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Abstract
We present the concept of cotorsion pairs cut along subcategories of an abelian category. This provides a general-
ization of complete cotorsion pairs, and represents a general framework to find approximations restricted to certain
subcategories. We also exhibit some connections between cut cotorsion pairs and Auslander–Buchweitz approx-
imation theory, by considering relative analogs for Frobenius pairs and Auslander–Buchweitz contexts. Several
applications are given in the settings of relative Gorenstein homological algebra, chain complexes, and quasi-
coherent sheaves, as well as to characterize some important results on the Finitistic Dimension Conjecture, the
existence of right adjoints of quotient functors by Serre subcategories, and the description of cotorsion pairs in
triangulated categories as co-t-structures.

Introduction

Given classes of objects A and B in an abelian category C, it is not always possible for these classes to
form a complete cotorsion pair (A, B) in C. For example, if A= GP(R) denotes the class of Gorenstein
projective modules over a ring R, and B=P(R)∧ the class of R-modules with finite projective dimen-
sion. In general, the pair (GP(R), P(R)∧) is not a complete cotorsion pair over an arbitrary ring R.
However, by using Auslander–Buchweitz approximation theory, it is known that every R-module with
finite Gorenstein projective dimension has a Gorenstein projective precover whose kernel has finite
projective dimension (see [1, 3]). Moreover, the equalities GP(R)= ⊥1 (P(R)∧)∩ GP(R)∧ and P(R)∧ =
(GP(R))⊥1 ∩ GP(R)∧ also hold true. Hence, along the class GP(R)∧ of R-modules with finite Gorenstein
projective dimension, (GP(R), P(R)∧) can be regarded, in some sense, as a complete cotorsion pair.

The first main goal of this article is to specify a meaning under which A and B form a complete
cotorsion pair restricted to another class S of objects in C. Specifically, orthogonality relations between
A and B, and the existence of special A-precovers and special B-preenvelopes, will be restricted to
objects in S . These “local” properties will be formally presented in the concept of complete cotorsion
pair cut along S (or complete cut cotorsion pair, for short). Many properties of this concept derive in a
general language for cotorsion theory and relative homological algebra, which in particular covers some
well-known results on complete cotorsion pairs in abelian categories.

A recent approach to the idea of relativizing cotorsion pairs was proposed in [3], under the name of
S-cotorsion pairs, where the authors consider cotorsion pairs (A, B) relative to a thick subcategory
S ⊆ C, and such that A, B⊆ S . In that work, it was established an interplay between relative cotorsion
pairs, left Frobenius pairs, and left weak Auslander–Buchweitz contexts. Specifically, the latter two
concepts are in one-to-one correspondence, while left weak AB-contexts coincide with the class of
cotorsion pairs (F , G) relative to the smallest thick subcategory containing F , and where G is injective
relative to F . On the other hand, the cut cotorsion pairs proposed in this article are a generalization of
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S-cotorsion pairs, in the sense that for the former concept it is not required that S is thick or A, B⊆ S
either. So, it is natural to think of a more general version of the just mentioned interplay. Our second
main goal will be to present relative versions of Frobenius pairs and weak AB-contexts, which we shall
call cut Frobenius pairs and cut weak AB-contexts, so that the previous interplay can be extended to the
context of cut cotorsion pairs.

Cut cotorsion pairs, cut Frobenius pairs, and cut weak AB-contexts are useful to describe several
situations related to approximation theory. We shall support this claim presenting several examples in
the context of relative Gorenstein homological algebra, in part motivated by the behavior of Gorenstein
projective and projective modules mentioned at the very beginning, but also for a better understanding of
the new concepts and results. More complex examples are exhibited at the end of this article, for particu-
lar abelian categories such as chain complexes and quasi-coherent sheaves. Moreover, some applications
are given with the purpose to describe some well-known results in the study of finitistic dimensions of
rings, right adjoints of Serre quotients, and cotorsion pairs and co-t-structures in triangulated categories.

Organization. In Section 1, we recall some preliminary notions from relative homological algebra.
Among these, the most important are the concepts of Frobenius pairs, cotorsion pairs, and Gorenstein
objects relative to GP-admissible pairs. Section 2 is devoted to present the main concept of our research:
complete left and right cotorsion pairs (A, B) cut along subcategories S ⊆ C. We give in Proposition 2.3
some examples of such pairs coming from left Frobenius pairs. Moreover, in Proposition 2.23, we show
how to construct a complete cut cotorsion pair from classes A, B, and S satisfying a series of mild
conditions. One of these conditions will be key to motivate and understand the concepts of Frobenius
pairs and weak AB contexts cut along subcategories presented in Section 3. GP-admissible pairs (X , Y)
satisfying certain conditions are the main source to obtain Frobenius pairs cut along Gorenstein objects
relative to (X , Y), as we show in Proposition 3.8. On the other hand, in the case where X and Y have
some closure properties, we see in Example 3.16 that it is possible to obtain three different types of weak
AB contexts cut along the class of objects with finite X -resolution dimension. The most important result
in this section is Theorem 3.18, where it is shown that it is not possible to obtain non-trivial weak AB
contexts from Gorenstein objects relative to hereditary complete cotorsion pairs. In Section 4, we prove
two correspondence theorems between cut Frobenius pairs, cut weak AB contexts, and certain complete
cut cotorsion pairs. More specifically, in Theorem 4.6, we establish a one-to-one correspondence (up to
equivalence relations) between Frobenius pairs and weak AB contexts cut along a certain S ⊆ C. We also
obtain in Theorem 4.12 another bijective correspondence between weak AB contexts cut along S and
certain complete cotorsion pairs (F , G) cut along the smallest thick subcategory containing F . Finally,
in Section 5, we present detailed examples of complete cut cotorsion pairs, cut Frobenius pairs, and cut
weak AB contexts related to relative Gorenstein homological algebra, chain complexes, quasi-coherent
sheaves, the Finitistic Dimension Conjecture, Serre subcategories, and extriangulated categories.

Conventions. Throughout, C will always denote an abelian category (not necessarily with enough
projective and injective objects), unless otherwise specified. The main examples of such categories
considered in this article will be:

• Mod(R) = left R-modules over an associative ring R with identity. For simplicity, all modules
over R will be left R-modules.

• mod(�) = finitely generated modules over an Artin algebra �.
• Ch(C) = chain complexes of objects in C. For the case where C =Mod(R), the corresponding

category of chain complexes of R-modules will be denoted by Ch(R). Objects in Ch(C) are
denoted as X•, Xm denotes the m-th component of X• in C, and Zm(X•) denotes the m-th cycle
of X• in C.

• Mod(Aop)= rightA-modules. Here,A is a skeletally small additive category. A rightA-module
is a contravariant additive functor A−→Mod(Z).

• Qcoh(X) = quasi-coherent sheaves over a semi-separated scheme X.
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Subcategories of C are always assumed to be full. We shall make no distinction between the terms
“classes of objects of C” and “subcategories of C”. Given X, Y ∈ C, we denote by HomC(X, Y) the group
of morphisms X→ Y . In case X and Y are isomorphic, we write X 	 Y . The notation F∼=G, on the
other hand, is reserved to denote the existence of a natural isomorphism between functors F and G.
Monomorphisms and epimorphisms in C are denoted by using the arrows � and �, respectively.

We shall refer to commutative grids whose rows and columns are exact sequences as solid diagrams.
Finally, we point out that the definitions and results presented in this article have their corresponding

dual statements, which will be omitted for simplicity. Moreover, although the new concepts in Sections 2,
3, and 4 below will be stated for abelian categories, one can expect that most of them carry over to any
extriangulated category after revising [26, 33, 34].

1. Preliminaries

Resolution dimensions. Let B⊆ C and C ∈ C. The resolution dimension of C with respect to B (or the
B-resolution dimension of C, for short), denoted resdimB(C), is the smallest integer m≥ 0 such that
there exists an exact sequence

Bm � Bm−1→· · ·→ B1→ B0 � C,

where Bk ∈B for every integer 0≤ k≤m. If such m does not exist, we set resdimB(C) := ∞. Dually,
we have the concept of coresolution dimension of C with respect to B, denoted by coresdimB(C). With
respect to these two homological dimensions, we shall frequently consider the following subcategories
of C:

B∧m := {C ∈ C : resdimB(C)≤m}, and B∧ :=
⋃
m≥0

B∧m,

B∨m := {C ∈ C : coresdimB(C)≤m}, and B∨ :=
⋃
m≥0

B∨m.

Orthogonality with respect to extension bifunctors. In any abelian category C, we can define the
extension bifunctors Exti

C(−,−) : Cop × C −→Mod(Z), with i≥ 1, in the sense of Yoneda. We shall
also identify Ext0

C(−,−) with the hom bifunctor HomC(−,−). The reader can check for instance [43]
for a detailed treatise on this matter.

Given A, B⊆ C and i≥ 0, the notation Exti
C(A, B)= 0 will mean that Exti

C(A, B) vanishes for every
A ∈A and B ∈B. Recall that the right i-th orthogonal complement of A is defined by A⊥i := {N ∈
C : Exti

C(A, N)= 0}, and the total right orthogonal complement of A by A⊥ := ⋂
i≥1 A⊥i . Dually, we

have the i-th and the total left orthogonal complements ⊥iB and ⊥B of B, respectively.

Relative homological dimensions. Given X ⊆ C and M ∈ C, the relative projective dimension of M
with respect to X , denoted pdX (M), is the smallest integer n≥ 0 such that Exti

C(M, X )= 0 for every
i > n. If such n does not exist, we set pdX (M)=∞. Furthermore, the relative projective dimension of
Y ⊆ C with respect toX is defined as pdX (Y) := sup{pdX (Y) : Y ∈Y}. Dually, we denote by idX (M) and
idX (Y) the relative injective dimension of M and Y , respectively, with respect to X . It can be seen that
pdX (Y)= idY (X ). If X = C, we just write pd(M), pd(Y), id(M) and id(Y), for the (absolute) projective
and injective dimensions.

Resolving subcategories. Let P and I denote the subcategories of projective and injective objects in
C, respectively. It is said that a subcategory X is resolving if P ⊆X and if it is closed under extensions
and under epi-kernels (that is, under taking kernels of epimorphisms between objects in X ). If the dual
properties hold true, then X is said to be coresolving. A subcategory is left thick if it is closed under
extensions, epi-kernels, and direct summands. Right thick subcategories are defined dually. Finally, a
subcategory is thick if it is both left and right thick. For X ⊆ C, we shall denote by Thick(X ) the smallest
thick subcategory of C containing X .
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Approximations. Let X ⊆ C. An X -precover of C ∈ C is a morphism f : X→C with X ∈X such that
the induced homomorphism HomC(X′, f ) : HomC(X′, X)→HomC(X′, C) is epic for every X′ ∈X . An
X -precover f : X→C is special if it is epic and Ker(f ) ∈X ⊥1 . The dual concept is called (special)
X -preenvelope.

Cotorsion pairs. Two subcategories X and Y of objects in C form a cotorsion pair (X , Y) if they are
complete with respect to the orthogonality relation defined by the vanishing of the functor Ext1

C(−,−)
(see for instance [14, 15, 17, 21]). For the purpose of this article, it comes handy to split this concept as
follows.

Definition 1.1. Let X , Y ⊆ C. The pair (X , Y) is a left cotorsion pair in C if X = ⊥1Y . If in addition,
for every C ∈ C there exists a short exact sequence Y � X � C with X ∈X and Y ∈Y , then (X , Y) is
a complete left cotorsion pair. Dually, we have the notions of (complete) right cotorsion pairs in C.
Finally, (X , Y) is a (complete) cotorsion pair in C if it is both a (complete) left and right cotorsion pair.
A pair (X , Y) is called hereditary if Exti

C(X , Y)= 0 for every i≥ 1.

Remark 1.2.
(1) If (X , Y) is a complete left cotorsion pair in C, then every object of C has a special X -precover.
(2) (P , C) is a complete left cotorsion pair if, and only if, C has enough projective objects. Dually,

(C, I) is a complete right cotorsion pair if, and only if, C has enough injective objects.
(3) If (X , Y) is a hereditary cotorsion pair, then X is resolving and Y is coresolving. Moreover, in

an abelian category C with enough projective (resp., injective) objects, (X , Y) is hereditary if,
and only if, X is resolving (resp., Y is coresolving).

Example 1.3. There are some well-known important examples of hereditary complete cotorsion pairs:

(1) The flat or Enochs’ cotorsion pair in Mod(R) given by (F(R), (F(R))⊥1 ), where F(R) denotes
the subcategory of all flat R-modules.

(2) From [12, Coroll. 4.2], [42, Lem. 4.25] and [11, Lem. A.1], we have the non-affine ver-
sion of the previous example, for quasi-compact and semi-separated schemes X, given by the
pair (F(X), (F(X))⊥1 ) in Qcoh(X), where F(X) denotes the subcategory of quasi-coherent flat
sheaves over X.

(3) From [14], if R is an Iwanaga–Gorenstein ring, we have the pairs (GP(R), P(R)∧) and
(I(R)∧, GI(R)) in Mod(R), where GP(R) and GI(R) denote the subcategories of Gorenstein
projective and Gorenstein injective R-modules.

Similar assertions hold for the subcategoriesDP(R) andDI(R) of Ding projective and Ding
injective R-modules, provided that R is a Ding–Chen ring (see Gillespie’s [19] for details).

Frobenius pairs. The concept of left and right Frobenius pairs was introduced in [3, Def. 2.5] from
the notion of (co)generators in Auslander–Buchweitz approximation theory. Given X , ω⊆ C, recall that
ω is said to be a relative cogenerator in X if ω⊆X and if for every X ∈X there exists a short exact
sequence X � W � X′ where W ∈ω and X′ ∈X .

Definition 1.4. A pair (X , ω) of subcategories of C is a left Frobenius pair if the following conditions
hold true:

(lFp1) X is left thick.
(lFp2) ω is closed under direct summands.
(lFp3) ω is an X -injective (that is, idX (ω)= 0) relative cogenerator in X .

The notions of relative generator and right Frobenius pair in C are dual.
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We summarize in the following result the most important properties of Frobenius pairs that will be
used in the sequel. The proofs of these properties can be found in [3, Thms. 2.8, 2.11, 2.16, 3.6 3.7,
Props. 2.7, 2.13 & 3.5].

Proposition 1.5. Let (X , ω) be a pair of subcategories of C. The following assertions hold.

(1) If ω is X -injective, then ω∧ is X -injective.
(2) If in addition, ω is a relative cogenerator in X and closed under direct summands, then ω=

X ∩ω∧.
(3) If X is closed under extensions, 0 ∈X , and ω is a relative cogenerator in X , then for any C ∈ C

with resdimX (C)= n <∞, there exist short exact sequences K � X � C and C � H � X′ in
C with X, X′ ∈X , resdimω(K)= n− 1 and resdimω(H)≤ n.

(4) If (X , ω) is a left Frobenius pair, then X ∧ = Thick(X ).
(5) If X is closed under extensions, and ω is closed under direct summands and an X -injective

relative cogenerator in X , then ω∧ =X ⊥ ∩X ∧.
(6) If X is left thick, Y ⊆X ∧ is right thick and ω=X ∩Y is an X -injective relative cogenerator

in X , then X ∧ ∩X ⊥1 =ω∧.
(7) If (X , ω) is a left Frobenius pair, then (X , ω∧) is a complete cotorsion pair in the exact subcat-

egory X ∧. If in addition, ω is an X -projective relative generator in X , then (ω, X ∧) is also a
complete cotorsion pair in X ∧.

Relative Gorenstein objects. Most of our examples in this article will be built from Gorenstein objects
relative to certain pairs (X , Y) of subcategories of C (see Definition 1.7 below). Before specifying
how these Gorenstein objects are defined, recall that a chain complex X• = (Xm)m∈Z ∈Ch(C) is said to
be HomC(−, Y)-acyclic if the complex of abelian groups HomC(X•, Y)= (HomC(Xm, Y))m∈Z is exact
for every Y ∈Y . HomC(Y ,−)-acyclic complexes are defined dually. The following concept is due to
[4, Def. 3.2].

Definition 1.6. Let (X , Y) be a pair of subcategories of C. An object C ∈ C is (X , Y)-Gorenstein pro-
jective if C is the 0-th cycle of an exact and HomC(−, Y)-acyclic complex X• ∈Ch(C) where Xm ∈X
for every m ∈Z. Dually (X , Y)-Gorenstein injective objects are defined as 0-cycles of exact and
HomC(X ,−)-acyclic complexes with components in Y .

