Fig. 1. Outline of stepwise and nominal logistic regression analyses. Overview of the process for determining the “best” classification model.
Various preliminary and mid-level analyses were used as a data reduction technique to identify the variables that produce the most accurate
classification model.

MCI Model 803

https://doi.org/10.1017/S135561771900047X Published online by Cambridge University Press

http://www.bumc.bu.edu/mri/personnel-and-students/renee-devivo/
http://www.bumc.bu.edu/mri/personnel-and-students/renee-devivo/
https://doi.org/10.1017/S135561771900047X


As expected, differences were found between the groups
in MMSE score, Logical Memory Immediate Raw score,
Logical Memory Delayed Raw score, and Part B of the
Trailmaking Test (p’s < .01) (Table 1). There was a trend
for MCI subjects to have higher GDS scores (p= .025)
though neither group expressed clinically relevant scores
on the GDS.

MRI Data

When comparing uncorrected volumes, the MCI group had
smaller volumes in 15 of the 24 hippocampal subfields,
bilateral hippocampal formations, and the right entorhinal
cortex, compared with the control group (p’s < .01). When
comparing the residual data (adjusted for age and eTIV)
between the control and MCI groups, the same 15 hippocam-
pal subfields, bilateral hippocampal formations, and the right
entorhinal cortex remained significantly smaller. In addition,
three hippocampal subfields (left fimbria, right hippocampal
tail, and right fimbria) and the left entorhinal cortex were
significantly smaller in MCI subjects when residual volumes
were compared (Figures 2–5, effect sizes reported in Table 2).
The results of an overall MANOVA showed that the effect of
study (i.e., headcoil) was not significant (F(1,94)= 2.894,
p= .09, Cohen’s d= .36).

To determine how well the volumes of the entorhinal cor-
tex, hippocampus, and hippocampal subfields identified
group membership, these variables were entered into three
targeted nominal logistic regression models consisting of
both the right and left volumes of each region. Though some

were significant, none of thesemodels provided a goodmodel
according to the R2 values obtained: hippocampal subfields
(R2= .3629, whole model test chi-square = 48.2361,
p= .0024), whole hippocampus (R2= .1817, whole model
test chi-square= 24.1557, p < .0001), and entorhinal
cortex (R2= .0688, whole model test chi-square= 9.1421,
p= .0103). Stepwise analyses using a wider subset of varia-
bles were conducted to see if better classification could be
obtained. Tests of multicollinearity showed that both the left
cuneus and left pericalcarine were correlated with more than
one other region with a R value >.7, and these regions were
excluded from the following analyses. The six preliminary
stepwise models selected five hippocampal subfield varia-
bles, four subcortical variables, and twenty cortical variables.
Mid-level stepwise analyses conducted on the hippocampal
subfield variables and combined subcortical and cortical var-
iables further refined the data selected to three hippocampal
subfield variables and fifteen subcortical and cortical varia-
bles. All 18 of the selected regions (p’s< .01, FDR corrected)
were entered into an upper mid-level stepwise and subsequent
nominal logistic regression model, which was significant
(R2= .7120, whole model test chi-square = 94.63, p <
.0001), and had a classification rate of .9063 (misclassifica-
tion rate = .0937) as 40 out of 46 control subjects and 47 out
of 50 MCI subjects were classified correctly. Since the two
regions (left cuneus and left pericalcarine) that were origi-
nally excluded after the tests of multicollinearity were inde-
pendent of the other regions included in the final models,
these regions were forced into the model to see if their addi-
tion improved the model. The final model with the left cuneus
and left pericalcarine revealed that 13 variables were

Fig. 2. Volumetric spread of left adjusted hippocampal subfields. The volume (adjusted for age and eTIV) of 12 identified hippocampal
subfields was measured in all control and MCI subjects and is plotted. Regions showing significant differences (p < .01) are denoted
with an asterisk and were found in 9 of the 12 left hippocampal subfields where the MCI subjects had reduced volume compared with
the controls. eTIV, estimated total intracranial volume; CA, cornu ammonis; HATA, hippocampal amygdala transition area; MCI, mild
cognitive impairment.
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significant contributors (R2= .7310, whole model test
chi-square = 97.16, p < .0001) and had a classification rate
of .9375 (misclassification rate= .0625) as 43 out of 46 con-
trol subjects and 47 out of 50 MCI subjects were classified
correctly. Table 3 outlines the 13 variables that were signifi-
cant contributors to the final model, and all model fit statistics
for the described stepwise and nominal logistic analyses
are reported in Table 4. The average classification rate from
each leave-out-one analysis was .7708 (misclassification rate
= .2292) as 37 out of 46 control subjects and 37 out of 50MCI
subjects were classified correctly.

