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Abstract

Field trials conducted in multiple years across several locations play an essential role in plant
breeding and variety testing. Usually, the analysis of the series of field trials is performed using
a two-stage approach, where each combination of year and site is treated as environment. In
variety testing based on the results from the analysis, the best varieties are recommended for
cultivation. Under a Bayesian approach, the variety recommendation process can be treated as
a formal decision theoretic problem. In the present study, we describe Bayesian counterparts
of two stability measures and compare the varieties in terms of the posterior expected utility.
Using the described methodology, we identify the most stable and highest tuber yielding var-
ieties in the Polish potato series of field trials conducted from 2016 to 2018. It is shown that
variety Arielle was the highest yielding, the third most stable variety and was the second best
variety in terms of the posterior expected utility. In the present work, application of the
Bayesian approach allowed us to incorporate the prior knowledge about the tested varieties
and offered a possibility of treating the variety recommendation process as a formal decision
process.

Introduction

Field trials conducted in multiple years across several locations play an essential role in plant
breeding and variety testing. In plant breeding, the lines are evaluated and the most promising
lines are selected for further breeding. In variety testing, based on the results from the analysis
of a series of field trials, the best varieties are recommended for cultivation. Usually, the ana-
lysis of the series of trials is performed using a two-stage approach, where each combination of
year and site is treated as environment. In literature, several stability measures have been
described, e.g. Shukla’s stability variance (Shukla, 1972), regression on the environmental
mean approach to assessments of stability (Finlay and Wilkinson, 1963; Eberhart and
Russell, 1966; Digby, 1979), additive main effects and multiplicative interaction (AMMI)
model (Gauch, 1988) or genotype main effects and genotype-by-environment interaction
effects (GGE) model (Yan and Kang, 2003). However, with the increase of computing
power of computers and the development of statistical methods, the assessment of stability
based on linear mixed models has become more popular (see e.g. Piepho, 1999; Piepho and
van Eeuwijk, 2002; Smith and Cullis, 2018; Studnicki et al., 2017, 2019). In Piepho (1999),
the above mentioned models were defined in terms of variance components.

In Poland, new varieties of important species are assessed before the registration in
value-for-cultivation-and use (VCU) trials, and further in post-registration trials. Based on
the results of post-registration trials, a recommendation to the farmers is given. Only stable
and high-yielding varieties are recommended for cultivation. Looking at the variety recom-
mendation process from the decision-theory perspective, the problem of recommending var-
ieties for cultivation can be treated as a decision-making problem in a situation of uncertainty.
In literature, similar problems were solved by using Bayesian decision theory (see e.g. Theobald
and Talbot, 2002; Theobald et al., 2006). For this reason, in the present work, a Bayesian
approach was used. As in Theobald et al. (2002, 2006), we first fitted a Bayesian linear
mixed model, and next the varieties were compared in terms of the posterior expected utility.

The Bayesian analysis has some benefits over the frequently used models in stability ana-
lysis. First of all, most of the frequently used stability measures are likelihood-based
approaches. In Searle et al. (2006) (see also Harville, 1977), it was pointed out that the problem
with likelihood-based estimation with random effects is that, except the simplest situations of
balanced and orthogonal data, the sampling distributions of variances are unknown. In con-
sequence, since the sampling distributions do not have analytical closed-form solutions, it is
very difficult to properly account for estimation error associated with variances when they
are used to compute weights for estimation of means. In contrast to likelihood-based estima-
tion, Bayesian estimation produces posterior distributions that properly account for uncer-
tainty in the estimation of all parameters. Moreover, in Theobald et al. (2002), it was
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pointed out that a Bayesian approach can alleviate problems asso-
ciated with estimating complex models, such as zero estimates of
variance components.

The use of the Bayesian approach in the context of agricultural
field experiments is rare (Theobald and Talbot, 2002; Theobald
et al., 2002; Edwards and Jannink, 2006; Theobald et al., 2006;
Crossa et al., 2011; Josse et al., 2014; Orellana et al., 2014; de
Oliveira et al., 2016; Edwards and Orellana, 2015; Bernardo
et al., 2018) and is mainly focused on AMMI models (Crossa
et al., 2011; Josse et al., 2014, Bernardo et al., 2018) and GGE
biplots (de Oliveira et al., 2016). The Bayesian counterpart of
the Finlay–Wilkinson model has been described in Lian and de
los Campos (2016). In the present study, Bayesian counterparts
of two stability measures described in Piepho (1999) are given.
In contrast to Edwards and Jannink (2006), the stability measures
are defined in terms of Kronecker products. Moreover, by adopt-
ing the approaches described in Theobald et al. (2002, 2006) to
our variety recommendation problem, we compare varieties in
terms of the posterior expected utility. Using the described meth-
odology, we identify the most stable and highest yielding potato
varieties for a Polish series of field trials conducted in years
2016–2018. As in Edwards and Jannink (2006) and Orellana

et al. (2014), the stability analysis was performed under the het-
erogeneity of error variances assumption.

Materials and methods

Data

The data set consists of potato field trials performed in years
2016–2018. The trials used in the study were conducted in experi-
mental stations (sites) belonging to the Research Centre for
Cultivar Testing (COBORU) (Table 1).