Following [4], let us denote by GP (X ,Y) and GI (X ,Y) the subcategories of (X , Y)-Gorenstein projec-
tive and (X , Y)-Gorenstein injective objects of C, respectively. For example, GP (P ,P) and GI (I,I) are
precisely the subcategories of Gorenstein projective and Gorenstein injective objects of C, which we
shall write as GP and GI, for simplicity. Moreover, Definition 1.6 also covers the following examples
of relative Gorenstein projective and injective objects:

• Ding projective and Ding injective modules, in the sense of [19, Defs. 3.2 & 3.7], by setting
(X , Y)= (P(R), F(R)) and (X , Y)= (FP-I(R), I(R)), respectively. Here, FP-I(R) stands for
the subcategory of FP-injective (or absolutely pure) R-modules.

• Gorenstein AC-projective and Gorenstein AC-injective modules, in the sense of [5, §5 & §8],
by setting the pairs (X , Y)= (P(R), L(R)) and (X , Y)= (FP∞-I(R), I(R)), respectively. Here,
L(R) and FP∞-I(R) denote the subcategories of level and FP∞-injective (or absolutely clean)
R-modules (see [5, Def. 2.6]). These subcategories of relative Gorenstein modules will be
denoted by GPAC(R) and GIAC(R), for simplicity.

• Gorenstein flat sheaves over a noetherian and semi-separated scheme X, by setting (X , Y)=
(F(X), F(X)∩ (F(X))⊥1 ). See Murfet and Salarian’s [35, Thm. 4.18]. The subcategory of
Gorenstein flat sheaves over X will be denoted by GF(X). In particular, the latter holds in the
affine case X = Spec(R) provided that R is a commutative noetherian ring.
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Many useful properties of Gorenstein objects relative to (X , Y) are obtained in the case where (X , Y)
is a GP-admissible or a GI-admissible pair [4, Defs. 3.1 & 3.6]. We recall this notion for further referring.

Definition 1.7. A pair (X , Y) of subcategories of C is GP-admissible if the following conditions are
satisfied:

(GPa1) pdY (X )= 0.
(GPa2) C has enough X -objects, that is, for every C ∈ C there exists an epimorphism X � C with

X ∈X .
(GPa3) X and Y are closed under finite coproducts, and X is closed under extensions.
(GPa4) X ∩Y is a relative cogenerator in X .

A pair (X , Y) satisfying the dual conditions is called GI-admissible.

Example 1.8.

(1) Every hereditary complete cotorsion pair (X , Y) is a GP-admissible pair, and also induces the
GP-admissible pair (X , X ∩Y).

(2) The pairs (P(R), F(R)), (P(R), L(R)) and (F(X), (F(X))⊥1 ) are GP-admissible for any ring
R and any noetherian and semi-separated scheme X. Dually, the pairs (FP-I(R), I(R)) and
(FP∞-I(R), I(R)) are clearly GI-admissible.

We summarize in the following result the most important properties of GP-admissible pairs and
relative Gorenstein objects that will be used in the sequel. The proofs of these properties can be found
in [4, Thms. 3.30, 3.32 & 3.34, Corolls. 3.15, 3.17, 3.25, 3.33 & 4.10].

Proposition 1.9. Let X and Y be subcategories of C.

(1) If (X , Y) is a hereditary pair, then so is (GP (X ,Y), Y∧). If in addition X is closed under
extensions and the intersection ω := X ∩Y is closed under finite coproducts and a relative
cogenerator in X , then GP (X ,Y) is left thick.

If (X , Y) is a GP-admissible pair, then the following assertions hold:

(2) The pair (GP (X ,Y), Y) is GP-admissible and GP (X ,Y) is left thick.
(3) The subcategory ω is closed under extensions and a relative GP (X ,Y)-injective cogenerator in

GP (X ,Y).
(4) If ω is closed under direct summands, then (GP (X ,Y), ω) is a left Frobenius pair and ω=

GP (X ,Y) ∩Y .
(5) If Y∧, ω and X ∩Y∧ are closed under direct summands, then GP (X ,Y) ∩Y∧ =ω=X ∩Y∧.

In the particular case where (X , Y) is a right complete hereditary cotorsion pair, one has that X =
GP (X ,Y).

2. Complete cut cotorsion pairs and cotorsion cuts

We present the following concept of cotorsion pairs relative to subcategories.

Definition 2.1. Let S , A, B⊆ C. We say that (A, B) is a left cotorsion pair cut along S if the following
conditions are satisfied:

(lccp1) A is closed under direct summands.
(lccp2) A∩ S = ⊥1B ∩ S .
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A left cotorsion pair (A, B) cut along S is complete if in addition the following holds:

(lccp3) For every S ∈ S , there exists a short exact sequence B � A � S with A ∈A and B ∈B.

Dually, we say that (A, B) is a (complete) right cotorsion pair cut along S if it satisfies the dual con-
ditions, labeled as (rccp1), (rccp2) (and (rccp3)). Finally, (A, B) is a (complete) cotorsion pair cut
along S if it is both a (complete) left and right cotorsion pair cut along S .

In case there is no need to refer to the subcategory S , we shall simply say that (A, B) is a (complete)
left and/or right cut cotorsion pair.

If (A, B) is a complete (left or right) cotorsion pair cut along S , we may sometimes refer to S as a (left
or right) cotorsion cut for (A, B). If A is closed under direct summands, we shall denote by lCuts(A, B)
the class of left cotorsion cuts for (A, B). Similarly, we shall denote by rCuts(A, B) the class of right
cotorsion cuts for (A, B) provided that B is closed under direct summands, and by Cuts(A, B) the class
of cotorsion cuts for (A, B) provided that A and B are both closed under direct summands.

Remark 2.2.

(1) Notice that the previous definition coincides with Definition 1.1 by taking S = C. Furthermore,
in case A and B are contained in a thick subcategory S ⊆ C, (A, B) is a complete left cotorsion
pair cut along S if, and only if, (A, B) is a left S-cotorsion pair in the sense of [3, Def. 3.4].
This implies that several of our results proved below will recover some facts from the theory of
(relative) cotorsion pairs appearing in [3].

(2) For certain A⊆ C closed under direct summands, it is possible to find another subcategory
B⊆ C such that lCuts(A, B)=∅. Consider for instance A the subcategory of all objects in C
isomorphic to 0, and B := C −A the subcategory of nonzero objects in C. Notice that there
is no subcategory S ⊆ C satisfying condition (lccp3). Dually, one can find a pair (A, B) with
B closed under direct summands for which rCuts(A, B)=∅. Nevertheless, for any two sub-
categories A and B of objects in C closed under direct summands, one has Cuts(A, B) �= ∅.
Indeed, if A is a subcategory closed under direct summands, a sufficient condition to have
lCuts(A, B) �= ∅ is thatB is a pointed subcategory of C (that is, 0 ∈B). Similarly, rCuts(A, B) �=
∅ if A is pointed and B is closed under direct summands. It suffices to take S := {0}.

Now let us give some examples of complete cut cotorsion pairs which are not necessarily complete
cotorsion pairs. Frobenius pairs and relative Gorenstein objects will be the main source to construct our
first examples.

Proposition 2.3. Let (X , ω) be a left Frobenius pair in C. The following assertions hold:

(1) (X , ω∧) is a complete cotorsion pair cut along X ∧ and ω∧.
(2) (ω, X ⊥1 ) is a complete cotorsion pair cut along ω∧.
(3) (ω, X ⊥1 ) is a complete left cotorsion pair cut along X ∧ if, and only if, X ∧ =ω∧.

Proof. First, note by (lFp1), (lFp2) and [3, Thm. 2.11 & Prop. 2.13] that X , ω and ω∧ are closed
under direct summands. Also, it is clear that the same holds for X ⊥1 . Moreover, X ∧ is thick by [3, Thm.
2.11].

(1) By the previous comments, we have that the pair (X , ω∧) and X ∧ satisfy (lccp1) and (rccp1).
Moreover, from [3, Thm. 2.8] we clearly obtain (lccp3) and (rccp3). Finally, conditions (lccp2)
and (rccp2) follow from [3, Part 1. of Prop. 2.7], (lccp1), (rccp1), (lccp3) and (rccp3). Hence,
X ∧ ∈Cuts(X , ω∧). The assertion ω∧ ∈Cuts(X , ω∧) can be easily deduced from the previous.

(2) We already have conditions (lccp1) and (rccp1) for (ω, X ⊥1 ). On the one hand, for every C ∈
ω∧ it is clear the existence of a short exact sequence K � W � C, where W ∈ω and K ∈ω∧.
Since ω∧ ⊆X ⊥1 by [3, Part 1. of Prop. 2.7], we have that K ∈X ⊥1 . Thus, (lccp3) follows. On
the other hand, (rccp3) is immediate. Regarding (lccp2), note that the containment ω ∩ω∧ ⊆
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⊥1 (X ⊥1 )∩ω∧ follows by (lFp3). The converse containment follows by (lccp3) and the fact that
ω is closed under direct summands. Finally, condition (rccp2) follows by (lFp3) and (rccp3).

(3) The implication (⇐ ) follows from part 2. For the direct implication, suppose that X ∧ ∈
lCuts(ω, X ⊥1 ). Then, for every C ∈X ∧ there exists a short exact sequence K � W � C with
W ∈ω and K ∈X ⊥1 . By (lFp1), (lFp3) and Proposition 1.5, we can note that K ∈X ⊥1 ∩X ∧ =
ω∧. It then follows that C ∈ω∧.

Remark 2.4. Part (3) of Proposition 2.3 suggests that there should exist a left Frobenius pair (X , ω) in
C for which X ∧ �∈ lCuts(ω, X ⊥1 ). This is for instance the case of the left Frobenius pair (GP(R), P(R))
[3, Prop. 6.1]. Indeed, if R is an Iwanaga–Gorenstein ring with infinite global dimension, and M ∈
GP(R)−P(R), then it is not possible to construct a short exact sequence K � P � M with P projective
and K ∈ GP(R)⊥1 .

Recall from [4, Def. 3.3] that, for a pair (X , Y) of subcategories of C, the (X , Y)-Gorenstein
projective dimension of an object C ∈ C, which we denote by Gpd(X ,Y)(C), is defined as the GP (X ,Y)-
resolution dimension of C. Note that setting (X , Y)= (P(R), P(R)) and (X , Y)= (P(R), F(R)) yields
the Gorenstein projective and the Ding projective dimensions of an R-module C, which we denote
by Gpd(C) and Dpd(C) for simplicity. The (X , Y)-Gorenstein injective, Gorenstein injective and Ding
injective dimensions Gid(X ,Y)(C), Gid(C) and Did(C), are defined dually.

Concerning relative Gorenstein dimensions, we recall the following properties from [4, Coroll. 4.3].

Proposition 2.5. Let (X , Y) be a GP-admissible pair in C and ω := X ∩Y . Then, the following are
equivalent for any C ∈ C:

(a) Gpd(X ,Y)(C)≤ n.
(b) There is a short exact sequence K � G � C with resdimω(K)≤ n− 1 and G ∈ GP (X ,Y).
(c) There is an exact sequence C � H � G′ with resdimω(H)≤ n and G′ ∈ GP (X ,Y).

Example 2.6. We know from the previous remark that (GP(R), P(R)) is a left Frobenius pair over any
ring R. So it follows by parts (1) and (2) of Proposition 2.3 that (GP(R), P(R)∧) is a complete cotorsion
pair cut along GP(R)∧ and P(R)∧, and that (P(R), GP(R)⊥1 ) is a complete cotorsion pair cut along
P(R)∧. Similar results hold for the left Frobenius pairs (DP(R), P(R)) and (GPAC(R), P(R)) (see [3,
Coroll. 6.11 and Prop. 6.12]).

Remark 2.7. There are important differences between the notions of S-cotorsion pairs (A, B) [3, Def.
3.4] and complete cotorsion pairs (A, B) cut along S . In the former, S is taken as a thick subcategory
of C and A, B⊆ S . The latter containments do not occur for instance in the previous example, since
Gorenstein projective R-modules may have infinite projective dimension. More examples of complete cut
cotorsion pairs which are not relative cotorsion pairs are given below in Proposition 2.24, Corollary
2.25 and Example 2.26.

We shall mention a couple of extra properties for the previous example after showing the following
general result.

Proposition 2.8. The following hold for every left Frobenius pair (X , ω) in C:

(1) The following conditions are equivalent:

(a) (X , ω∧) is a complete left cotorsion pair in C.
(b) (X , ω∧) is a complete cotorsion pair in C.
(c) C =X ∧.

(2) For every n≥ 0, (X , X ⊥) is a complete cotorsion pair cut along X ∧n .
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Proof. In what follows, some of the mentioned facts come from Proposition 1.5. In the first part,
let us first assume condition (a). We need to verify that ω∧ =X ⊥1 and that for every C ∈ C there exists
a short exact sequence of the form C � H � X with H ∈ω∧ and X ∈X . For the latter, let C ∈ C and
consider a short exact sequence K � X � C with X ∈X and K ∈ω∧. On the other hand, since ω is a
relative cogenerator in X , there is a short exact sequence X � W � X′ with W ∈ω and X′ ∈X . Taking
the push-out of W← X→C yields the following solid diagram:

(i)

Note that H ∈ω∧. Then, the right-hand column in (i) is the desired short exact sequence for the right
completeness of (X , ω∧). In order to show ω∧ =X ⊥1 , note that the containment ω∧ ⊆X ⊥1 is clear since
idX (ω∧)= idX (ω)= 0. The converse containment follows from the right completeness and the fact that
ω∧ is closed under direct summands. Hence, (a)⇒ (b) follows.

The implication (b)⇒ (c) follows by the left completeness of the cotorsion pair (X , ω∧) and the con-
tainment ω∧ ⊆X ∧. On the other hand, we know that (X , ω∧) is a X ∧-cotorsion pair (that is, a complete
cotorsion pair in the exact subcategory X ∧). Thus, the implication (c)⇒ (a) is clear.

Now for the assertion (2) X ∧n ∈Cuts(X , X ⊥), we already know that X is closed under direct sum-
mands. In order to show (lccp2), note that the containment X ∩X ∧n ⊆ ⊥1 (X ⊥)∩X ∧n is clear. For the
converse, if we take C ∈ ⊥1 (X ⊥)∩X ∧n , then there exists a short exact sequence K � X � C with X ∈X
and K ∈ω∧n−1

1. Note also that K ∈X ⊥. Then, the previous sequence splits and so C ∈X . On the other
hand, for (rccp2) X ⊥ ∩X ∧n =X ⊥1 ∩X ∧n , the containment (⊆) is clear. Now if C ∈X ⊥1 ∩X ∧n we can
find a short exact sequence C � H � C′ where H ∈ω∧n and C′ ∈X , which is split and so C is a direct
summand of H. This in turn implies that C ∈X ⊥. The previous arguments also show (lccp3) and
(rccp3).

Corollary 2.9. The following hold for every GP-admissible pair (X , Y) in C with ω := X ∩Y closed
under direct summands:

(1) The following conditions are equivalent:
(a) (GP (X ,Y), ω∧) is a complete left cotorsion pair in C.
(b) (GP (X ,Y), ω∧) is a complete cotorsion pair in C.
(c) C = GP∧(X ,Y).

(2) For every n≥ 0, (GP (X ,Y), (GP (X ,Y))⊥) is a complete cotorsion pair cut along (GP (X ,Y))∧n .

Proof. It follows after applying Proposition 2.8 to the pair (GP (X ,Y), ω), which is left Frobenius by
Proposition 1.9.

Remark 2.10. Although in all of our examples of GP-admissible pairs (X , Y), the subcategory ω :=
X ∩Y is closed under direct summands, another proof of Corollary 2.9 can be obtained without assum-
ing this property. Indeed, keep in mind the properties from Propositions 1.9 and 2.5, and consider the
pair (GP (X ,Y), (GP (X ,Y))⊥). The closure under direct summands of (GP (X ,Y))⊥ is clear, and the same
property holds for GP (X ,Y). Also, the following containments are clear:

1Note that for the case n= 0 we simply take K = 0.
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GP (X ,Y) ∩ (GP (X ,Y))
∧
n ⊆ ⊥1 ((GP (X ,Y))

⊥)∩ (GP (X ,Y))
∧
n ,

(GP (X ,Y))
⊥ ∩ (GP (X ,Y))

∧
n ⊆ (GP (X ,Y))

⊥1 ∩ (GP (X ,Y))
∧
n .