As an additional exploratory analysis looking at the value of
whole hippocampus as a classifier versus the value of hippo-
campal subfields, the final nominal logistic model was
re-conducted excluding the hippocampal subfield variables that
were chosen, and substituting a unilateral whole hippocampal
volume variable instead. When using the whole right hippo-
campal volume, the model was weakened (R2= .6313, whole
model test chi-square= 83.91, p < .0001) and the whole right
hippocampus variable was not a significant contributor to this
model, which had a classification rate of .875 (misclassification
rate= .125). When using the whole left hippocampal volume,
the model was essentially similar to when the whole right
hippocampal volume was used and also weaker than the origi-
nal model (R2= .6413, whole model test chi-square= 85.24,
p < .0001). Similarly, the whole left hippocampus variable
was not a significant contributor in this model. This model
had a classification rate of .875 (misclassification rate= .125).
As a final check of our analysis using subfields, we re-ran the
final nominal logistic model in a “backward” fashion to assure
that the order of selection did not bias the analysis. The results

of this were the same (R2= .7310, whole model test chi-square
= 97.16, p< .0001) with 43 out of 46 control subjects classified
correctly and 47 out of 50 MCI subjects classified correctly.

DISCUSSION

Nominal Logistic Model of Group Membership

The present study sought to expand current knowledge
regarding what regions of the brain are most influential in
classifying subjects who are cognitively normal versus those
with MCI. Some previous studies have found the entorhinal
cortex to be the most effective at discriminating between
controls and subjects with cognitive impairment (Killiany
et al., 2000; Pennanen et al., 2004), while others have found
the entire hippocampal formation or various hippocampal
subfield volumes to perform best (Du et al., 2001;
Hanseeuw et al., 2011; Mueller et al., 2010; Xu et al., 2000).
Regardless, a majority of such cross-sectional studies built
classification models utilizing only one region and reported
60–81% accuracy (Hanseeuw et al., 2011; Mueller et al.,
2010; Pennanen et al., 2004). Studies including multiple
ROIs in their models often achieve greater accuracy as was
the goal of the present study (Convit et al., 2000; Convit
et al., 1997; Hänggi et al., 2011; Killiany et al., 2000).

Initially, we utilized the volumes of the whole hippocam-
pal formations, hippocampal subfields, and entorhinal
cortices to build three targeted classification models, and
individually, these subgroups performed poorly at classifica-
tion. However, when ROIs outside the medial temporal
regions were added to our classification model, we were able

Fig. 3. Volumetric spread of right adjusted hippocampal subfields. The volume (adjusted for age and eTIV) of 12 identified hippocampal
subfields was measured in all control and MCI subjects and is plotted. Regions showing significant differences (p < .01) are denoted with an
asterisk and were found in 9 of the 12 right hippocampal subfields where the MCI subjects had reduced volume compared with the controls.
eTIV, estimated total intracranial volume; CA, cornu ammonis; HATA, hippocampal amygdala transition area; MCI, mild cognitive
impairment.
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to correctly identify 43 out of 46 control subjects and 47 out
of 50 MCI subjects for an overall classification accuracy of
93.75% with 93.48% sensitivity and 94% specificity. Table 3
shows the 13 volumes that contributed most to this model.
Notably, although subcortical, cortical, and hippocampal
subfield variables were all taken into account in the data
reduction stepwise models, only cortical regions and hippo-
campal subfields were chosen by the data reduction models to
go into the final logistic model.