Most of the trials were organized in a randomized complete
block design with three replicates. Only in 2018, at six sites, the
trials were conducted according to a 1-resolvable design with
three replicates and two blocks. On each plot, there were 60 plants
planted. Plots that experienced unusual damage, such as boar
damage, were excluded from further analyses. During the 3 years
of study, in total, 22 varieties were tested. Since we were interested
in assessing yielding stability, we choose to analyse varieties which
were tested for 3 years. The list of varieties used in the present
study with their country of origin is given in Table 2. During
the 3-year period, most of the varieties were tested in all sites,
only variety Everest was tested at five sites in years 2016 and 2017.

Table 1. Sites used in the 3-year variety trials conducted from 2016 to 2018

Site

Geographic coordinates Year

Latitude Longitude m a.s.l. 2016 2017 2018

Białogard (3) 54°00′N 16°00′E 24 X x x

Bobrowniki (18) 52°49′N 17°18′E 90 X x x

Cicibór Duży (48) 52°05′N 23°07′E 114 X x x

Chrząstowo (14) 53°11′N 17°35′E 10 X – –

Głębokie (15) 52°39′N 18°27′E 85 – x x

Karzniczka (1) 54°29′N 17°17′E 80 X x x

Kościelna Wieś (21) 51°48′N 18°01 E 120 X x x

Krzyżewo (11) 53°01′N 22°46′E 135 X x x

Masłowice (25) 51°15′N 18°38′E 174 X x x

Nowy Lubliniec (45) 50°16′N 23°06′E 274 X x x

Pawłowice (41) 50°28′N 18°29′E 240 x x x

Rarwino (4) 53°56′N 14°50′E 10 x x –

Rychliki (10) 53°59′N 19°32′E 80 x x x

Seroczyn (26) 52°00′N 21°56′E 180 x x x

Słupia (43) 50°38′N 19°58′E 290 x x x

Słupia Wielka (19) 52°13′N 17°14′E 85 x x –

Sulejów 51°21′N 19°52′E 188 x x x

Szczecin-Dąbie (5) 53°23′N 14°40′E 9 x x x

Świebodzin (23) 52°14′N 15°35′E 90 x x x

Tarnów (48) 50°35′N 16°47′E 300 x x x

Uhnin (49) 51°34′N 23°02′E 157 x x x

Węgrzce (39) 50°07′N 19°59′E 285 x x x

Wrócikowo (8) 53°49′N 20°40′E 142 x x x

Zybiszów (29) 51°04′N 16°55′E 130 x x x
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In Polish potato VCU and post-registration trials, one of the
analysed characteristics is tuber yield, which is observed on
plots. The observed tuber yields are expressed in decitonnes per
hectare (dt/ha).

Statistical analysis

The observations were modelled according to a linear mixed
model. For the sake of clarity, throughout the paper by environ-
ment we will mean a combination of year and location.

In the analysed data set, 1-resolvable design was used only in
six out of 67 environments. Speed et al. (1985) have shown that
dropping the block effect for this design provides still a valid ana-
lysis. For this reason, we omitted in our model the effect of blocks
nested within replicates and environments.

Let yikr be the potato tuber yield for the i-th variety (i = 1, …,
I) at the k-th environment (k = 1, …, K) and in the r-th replicate
(r = 1, …, R). Then the model can be written as:

yikr = mi + uk + vik + wkr + eikr (1)

where μi denotes the mean of the i-th variety. By uk, vik , wkr and
eikr we denote in model (1) the random effects of environments,
variety × environment interaction, of replicates nested within
environment and of errors, respectively. Using vector notation,
model (1) can be written as:

y = Xb+ Z1u+ Z2v + Z3w + e (2)

where y is a vector of potato tuber yields and β is the vector of fixed
variety means. By u, v, w, we denote in model (2) the random vec-
tors of environment effects, of environment × variety interaction
effects, and of replicates nested within environment effects, respect-
ively. Further in model (2), by e = [e′1, . . . , e′K ]′, where ek = [e1,
k,1,…, eI,k,R]

′
(k = 1,…, K), we denote the random vector of errors.

The matrices X, Z1, Z2 and Z3 in model (2) are design matrices for
β, u, v and w, respectively.

To fit the model, a hierarchical Bayesian linear mixed model
was used. The model has three hierarchies or stages. In the first,
it was assumed that observations are exchangeable samples
from normal distribution:

y|b, u, v, w, R0 � N(Xb+ Z1u+ Z2v + Z3w , ⊕ s2
kInk )

where R0 = diag(s2
1, s

2
2, . . . , s

2
K ) is a matrix of residual var-

iances, nk is the number of plots in the k-th environment, and
⊕ denotes the direct sum of matrices. In case when the number
of plots is equal in all trials, the above covariance matrix can be
written as R0 ⊗ I, where ⊗ denotes the Kronecker product.