On the other hand, for every C ∈ ⊥1 ((GP (X ,Y))⊥)∩ (GP (X ,Y))∧n there exists a short exact sequence K �
G � C with G ∈ GP (X ,Y) and K ∈ω∧n−1. Also, we can note that ω∧n−1 ⊆ (GP (X ,Y))⊥1 . Then, (lccp2) and
(lccp3) follow. The containment

(GP (X ,Y))
⊥ ∩ (GP (X ,Y))

∧
n ⊇ (GP (X ,Y))

⊥1 ∩ (GP (X ,Y))
∧
n

follows as in the proof of part (2) of Proposition 2.8. Hence, (rccp2) follows, and (rccp3) is also a
consequence from Propositions 1.9 and 2.5.

Example 2.11.

(1) From Corollary 2.9 we can note that it is not always possible to extend a cotorsion cut
associated to a pair to the whole category C. Indeed, consider the complete cotorsion pair
(GP(R), P(R)∧) cut along GP(R)∧ from Example 2.6. Then, we have that (GP(R), P(R)∧) is
a complete cotorsion pair in Mod(R) if, and only if, Mod(R)= GP(R)∧. The latter equality
occurs, for instance, if R an Iwanaga-Gorenstein ring, but it is not true in general.

(2) We can also characterize when the complete cotorsion pair (P(R), GP(R)⊥1 ) cut along P(R)∧

is a complete cotorsion pair in Mod(R). Specifically, the pair (P(R), GP(R)⊥1 ) is a complete
cotorsion pair in Mod(R) if, and only if,P(R)= GP(R). The latter equality occurs, for instance,
over any ring with finite global dimension.

In [3, Prop. 3.5], it is given an alternative description of relative cotorsion pairs. Following the spirit of
this result, we present the following characterization for cut cotorsion pairs. Its proof is straightforward.

Proposition 2.12. Let S , A, B⊆ C. Then, (A, B) is a complete left cotorsion pair cut along S if, and
only if, A and B satisfy the following conditions:

(1) A is closed under direct summands;
(2) Ext1

C(A∩ S , B)= 0; and
(3) for every S ∈ S there is an exact sequence B � A � S with A ∈A and B ∈B.

Remark 2.13. Regarding condition (3) in Proposition 2.12, in the case Ext1
C(A, B)= 0, the morphism

A � S is an A-precover.

Getting new cotorsion cuts and pairs from old ones. In the following result, whose proof is straight-
forward and left to the reader, we assert that the class lCuts(A, B) is closed under restrictions, arbitrary
unions and intersections.

Proposition 2.14. The following properties hold for A, B⊆ C.

(1) Restriction: If (A, B) is a (complete) left cotorsion pair cut along S and X ⊆ S , then (A, B) is
a (complete) left cotorsion pair cut along X .

If {Si}i∈I is a nonempty family of subcategories of C, then the following hold:

(2) Unions: (A, B) is a (complete) left cotorsion pair cut along S := ⋃
i∈I Si if, and only if, (A, B)

is a (complete) left cotorsion pair cut along Si, for every i ∈ I.
(3) Intersections: If (A, B) is a (complete) left cotorsion pair cut along Si for every i ∈ I, then

(A, B) is a (complete) left cotorsion pair cut along S := ⋂
i∈I Si.
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Remark 2.15.

(1) It is not always true that cotorsion cuts can be extended to a bigger subcategory, as shown in
Example 2.11 (1).

(2) The converse of the intersection property does not hold in general. It suffices to consider the
pair (GP(R), P(R)∧) from Example 2.6 and S1 := GP(R)∧ and S2 := Mod(R).

(3) By the union property and its dual, we can note that (A, B) is a complete cotorsion pair in C
if, and only if, there exists a family {Si}i∈I of subcategories of C such that C =⋃

i∈I Si and that
(A, B) is a complete cotorsion pair cut along Si for every i ∈ I.

Example 2.16. Over any ring R, (GP(R), GP(R)⊥1 ) is a complete cotorsion pair cut along GP(R)∧. This
clearly follows by Corollary 2.9 and by the union property.

Maximal cotorsion cuts. From the union property, it is natural to think of the possibility of finding the
largest cotorsion cut for a pair (A, B). Indeed, assuming that A is closed under direct summands and
that 0 ∈B (and so lCuts(A, B) �= ∅), it is possible to define the largest cut for (A, B) as a certain union.

Definition 2.17. Let A, B⊆ C with A closed under direct summands and 0 ∈B. The maximal left
cotorsion cut of (A, B) is the union

Sl(A, B) :=
⋃
{S : S ∈ lCuts(A, B)}.

The maximal right cotorsion cut and the maximal cotorsion cut of (A, B) are defined similarly, and
will be denoted by Sr(A, B) and S(A, B).

The subcategory Sl(A, B) has the interesting property that, under some mild conditions, it can cover
the subcategory of all objects satisfying (lccp3). Let us denote this subcategory by El(A, B), that is,
El(A, B) is formed by all the objects C ∈ C for which there is an exact sequence B � A � C with A ∈A
and B ∈B. We can note that Sl(A, B)⊆ El(A, B), although the equality does not hold in general. Below
we show that if El(A, B) is a left cotorsion cut of (A, B), then it has to be the maximal one.

Theorem 2.18. The following conditions are equivalent for any A, B⊆ C, where A is closed under
direct summands and 0 ∈B:

(a) Ext1
C(A, B)= 0.

(b) Sl(A, B)= El(A, B).
(c) El(A, B) ∈ lCuts(A, B).
(d) A= ⊥1B ∩ El(A, B).

Proof. Note first that A⊆ El(A, B) since 0 ∈B. Then, A∩ El(A, B)=A, and so the implication (c)
⇒ (d) is clear. On the other hand, the implications (b)⇒ (c) and (d)⇒ (a) are trivial. Thus, we only
focus on proving that (a)⇒ (b).

Suppose that Ext1
C(A, B)= 0. Note that the containment Sl(A, B)⊆ El(A, B) is clear. Now let X ∈

El(A, B). We prove that (A, B) is a complete left cotorsion pair cut along S := Sl(A, B)∪ {X}. For this,
we only need to prove (lccp2). Consider the following two cases:

(1) X ∈A: Since Ext1
C(A, B)= 0 we have that X ∈ ⊥1B. Thus, A∩ {X} = {X} = ⊥1B ∩ {X}.

(2) X �∈A: Since X ∈ El(A, B), there exists a non-split short exact sequence B � A � X with A ∈A
and B ∈B. It follows that X �∈ ⊥1B, and so A∩ {X} = ∅= ⊥1B ∩ {X}.

In both cases, we get the equality A∩ {X} = ⊥1B ∩ {X}. Therefore, Sl(A, B)∪ {X} ∈ lCuts(A, B), and
so Sl(A, B)∪ {X} = Sl(A, B) by maximality, proving that Sl(A, B)⊇ El(A, B).

A similar equivalence holds for the subcategory Er(A, B) of all objects satisfying (rccp3), and for
E(A, B) := El(A, B)∩ Er(A, B).
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Remark 2.19. As we mentioned earlier, Sl(A, B)⊆ El(A, B). In some cases this containment is strict
and nontrivial, that is, we can find subcategories A and B such that {0}�Sl(A, B) � El(A, B). Indeed,
let us consider A= GP(R) and B=Mod(R). One can note that (GP(R), Mod(R)) is a complete left
cotorsion pair cut along P(R)∧, and so P(R)∧ ⊆ Sl(GP(R), Mod(R)), that is, Sl(GP(R), Mod(R)) �= {0}.
On the other hand, by Theorem 2.18 we have that

Sl(GP(R), Mod(R))= El(GP(R), Mod(R))⇐⇒ Ext1
R(GP(R), Mod(R))= 0,

and there are rings over which the latter condition does not hold (see Example 2.11 (2)).

Compatibility between cotorsion cuts. So far the methods we have showed to obtain new cotorsion
cuts are restricted to a fixed pair (A, B) of subcategories of C. In some cases, it is possible to get new
pairs along new cuts. Specifically, we show in Proposition 2.21 below an extension of the union property
of Proposition 2.14 (2), in the sense that it is possible to take the union of two different complete cut
cotorsion pairs along the union of their cuts, provided that certain compatibility condition between the
given pairs is satisfied.

Definition 2.20. Let A1, A2, B1, B2 ⊆ C, where A1 and A2 are closed under direct summands and 0 ∈
B1 ∩B2, and let S1 ∈ lCuts(A1, B1) and S2 ∈ lCuts(A2, B2) be cotorsion cuts in C. We shall say that
(A1, B1) and (A2, B2) are compatible complete left cut cotorsion pairs if the following two conditions
hold:

(1) Ext1
C(A1, B2)= 0 and Ext1

C(A2, B1)= 0.
(2) A1 ∩ S2 =A2 ∩ S1.

Compatible complete right cut cotorsion pairs and compatible complete cut cotorsion pairs are defined
similarly.

The following result is straightforward and its proof is left to the reader.

Proposition 2.21. Let A1, A2, B1, B2, S1 and S2 be as in Definition 2.20. If (A1, B1) and (A2, B2) are
compatible complete left cut cotorsion pairs, then S1 ∪ S2 ∈ lCuts(A1 ∪A2, B1 ∪B2).

Example 2.22. The complete cotorsion pairs (GP(R), P(R)∧) and (P(R), GP(R)⊥1 ) cut along GP(R)∧

and P(R)∧, respectively, are compatible. Indeed, conditions (1) and (2) of Definition 2.20 are clear
by [14, Prop. 10.2.3], and the dual of (2), that is, the equality GP(R)⊥1 ∩ GP(R)∧ =P(R)∧ follows by
Proposition 1.5.

More induced cotorsion cuts and examples. Previously we showed how to construct new cotorsion
cuts from a given one, or from a family of cotorsion cuts (as in Propositions 2.14 and 2.21). In the last
part of this section, we give some sufficient conditions on subcategories A, B, S ⊆ C, without needing
that S ∈Cuts(A, B), which imply that (A, B) is a cotorsion pair cut along A∧ ∩ S . The subcategories
El(A, B), Er(A, B), and E(A, B) will be useful to prove the following result.

Proposition 2.23. Let S , A, B⊆ C and ω := A∩B such that the following are satisfied:

(1) A is closed under extensions and direct summands;
(2) B is closed under direct summands;
(3) ω ∩ S is a relative cogenerator in A;
(4) (ω ∩ S)∧ ⊆B;
(5) Ext1

C(A∩ S , B)= 0 and Ext1
C(A, B ∩ S)= 0.

Then, A∧ ∩ S ∈Cuts(A, B).
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Proof. First, we show that A∧n ⊆ Er(A, (ω ∩ S)∧) for every n≥ 0 (and so A∧ ⊆ Er(A, (ω ∩ S)∧)) by
using induction on n.

• Initial step: A∧0 ⊆ Er(A, (ω ∩ S)∧) follows by condition (3).
• Induction step: Suppose that n≥ 1 and thatA∧n−1 ⊆ Er(A, (ω ∩ S)∧) holds. Now consider a short

exact sequence L � A � M with A ∈A and resdimA(L)= n− 1. By the induction hypothesis,
there is a short exact sequence L � K � A′ with A′ ∈A and K ∈ (ω ∩ S)∧. Taking the pushout
of K← L→ A yields the following solid diagram:

(ii)

Note that E ∈A by condition (1), and so by condition (3) there exists a short exact sequence
E � W � A′ ′ with W ∈ω ∩ S and A′ ′ ∈A. Now take the pushout of W← E→M to obtain the
following solid diagram:

(iii)

We have that F ∈ (ω ∩ S)∧, and so the right-hand column of (iii) implies that M ∈ Er(A, (ω ∩
S)∧).

The containmentA∧ ⊆ Er(A, (ω ∩ S)∧) then holds true. Moreover, from the central row in (ii) and condi-
tion (4) we have that for every M ∈A∧ with resdimA(M)≥ 1 there is a short exact sequence B � A � M
with A ∈A and B ∈B. Moreover, for the case n= 0 we can simply take A=M and B= 0 in this sequence
since 0 ∈B, as B is closed under direct summands. In other words, we also have that the contain-
ment A∧ ⊆ El(A, B) holds. Hence, from the latter along with A∧ ⊆ Er(A, (ω ∩ S)∧) and condition (4)
we conclude that A∧ ⊆ E(A, B). It is clear now that the pair (A, B) satisfies conditions (lccp3) and
(rccp3) with respect to the subcategory A∧ ∩ S , and we also know from the hypotheses the validity
of (lccp1) and (rccp1). Finally, by condition (5) we have that A∩ (A∧ ∩ S)⊆ ⊥1B ∩ (A∧ ∩ S) and
that B ∩ (A∧ ∩ S)⊆A⊥1 ∩ (A∧ ∩ S), and the converse containments follow by (lccp3) and (rccp3).
Therefore, (A, B) is a complete cotorsion pair cut along A∧ ∩ S .

Let us apply the previous result to obtain another example of a complete cut cotorsion pair from
Gorenstein objects relative to a GP-admissible pair.

Proposition 2.24. Let (X , Y) be a GP-admissible pair in C and ω := X ∩Y , such that Y∧, ω and
X ∩Y∧ are closed under direct summands. Then, (GP (X ,Y), Y∧) is a complete cotorsion pair cut along
X ∧. Moreover,

GP (X ,Y) ∩Y∧ =ω=X ∩Y∧ =Y ∩ GP (X ,Y). (iv)
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Proof. We have by hypothesis that Y∧ is closed under direct summands. On the other hand, by [4,
Coroll. 3.33] we also have that GP (X ,Y) is closed under extensions and direct summands. We then have
that conditions (1) and (2) in Proposition 2.23 are valid. Now let us show that GP (X ,Y) ∩Y∧ ∩X ∧ is
a relative cogenerator in GP (X ,Y). By [4, Thm. 3.34 (c) & (d)] we know that the equality (iv) holds.
Then, GP (X ,Y) ∩Y∧ ∩X ∧ =ω ∩X ∧ =ω, and so condition (3) in Proposition 2.23 follows as well by
[4, Coroll. 3.25 (a)], while condition (4) is clear. Finally, the orthogonality relations in condition (5) of
Proposition 2.23 are a consequence of [4, Coroll. 3.15].

Corollary 2.25. Let (X , Y) be a hereditary complete cotorsion pair in C and ω := X ∩Y . Then,
(GP (X ,ω), ω∧) and (GP (X ,ω), Y) are complete cotorsion pairs cut along X ∧. Moreover,

GP (X ,ω) ∩ω∧ =ω=X ∩ω∧. (v)

Proof. Recall from Example 1.8 (1) that (X , ω) is a GP-admissible pair. Moreover, it is clear that X
and ω are closed under direct summands, while the same holds for ω∧ by Proposition 1.5. Then, X ∩ω∧

is also closed under direct summands, and Proposition 2.24 implies that (GP (X ,ω), ω∧) is a complete
cotorsion pair cut along X ∧ and the equality (v).

For the second pair (GP (X ,ω), Y), the subcategories A := GP (X ,ω), B := Y and S := X ∧ satisfy the
conditions in Proposition 2.23. Indeed, the first four conditions are clear. For (5), it suffices to note that
Y ∩X ∧ =ω∧ and GP (X ,ω) ∩X ∧ =X , which follow from the assumptions and Proposition 1.5. Finally,
for the equality (v) we have that

GP (X ,ω) ∩ω∧ = GP (X ,ω) ∩ω∧ ∩X ∧ =X ∩ω∧ =X ∩Y ∩X ∧ =ω ∩X ∧ =ω. �

Example 2.26. For any ring R, (DP(R), F(R)∧) is a complete cotorsion pair cut along P(R)∧ in
Mod(R). Indeed, we know from Example 1.8 (2) that the pair (P(R), F(R)) is GP-admissible, and
GP (P(R),F (R)) is precisely the subcategory DP(R) of Ding projective R-modules. Moreover, it is clear
that P(R)∩F(R)=P(R), F(R)∧ and P(R)∩F(R)∧ =P(R) are closed under direct summands. Then
by Proposition 2.24 we get the desired result.

Note also that this example cannot be obtained by using Corollary 2.25 since in general there is no
hereditary complete cotorsion pair (X , Y) in Mod(R) such that X =P(R) and X ∩Y =F(R). This is
possible for example for the trivial cotorsion pair (P(R), Mod(R)) over a left perfect ring R.

Remark 2.27. Several of the examples of relative Gorenstein pairs are cut along GP (X ,Y), but this is
not always the case. For instance, the pair (GP (X ,ω), Y) from Corollary 2.25 is another example of a
complete cut cotorsion pair that cannot be extended to a bigger subcategory. In this case, one can note
that (GP (X ,ω), Y) is a complete cotorsion pair cut along GP∧(X ,ω) if, and only if, GP (X ,ω) =X .

Intersections of the form ω ∩ S considered in Proposition 2.23 are not a mere technicality to obtain
new cut cotorsion pairs. They are in fact an important component of the notions of cut Frobenius pairs
and cut Auslander–Buchweitz contexts, which will be presented and studied in detail in the next section.