Cross-sectional studies exploring the classification value
of hippocampal subfield volumes versus whole hippocampal
volumes have found disparate results (Hanseeuw et al., 2011;
Pluta et al., 2012). Some have found the CA1 volume to be a
stronger classifier than whole hippocampal volume (La Joie
et al., 2013; Pluta et al., 2012), while other studies have found
the subiculum volume, but not the CA1 volume, to be a
more effective classifier than whole hippocampal volume
(Hanseeuw et al., 2011). Our findings are in line with those
promoting the classification value of the subiculum volume.
When we created a model including either the right or the left
whole hippocampus volume, it did not perform as well as our
model that included the parasubiculum and subiculum
(misclassification rates were worse and R2 values were

weaker). Such findings have been highlighted previously
(Mueller et al., 2010, see review Pini et al., 2016).

Thus far, relatively less research has been done analyzing
the influence of cortical structures in classification models for
control andMCI populations. Killiany et al. found the volume
of the caudal portion of the anterior cingulate and the banks of
the superior temporal sulcus to be important for discriminat-
ing controls, stable MCI, and MCI who decline (Killiany
et al., 2000). We also found these two regions to be important
classifiers in this study.

One of the first cross-sectional studies that used classifica-
tion models to identify controls and MCI subjects based
on hippocampal volume obtained a classification accuracy
of 73.4% (Convit et al., 1997). Three years later, this group
found that adding the fusiform gyrus and combined middle
and inferior temporal gyri helped to identify who with
MCI would further decline to AD (Convit et al., 2000).
We also found the middle temporal gyrus to be important
in our classification model, while the fusiform gyrus was less
meaningful. Though these studies had subjects of different
cognitive capacities, the overlapping ROIs in both studies
suggest that volume loss in the middle temporal gyrus and
the fusiform gyrus may contribute to cognitive impairment.

Fig. 4. Volumetric spread of adjusted whole hippocampal forma-
tions. The volume (adjusted for age and eTIV) of both whole hippo-
campal formations was measured in control and MCI subjects and is
plotted. Both right and left hippocampal formations in MCI subjects
showed a significant reduction in volume compared with controls
and is indicated by an asterisk (p < .01). eTIV, estimated total intra-
cranial volume; MCI, mild cognitive impairment.

Fig. 5. Volumetric spread of adjusted entorhinal cortices. The vol-
ume (adjusted for age and eTIV) of both entorhinal cortices wasmea-
sured in control and MCI subjects and is plotted. Both right and left
entorhinal cortices in MCI subjects showed a significant reduction in
volume compared with controls and is indicated by an asterisk (p <
.01). eTIV, estimated total intracranial volume; MCI, mild cognitive
impairment.
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Instead of creating classification models, other studies
identify regions that show the greatest amount of volume loss
in MCI subjects compared with controls. Such studies
examining volumetric differences often report regions within
the parietal and lateral temporal lobes to be implicated in the
early stages of the AD continuum following the medial tem-
poral lobe (Desikan et al., 2009; Fan et al., 2008; Hängii et al.,
2011). These studies report volume reductions in many of the
regions that were important in our classification model, such
as the insula (Fan et al., 2008; Karas et al., 2004), the superior
temporal cortex (Fan et al., 2008; Karas et al., 2004), and the
middle temporal cortex (Fan et al., 2008). Therefore, while
these studies did not make classification models like the
present study, the re-occurring significance of regions such
as the insula and middle temporal cortex suggests that such
regions have a role in cognitive impairment and disease.

Demographics

In this study, the groups were well matched in terms of their
demographics (i.e., age, education, APOE ε4 status, and
gender) (Table 1). It is noteworthy that there was a slightly
greater percentage of individuals in the control group who

had APOE ε4 than in the MCI group. Since APOE ε4 status
was not used as a selection criterion, this merely reflects the
sample to which we had access. Neuropsychological mea-
sures revealed expected differences between the control
and MCI groups. The control group performed better than
the MCI group on four of the five neuropsychological tasks
(MMSE, LogicalMemory Immediate Recall, LogicalMemory
Delayed Recall, and Part B of the Trailmaking Test) (Table 1).
A difference in GDS score approached significance (p= .025)
with the MCI group endorsing, on average, .78 points higher
on this scale. It is feasible to assume that this difference
was a result of the GDS specifically asking about a decrease
in memory, rather than a reflection of true depression
symptoms.