In the second, the prior distributions are assigned to β, u, v and
w; these correspond to the assumptions made on fixed and ran-
dom effects in a Bayesian linear model. For the vector of variety
means β a vague, large-variance Gaussian prior was assigned, i.e.

b � N(0, 108I)

The vector of environment effects u was assigned a normal dis-
tribution with mean vector of zeros as:

u|s2
u � N(0, s2

uI)

whereas the vector of replicates nested within environments w was
assigned a normal distribution with mean vector of zeros as:

w|s2
w � N(0, s2

wI)

For each trial (k = 1, …, K), we assumed that
ek|s2

k � N(0, s2
kInk ). This implies that conditionally on

s2
1, . . . , s

2
K , the vector e follows

e|R0 � N (0, ⊕ s2
kInk )

The vector of environment × variety interaction v was assigned
a normal distribution with mean vector of zeros and covariance
matrix G0 ⊗ I, i.e.

v|G0 � N(0, G0 ⊗ I).

Since we are interested in identifying the most stable varieties,
by assuming different covariance matrices and modifying the list
of random vectors in (2), we obtained different models. Our base
model is Shukla model (SH) for which G0 = diag(s2

11, . . . , s
2
II).

Next, by removing from the model (2) the random vector of
environment effects and assuming that G0 is completely unre-
stricted covariance matrix (i.e. the elements in the symmetric
variance-covariance matrix G0 may take any value, as long G0),
we obtained the environmental variance model (ENVIR;
Piepho, 1999). Since in ENVIR model, the random vector of
environment effects u is excluded, the random vector v is no
longer vector of interaction effects rather a random vector of
environment-variety effects. For both models, the diagonal ele-
ments of covariance matrix G0 are variances corresponding to
the I varieties, which are interpreted as stability measures.

Table 2. Varieties used in the 3-year variety trials conducted from 2016 to 2018
and their country of origin

Variety Country

Year

2016 2017 2018

Arielle The Netherlands X X x

Denar Poland x X x

Everest The Netherlands x x x

Impala The Netherlands x x x

Lord Poland x x x

Miłek Poland x x x

Riviera The Netherlands x x x

Viviana Germany x x x

Table 3. Summary statistics for tuber yield: mean, standard deviation (S.D.),
minimum (min), median (med), maximum (max) of observations for tuber yield

Year

Tuber yield [t/ha]

mean S.D. min med max

2016 57.21 11.15 14.86 54.42 78.19

2017 48.13 11.15 20.34 47.21 85.99

2018 42.51 15.89 8.95 41.71 85.17
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In the final or last stage, prior distributions were assigned to
hyperparameters s2

u, s2
w, R0 and G0. We assumed that both

s2
u and s2

w follow an inverse-Wishart distribution with 2.002
degrees of freedom and one-dimensional scale matrix equal to
(0.002/2.002)I. For covariance matrix G0, as in Gelman et al.
(2014), we assigned inverse-Wishart distribution prior distribu-
tion with dimG0 + 1 degrees of belief. In our stability analysis,
for covariance matrix G0 as the scale matrix, we used diagonal
matrix of order dimG0 with elements equal to empirical variances
of each variety divided by dimG0. Finally, for matrix R0, we
assigned inverse-Wishart prior distribution with 2.002 degrees
of belief. For matrix R0 as the scale matrix, we used the diagonal
matrix of order K, with elements equal to (0.002/2.002). In the
supplement of Longdon et al. (2011), it was pointed out that
inverse-Wishart prior distribution defined in this way induces a
marginal prior distribution on the variances that is equivalent
to an inverse-γ distribution with shape and scale equal to 0.001.

Both SH and ENVIR models were fitted using R-package
MCMCglmm (Hadfield, 2012). Each model was run five times
with different starting values. The length of each chain was set
to 2 000 000 iterations with a burn-in period of 1 000 000 itera-
tions and a thinning interval equal to 50. The convergence of
chains was examined by visual inspection of trace plots and
using the Gelman and Rubin (1992) convergence diagnostic
(see also Cowles and Carlin, 1996; Gelman et al., 2014) imple-
mented in the coda R-package (Plummer et al., 2006). For each
model and chain, the deviance information criterion
(Spiegelhalter et al., 2002; DIC; in smaller-is-better form; see
also Sorensen and Gianola, 2002) was calculated. For clear presen-
tation, only the results for the best model will be reported. For the
best model, the estimates from all five chains were summarized
using the summary function from coda R-package (Plummer
et al., 2006).

Further, based on the obtained posterior mean yields and sta-
bility measure associated with the best model, all varieties were
ranked. To combine the rankings, we applied Kang’s (1988) non-
parametric rank-sum stability procedure, where both posterior
mean yield and posterior stability measure associated with the
best model were used as a selection criterion. As in Kang
(1988), the varieties with the lowest rank sum are the most
desirable.