3. Cut Frobenius pairs and cut Auslander–Buchweitz contexts

As mentioned in the introduction, one of the main purposes of this article is to describe an interplay
between cut Frobenius pairs, cut Auslander–Buchweitz contexts, and complete cut cotorsion pairs. This
interplay will be the main topic of the next section. For the moment, we can note the following relation
between certain Gorenstein complete cut cotorsion pairs and left Frobenius pairs.

Proposition 3.1. Let (X , Y) be a GP-admissible pair in C, with ω := X ∩Y closed under direct
summands. Then, the following conditions are equivalent:
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(a) (GP (X ,Y), Y) is a left Frobenius pair.
(b) Y ⊆ GP (X ,Y).
(c) (GP (X ,Y), Y∧) is a complete cotorsion pair cut along GP∧(X ,Y) with Y ⊆ GP (X ,Y).

Moreover, if any of the previous conditions is satisfied, then Y =ω.

Proof. The implications (a)⇒ (b) and (c)⇒ (b) are trivial, while (a)⇒ (c) follows by Proposition 1.5.
Then, we only focus on proving (b)⇒ (a), for which one needs Proposition 1.9. So let us assume that
the containment Y ⊆ GP (X ,Y) is satisfied. We know that GP (X ,Y) is left thick, that is, condition (lFp1)
holds. By hypothesis, we also have that ω is closed under direct summands. On the other hand, we have
that ω=Y ∩ GP (X ,Y) =Y , and then (lFp2) follows. Finally, the fact that Y =ω is a GP (X ,Y)-injective
relative cogenerator in GP (X ,Y) follows also by Proposition 1.9.

Remark 3.2. For any hereditary complete cotorsion pair (X , Y) in C, with ω := X ∩Y , one has that
(X , ω) is a GP-admissible pair with ω⊆ GP (X ,ω). Then, by Proposition 3.1, (GP (X ,ω), ω∧) is a complete
cotorsion pair cut along GP∧(X ,ω). In particular, we have another way to obtain the first pair appearing
in Corollary 2.25, since X ∧ ⊆ GP∧(X ,ω).

Some technical lemmas. Before giving the definition of cut Frobenius pairs, we need to prove some
preliminary results. The idea is to find conditions under which ω∧ is closed under extensions, and for
this the Induction Principle will be a frequently used argument.

Lemma 3.3. Let ω, S ⊆ C such that ω is closed under extensions and ω ∩ S is a relative generator in
ω. Let C ∈ C for which there exists an exact sequence

En

fn� Wn−1→· · ·→W1
f1−→W0

f0� C, (i)

for some n≥ 1, with Ej+1 := Ker(fj) and Wj ∈ω for every 0≤ j≤ n− 1. Then, there exist short exact
sequences

Gj � Xj+1 � Ej+1, and Xj+1 � Fj � Xj, (ii)

where X0 := C, Fj ∈ω ∩ S and Gj ∈ω for every 0≤ j≤ n− 1.

Proof. Let us prove this result by induction on j.

• Initial step: For the case j= 0, since ω ∩ S is a relative generator in ω, there is a short exact
sequence G0 � F0 � W0 with G0 ∈ω and F0 ∈ω ∩ S . Taking the pullback of E1→W0← F0

yields the result.
• Induction step: Now suppose that for 1≤ j≤ n− 2 there are short exact sequences Gj � Xj+1 �

Ej+1 and Xj+1 � Fj � Xj, with Fj ∈ω ∩ S and Gj ∈ω. Consider also the (j+ 1)-th splicer from
the resolution (i), namely Ej+2 � Wj+1 � Ej+1. Taking the pullback of Wj+1→ Ej+1← Xj+1

yields the following solid diagram:
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Since ω is closed under extensions, F′j+1 ∈ω. By using again that ω ∩ S is a generator in ω, we
have an exact sequence Gj+1 � Fj+1 � F′j+1 with Fj+1 ∈ω ∩ S and Gj+1 ∈ω. Taking the pullback
of Ej+2→ F′j+1← Fj+1 yields the result.

Lemma 3.4. Let ω⊆ C be closed under extensions. If W � B � C is a short exact sequence with W ∈ω

and C ∈ω∧, then B ∈ω∧ and resdimω(B)≤ resdimω(C).

Proof. For resdimω(C)= 0, the result follows since ω is closed under extensions. So we may
assume that resdimω(C)≥ 1. Then, there exists an exact sequence W ′� W0 � C with W0 ∈ω and
resdimω(W ′)= resdimω(C)− 1. Taking the pullback of B→C←W0 gives the desired inequality.

We are now ready to prove the main technical lemma of this section, where we give sufficient con-
ditions so that the subcategory ω∧ is closed under extensions and direct summands. It is not enough to
assume that ω is closed under extensions and direct summands. In addition, we need an auxiliary sub-
category S so that ω ∩ S is a ω-projective relative generator in ω. Such S will play the role of a suitable
cut to propose a relative version for the concept of left Frobenius pair in Definition 3.6 below.

Lemma 3.5. Let ω, S ⊆ C such that ω is closed under extensions and ω ∩ S is an ω-projective relative
generator in ω. Then, the following assertions hold true:

(1) ω ∩ S is an ω∧-projective relative generator in ω∧. Moreover, for any C ∈ω∧ with resdimω(C)≥
1, there exists an exact sequence K � F � C such that F ∈ω ∩ S and resdimω(K)=
resdimω(C)− 1.

(2) ω∧ is closed under extensions.
(3) If ω is closed under direct summands, then so is ω∧.
(4) If ω is closed under isomorphisms and S is closed under epi-kernels and mono-cokernels, then

ω∧ ∩ S = (ω ∩ S)∧.

Proof.

(1) First, we show that ω ∩ S is a relative generator in ω∧. We use induction on n := resdimω(C)
for C ∈ω∧.

• Initial step: This is clear.
• Induction step: For the case n≥ 1, we have an exact sequence

Wn � Wn−1→· · ·→W1→W0 � C,

with Wk ∈ω for every 0≤ k≤ n. By Lemma 3.3 and its notation therein, we have that Xn ∈ω

since Gn−1, En := Wn ∈ω and ω is closed under extensions. Glueing together the splicer
sequences (ii) in Lemma 3.3 gives rise to the exact sequence

Xn � Fn−1→· · ·→ F1→ F0 � C,

with Fk ∈ω ∩ S for every 0≤ k≤ n− 1. Thus, for the short exact sequence X1 � F0 � C we
have F0 ∈ω ∩ S and X1 ∈ω∧, with resdimω(X1)= n− 1; that is, ω ∩ S is a relative generator
in ω∧.

Now by [32, dual of Lem. 2.13 (a) Rmk. 1.2 (a)], we have that

pdω∧ (ω ∩ S)= idω∩S(ω∧)= idω∩S(ω)= pdω(ω ∩ S)= 0,

and so ω ∩ S is ω∧-projective.
(2) Suppose we are given a short exact sequence A � B � C with A, C ∈ω∧. Let us use induction

on n := resdimω(A) to show that B ∈ω∧.
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• Initial step: If resdimω(A)= 0, the result follows by Lemma 3.4.
• Induction step: We may assume that resdimω(A)≥ 1. Suppose also that for any short exact

sequence A′� B′� C′ with C′ ∈ω∧ and resdimω(A′)≤ n− 1, one has that B′ ∈ω∧. By part
(1) there is a short exact sequence C′� P � C with P ∈ω ∩ S and C′ ∈ω∧. We take the
pullback of B→C← P to obtain the following solid diagram:

Since pdω∧(ω ∩ S)= 0, the central row in this diagram splits, and then E	 A⊕ P. Now
by part (1) again, consider a short exact sequence A′� W0 � A with W0 ∈ω ∩ S and
resdimω(A′)= resdimω(A)− 1. By taking the direct sum of this sequence and the identity
complex on P, we get the short exact sequence A′� W0 ⊕ P � A⊕ P, with W0 ⊕ P ∈ω

since ω is closed under extensions. Taking the pullback of C′ → A⊕ P←W0 ⊕ P and using
the induction hypothesis gives the result.

(3) Given an object C=C1 ⊕C2 ∈ω∧ with n := resdimω(C), the proof that C1, C2 ∈ω∧ follows by
induction on n and using an argument similar to the one appearing in [6, Proof of Prop. 5.3].

(4) The containment ω∧ ∩ S ⊇ (ω ∩ S)∧ is clear since S is closed under mono-cokernels. Now
suppose we are given an object S ∈ω∧ ∩ S , that is, an S ∈ S with a finite ω-resolution Wn �
Wn−1→· · ·→W0 � S. If n= 0, the result follows since ω is closed under isomorphisms. So we
may assume that n≥ 1. Since S is closed under epi-kernels, from Lemma 3.3 there are short
exact sequences Xj+1 � Fj � Xj with Xj ∈ S and Fj ∈ω ∩ S for all 0≤ j≤ n− 1. Moreover,
Xn ∈ω ∩ S since Gn−1, En := Wn ∈ω and ω is closed under extensions. Then, Xn � Fn−1→
· · ·→ F0 � S is a (ω ∩ S)-resolution of S.

Cut Frobenius pairs. We are now ready to present the concept of Frobenius pairs cut along subcate-
gories.

Definition 3.6. Let X , ω, S ⊆ C. We say that (X , ω) is a left Frobenius pair cut along S if the following
conditions are satisfied:

(lcFp1) X is left thick.
(lcFp2) (X ∩ S , ω ∩ S) is a left Frobenius pair in C.
(lcFp3) ω ∩ S is an ω-projective relative generator in ω.
(lcFp4) ω is closed under extensions and direct summands.

Dually, we have the notion of right Frobenius pairs (ν, Y) cut along S.

Remark 3.7. For any left Frobenius pair (X , ω) cut along S , we can note the following by Lemma 3.5
and [3, Prop. 2.7 (2)]:

(1) ω ∩ S is closed under extensions and finite coproducts, and it is an ω∧-projective relative
generator in ω∧.

(2) ω∧ is closed under extensions and direct summands.
(3) ω is closed under isomorphisms, and so ω∧ ∩ S = (ω ∩ S)∧ whenever S is closed under epi-

kernels and mono-cokernels.

Of course any left Frobenius pair (X , ω), with ω closed under finite coproduts, is a left Frobenius
pair cut along C, but not every relative left Frobenius pair is an absolute left Frobenius pair, as we show
in Example 3.9 below.
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Proposition 3.8. Let (X , Y) be a GP-admissible pair in C such that:

(1) X is closed under direct summands;
(2) Y is closed under extensions and direct summands; and
(3) X ∩Y is a relative generator in Y .

Then, (C, Y∧) is a left Frobenius pair cut along GP (X ,Y). Moreover, the following equality holds
true:

GP (X ,Y) ∩Y∧ =X ∩Y =X ∩Y∧. (iii)

Proof. Let us verify each condition in Definition 3.6, although we need to do this in a specific
order. Condition (lcFp1) is clearly satisfied. On the other hand, since Y is closed under extensions and
direct summands (by (2)), and X ∩Y is an Y-projective relative generator in Y (by (3) and (GPa1) in
Definition 1.7), we have from Lemma 3.5 (2) and (3) that Y∧ is closed under extensions and direct sum-
mands, that is, condition (lcFp4) holds. Moreover, since also X ∩Y and X ∩Y∧ are closed under direct
summands, we obtain the equality (iii) from Proposition 1.9. This, along with Lemma 3.5 (1), implies
that Y∧ ∩ GP (X ,Y) is aY∧-projective relative generator inY∧, that is, we have condition (lcFp3). Finally,
condition (lcFp2), that is, that (GP (X ,Y), Y∧ ∩ GP (X ,Y))= (GP (X ,Y), X ∩Y) is a left Frobenius pair in
C, follows by Proposition 1.9.

Example 3.9. For any ring R, if Y is a subcategory of Mod(R) closed under finite coproducts and
containing P(R), then (Mod(R), Y∧) is a left Frobenius pair cut along GP (P(R),Y), since (P(R), Y)
is a GP-admissible pair satisfying the conditions of the previous proposition. In particular, we have
that (Mod(R), P(R)∧) and (Mod(R), F(R)∧) are left Frobenius pairs cut along GP(R) and DP(R),
respectively.

In a more general sense, consider a hereditary complete cotorsion pair (X , Y) in C. Then, (C, Y∧) is
a left Frobenius pair cut along X . Note in this case that X = GP (X ,Y) by Proposition 1.9. On the other
hand, for the subcategory ω := X ∩Y , we have that (C, ω∧) is a left Frobenius pair cut along GP (X ,ω).

Below we establish necessary and sufficient conditions under which the relative Frobenius pair from
the previous example is left Frobenius in Mod(R). This will be a consequence of the following general
result.

Proposition 3.10. Let X , ω⊆ C such that ω∧ ⊆X , X is left thick, and ω is closed under direct
summands and a relative cogenerator in X . Then, the following statements are equivalent:

(a) (X , ω∧) is a left Frobenius pair in C.
(b) ω=X ⊥ ∩X .

Moreover, if any of the above equivalent conditions holds, then ω=ω∧.

Proof. The implication (a) ⇒ (b) is straightforward. Now suppose that ω=X ⊥ ∩X . This implies
that (X , ω) is a left Frobenius pair. By Proposition 1.5, we have that ω∧ =X ⊥ ∩X , and so ω∧ is closed
under direct summands. Finally, it is clear that ω∧ ⊆X is an X -injective relative cogenerator in X .

An immediate consequence of the previous result is the following.

Corollary 3.11. The following assertions are equivalent for any subcategory Y of R-modules:

(a) (Mod(R), Y∧) is a left Frobenius pair in Mod(R).
(b) Y∧ = I(R).

If any of these conditions holds true and P(R)⊆Y , then R is a quasi-Frobenius ring.
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From the previous two results, we can note that left Frobenius pairs (X , ω) that induce a left Frobenius
pair of the form (X , ω∧) are scarce. As a matter of fact, what we expect from a left Frobenius pair (X , ω)
is that (X , ω∧) is a complete cut cotorsion pair. This is precisely the case of Gorenstein left Frobenius
pairs (GP (X ,Y), Y) in Proposition 3.1. We shall explore this in more detail in Section 4.

Let us now present one more example of cut Frobenius pairs in the context of quiver representations.

Example 3.12. Several facts in this example are extracted from [48, Ex. 5.3]. Let � be the quotient path
k-algebra given by the quiver

with relations αβ = 0= βα. In the category mod(�) of finitely generated (left) �-modules, the
indecomposable projective �-modules are:

1
2 , 2

1 and
3
2
1.

On the other hand, the indecomposable injective �-modules are:
3
2
1
, 1 3

2 and 3.

It follows that the Auslander–Reiten quiver of mod(�) is given by:

where the two vertices 1 represent the same simple module.
Now let X := add( 1 ⊕ 2

1 ⊕ 2 ⊕ 1
2 ) be the subcategory of direct summands of finite coproducts of

copies of the �-module 1 ⊕ 2
1 ⊕ 2 ⊕ 1

2 . Then,X is closed under extensions and a Frobenius subcategory
of mod(�). Moreover, the subcategory of the projective-injective objects in X is P(X )= add( 1

2 ⊕ 2
1 ).

Indeed, by using Auslander-Reiten theory, it can be shown that Exti
�

(X , P(X ))= 0 for every i≥ 1.
We assert that (mod(�), P(X )) is a left Frobenius pair cut along X . Note first that X is not a resolv-

ing subcategory of mod(�) since it does not contain all indecomposable projective �-modules. On the
one hand, it is easy to see that conditions (lcFp1), (lcFp3) and (lcFp4) in Definition 3.6 hold true as
P(X )⊆P(�), and X is closed under extensions and direct summands. Since X is also a Frobenius
subcategory of mod(�), we only need to verify that X is closed under epi-kernels in order to conclude
(lcFp2). So suppose we are given an exact sequence X � Y � Z in mod(�) with Y , Z ∈X . Using that
X has enough projective objects, taking the pullback of Y→ Z← P yields a solid diagram

with P ∈P(X ) and Z ′ ∈X . Note that L ∈X . Moreover, since P(X )⊆P(�) the central row in the
previous diagram splits, and then X ∈X .
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Cut Auslander–Buchweitz contexts. In this part, we introduce the concept of cut Auslander–Buchweitz
contexts and present some examples related to hereditary complete cotorsion pairs. Let us recall the
following from [3, Def. 5.1].

Definition 3.13. A pair (A, B) of subcategories of C with ω := A∩B is a left weak Auslander–
Buchweitz context (or a left weak AB context, for short) if the following three conditions are
satisfied:

(lABc1) (A, ω) is a left Frobenius pair in C.
(lABc2) B is right thick.
(lABc3) B⊆A∧.