MRI

We found smaller residual volumes in theMCI group in 18 of
the 24 hippocampal subfields, bilateral hippocampal forma-
tions, and bilateral entorhinal cortices, compared with the
controls. These findings are consistent with previous reports
(Du et al., 2001; Hanseeuw et al., 2011; Killiany et al., 2000;
La Joie et al., 2013; Pennanen et al., 2004, see review Zhou
et al., 2016).

LIMITATIONS

While the best fit model created in this study is promising,
there are limitations to consider. This study utilized sufficient
data to meet the intended goals, but the sample size remains

Table 2. Between-group measures of effect size

Region (age and eTIV-corrected) Cohen’s d

Left whole hippocampus 1.045175658
Left molecular layer 1.001047715
Left CA1 .97950074
Right molecular layer .956542325
Left CA4 .925790159
Right dentate gyrus .925375322
Right whole hippocampus .925312224
Left subiculum .90302485
Left CA2/3 .902831378
Left dentate gyrus .902202961
Right CA4 .885329746
Right CA2/3 .852106001
Right CA1 .825208486
Left hippocampal tail .810886649
Left HATA .778884444
Right subiculum .763229419
Right HATA .641063049
Right hippocampal tail .582298616
Right entorhinal cortex .576953066
Left fimbria .572899506
Left entorhinal cortex .520818628
Right fimbria .497658825
Left presubiculum .469300487
Right presubiculum .363948262
Left hippocampal fissure .264820413
Right hippocampal fissure .199064252
Left parasubiculum −.036346266
Right parasubiculum −.116042635

Note: CA, cornu ammonis; eTIV, estimated intracranial volume; HATA,
hippocampal amygdala transition area.

Table 3. ROI classifiers of group membership

Region (age and eTIV-corrected)

FDR p-value
(effect likelihood ratio

test)

Left superior temporal cortex .00001*
Right caudal anterior cingulate .00001*
Right pars opercularis .00001*
Left subiculum .00002*
Right precentral cortex .00011*
Left caudal middle frontal cortex .00011*
Left rostral middle frontal cortex .00015*
Left pars orbitalis .00015*
Left middle temporal cortex .00090*
Right insula .00116*
Left banks of the superior temporal
sulcus

.00117*

Right parasubiculum .00287*
Right paracentral lobule .00287*
Left fusiform cortex .01654
Left transverse temporal cortex .03894
Left cuneus cortex .12556
Left entorhinal cortex .12738
Left pericalcarine .28605

Note: p-Value < .01.
eTIV, estimated intracranial volume; FDR, false discovery rate.
*Denotes significance.

MCI Model 807

https://doi.org/10.1017/S135561771900047X Published online by Cambridge University Press

https://doi.org/10.1017/S135561771900047X


modest. This was driven by a desire to make optimal use of
control andMCI subjects from our local ADC population as it
more closely resembles a clinical population. We supple-
mented the subject number using subjects from the ADNI
study, though we did not want to overwhelm the study with
the “clinical trials population” found in ADNI (Petersen et al.,
2013). Furthermore, when working with classification mod-
els such as nominal logistic regression, the ultimate goal is to
build a model using one dataset and then apply it to a parallel
dataset. The very large number of comparisons and variables
included in the models limited the strength of our findings.
Since we aimed to investigate regions that are less studied
in MCI, we used all available subjects to build this model.
As such, we realize the potential to be able to refine our
findings in a future study as more local subjects become
available.

Further research creating classification models of control
andMCI subjects utilizing medial temporal regions as well as
less studied cortical regions will likely help clarify whether
the 13 regions in our model are truly classifiers of cognitive
impairment versus characteristics of our sample.

CONCLUSION

The results of our study highlight the utility of usingmeasures
of the hippocampus, entorhinal cortex, and hippocampal sub-
fields in classification models of controls and MCI subjects.
Moreover, our findings provide evidence of the value of less
studied regions beyond the medial temporal lobe and their
ability to aid in differentiating between those who exhibit nor-
mal aging and those who do not.
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