Further, for the best model, based on the variance components
and the posterior variety means, coefficients of variation (CV)
were calculated using the formula:

CVi = t̂i
m̂i

× 100%, i = 1, . . . , I (3)

where t̂i is equal to
���������
ŝ2
u + ŝ2

ii

√
for the SH model,

���
ŝ2
ii

√
for the

ENVIR model, and ŝ2
ii is the estimate of the i-th diagonal element

of G0 either in the SH model or the ENVIR model.
Since choosing which of the number of varieties for future

sowing is a decision theoretic problem, optimum Bayesian choice
of the best variety requires a utility function to be specified. In the
present work, the critical-level approach to stability was used and
for each variety, the utility function was defined in the following
way: when the yield y is below the critical level γ, the utility is
zero; above γ, the utility is equal to a positive constant c times
y. Given the model parameters and assuming normality, the
expected utility for variety i is equal to

E(yi|D, g) = c mi + ti × w
g− mi

ti

( )[ ]
(4)

where τi is equal to
���������
s2
u + s2

ii

√
for the SH model, and

���
s2
ii

√
for the

ENVIR model, s2
ii is the i-th diagonal element of G0 either in the

SH model or the ENVIR model, w( ⋅ ) is the density function of
the standard normal distribution, and D, depending on the
model, is a set of parameters of either the SH model or the
ENVIR model. Given γ, the best variety is the one maximizing
the posterior expected value of this expression. Since the para-
meters in the preceding equation are usually unknown, one has
to use their estimates instead. From our observations, it follows
that varieties with mean tuber yields above 42 t/ha are being
recommended. For this reason, in the present work, we set the
critical level γ equal to 42 t/ha. Moreover, from the discussions
with farmers, it follows that the farmers’ tuber yield is equal to
80% of the tuber yield obtained in the trials. For this reason, we
set in (4) c equal to 0.8.

Next, for a risk analysis, the probabilities that the yields of var-
ieties fall below a certain critical level in the environments were
calculated. Since the probability of falling below a certain level
depends on the variety mean and variance, it can be treated as
a different stability measure which combines mean and variance
in a meaningful way (Eskrigde, 1990; Eskridge and Mumm,
1992). We assumed that the tuber yield follows a normal distribu-
tion. The probability that the tuber yield of the i-th variety falls
below a certain critical level in a randomly chosen environment
is equal to (Eskrigde, 1990)

p(i) = P(yik , d) = F
d− mi���

s2
ii

√
( )

, i = 1, . . . , I (5)

where μi is the mean for the i-th variety, s2
ii is the variance of i-th

variety across environments, Φ( ⋅ ) is the standard normal c.d.f.

Table 4. List of models, covariance matrices for 3-year series, and DIC values for different models

Model Random termsa
Covariance matrix for the vector of variety ×

environment effects (v)

DIC

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5

SH Env + Env.Var +
Env.Rep

diag(s2
1, . . . , s

2
II)⊗ I 6434.633 6434.706 6434.679 6434.660 6434.648

ENVIR Env.Var +
Env.Rep

S⊗ I 6422.215 6422.239 6422.419 6422.094 6422.354

DIC, deviance information criterion.
aEnv, environment; Var, variety; Rep, replicate; Env.Rep, effect of replicates nested within environments. Depending on the model Env.Var denotes either environment × variety interaction
(SH) or environment-variety effect (ENVIR).
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Finally, by expressing p(i2) as a function of p(i1) (Piepho, 1996)

p (i2) = F
F−1[ p(i1)]

�����
s2
i1i1

√
+ mi1 − mi2�����

s2
i2i2

√
⎛
⎜⎝

⎞
⎟⎠,

0 , p(i1) , 1

(6)

where Φ−1( ⋅ ) is the inverse of the standard normal c.d.f., the rela-
tive risks for the best varieties from each country can be plotted.
Since the parameters mi1 , mi2 , s

2
i1i1 , s

2
i2i2 in the preceding equa-

tions are usually unknown, one has to use their estimates instead.

Results

Firstly, to improve convergence and mixing of the chains, the
observed tuber yields were divided by 10. Mean, standard devi-
ation (s.d.), minimum (min) median (med) and maximum
(max) of tuber yield expressed in tonnes per hectare (t/ha) for
the three studied years are given in Table 3.

From Table 3, it can be seen that tuber yield varied from 8.95
to 85.99 t/ha. Furthermore, the lowest mean tuber yield was
observed in 2018, while the highest mean tuber yield was observed
in 2016.

The data set was analysed five times using model (2) (Table 4)
with different starting values (see Supplements S1 and S2). For
each model and chain, the values of DIC were calculated
(Table 4).

It can be seen that, for each chain, the smallest value of DIC
was obtained for the ENVIR model. This means that the
ENVIR model was the best among the two fitted models, and
that this model should be preferred. For clarity, the results for
the ENVIR model are presented. Before looking at the estimates
from the ENVIR model, we first examined the convergence of
the random and fixed effects by visually inspecting the trace
plots (Supplements S3 and S4). From the trace plots, one can
observe that all chains show good convergence. This was con-
firmed by the Gelman and Rubin tests. The values of point esti-
mates of potential scale reduction factor (Point est.) for all fixed
and random effects were equal to one (see Supplement S7). The
evolution of the Gelman and Rubin’s shrink factor for the para-
meters of interests is shown in Supplements S5 and S6.