The notion of right weak AB context is dual.

Let us now propose the following generalization of the previous definition.

Definition 3.14. Let A, B, S ⊆ C and ω := A∩B. We say that (A, B) is a left weak AB context cut
along S if the following three conditions are satisfied:

(lcABc1) (A, ω) is a left Frobenius pair cut along S .
(lcABc2) B ∩ S is right thick.
(lcABc3) B ∩ S ⊆ (A∩ S)∧.

Dually, we have the concept of right weak AB context cut along S.

Remark 3.15. We can have a first approach to the relation between cut AB contexts and relative cotor-
sion pairs, which will be analyzed in more detail in Section 4. For any left weak AB context (A, B) cut
along S , one has that (A∩ S , B ∩ S) is a left weak AB context in C. Then, (A∩ S , B ∩ S) is a rela-
tive Thick(A∩ S)-cotorsion pair with idA∩S(B ∩ S)= 0 and (A∩B ∩ S)∧ =B ∩ S . See [3, Def. 3.4 &
Prop. 5.5] for details.

Example 3.16. Let (X , Y) be a GP-admissible pair in C with ω := X ∩Y , such that X is closed under
epi-kernels and direct summands, and such that Y is right thick.

(1) (X , Y) is a left weak AB context cut alongX ∧: It is easy to check that (X , Y) satisfies conditions
(lcABc1) and (lcABc3) in Definition 3.14. Moreover, the subcategory Y ∩X ∧ is right thick
since X ∧ is thick by Proposition 1.5 and Y is right thick by assumption. Thus, (X , Y) satisfies
also (lcABc2).

(2) (GP (X ,Y), Y) is a left weak AB context cut along X ∧: Let us first see that the pair
(GP (X ,Y), GP (X ,Y) ∩Y) is left Frobenius cut alongX ∧. By Proposition 1.9 we have that GP (X ,Y)

is left thick and that GP (X ,Y) ∩Y =ω and GP (X ,Y) ∩X ∧ =X . Indeed, the first equality and the
containment GP (X ,Y) ∩X ∧ ⊇X are clear. Now let C ∈ GP (X ,Y) ∩X ∧. By Proposition 1.5 we
can find a short exact sequence K � X � C with X ∈X and K ∈ω∧. This sequence splits since
C ∈ GP (X ,Y), and so C ∈X . We then have that (X , ω)= (GP (X ,Y) ∩X ∧, (GP (X ,Y) ∩Y)∩X ∧)
is a left Frobenius pair. From the previous equalities we can also note that (GP (X ,Y) ∩Y)∩X ∧
is a (GP (X ,Y) ∩Y)-projective relative generator in GP (X ,Y) ∩Y , and that GP (X ,Y) ∩Y is closed
under extensions and direct summands. Hence, we have that the pair (GP (X ,Y), GP (X ,Y) ∩Y)
satisfies (lcABc1). Finally, conditions (lcABc2) and (lcABc3) are clear.

(3) (GP (X ,ω), Y) is a left weak AB context cut along X ∧: Note that pdω(X )= 0, ω is closed under
finite coproducts, and ω is a relative cogenerator in X . Then, it follows by Proposition 1.9
that GP (X ,ω) is left thick. Using again Proposition 1.5, we have that GP (X ,ω) ∩X ∧ =X
and (GP (X ,ω) ∩Y)∩X ∧ =ω. Thus, (GP (X ,ω) ∩X ∧, (GP (X ,ω) ∩Y)∩X ∧)= (X , ω) is a left
Frobenius pair in C. The rest of the proof follows easily.
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Remark 3.17. Note that hereditary complete cotorsion pairs provide with a wide range of GP-
admissible pairs (X , Y) satisfying the assumptions in the previous example. Let us now exhibit a
GP-admissible pair (X , Y), with X closed under epi-kernels and direct summands, and with Y right
thick, such that (X , Y) is not a hereditary complete cotorsion pair. This is the case of the subcate-
gories X = GPAC(R) of Gorenstein AC-projective R-modules, and Y =L(R)∧ of R-modules of finite
level dimension, provided that R is not an AC-Gorenstein ring (see Gillespie’s [20, Thm. 6.2]). Indeed,
by [5, Lem. 8.6 Prop. 8.10] we know that (GPAC(R), (GPAC(R))⊥1 ) is a hereditary complete cotorsion
pair in Mod(R). Moreover, it is clear that pdL(R)∧(GPAC(R))= 0 and that L(R)∧ is closed under finite
coproducts. On the other hand, it is straightforward to check that GPAC(R)∩L(R)∧ =P(R). Thus, in
particular, we have from the previous example that (GPAC(R), L(R)∧) is a left weak AB-context cut along
GPAC(R)∧.

In Example 3.16, we obtained the left weak AB-context (GP (X ,ω), Y) cut along X ∧, from a GP-
admissible pair (X , Y) with X left thick and Y right thick. With a couple of extra assumptions on
X and Y , we are able to characterize (GP (X ,ω), Y) as a left weak AB-context that is absolute (that is, cut
along the whole category C).

Theorem 3.18. Let (X , Y) be a GP-admissible pair in C such that ω := X ∩Y is closed under direct
summands, ⊥1Y ⊆X and Y is right thick. Then, the following conditions are equivalent:

(a) (GP (X ,ω), Y) is a left weak AB-context in C.
(b) Y ⊆X ∧ and X is left thick.
(c) (X , Y) is a left weak AB-context in C.

Moreover, if any of the previous conditions holds, then X = GP (X ,ω).

Proof. Let us show first that (a) ⇒ (b). Since (GP (X ,ω), Y) is a left weak AB-context in C, we
have by [3, Prop. 5.5] that idGP (X ,ω) (Y)= 0. This fact, along with the assumption (a), implies that
X ⊆ GP (X ,ω) ⊆ ⊥1Y ⊆X , and thus X = GP (X ,ω), which is left thick since (X , ω) is a GP-admissible
pair (see Proposition 1.9). Then, Y ⊆ GP∧(X ,ω) =X ∧ by (lABc3).

The implication (b)⇒ (c) is clear. Finally, let us show (c)⇒ (a). So suppose that (X , Y) is a left
weak AB-context. Thus, we have that Y is right thick and that Y ⊆X ∧ ⊆ GP∧(X ,ω). It is only left to
show that (GP (X ,ω), GP (X ,ω) ∩Y) is a left Frobenius pair in C. We know that GP (X ,ω) is left thick by
Proposition 1.9. For conditions (lFp2) and (lFp3), it suffices to show that GP (X ,ω) ∩Y =ω. Indeed,
using Propositions 1.5 and 1.9, the equality Ext1

C(GP (X ,ω), ω∧)= 0 and the fact that X is closed under
direct summands, we can note that GP (X ,ω) ∩X ∧ =X . This, along with the assumption Y ⊆X ∧, yields
ω⊆ GP (X ,ω) ∩Y ⊆X ∩Y =ω.

The previous theorem basically asserts that (X , X ∩Y)-Gorenstein projective objects in the sense of
Xu [46] are trivial in the case they are part of a left weak AB-context. In other words, given a hered-
itary complete cotorsion pair (X , Y), it is not useful to apply the theory of absolute AB-contexts [3]
to the objects in GP (X ,X∩Y), in the sense that any result obtained this way is simply a property for the
subcategories X , Y and X ∩Y . This leads to the need of a relativization for the notion of AB con-
text to subcategories of C. One interesting aspect about the relativization proposed in Definition 3.14
is that the correspondence proved in [3] for the absolute case, between AB contexts, Frobenius pairs
and relative cotorsion pairs, is still going to be valid. We shall prove this assertion in a series of results
which are part of Section 4. For the moment, we give a small preamble to this by constructing below in
Proposition 3.20 three examples of complete cut cotorsion pairs involving the subcategories X , GP (X ,Y)

and GP (X ,ω), which were considered in Example 3.16 in the construction of relative weak AB-contexts.
The following establishes results similar to those in Proposition 1.5 (7), in the setting of complete

cut cotorsion pairs.
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Proposition 3.19. Let X and ω be subcategories of C. The following holds:

(1) If ω is closed under extensions and direct summands, and idω(ω)= 0, then ω∧ is also closed
under extensions and direct summands.

If X is closed under extensions and direct summands, then the following also hold:
(2) If ω is an X -injective relative cogenerator in X , then X ∧ ∈ lCuts(X , ω∧). If in addition,

ω is closed under extensions and direct summands, then X ∧ ∈ rCuts(X , ω∧) (and so X ∧ ∈
Cuts(X , ω∧)).

(3) If ω is an X -projective relative generator in X , then X ∧ is closed under extensions and direct
summands. If in addition ω is closed under direct summands, then X ∧ ∈Cuts(ω, X ∧).

Proof.

(1) Follows by taking S := C in Lemma 3.5 (2) and (3).
(2) From Proposition 1.5, we know that for any C ∈X ∧ there are exact sequences η : Y � X � C

and ε : C � Y ′� X′ with X, X′ ∈X and Y , Y ′ ∈ω∧. We show that X = ⊥1 (ω∧)∩X ∧. Since
ω is X -injective, we have from [32, dual of Lem. 2.13 (a)] that Ext1

C(X , ω∧)= 0 and so the
containment⊆ holds true. Now, let C ∈ ⊥1 (ω∧)∩X ∧ and consider η as above. Since C ∈ ⊥1 (ω∧)
we get that η splits and so C is a direct summand of X ∈X . Hence, C ∈X and the equality
holds true. We thus have X ∧ ∈ lCuts(X , ω∧). For the assertion X ∧ ∈ rCuts(X , ω∧), suppose
that ω is closed under extensions and direct summands. From part (1), ω∧ is closed under
direct summands. Then, it remains to show the equality ω∧ =X ⊥1 ∩X ∧. The containment ⊆
follows from [32, dual of Lem. 2.13] again. Now, let C ∈X ⊥1 ∩X ∧ and consider ε as above.
Notice that ε splits since C ∈X ⊥1 . Then, C is a direct summand of an object in ω∧. Therefore,
C ∈ω∧.

(3) The first part follows by Lemma 3.5 (2) and (3). For the second part, we have now that X ∧
and ω are closed under direct summands. Now let us show the equality ω= ⊥1 (X ∧)∩X ∧.
The inclusion (⊆ ) is clear since ω is X -projective. Now let C ∈ ⊥1 (X ∧)∩X ∧. Then there is
a short exact sequence ξ : K � X � C with X ∈X and K ∈X ∧. Since C ∈ ⊥1 (X ∧), we have
that ξ splits and so C is a direct summand of X. It follows that C ∈X . Then, since ω is a
generator in X , there exists a short exact sequence η : X′� W � C with W ∈ω and X′ ∈X .
Again, using the fact that C ∈ ⊥1 (X ∧), we have that η splits, and so C is a direct summand of
W . Therefore, C ∈ω. The other equality X ∧ =ω⊥1 ∩X ∧ follows from [32, dual of Lem. 2.13
(a)]. It is clear that (ω, X ∧) satisfies (rccp3). On the other hand, to show (lccp3) let C ∈X ∧
and set n := resdimX (C). Then, we have a short exact sequence K

α

� X � C where X ∈X
and resdimX (K)≤ n− 1. Since ω is a relative generator in X , there exists also a short exact
sequence X′� W

p
� X with W ∈ω and X′ ∈X . Taking the pullback of α and p gives rise to

the following solid diagram:

Using the fact that X ∧ is closed under extensions, the central row is the desired short exact
sequence.

https://doi.org/10.1017/S0017089521000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089521000367


570 M. Huerta et al.

Proposition 3.20. Let (X , Y) be a GP-admissible pair in C such that X and ω := X ∩Y are closed
under direct summands. Then, the following assertions hold true:

(1) (X , ω∧) is a complete cotorsion pair cut along X ∧.
(2) (GP (X ,Y), ω∧) is a complete cotorsion pair cut along GP∧(X ,Y).
(3) (GP (X ,ω), ω∧) is a complete cotorsion pair cut along GP∧(X ,ω).

Proof. For this proof, keep in mind the properties from Proposition 1.9. We first note that ω is closed
under extensions. Then part (1) follows by Proposition 3.19 (2). For part (2), we have that (GP (X ,Y), Y)
is a GP-admissible pair with GP (X ,Y) ∩Y =ω. Moreover, we also know that GP (X ,Y) is closed under
direct summands. Thus, the results follows as an application of part (1). Part (3) is in turn an application
of part (2) by considering the GP-admissible pair (X , ω).

4. Correspondences between complete cut cotorsion pairs, cut Frobenius pairs, and cut
Auslander–Buchweitz contexts

We study the interplay between cut Frobenius pairs and cut AB contexts. This interaction will depend on
two equivalence relations: one defined on FS , the class of left Frobenius pairs cut along S , and the other
one defined on the class CS of left weak AB-contexts cut along S . Using these relations, we shall prove
that there exists a one-to-one correspondence between the corresponding quotient classes. We shall also
show that there exists a one-to-one correspondence between cut AB contexts and complete cut cotorsion
pairs. For this, we consider an equivalence relation defined on the class PS of complete cotorsion pairs
(F , G) cut along the smallest thick subcategory containing F and which satisfy a certain relation with
S . Let us commence proving the following lemma, which is a relativization of Proposition 1.5 (2).

Lemma 4.1. Let X , ω, S ⊆ C satisfying the following conditions:

(1) ω is closed under extensions and isomorphisms;
(2) ω ∩ S is closed under direct summands and a relative generator in ω;
(3) ω ∩ S ⊆X ∩ S;
(4) X ∩ S is closed under epi-kernels; and
(5) idX∩S(ω ∩ S)= 0.

Then, ω ∩ S =X ∩ω∧ ∩ S . In particular, this equality holds if (X , ω) is a left Frobenius pair cut
along S .

Proof. The containment ω ∩ S ⊆X ∩ω∧ ∩ S is clear. For the converse, let M ∈X ∩ω∧ ∩ S and
Wn � Wn−1→· · ·→W1→W0 � M be an ω-resolution of M. If n= 0, then M ∈ω ∩ S since ω is
closed under isomorphisms. So we can assume that n≥ 1. Now, since X ∩ S is closed under epi-
kernels, we have by Lemma 3.3 and its notation therein that there are exact sequences ηj : Xj+1 � Fj � Xj

where X0 =M and Xj ∈X ∩ S for all 1≤ j≤ n− 1. Notice that Xn ∈ω ∩ S since Gn−1, En := Wn ∈ω.
Thus, ηn−1 splits and Xn−1 ∈ω ∩ S since idX∩S(ω ∩ S)= 0 and ω ∩ S is closed under direct summands.
Using again the preceding argument, we get that Xj ∈ω ∩ S for all 1≤ j≤ n. Therefore, η0 splits and so
M ∈ω ∩ S .

Example 4.2. We know from [3, Prop. 6.1] that (X , ω) := (Mod(R), P(R)) is a left Frobenius pair cut
along GP(R), for any ring R. Notice that in this case the equality X ∩ω∧ =ω does not necessarily hold
true, while X ∩ω∧ ∩ S =ω ∩ S does by the previous lemma.

Cut Frobenius pairs versus cut AB-contexts. We give the precise definition for the equivalence
relations mentioned at the beginning of this section.
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Definition 4.3. Let S ⊆ C. For (X , ω), (X ′, ω′) ∈ FS and (A, B), (A′, B′) ∈ CS , we shall say that:

(1) (X , ω) is related to (X ′, ω′) in FS , denoted (X , ω)∼ (X ′, ω′), if X ∩ S =X ′ ∩ S and ω ∩ S =
ω′ ∩ S;

(2) (A, B) is related to (A′, B′) in CS , denoted (A, B)∼ (A′, B′), if A∩ S =A′ ∩ S and A∩B ∩
S =A′ ∩B′ ∩ S .

Notice that (1) and (2) in the previous definition are equivalence relations. We denote by [X , ω]FS
the equivalence class of (X , ω) in FS/∼. Similarly, [A, B]CS denotes the equivalence class of (A, B) in
CS/∼.

Example 4.4. Let (X , Y) be a GP-admissible pair with X closed under epi-kernels and direct sum-
mands, and such that Y is right thick. We know from Example 3.16 that (X , Y) and (GP (X ,ω), Y)
are left weak AB-contexts cut along X ∧, that is, (X , Y), (GP (X ,ω), Y) ∈ CX∧ . Also, one can verify
using Proposition 1.5 that X = GP (X ,ω) ∩X ∧ and GP (X ,ω) ∩Y ∩X ∧ =ω. It follows that (X , Y) and
(GP (X ,ω), Y) are related in CX∧ .