For the series of field trials, the analysis of the ENVIR model
provided several estimated parameters and statistics (Table 5). The
variance component for replicates nested within environments
was equal to 2.728 (Supplement S7). The mean error variance
from the series of field trials was equal to 5.804. A detailed inspec-
tion of the residual posterior variances revealed that the biggest
error variance occurred in environments 201610, 201611,
201623, 201629 and 201710, i.e. in 2016 and sites Rychliki,
Krzyżewo, Świebodzin, Zybiszów, and in 2017 and in site
Rychliki (see Supplement S5).

Table 5 reports the estimates of posterior variety means, envir-
onmental stability variances, Kang’s rank sums, coefficients of
variations and posterior expected utilities.

The estimated posterior variety means with 95% credible inter-
vals (CI) are reported in columns two and three. The posterior
distributions of variety means are shown in Supplement S4.
Among the tested varieties, variety Arielle had the highest tuber
yield. This variety was also the best among the Dutch varieties
tested in the series of field trials. For the Polish varieties, varietyTa
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Fig. 1. Posterior distributions of coefficients of vari-
ation estimated in the Bayesian environmental vari-
ance model for varieties: Arielle (a), Denar (b),
Everest (c), Impala (d ), Lord (e), Miłek ( f ), Riviera (g)
and Viviana (h).
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Denar had the highest tuber yield. The German variety Viviana
had one of the lowest tuber yields in the series of field trials.

In columns four and five of Table 5, the estimates of the pos-
terior environmental variances with their 95% CI are reported.
One can observe that variety Miłek was the most stable variety,
i.e. this variety had the smallest value of the environmental vari-
ance. This variety was also the most stable among the Polish var-
ieties. The second best variety in terms of environmental variance
was variety Riviera, which was also the most stable variety among
the Dutch varieties. The German variety Viviana was the fourth
best variety. On the other hand, variety Lord was the most
unstable variety in the series of field trials. The posterior distribu-
tions of environmental variances are shown in Supplement S3.

The Kang’s rank sums are reported in column six of Table 5. It
can be noticed that variety Arielle had the smallest rank sum,
which was equal to 4 and means that this variety is the most desir-
able. A different pattern was observed for the Polish varieties
where the smallest rank sum was obtained for varieties Denar

and Miłek and was equal to 9. The rank sum for variety
Viviana was equal to 10.

The estimated posterior coefficients of variation (CV) with
their 95% CI are given in columns six and seven of Table 5.
One can observe that the smallest value of CV was obtained for
variety Arielle and was equal to 22.42%. The second smallest
value of CV was obtained for variety Riviera. Among the Polish
varieties, the smallest value of CV was obtained for variety
Miłek. On the other hand, variety Lord was the worst in terms
of CV. Figure 1 shows the posterior distributions of coefficients
of variations, from which the convergence of the Gibbs sampler
can be inferred.

In the last column of Table 5, the expected posterior utilities
are reported. The highest value of the expected utility was
obtained for variety Everest and was equal to 45.19. The second
best variety in terms of the posterior expected utility was variety
Arielle (44.85). On the other hand, the smallest value of the pos-
terior expected utility was obtained for variety Miłek.

Fig. 2. Colour online. Risk functions for varieties in the
series of field trials (top panel) and relative risk func-
tions for the best Dutch, Polish and German varieties
(bottom panel).
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Next, the estimates from Table 5 (posterior variety means and
environmental variances) were plugged in to (5) and the risks of
all varieties as well as for each group of varieties were plotted
against the critical level in Figs 2(a)–(c), respectively.

From Fig. 2(a), one cannot characterize any variety as the most
stable across all critical levels. It can be seen that variety Arielle up
to a critical level around 60 t/ha had the lowest risk. Above this
level, variety Everest displayed the lowest risk probability and var-
iety Arielle was more risky (Fig. 2(b)). A different pattern can be
observed for the Polish varieties (Fig. 2(c)). It can be noticed that
up to a critical level around 70 t/ha, variety Denar had the lowest
risk. Above this level, both varieties Denar and Lord had equal
risk. Finally, using (6), in Figs 2(d)–( f ), the relative risk functions
for varieties Arielle, Denar and Viviana are plotted. Comparing
varieties Arielle and Denar, it can be noticed that up to a risk
about 0.8, variety Denar was slightly more risky than variety
Arielle, whereas above this level, both varieties Arielle and
Denar had equal risk (Fig. 2(d)). Now, comparing variety
Viviana with varieties Arielle and Denar, one can observe
that Viviana was always more risky than Arielle and Denar
(Figs 2(e) and ( f )).

Discussion

Usually, the stability of plant traits is assessed in multi-
environment trials, which are analysed using either a two-stage
or one-stage approach (see e.g. Piepho et al., 2012; Caliński
et al., 2017; Damesa et al., 2017; Studnicki et al., 2019). In the
two-stage approach, one first analyses each trial separately and
next, variety means are analysed using AMMI models or linear
mixed models. In the one-stage approach, the analysis is per-
formed on plot data. In the present work, we followed a one-stage
approach. In a Bayesian framework, a two-stage approach is com-
monly used in a network meta-analysis.