Theorem 4.6 below is a generalization of the following result.

Theorem 4.5. ([3, part 1. of Thm. 5.4]) There is a one-to-one correspondence between the class F
of left Frobenius pairs (X , ω) in C, and the class C of left weak AB contexts (A, B) in C, given by
(X , ω) �→ (X , ω∧) with inverse (A, B) �→ (A, A∩B).

Theorem 4.6. (first correspondence theorem) Let S ⊆ C, which is closed under epi-kernels and mono-
cokernels. Then, there is a one-to-one correspondence

	S : FS/∼ → CS/∼ given by [X , ω]FS �→ [X , ω∧]CS ,

with inverse

S : CS/∼ → FS/∼ given by [A, B]CS �→ [A, A∩B]FS .

Proof. First, we show that the mappings 	S and 
S are well defined. On the one hand, for 
S , we
have that (A, A∩B) ∈ FS for every (A, B) ∈ CS , by definition of cut left weak AB-context. Also, it is
clear that 
S([A, B]CS ) does not depend on the chosen representative (A, B) ∈ CS . On the other hand,
	S does not depend on representatives either by Lemma 4.1. Now we prove that if (X , ω) ∈ FS then
(X , ω∧) ∈ CS by checking (lcABc1), (lcABc2) and (lcABc3) in Definition 3.14:

• (X , X ∩ω∧) is a left Frobenius pair cut along S: Clearly, X is left thick by (lcFp1) in
Definition 3.6. Now by Lemma 4.1, we have (X ∩ S , X ∩ω∧ ∩ S)= (X ∩ S , ω ∩ S), which
is a left Frobenius pair in C. In order to show that ω ∩ S is an (X ∩ω∧)-projective relative
generator in X ∩ω∧, note first that pdω∧(ω ∩ S)= 0 by Lemma 3.5 (1). Now let M ∈X ∩ω∧.
Using again Lemma 3.5 (1), there exists a short exact sequence M′� P � M with P ∈ω ∩ S
and M′ ∈ω∧. Since X is left thick and ω ∩ S ⊆X ∩ S , we get that M′ ∈X ∩ω∧. Finally, we
note that X ∩ω∧ is closed under extensions and direct summands. Indeed, since (X , ω) ∈ FS ,
we have by Remark 3.7 (3) that the statements of Lemma 3.5 hold true. In particular, ω∧ is
closed under extensions and direct summands, and so the same holds for X ∩ω∧ since X is
left thick.

• ω∧ ∩ S is right thick and ω∧ ∩ S ⊆ (X ∩ S)∧: First, since (X ∩ S , ω ∩ S) is a left Frobenius
pair in C, we have by Theorem 4.5 that (ω ∩ S)∧ is right thick and that ω ∩ S ⊆X ∩ S . The
rest follows by Lemma 3.5 (4).

Finally, one can check that the mappings 
S and 	S are inverse to each other by using
Lemma 4.1.
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Cut AB-contexts versus complete cut cotorsion pairs. In order to present the second correspondence
mentioned earlier, let us point out the following facts about complete cut cotorsion pairs.

Lemma 4.7. Let (F , G) be a complete cotorsion pair cut along Thick(F) with idF (G)= 0. Then, the
following statements hold true:

(1) (F , F ∩ G) is a left Frobenius pair in C.
(2) F ∩ G =F ∩F⊥1 =F ∩ (F ∩ G)∧.
(3) (F ∩ G)∧ =F⊥ ∩F∧.
(4) F∧ = Thick(F).

Proof. Assertion (1) and the equality F ∩ G =F ∩F⊥1 are easy to check from the definitions of
complete cut cotorsion pairs and of left Frobenius pairs. The rest of the equalities appearing in (2), (3)
and (4) follow from part (1) and Proposition 1.5.

Lemma 4.8. Let S be a thick subcategory of C and (F , G) be a complete cotorsion pair cut along
Thick(F), with idF (G)= 0. If F ∩ G ∩ S is both a relative generator and cogenerator in F ∩ G, then
(F , F ∩ G) is a left Frobenius pair cut along S .

Proof. We need to verify conditions (lcFp1), (lcFp2), (lcFp3), and (lcFp4) in Definition 3.6 for the
subcategories F , F ∩ G, and S . One can note that (lcFp1), (lcFp3) and (lcFp4) hold by Lemma 4.7. It
remains to check that (F ∩ S , F ∩ G ∩ S) is a left Frobenius pair in C. One can use again Lemma 4.7
to note that F ∩ S is left thick and that F ∩ G ∩ S =F ∩F⊥1 ∩ S . Then, F ∩ G ∩ S is closed under
direct summands. Finally, since idF∩G∩S(F ∩ G)= 0, it is only left to show that F ∩ G ∩ S is a relative
cogenerator in F ∩ S . So for any F ∈F ∩ S , by the relative right completeness of (F , G) there is a short
exact sequence F � G � F′ with G ∈F ∩ G and F′ ∈F . Now by using that F ∩ G ∩ S is a relative
cogenerator in F ∩ G, we can find a short exact sequence G � L � G′ with L ∈F ∩ G ∩ S and G′ ∈
F ∩ G. The result follows after taking the pushout of L←G→ F′.

For a fixed subcategory S ⊆ C, let PS denote the class of pairs (F , G) of subcategories of C such
that Thick(F) ∈Cuts(F , G), idF (G)= 0 and F ∩ G ∩ S is both a relative generator and cogenerator in
F ∩ G.

Definition 4.9. Let (F , G), (F ′, G ′) ∈PS . We shall say that (F , G) is related to (F ′, G ′) in PS , denoted
(F , G)∼ (F ′, G ′), if F ∩ S =F ′ ∩ S and F ∩ G ∩ S =F ′ ∩ G ′ ∩ S .

Note that ∼ is an equivalence relation in PS . In what follows, let us denote by [F , G]PS the
equivalence class of the representative (F , G) ∈PS .

Example 4.10. Let (X , ω) be a left Frobenius pair in C. We know by Proposition 2.3 that (X , ω∧) and
(ω, X ⊥1 ) are complete cotorsion pairs cut along ω∧, which are related in Pω∧ by Proposition 1.5. In
particular, (GP(R), P(R)∧)∼ (P(R), GP(R)⊥1 ) in PP(R)∧ .

We are now ready to show the correspondence between the quotient classesPS/∼ and CS/∼, which
generalizes the following previous result from [3].

Theorem 4.11. ([3, part 2. of Thm. 5.4]) The class C from Theorem 4.5 equals the class P of complete
cotorsion pairs (F , G) in the exact subcategory Thick(F) with idF (G)= 0.

Theorem 4.12. (second correspondence theorem) Let S ⊆ C be a thick subcategory. Then, there is a
one-to-one correspondence

�S : PS/∼ → CS/∼ given by [F , G]PS �→ [F , (F ∩ G)∧]CS ,
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with inverse

ϒS : CS/∼ →PS/∼ given by [A, B]CS �→ [A∩ S , B ∩ S]PS .

Proof. First, we check that the mappings �S and ϒS are well defined. On the one hand, let
(F , G), (F ′, G ′) ∈PS such that (F , G)∼ (F ′, G ′). By Theorem 4.6 and Lemma 4.8, we get that (F , (F ∩
G)∧) is a left weak AB-context cut along S . Moreover, by Lemma 4.7 we have that F ∩ G ∩ S =
F ∩ (F ∩ G)∧ ∩ S and F ′ ∩ G ′ ∩ S =F ′ ∩ (F ′ ∩ G ′)∧ ∩ S . Thus, (F , (F ∩ G)∧)∼ (F ′, (F ′ ∩ G ′)∧), and
hence �S does not depend on representatives. On the other hand, consider now (A, B) ∈ CS . By
Remark 3.15 we have that (A∩ S , B ∩ S) is a complete cotorsion pair cut along Thick(A∩ S) with
idA∩S(B ∩ S)= 0. The fact that ϒS does not depend on representatives is clear. Finally, the fact that �S
and ϒS are inverse to each other follows by Lemma 4.7 and Remark 3.15.

5. Applications and more examples

In this last section, we present more detailed examples and applications of the theory of complete cut
cotorsion pairs. Our examples will be presented in settings more general than Mod(R), namely, in cat-
egories of chain complexes, quasi-coherent sheaves, and modules over extriangulated categories. We
also explore some relations with the Finitistic Dimension Conjecture and Serre subcategories.

Induced cotorsion cuts in chain complexes. In the category Ch(C) of chain complexes in an abelian
category C, we shall write the extension bifunctors Exti

Ch(C) as Exti
Ch, for simplicity.

In this section, we induce complete cut cotorsion pairs in chain complexes in the following sense:
we consider complete cotorsion pairs (A, B) cut along S ⊆ C, and study under which conditions it is
possible to get complete cut cotorsion pairs in Ch(C) involving the subcategories Ã of A-complexes
and B̃ of B-complexes. Our motivation comes from Gillespie’s result [17, Prop. 3.6], which asserts that
if (A, B) is a complete cotorsion pair in C with enough A-objects and enough B-objects, then (Ã, dgB̃)
and (dgÃ, B̃) are complete cotorsion pairs in Ch(C).

In the case where (A, B) is a complete cotorsion pair cut along S ⊆ C, we shall determine a subcat-
egory of Ch(C) along which Ã, Chacy(Ã;B), B̃ and Chacy(A; B̃) (see [27, Def. 5.34]) form a complete
cut cotorsion pair. It is known from Yang and Liu’s [47, Lem. 3.4] that if (A, B) is a hereditary com-
plete cotorsion pair in Ch(R) then every exact complex admits a special Ã-precover and a special
B̃-preenvelope. This suggests that the subcategory S̃ should be considered as a possible cotorsion cut.
Below we impose some conditions on A, B and S so that (Ã, Chacy(Ã; B)) is a complete cotorsion pair
cut along S̃ . Let us recall and specify some of the notation previously displayed. Let X , A, B⊆ C:

• Ch(X ) is the subcategory of complexes X• with Xm ∈X for every m ∈Z.
• X̃ is the subcategory of exact complexes X• with Zm(X•) ∈X for every m ∈Z.
• Chacy(A; B̃) denotes the subcategory of complexes X• ∈Ch(A) such that the internal hom
Hom(X•, B•)2 is an exact complex of abelian groups whenever B• ∈ B̃. Dually, Chacy(Ã; B)
denotes the subcategory of complexes Y• ∈Ch(B) such that Hom(A•, Y•) is exact for every
A• ∈ Ã.

Proposition 5.1. Let A, B⊆ C closed under extensions and such that Exti
C(A, B)= 0 for every i= 1, 2.

If A is closed under direct summands and S ∈ lCuts(A, B), then S̃ ∈ lCuts(Ã, Chacy(Ã; B)).

Proof. It is clear that Ã is closed under diret summands. Moreover, following the proof given
in [27, Rmk. 3.10], we obtain for every complex S• ∈ S̃ an exact sequence in Ch(C) of the form
η : B•� A•� S• where A• ∈ Ã and B• ∈ B̃⊆Chacy(Ã; B) (this inclusion follows by [27, Lem. 5.37]).

2The reader can recall the definition of Hom(X•, B•) from [16, §2.1].
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So, it suffices to show that Ã∩ S̃ = ⊥1 (Chacy(Ã; B))∩ S̃ . On the one hand, considering η as above, with
S• ∈ ⊥1 (Chacy(Ã; B))∩ S̃ , we have that η splits and then S• ∈ Ã∩ S̃ . Thus, the containment ⊇ holds
true. For the remaining containment ⊆, since Ext1

C(A, B)= 0, it follows from [27, Lem. 5.38 (1)] that
Ext1

Ch(Ã, Chacy(Ã; B))= 0. Therefore, Ã∩ S̃ ⊆ ⊥1 (Chacy(Ã; B))∩ S̃ .

In the next result, we give some conditions so that the converse of Proposition 5.1 holds. In what
follows, given an object C ∈ C, we denote by D1(C) the chain complex with C in the first and zeroth
positions, and with 0 elsewhere, where the only nonzero differential is the identity on C. The complex
D0(C) is defined similarly.

Proposition 5.2. Let A, B, S ⊆ C such that A is closed under extensions, Ã is closed under direct sum-
mands, 0 ∈ S and S̃ ∈ lCuts(Ã, Chacy(Ã; B)). Then, S ∈ lCuts(A, B) provided that Ext1

C(A, B)= 0 or
D1(B) ∈Chacy(Ã; B) for every B ∈B.

Proof. The result is easy to show assuming Ext1
C(A, B)= 0. Assuming D1(B) ∈Chacy(Ã; B) for every

B ∈B, the closure under direct summands for A, condition (lccp3) and the containment A∩ S ⊇ ⊥1B ∩
S are also easy to show, while A∩ S ⊆ ⊥1B ∩ S follows by [17, Lem. 3.1] and Proposition 2.12.

Cut cotorsion pairs in the category of quasi-coherent sheaves. For the notions about sheaves and
schemes appearing in this section, we recommend the reader to check Hartshorne’s [25]. In what follows,
X will be a scheme with structure sheaf OX , and Qcoh(X) will denote the category of quasi-coherent
sheaves on X. For simplicity, we shall refer to the objects in Qcoh(X) simply as “sheaves”. It is a well-
known fact that Qcoh(X) is a Grothendieck category which in general does not have enough projective
objects. The latter makes us think that it is not likely to obtain complete cut cotorsion pairs in Qcoh(X)
involving the subcategory of Gorenstein projective sheaves. This suggests to consider the subcategory
GF(X) of Gorenstein flat sheaves on X as a more reliable source to obtain complete cut cotorsion
pairs. Indeed, in [9, Thm. 2.2] Christensen, Estrada and Thompson proved that (GF(X), (GF(X))⊥1 )
is a hereditary complete cotorsion pair in Qcoh(X), provided that X is a semi-separated noetherian
scheme. In general, the orthogonal subcategory (GF(X))⊥1 does not always have an explicit descrip-
tion in terms of simpler sheaves, but studying the cotorsion of A := GF(X) along certain subcategories
S ⊆Qcoh(X) could overcome this limitation. The two questions that arise at this point are: (1) what
can we expect for a suitable “local” orthogonal complement B of GF(X)?, and (2) which cotorsion cut
S do we need to choose for (A, B)?. First, we known from [3, Prop. 6.17] and [45, Coroll. 4.12] that
(GF(R), F(R)∩ (F(R))⊥1 ) is a left Frobenius pair in Mod(R), for any ring R, where GF(R) denotes the
subcategory of Gorenstein flat R-modules. It follows by Theorem 4.11 that (GF(R), (F(R)∩ (F(R))⊥1 )∧)
is a Thick(GF(R))-cotorsion pair in Mod(R). On the other hand, in case R is commutative, we can regard
Mod(R) as the category Qcoh(Spec(R)). The previous, along with the correspondences in Theorems 4.6
and 4.12, suggests that we should take B := (F(X)∩ C(X))∧ (where F(X) and C(X)= F(X)⊥1 denote the
subcategories of flat and cotorsion sheaves on X, respectively) and S as a subcategory ofQcoh(X) equiv-
alent to Mod(OX(U)), for some affine open set U ⊆ X. One can for instance determine an equivalence
between S and Mod(OX(U)) by using the inverse and direct image functors i∗ : Qcoh(X)−→Qcoh(U)
and i∗ : Qcoh(U)−→Qcoh(X) induced by the inclusion i : U→ X.3 Thus, we shall be working then
with the following subcategories of sheaves:

• A := GF(X) for Gorenstein flat sheaves.4
• B := (F(X)∩ C(X))∧.
• S := i∗(Qcoh(U)), where U is an affine open subset of X. That is, S is the subcategory of

sheaves on X isomorphic to sheaves of the form i∗(N ), where N is a sheaf on U.

3Notice that these functors are well defined as they preserve quasi-coherence. See [25, Prop. II 5.8] and [29, Thm. 1.17].
4Recall from [9, Def. 1.2] that a sheaf M is Gorenstein flat if M= Z0(F•), where F• is an exact complex of flat sheaves on X
such that F• ⊗I is an exact complex of OX-modules for every injective sheaf I.

https://doi.org/10.1017/S0017089521000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089521000367


Glasgow Mathematical Journal 575

We shall give sufficient conditions on X so that (A, B) is a complete right cotorsion pair cut along S .
More specifically, the goal of this section is to show the following result.

Theorem 5.3. Let X be a semi-separated noetherian scheme, and U ⊆ X be an affine open subset
such that every OX(U)-module has finite Gorenstein flat dimension. Then, (GF(X), (F(X)∩ C(X))∧) is a
complete right cotorsion pair cut along i∗(Qcoh(U)).

In order to prove this theorem, according to the dual of Proposition 2.12, we need to show the
following:

(1) (F(X)∩ C(X))∧ is closed under direct summands.
(2) Ext1

X(GF(X), (F(X)∩ C(X))∧ ∩ i∗(Qcoh(U)))= 0.5
(3) For every G ∈ i∗(Qcoh(U)) there exists an exact sequence G�B�A with A ∈GF(X) and

B ∈ (F(X)∩ C(X))∧.

Property (1) is easy to note on any scheme X from our results. First, it is clear that F(X)∩ C(X) is
self-orthogonal and closed under extensions and direct summands. Then by Lemma 3.5 (3) we have that
(F(X)∩ C(X))∧ is closed under direct summands. For (2), we need X to be a semi-separated scheme.6

Proposition 5.4. Let X be a quasi-compact7 and semi-separated scheme, and U ⊆ X an affine open.
Then, Exti

X(A, B)= 0 for every A ∈GF(X), B ∈ (F(X)∩ C(X))∧ ∩ i∗(Qcoh(U)) and i≥ 1.

Proof. First, let us write B	 i∗(N ) where N ∈Qcoh(U). Since X is semi-separated, it is known
by Gillespie’s [18, Lem. 6.5] that there is a natural adjunction Exti

X(A, B)= Exti
X(A, i∗(N ))∼=

Exti
U(i∗(A), N ). On the other hand, since U is affine, by a well-known result of Grothendieck (see for

instance [25, Coroll. II 5.5]) the categories Qcoh(U) and Mod(OX(U)) are equivalent via the mapping
N �→N(U), and so Exti

X(A, B)∼= Exti
OX (U)(i

∗(A)(U), N(U)). The result will follow after showing that
i∗(A)(U) is a Gorenstein flat OX(U)-module and that N(U) ∈ (F(OX(U))∩ C(OX(U)))∧.

• i∗(A)(U) ∈ GF(OX(U)): First, we know that A= Z0(F•) for an exact complex F• of flat sheaves
on X such that F• ⊗I is exact, for every injective sheaf I ∈Qcoh(X). By the implication (i)
⇒ (ii) in [8, Prop. 2.10] we have that F•(U) is an exact complex of flat OX(U)-modules, such
that F•(U)⊗OX (U) I is an exact complex of abelian groups for every injective OX(U)-module I ,
that is, Z0(F•(U)) is a Gorenstein flat OX(U)-module. On the other hand, the functor i∗ is the
restriction on U, and so i∗(A)(U)= Z0(F•)|U(U)= Z0(F•)(U)= Z0(F•(U)) ∈ GF(OX(U)).

• N(U) ∈ (F(OX(U))∩ C(OX(U)))∧: We proof this claim by induction on the flat-cotorsion
resolution dimension of B. So suppose first that B= i∗(N ) ∈ F(X)∩ C(X). To see that
N(U) is a flat OX(U)-module, we verify that the functor N(U)⊗OX (U) − is exact. Since
i∗(N )⊗− is exact, U is affine and i∗(N ) is quasi-coherent, we have that (i∗(N )⊗−)(U)=
i∗(N )(U)⊗OX (U) −=N(U)⊗OX (U) − is exact (see [13, Proof of Prop. 3.3]). We now show
that N(U) is also a cotorsion OX(U)-module. For let F ∈F(OX(U)) and consider the sheaf on
U, F̃ ∈Qcoh(U), associated to F (see [25, II 5.]). Note that F̃	 i∗(i∗(F̃)), and so we obtain
Ext1

OX (U)(F, N(U))∼= Ext1
U(F̃, N)∼= Ext1

X(i∗(F̃), i∗(N )). Now since F is a flat OX(U)-module,
one can note that i∗(F̃) is a flat sheaf on X. Also, i∗(N ) is a cotorsion sheaf on X by assumption.
Hence, we obtain Ext1

X(i∗(F̃), i∗(N ))= 0 and so N(U) is a cotorsion OX(U)-module.

5By Ext1X(−,−), we mean the extension bifunctor Ext1Qcoh(X)(−,−).
6Recall that X is semi-separated if it has an open cover by affine open sets with affine intersections. See for instance Neeman’s
[39].
7Recall from [22, Def. 3.16 (b)] that a scheme (X, OX) is quasi-compact if the underlying topological space X is quasi-compact,
that is, if any open covering of X has a finite subcovering.
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So far we have shown that N(U) ∈F(OX(U))∩ C(OX(U)) if i∗(N ) ∈ F(X)∩ C(X). The
more general case where i∗(N ) has positive flat-cotorsion dimension will follow by using
Auslander–Buchweitz Approximation Theory. Specifically, we shall use the equalities

(F(X)∩ C(X))∧ = F(X)⊥ ∩ F(X)∧, (i)

(F(OX(U))∩ C(OX(U)))∧ =F(OX(U))⊥ ∩F(OX(U))∧. (ii)
In order to prove (i), note first that since X is a quasi-compact and semi-separated scheme, we
have by [12, Coroll. 4.2] that (F(X), C(X)) is a complete cotorsion pair inQcoh(X). On the other
hand, by [11, Lem. A.1] we know that the category Qcoh(X) has a flat generator. Then, by [42,
Lem. 4.25] we finally have that (F(X), C(X)) is also a hereditary cotorsion pair in Qcoh(X). It
follows that F(X) and F(X)∩ C(X) satisfy the conditions of [3, Prop. 2.13], and so (i) holds.
The equality (ii) is simply the affine case of (i).

Let us now show that N(U) ∈F(OX(U))⊥ ∩F(OX(U))∧. We already know from previous
arguments that N(U) ∈F(OX(U))⊥. Now let us check N(U) ∈F(OX(U))∧. Since i∗(N ) ∈
F(X)∧, there is an exact sequence Fm �Fm−1→· · ·→F1→F0 � i∗(N ), for some m > 0,
where Fk is a flat sheaf on X for every 0≤ k≤m. Apply now the exact functor i∗ (see [18, 6.3])
to obtain the following exact sequence in Qcoh(U):

Since the previous sequence is formed by quasi-coherent sheaves on U, it remains exact after
applying the functor of global sections �(U,−) (see [25, Prop. II 5.6]):

Here, each Fk(U) is a flat OX(U)-module by the case m= 0 settled previously. Then, N(U) ∈
F(OX(U))∧. Hence, from (ii) we can conclude that N(U) ∈ (F(OX(U))∩ C(OX(U)))∧.

Therefore, since i∗(A)(U) ∈ GF(OX(U)) and N(U) ∈ (F(OX(U))∩ C(OX(U)))∧, we conclude that
Exti

X(A, B)∼= Exti
OX (U)(i

∗(A)(U), N(U))= 0.

Proposition 5.5. Let X be a noetherian8 semi-separated scheme, and U ⊆ X be an open affine subset
such that every OX(U)-module has finite Gorenstein flat dimension. Then, for every S ∈ i∗(Qcoh(U))
there exists a short exact sequence S�B�A with A ∈GF(X) and B ∈ (F(X)∩ C(X))∧.

Proof. Let us write S	 i∗(N ) with N ∈Qcoh(U). First, note by [25, Prop. II 5.4] that we can write
N	 Ñ for some OX(U)-module N ∈Mod(OX(U)). Since N has finite Gorenstein flat dimension, and
(GF(OX(U)), F(OX(U))∩ C(OX(U))) is a left Frobenius pair in, there exists a short exact sequence N �
B � A with A ∈ GF(OX(U)) and B ∈ (F(OX(U))∩ C(OX(U)))∧. The previous induces by [25, Prop. II
5.2] an exact sequence Ñ � B̃ � Ã of associated sheaves on U. Now since the functor i∗ is exact by [18,
Lem. 6.5], the previous sequence induces in turn a short exact sequence S� i∗(B̃) � i∗(Ã) of sheaves
on X. The result will follow after showing that i∗(Ã) ∈GF(X) and i∗(B̃) ∈ (F(X)∩ C(X))∧:

8Recall that X is noetherian if it has a finite covering by affine open sets Spec(Ai), where each Ai is a (commutative) noetherian
ring.
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• i∗(Ã) is a Gorenstein flat sheaf on X: Since A is a Gorenstein flat OX(U)-module, we have that
A= Z0(F•) for some exact complex F• of flat OX(U)-modules such that F• ⊗OX (U) I is exact for
every injective I ∈Mod(OX(U)). Using the assumption that X is a noetherian semi-separated
scheme, we can apply [35, Lem. 4.8] to deduce that i∗(F̃•) is an exact complex of flat sheaves on
X such that i∗(F̃•)⊗I is exact for every injective sheaf I ∈Qcoh(X). Hence, i∗(Ã)= Z0(i∗(F̃•))
is a Gorenstein flat sheaf on X.

• i∗(B̃) has finite flat-cotorsion dimension: For B there is a flat-cotorsion resolution of B, say
Fm � Fm−1→· · ·→ F1→ F0 � B, which induces an exact sequence i∗(F̃m) � i∗( ˜Fm−1)→
· · ·→ i∗(F̃1)→ i∗(F̃0) � i∗(B̃) where each i∗(F̃k) is a flat sheaf on X by our previous comments
in the proof of Proposition 5.4. Moreover, since U is affine, for every flat sheaf F and 0≤ k≤m
we have that Exti

X(F, i∗(F̃k))∼= Exti
U(i∗(F), F̃k)∼= Ext1

OX (U)(F(U), Fk)= 0. Hence, the previous
sequence is a flat-cotorsion resolution of i∗(B̃).

Cut cotorsion pairs and the Finitistic Dimension Conjecture. Among the homological conjectures
studied nowadays, the Finitistic Dimension Conjecture has a remarkable importance in representa-
tion theory of algebras, as it implies the validity of other well-known conjectures, such as the Nunke
Condition and the (generalized) Nakayama Conjecture. The Finitistic Dimension Conjecture was stated
by H. Bass in 1960 [2], and it says that the small finitistic dimension of an Artin algebra is always finite.
This problem still remains open, but has been proved in several cases (see for instance [23, 24, 28]).

In the next lines, we give some examples of cut cotorsion pairs and complete cut cotorsion pairs that
arise when studying the finiteness of the big and small finitistic dimensions of a ring. Moreover, in the
last part of this section, we shall provide a characterization of the Finitistic Dimension Conjecture in
terms of complete cut cotorsion pairs.

In what follows, we let C be an abelian category with enough projective and injective objects. The
finitistic dimension of Cis defined as

Findim(C) := pd(P∧).

Note that P∧ is a resolving subcategory, and since C has enough projectives, one has that (P∧)⊥1 =
(P∧)⊥. Hence, by setting the subcategories

G := (P∧)⊥1 and F := ⊥1G = ⊥1 ((P∧)⊥1 )

one forms a hereditary cotorsion pair (F , G), which turns out to be useful for computing the finitistic
dimension of C, as we show in the following result.

Proposition 5.6. Findim(C)= coresdimG(C)= pd(F).

Proof. For any M ∈ C we have that coresdimG(M)= coresdim(P∧)⊥(M). Now by the dual of [4,
Lem. 2.11], we get that coresdim(P∧)⊥ (M)= idP∧ (M), which yields coresdim(P∧)⊥ (C)= idP∧(C)=
pd(P∧)= :Findim(C). On the other hand, using again [4, Lem. 2.11], we get that pd(F)= id⊥G(C)=
coresdim(⊥G)⊥ (C)= coresdimG(C). Hence, the result follows.

In the next result, we aim to characterize the finiteness of Findim(C) by means of the existence of a
certain cut cotorsion pair.

Theorem 5.7. The following conditions are equivalent for any n≥ 0 and G := (P∧)⊥1:

(a) Findim(C)≤ n.
(b) (P∧n , G) is a left cotorsion pair cut along P∧n ∪ ⊥1G.
(c) P∧n = ⊥1G.

Moreover, Findim(C)= coresdimG(C)= pd(⊥1G).
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Proof. The implication (c) ⇒ (b) is immediate, while for (a) ⇒ (c) we have by Proposition 5.6
that pd(⊥1G)= Findim(C)≤ n, and so ⊥1G ⊆P∧n ⊆P∧ ⊆ ⊥1G. Finally, for (b) ⇒ (a), we can note that
P∧n = ⊥1G. We then have by Proposition 5.6 that Findim(C)= pd(⊥1G)= pd(P∧n )≤ n.

In the particular case where C is the category Mod(R) of modules over a ring R, let Findim(R) denote
the finitistic dimension of Mod(R). Using [10, Thms. 2.2 3.2], we can add to the equivalence in Theorem
5.7 an additional condition, and also improve condition (b).

Note that in Theorem 5.7, we only need conditions (lccp1) and (lccp2) to characterize the finiteness
of Findim(C), that is, in some cases left completeness is not required for objects along the cut. This is
the case shown in the following example.

Example 5.8. In [6], the authors introduced the notion of objects of finite type in Grothen-dieck cat-
egories, as a generalization for finitely n-presented modules in the sense of [7, §1]. An object F in
a Grothendieck category C is said to be of type FPn if the functor Extk

C(F,−) preserves direct limits
for every 0≤ k≤ n− 1 (see [6, Def. 2.1]). Recall also that C is locally finitely presented if it has a
generating family of finitely presented objects.

Let FPn denote the subcategory of objects of type FPn in a locally finitely presented Grothen-dieck
category C, with n≥ 2. Consider also the subcategory FP⊥1

n of FPn-injective objects. By [6, Part 4 of
Prop. 2.8], we know that FPn is closed under direct summands. Moreover, by [6, Prop. 3.8] the equality
FPn ∩FPn−1 = ⊥1 (FP⊥1

n )∩FPn−1 holds true. Hence, (FPn, FP⊥1
n ) and FPn−1 satisfy (lccp1) and

(lccp2). Also, it is clear that (rccp1) and (rccp2) hold for (FPn, FP⊥1
n ) and FPn−1.

Moreover, in Mod(R), Ch(R) or Qcoh(X) (with X semi-separated), (FP1, FP⊥1
1 ) is a cotorsion pair

cut along the subcategory of finitely generated objects. See [6, Rmk. 3.9 Prop. B.2] for details.

Proposition 5.9. Let R be an arbitrary ring. The following are equivalent for the subcategory G :=
(P(R)∧)⊥1 and any integer n≥ 0:

(a) Findim(R)≤ n.
(b) P(R)∧n ∪ ⊥1G ∈ lCuts(P(R)∧n , G).
(c) P(R)∧n = ⊥1G.
(d) There exists S ∈ rCuts(P(R), G∨n ) such that R(R) ∈ S .

Moreover, Findim(R)= coresdimG(R(R)).

Proof. We already have from Theorem 5.7 the implications (a)⇔ (c) and (b)⇒ (a) and (c).

• (c)⇒ (b): From (c) we have that (P(R)∧n , G)= (⊥1G, G) is a hereditary cotorsion pair in Mod(R),
which is also complete by [14, Thm. 7.4.6]. In particular, (P(R)∧n , G) is a complete cotorsion
pair cut along any subcategory of Mod(R).

• (c)⇒ (a): It follows from [10, Thm. 3.2].
• (a) ⇒ (d): From [10, Thm. 3.2] and Proposition 5.6, we get that G∨n =Mod(R). Then,

(P(R), G∨n )= (P(R), Mod(R)) is clearly a complete right cotorsion pair cut alongS := Mod(R).
• (d)⇒ (a): Condition (d) yields G∨n ∩ S =P(R)⊥1 ∩ S = S . Thus, R(R) ∈ S ⊆ G∨n . By [10, Dual

of Prop. 1.11 & Thm. 3.2], the latter is equivalent to saying that Findim(R)≤ n.

Condition (d) in the previous theorem can be simplified for certain rings. Specifically, using the proof
of (a)⇔ (d), along with [10, Coroll. 3.3], we have the following result.

Corollary 5.10. Let R be a left perfect and right coherent ring and G := (P(R)∧)⊥1 . Then,
Findim(R)≤ n if, and only if, there exists a subcategory S ⊆Mod(R) such that S ∈ rCuts(P(R), G∨n )
with R ∈ S .

In the rest of this section, we apply Theorem 5.7 to establish a relation between cotorsion cuts and
the small finitistic dimension of a ring. We shall work with a slight generalization of this dimension.
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Let FP∞(R)=⋃
n≥0 FPn(R), where FPn(R) denotes the subcategory of R-modules of type FPn (see

Example 5.8 above). The R-modules in FP∞(R) are known as modules of type FP∞.

Definition 5.11. Let R be a ring. The FP-finitistic dimension of R is
FP-findim(R) := pd(P(R)∧ ∩FP∞(R)).