In the present study, the stability analysis was performed on
plot data using a Bayesian linear mixed model. This approach
was preferred for several reasons. First of all, the Bayesian
approach allows to incorporate the agronomist’s knowledge
about the likely values of average yields and variance components
into the assessment of variety performance in a systematic way by
using proper prior distribution. In the present work, as a prior
knowledge about the tested varieties, the values of empirical var-
iances of each variety were used. A similar approach was used in
Mathew et al. (2016), where the authors applied the multi-trait
animal model in the analysis of plant breeding trials. However,
instead of using empirical variances, one can use the knowledge
about varieties from the previous studies. Further, Bayesian ana-
lysis offers a possibility of calculating posterior distributions of
new quantities, which are functions of model parameters. In the
present study, the posterior distribution for coefficients of vari-
ation of each variety was calculated. In a similar manner, plant
breeders can calculate the posterior distribution of heritability
of a given trait. An exemplary code can be found in
Villemereuil (2012). Moreover, by considering a multi-trait
model and by using the Bayesian approach, plant breeders will
be able to calculate the posterior distribution of heritability of
each trait as well as the posterior distribution of the genetic cor-
relation between the traits. Finally, under the Bayesian approach,
the variety recommendation process can be treated as a formal
decision problem.

In the present work, by assuming different covariance matrices
for the random vector of environment × variety interaction and

modifying the list of random effects in our model, we obtained
different models, which were compared in terms of DIC. A simi-
lar strategy has been described in Piepho (1999). In that paper,
the author also analysed two-way data and his goal was also to
find the most stable variety. He assumed different covariance
matrices for the environment × variety interaction and modified
the list of random effects, this way he obtained several models
and using different goodness of fit statistics chose the best one.
In the same paper, he pointed out that within unifying mixed
modelling framework, the problem of choosing an appropriate
stability measure can be regarded as the problem of selecting
the most appropriate variance–covariance structure and con-
cluded that the choice of stability measure is data-dependent. In
a different study, Studnicki et al. (2017) used a similar approach
to find a model with the highest predictability for means of
cultivar × location and of cultivar × region.

In our Bayesian model, we assumed the heterogeneity of
random errors. However, in the literature, many authors in the
analyses of two-way or three-way data assume homogeneity of
error variances (see e.g. Moore and Dixon, 2015; Caliński et al.,
2017; Studnicki et al., 2019). It should be stressed that the
model under the residual error variances homogeneity assump-
tion can be justified from the randomization theory (see e.g.
Caliński et al., 2017 and the references therein). From the prac-
tical point of view, this assumption does not fully reflect the real-
ity and may affect stability analysis. In Hu et al. (2013, 2014), it
was shown that residual error variances homogeneity assumption
may limit the accuracy of genotype evaluations or reliability of
varietal recommendations. Moreover, Edwards and Jannink
(2006) in their study have found that for all sources of variability
in their model, the variance components in homogeneous vari-
ance model were numerically larger than the marginal variance
estimates in the heterogeneous variance model. The heterogeneity
of error variances was assumed by Edwards and Jannink (2006) in
Bayesian modelling of multi-environment trials. A similar
assumption was used by Smith and Cullis (2018) in construction
of their plant breeding selection tools. The same assumption was
also used by Malosetti et al. (2008) in mixed-model analyses for
multi-trait multi-environment data. From the computational
point of view, the heterogeneity of error variances assumption
can be easily implemented in statistical packages like Genstat,
SAS, ASREML or some R-packages like MCMCglmm. An exem-
plary Genstat code can be found in Malosetti et al. (2008).

The two models described in the present work can be easily
programmed in MCMCglmm R-package. In this package, the
syntax used to specify the model is similar to that by an R inter-
face to ASREML (Gilmour et al., 2002; Butler et al., 2007), so sci-
entist familiar with ASREML will not have problems with
specifying their own model. Moreover, this package allows to
define the covariance matrices for random effects in terms of
Kronecker product as in Genstat, SAS or ASREML, and which
is impossible in programs such as WinBUGS or JAGS.
However, in the MCMCglmm package, by default, only a single
chain is generated, while in WinBUGS or JAGS, one can use
more than one chain to estimate the parameters. To fit the
model with different starting values using MCMCglmm package,
one has to run the model several times. This may be time con-
suming, especially for large data sets. To overcome this problem,
one can use parallel computing and run the model with different
starting values on separate cores.

In the MCMCglmm package, by default, an inverse-Wishart
distribution is used as prior for variance components and
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covariance matrices. As in Gelman et al. (2014), in the present
study to estimate the covariance matrix G0, an inverse-Wishart
distribution with dim G0 + 1 degrees of belief was used. On the
other hand, in Lunn et al. (2013), it was pointed out that the
least informative proper inverse-Wishart is obtained by setting
degrees of belief equal to dim G0. As in Lunn et al. (2013), a simi-
lar assumption regarding the degrees of belief in the
inverse-Wishart distribution was used in Mathew et al. (2016).
However, in literature concerning Bayesian statistics, it was argued
against using inverse-Wishart priors for covariance matrices
because they impose a degree of informativity and the posterior
inferences are sensitive to the choice of hyper-parameters.
Instead, it was proposed to use half-Cauchy distribution or
inverse-gamma distribution as a prior for variance components
(Gelman, 2006) and scaled inverse Wishart distribution
(Gelman et al., 2014) as prior for covariance matrices (Gelman
et al., 2014). To overcome this problem, one can use the guide-
lines found in the supplement of Longdon et al. (2012) or in
Villemereuil (2012). In both of these papers, the authors have
shown how to parameterize the inverse-Wishart distribution so
that it corresponds to several commonly used prior distributions.
Finally, it should be stressed that, at least for now, the list of
covariance matrices in the MCMCglmm package, which can be
used in modelling the environment × variety, is short. For
example, one cannot fit the mixed-model counterparts of
Finlay–Wilkinson model and of AMMI model (see Piepho,
1999), since the factor-analytic covariance matrix has not been
implemented. However, by combining the available list of covari-
ance matrices with the grouping of random effects as described in
Piepho and van Eeuwijk (2002), one could try to extend the meth-
odology described in the present study to the analysis of three-
way data. We plan to explore this problem in future work.

In the literature, several Bayesian counterparts of the classical
stability measures and models have been described (Crossa et al.,
2011; Josse et al., 2014; de Oliveira et al., 2016; Lian and de los
Campos, 2016; Bernardo et al., 2018). It would be interesting to
compare the results of stability analyses obtained by different
Bayesian counterparts of the classical stability measures and
how similar the rankings of high-yielding and stable varieties
obtained by different methods would be.

In the present work, we have shown that recommendation of
varieties for future sowing can be treated as a formal Bayesian
decision theoretic problem. For this purpose, we first fitted a
Bayesian model, and next using a very simple utility function,
we calculated the posterior expected utility of each variety. A simi-
lar strategy was described by Theobald et al. (2002, 2006). In these
papers, the authors used Bayesian decision theory with more
complicated utility functions to choose a crop variety and fertil-
izer dose, and to estimate economically optimum seed rates for
winter wheat. For example, using the approach described in
Theobald et al. (2002, 2006) or described in the present study,
agronomists can choose variety and planting date or find the opti-
mal plant density and variety combination, e.g. in soybean or
maize.

In the present work, for each variety, the probabilities of falling
below a certain level were calculated. These probabilities can be
treated as a different stability measure which combines mean
and variance in a meaningful way (Eskrigde, 1990; Eskridge and
Mumm, 1992). Eskrigde (1990), and Eskridge and Mumm
(1992) used this concept to find high-yielding and stable varieties.
Recently, Marcholdt et al. (2019) used this concept to evaluate the
yield performance and stability of wheat depending on the

fertilization level and combination. For example, combining the
approach presented in this paper with the methodology described
in Piepho (1996,1998) could gain additional information for
recommending varieties. In agronomy studies, by using the con-
cept of falling below a certain threshold, agronomists can calculate
the probability of a new planting data or plant density outper-
forming the standard one. Moreover, one can calculate the prob-
ability of a new agronomic system outperforming the old one. We
plan to explore this problem in a future work.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859620000945

Financial support. This research received no specific grant from any fund-
ing agency, commercial or not-for-profit sectors.

Conflict of interest. None.

Ethical standards. Not applicable.

References

Bernardo Júnior LAY, Silva CP, de Oliveira LA, Nuvunga JJ, Pires LPM,
Von Pinho RG and Balestre M (2018) AMMI Bayesian models to study
stability and adaptability in maize. Agronomy Journal 110, 1–12.

Butler D, Cullis BR, Gilmour AR and Gogel BJ (2007) Analysis of Mixed
Models for S language Environments: ASRemlR Reference Manual.
Brisbane, Australia: Queensland DPI. Available at http://www.vsni.co.uk/
resources/doc/asreml-R.pdf.

Caliński T, Czajka S, Kaczmarek Z, Krajewski P, Pilarczyk W, Siatkowski I
and Siatkowski M (2017) On mixed model analysis of multi-environment
variety trials: a reconsideration of the one-stage and the two-stage models
and analyses. Statistical Papers 58, 433–465.

Cowles MK and Carlin BP (1996) Markov chain Monte Carlo convergence
diagnostics: a comparative review. Journal of the American Statistical
Association 91, 833–904.

Crossa J, Perez-Elizalde S, Jarquin D, Cotes JM, Viele K, Liu G and
Cornelius PL (2011) Bayesian Estimation of additive main effects and
multiplicative interaction model. Crop Science 51, 1458–1469.

Damesa TM, Möhring J, Worku M and Piepho HP (2017) One step at a
time: stage-wise analysis of series of experiments. Agronomy Journal 109,
845–857.

de Oliveira LA, Silva CP, Nuvunga JJ, Silva AQ and Balestre M (2016)
Bayesian GGE biplot models applied to maize multi-environment trials.
Genetics and Molecular Research 15, 1–21.

Digby PGN (1979) Modified joint regression analysis for incomplete variety x
environment data. Journal of Agricultural Sciences 93, 81–86.

Eberhart SA and Russell WA (1966) Stability parameters for comparing var-
ieties. Crop Science 6, 36–40.

Edwards JW and Jannink JL (2006) Bayesian modeling of heterogeneous
error and genotype × environment interaction variances. Crop Science 46,
820–833.