Let mod(R) be the subcategory of finitely generated R-modules9. The small finitistic dimension of
R is

findim(R) := pd(P(R)∧ ∩mod(R)).

Remark 5.12. It is known that in the case where R is a left noetherian ring, FP∞(R)=mod(R), and
so FP-findim(R)= findim(R).

In what follows, let us consider the subcategory
G<∞ := (P(R)∧ ∩FP∞(R))⊥1 .

The subcategoryFP∞(R) is thick by [5, Prop. 2.3], and so we can note that G<∞ = (P(R)∧ ∩FP∞(R))⊥.
From this equality, and following the arguments in Proposition 5.6 and Theorem 5.7, one can show that

FP-findim(R)= coresdimG<∞ (Mod(R))= pd(⊥1 (G<∞)). (iii)
The following result is an extension of [10, Thm. 3.4] in the setting of cotorsion cuts.

Proposition 5.13. The following assertions are equivalent for any integer n≥ 0:

(a) FP-findim(R)≤ n.
(b) (P(R)∧n ∪ ⊥1 (G<∞))∩FP∞(R) ∈ lCuts(P(R)∧n , G<∞).
(c) P(R)∧n ∩FP∞(R)= ⊥1 (G<∞)∩FP∞(R).
(d) There exists S ⊆Mod(R) such that S ∈ rCuts(P(R), (G<∞)∨n ) with R(R) ∈ S .

Proof.

• (a)⇒ (c): The equality (iii) implies ⊥1 (G<∞)∩FP∞(R)⊆P(R)∧n ∩FP∞(R). The other con-
tainment is clear.

• (c) ⇒ (b): It is easy to verify from (c) that (P(R)∧n , G<∞) is a left cotorsion pair cut along
(P(R)∧n ∪ ⊥1 (G<∞))∩FP∞(R). Condition (lccp3) is also clear from the assumption.

• (b) ⇒ (a): From (b) we can note P(R)∧n ∩FP∞(R)= ⊥1 (G<∞)∩FP∞(R). This implies
that P(R)∧ ∩FP∞(R)=P(R)∧n ∩FP∞(R), and so from (iii) we have that FP-findim(R)=
pd(P(R)∧n ∩FP∞(R))≤ n.

• (a) ⇒ (d): Similar to the corresponding implication in Proposition 5.9 and follows by using
[10, Thm. 3.4].

• (d) ⇒ (a): Suppose there exists S ∈ rCuts(P(R), (G<∞)∨n ) with R(R) ∈ S . Then, it follows that
S = (G<∞)∨n ∩ S , and so R(R) ∈ (G<∞)∨n . The latter along with [10, Thm. 3.4 dual of Prop. 1.11]
implies that FP-findim(R)≤ n.

From the previous result, we can obtain the following characterization for the finiteness of
FP-findim(R), provided that R is coherent, in terms of right cotorsion cuts. This way we extend [10,
Coroll. 3.5].

9The reader should be warned that in [10] the notation mod(R) is used for the subcategory of all R-modules admitting a projective
resolution consisting of finitely generated modules.
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Corollary 5.14. For any left coherent ring R, the following assertions are equivalent:

(a) FP-findim(R)≤ n.
(b) There exists S ⊆ C such that S ∈ rCuts(P(R), (G<∞)∨n ) with R ∈ S .

Recall from Remark 3.12 that FP-findim(R)= findim(R) provided that R is a left noetherian ring.
Since any artinian ring is noetherian, one can deduce the following extension of [10, Coroll. 3.6] by
using Propositions 5.9 and 5.13.

Corollary 5.15. The following statements hold true for any two-sided artinian ring R:

(1) Findim(R)= n if, and only if, n is the smallest nonnegative integer such that there exists S ⊆
Mod(R), with R ∈ S and such that (P(R), G∨n ) is a complete right cotorsion pair cut along S .

(2) findim(R)= n if, and only if, n is the smallest nonnegative integer such that there exists
S ⊆Mod(R), with R ∈ S and such that (P(R), (G<∞)∨n ) is a complete right cotorsion pair cut
along S .

Relations with Serre subcategories. Let C be a locally small abelian category. Recall that a subcategory
S ⊆ C is a Serre subcategory if for every short exact sequence X � Y � Z in C, one has that Y ∈ S if,
and only if, X, Z ∈ S . In particular, Serre subcategories are clearly thick, and closed under subobjects
and quotients.

If S ⊆ C is a Serre subcategory, we can consider the Serre quotient C/S , which is abelian and whose
objects are the same objects in C. In Ogawa’s [40], the author gives several outcomes from the existence
of a right adjoint for the associated quotient functor Q : C→ C/S . The purpose of this section is to char-
acterize the latter via complete right cut cotorsion pairs. Let us begin proving the following consequence
of having a right adjoint for Q.

Proposition 5.16. Let S be a Serre subcategory of C. If the Serre quotient functor Q : C −→ C/S admits
a right adjoint, then (S , S⊥0 ∩ S⊥1 ) is a complete right cotorsion pair cut along S⊥0 .

Proof. It is clear that the dual of conditions (1) and (2) in Proposition 2.12 are satisfied. It is only left to
show that for every object M ∈ S⊥0 there exists a short exact sequence M � F � K with F ∈ S⊥0 ∩ S⊥1

and K ∈ S . So let us take M ∈ S⊥0 . By [40, Props. 1.1 & 1.3], there exists an exact sequence S
f−→M

g−→ Y
with S ∈ S and Y ∈ S⊥0 ∩ S⊥1 . Since M ∈ S⊥0 , we have that f = 0, and so g is a monomorphism. We
can thus consider the short exact sequence M

g
� Y �CoKer(g). Let us now apply again [40, Props.

1.1 & 1.3] to the object CoKer(g). We get an exact sequence D
h−→CoKer(g)

i−→ E with D ∈ S and
E ∈ S⊥0 ∩ S⊥1 . Let us factor h and i through their images, so that we get the following commutative
diagram

(iv)

where K := Im(h)=Ker(i) and C := CoKer(Ker(i))	Ker(CoKer(i)). Notice that K ∈ S since D ∈ S
and S is closed under quotients. Taking the pullback of K→CoKer(g)← Y yields the following solid
diagram:
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(v)

We show that F ∈ S⊥0 ∩ S⊥1 . Let S′ ∈ S and apply the functor HomC(S′,−) to the central row in (v). We
get the following exact sequence:

HomC(S′, F) �HomC(S′, Y)→HomC(S′, C)→ Ext1
C(S′, F)→ Ext1

C(S′, Y),

where HomC(S′, Y)= 0= Ext1
C(S′, Y) since Y ∈ S⊥0 ∩ S⊥1 . It follows that HomC(S′, F)= 0 and

HomC(S′, C)∼= Ext1
C(S′, F). Now consider the short exact sequence C � E �CoKer(i) in (iv). By

applying the functor HomC(S′,−) to this sequence we obtain the monomorphism HomC(S′, C) �
HomC(S′, E), where HomC(S′, E)= 0 since E ∈ S⊥0 . Then, Ext1

C(S′, F)∼=HomC(S′, C)= 0 for every
S′ ∈ S . Therefore, F ∈ S⊥0 ∩ S⊥1 , and thus the left-hand column in (v) is the desired exact sequence.

In the next result, we prove the converse of the previous proposition with an additional condition: we
shall need C to be cocomplete. We need to recall from [30, Def. 2.1] that two subcategories T , F ⊆ C
form a torsion pair (T , F) in C if HomC(T , F)= 0 and if for every C ∈ C there is an exact sequence
TM � M � FM with TM ∈ T and FM ∈F . In this case, T and F are called the torsion subcategory and
the torsion-free subcategory, respectively. If C is cocomplete, it is known that (T , F) is a torsion pair
if, and only if, T is closed under extensions, quotients and coproducts (See for instance [44, Prop. VI.
2.1]). In particular, every Serre subcategory S of a cocomplete locally small abelian category C, which
is closed under coproducts, is torsion.

Theorem 5.17. Let S be a Serre subcategory of a cocomplete abelian category C. If S is closed under
coproducts, then the following conditions are equivalent:

(a) Q : C→ C/S admits a right adjoint.
(b) (S , S⊥0 ∩ S⊥1 ) is a complete right cotorsion pair cut along S⊥0 .

Proof. The implication (a)⇒ (b) is Proposition 5.16. For the implication (b)⇒ (a), by [40, Prop.
1.3] it suffices to show that for every M ∈ C there exists an exact sequence S

f−→M
g−→ Y where S ∈ S

and Y ∈ S⊥0 ∩ S⊥1 . Indeed, for M ∈ C, we have an exact sequence S
f
� M

g
� S0 with S ∈ S and S0 ∈ S⊥0 ,

since S is torsion. On the other hand, since (S , S⊥0 ∩ S⊥1 ) is a complete right cotorsion pair cut along
S⊥0 , there exists a monomorphism S0

h
� Y with Y ∈ S⊥0 ∩ S⊥1 . Hence, we can form the exact sequence

S
f−→M

h◦g−→ Y .

Cuts from extriangulated categories. We conclude this article with a final application of complete
cut cotorsion pairs in the context of extriangulated categories. Such categories where introduced by
H. Nakaoka and Y. Palu in [38] as a simultaneous generalization of triangulated categories and exact
categories.

In what follows, we let (A, E, s) denote an extriangulated category. Here, A is a skeletally small
additive category, E : Aop ×A−→Mod(Z) is a biadditive functor with an additive realization s satisfy-
ing a series of axioms (see [38, Def. 2.12] for details). We shall also consider the following categories
constructed from A:
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• mod(Aop) denotes the subcategory of the (Grothendieck) category Mod(Aop) formed by the
right A-modules (or Aop-modules) F : Aop −→Mod(Z) which are finitely presented, that is,
for which there exists an exact sequence HomA(−, A1)→HomA(−, A0) � F in Mod(Aop) with
A0, A1 ∈A.

• For any subcategory X ⊆Mod(Aop) of Aop-modules,
−→X is the subcategory of Mod(Aop) of

direct limits of objects in X .
• Lex(Aop) and lex(Aop) denote the subcategories of Mod(Aop) and mod(Aop), respectively, of

all left exact Aop-modules. Recall that an Aop-module is left exact if it maps kernels in A into
cokernels in Mod(Z).

• def(Aop) denotes the subcategory of mod(Aop) consisting of all finitely presented Aop-modules
isomorphic to defects (see [40, Def. 2.4]).

For skeletally small extriangulated categories, we can obtain from the subcategories
−−−−→
def(Aop) and

Lex(Aop) the following example of a complete cut cotorsion pair.

Proposition 5.18. Let (A, E, s) be a skeletally small extriangulated category with weak kernels. Then,

(
−−−−→
def(Aop), Lex(Aop))

is a complete right cotorsion pair cut along (
−−−−→
def(Aop))⊥0 .

Proof. By [40, Prop. 2.5] we know that def(Aop) is a Serre subcategory of mod(Aop). On the other
hand, by Krause’s [31, Thm. 2.8] we have that

−−−−→
def(Aop) is a Serre subcategory of Mod(Aop), and by

[40, Thm. 3.1] the quotient functor Q : Mod(Aop)−→Mod(Aop)/
−−−−→
def(Aop) admits a right adjoint. It then

follows by Proposition 5.16 that (
−−−−→
def(Aop), (

−−−−→
def(Aop))⊥0 ∩ (

−−−−→
def(Aop))⊥1 ) is a complete right cotorsion pair

cut along (
−−−−→
def(Aop))⊥0 . Finally, Lex(Aop)= (

−−−−→
def(Aop))⊥0 ∩ (

−−−−→
def(Aop))⊥1 follows by [40, Lem. 3.3].

The following is the finitely presented version of the previous proposition.

Proposition 5.19. Let (A, E, s) be a skeletally small extriangulated category with weak kernels. If the
quotient functor Q : mod(Aop)−→mod(Aop)/def(Aop) admits a right adjoint, then

(def(Aop), lex(Aop))

is a complete right cotorsion pair cut along (def(Aop))⊥0 .

Proof. Follows as Proposition 5.18 by using [40, Props. 2.5, 2.8 (2), Thm. 2.9] and
Proposition 5.16.

The existence of the previous cut cotorsion pair can be also guaranteed in the particular case where
A is an exact category, under some mild additional assumptions, as we specify below.

Corollary 5.20. Let A be a skeletally small exact category with weak kernels and enough projectives.
Then,

(def(Aop), lex(Aop))

is a complete right cotorsion pair cut along (def(Aop))⊥0 .

Proof. By [40, Props. 2.16 (1) 2.17] we have that the quotient functor

Q : mod(Aop)−→mod(Aop)/def(Aop)

admits a right adjoint. Hence, the result follows from Proposition 5.19.
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We conclude this section also covering the other particular case where A is a triangulated cate-
gory. We show how to induce from a cotorsion pair (U , V) in A, the complete right cotorsion pair
(def(U op), lex(Vop)) cut along (def(U op))⊥0 in mod(Aop). Moreover, we show that (U , V) is a co-t-structure
if, and only if, (def(U op), lex(Vop)) is also a complete left cotorsion pair cut along (def(U op))⊥0 .

In what follows, let us fix a skeletally small triangulated category A with translation automorphism
[1] : A−→A. Given (full) additive subcategories U , V ⊆A, recall that (U , V) is a cotorsion pair in A
if the following two conditions are satisfied:

(1) HomA(U, V ′)= 0 for every U ∈ U and V ′ ∈ V[1]. Here, V[1] denotes the subcategory of objects
in A isomorphic to objects of the form [1](V ) with V ∈ V .

(2) A= U ∗ V[1], that is, if every C ∈A admits a distinguished triangle U→C→ V ′ →U[1]
where U ∈ U and V ′ ∈ V[1].

Following [4, 40], if (U , V) is a cotorsion pair in A, then U gives rise to an extriangulated
category with weak kernels, translation automorphism [1]|U and biadditive functor E(+,−) :=
HomU (+,−[1]) : U op × U −→Mod(Z). Here,A+ =W ∗ V[1] andA− = U [− 1] ∗W , whereW = U ∩
V . Moreover, by [40, Prop. 4.2] the quotient functor Q : mod(U op)−→mod(U op)/def(U op) has a right
adjoint, and so from Proposition 5.19 we deduce the following result.

Corollary 5.21. Let (U , V) be a cotorsion pair in A. Then, (def(U op), lex(U op)) is a complete right
cotorsion pair cut along (def(U op))⊥0 .

Recall that a co-t-structure is a pair (X , Y) of subcategories of A such that (X [1], Y) is a cotorsion
pair in A satisfying X ⊆X [1].

Proposition 5.22. The following are equivalent for every cotorsion pair (U , V) in A:

(a) (U , V) is a co-t-structure in A (that is, U [− 1]⊆ U ).
(b) (def(U op), lex(U op)) is a complete cotorsion pair cut along (def(U op))⊥0 .

Proof. First, suppose condition (a) holds. By the previous corollary, we have that (def(U op), lex(U op))
is a complete right cotorsion pair cut along (def(U op))⊥0 . So we focus on showing that (def(U op), lex(U op))
is a complete left cotorsion pair cut along (def(U op))⊥0 . Consider the heart of the cotorsion pair (U , V)
given by H= (A+ ∩A−)/W . It is known by Nakaoka’s [36, Thm. 6.4] that H is an abelian category.
Moreover, by [40, Thm. 4.7] it is also known that H and lex(U op) are naturally equivalent. Using the
assumption (a) that (U , V) is a co-t-structure in A, we can note that A+ ∩A− ⊆ U ∩ V , and so H= 0,
and hence lex(U op)= 0. On the other hand, by [40, Prop. 4.2] and [41, Thm. IV.4.5], we can note that for
every X ∈mod(U op) there exists an epimorphism D � X with D ∈ def(U op), and since def(U op) is a Serre
subcategory, the previous implies that mod(U op)= def(U op). It then follows that (def(U op), lex(U op))=
(mod(U op), 0), which is clearly a complete left cotorsion pair cut along (def(U op))⊥0 .

Now let us assume (b). We thus have that (def(U op), lex(U op)) is a complete cotorsion pair cut along
(def(U op))⊥0 , and so for every X ∈ (def(U op))⊥0 there exists an epimorphism D � X with D ∈ def(U op).
Again, since def(U op) is a Serre subcategory, we have that X ∈ (def(U op))⊥0 ∩ def(U op)= 0. If follows that
(def(U op))⊥0 = 0, which in turn and along with [40, Prop. 2.8 (2)] implies that lex(U op)= (def(U op))⊥0 ∩
(def(U op))⊥1 = 0. Hence, the cotorsion pair (U , V) is a co-t-structure in A by [37, Rmk. 2.6] and [40,
Thm. 4.7].
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