Edwards JW and Orellana M (2015) Increasing selection response by Bayesian
modeling of heterogeneous environmental variances. Crop Science 55, 556–563.

Eskridge KM and Mumm RF (1992) Choosing plant cultivars based on the
probability of outperforming a check. Theoretical and Applied Genetics
84, 894–900.

Eskrigde KM (1990) Selection of stable cultivars using a safety first rule. Crop
Science 30, 369–374.

Finlay K and Wilkinson GN (1963) The analysis of adaptation in a plant
breeding programme. Australian Journal of Agricultural Research 14,
742–754.

Gauch HG (1988) Model selection and validation for trials with interaction.
Biometrics 44, 705–715.

Gelman A (2006) Prior distributions for variance parameters in hierarchical
models. Bayesian Analysis 1, 515–533.

572 M. Przystalski and T. Lenartowicz

https://doi.org/10.1017/S0021859620000945 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859620000945
https://doi.org/10.1017/S0021859620000945
http://www.vsni.co.uk/resources/doc/asreml-R.pdf
http://www.vsni.co.uk/resources/doc/asreml-R.pdf
http://www.vsni.co.uk/resources/doc/asreml-R.pdf
https://doi.org/10.1017/S0021859620000945


Gelman A and Rubin DB (1992) Inference from iterative simulation using
multiple sequences (with discussion). Statistical Science 7, 457–511.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A and Rubin DB
(2014) Bayesian Data Analysis, 3rd Edn. Boca Raton: Chapman & Hall/
CRC.

Gilmour AR, Gogel BJ, Cullis BR, Welham SJ and Thompson R (2002)
ASReml User Guide Release 1.0. Hemel Hempstead, UK: VSN
International Ltd. Available at http://www.VSNIntl.com.

Hadfield JD (2012) MCMC methods for multi-response generalized linear
mixed models: the MCMCglmm R package. Journal of Statistical Software
33, 1–22.

Harville DA (1977) Maximum likelihood approaches to variance component
estimation and to related problems. Journal of the American Statistical
Association 80, 132–138.

Hu X, Yan S and Shen K (2013) Heterogeneity of error variance and its influ-
ence on genotype comparison in multi-location trials. Field Crops Research
149, 322–328.

Hu X, Yan S and Li S (2014) The influence of error variance variation on ana-
lysis of genotype stability in multi-environment trials. Field Crops Research
156, 84–90.

Josse J, van Eeuwijk F, Piepho HP and Denis JB (2014) Another look at
Bayesian analysis of AMMI models for genotype-environment data.
Journal of Agricultural, Biological and Environmental Statistics 19, 240–257.

Kang MS (1988) A rank sum method for selecting high-yielding, stable corn
genotypes. Cereal Research Communications 16, 113–115.

Lian L and de los Campos G (2016) FW: an R package for Finlay–Wilkinson
regression that incorporates genomic/pedigree information and covariance
structures between environments. G3 Genes, Genomes, Genetics 6, 586–597.

Longdon B, Hadfield JD, Webster CL, Obbard DJ and Jiggins FM (2011)
Host phylogeny determines viral persistence and replication in novel
hosts. PLoS Pathology 7, e1002260.

Longdon B, Hadfield JD, Webster CL, Obbard DJ and Jigins FM (2012)
Host phylogeny determines viral persistence and replication in novel
hosts. PLoS Pathology 7(9), e1002260.

Lunn D, Jackson C, Best N, Thomas A and Spiegelhalter D (2013) The
BUGS Book. A Practical Introduction to Bayesian Analysis. Boca Raton:
Chapman& Hall/CRC.

Macholdt J, Piepho HP and Honermeier B (2019) Mineral NPK and manure
fertilization affecting the yield stability of winter wheat: results from long-
term field experiment. European Journal of Agronomy 102, 14–22.

Malosetti M, Ribout JM, Vargas M, Crossa J and van Eeuwijk FA (2008) A
multi-trait multi-environment QTL mixed model with an application to
drought and nitrogen stress (Zea mays L). Euphytica 161, 241–257.

Mathew B, Holand AM, Koistinen P, Léon J and Sillanpää MJ (2016)
Reparametrization-based estimation of genetic parameters in multi-trait
animal model using integrated nested Laplace approximation. Theoretical
and Applied Genetics 129, 215–225.

Moore KJ and Dixon PM (2015) Analysis of combined experiments revisited.
Agronomy Journal 107, 763–771.

Orellana M, Edwards JW and Carriquiry A (2014) Heterogeneous variances in
multienvironment yield trials for corn hybrids. Crop Science 54, 1048–1056.

Piepho HP (1996) Simplified procedure for comparing the stability of crop-
ping systems. Biometrics 52, 315–320.

Piepho HP (1998) Methods for comparing the yield stability of cropping sys-
tems. Journal of Agronomy and Crop Science 180, 193–213.

Piepho HP (1999) Stability analysis using the SAS system. Agronomy Journal
91, 154–160.

Piepho HP and van Eeuwijk FA (2002) Stability analysis in crop performance
evaluation. In Kang M (ed). Crop Improvements: Challenges in the
Twenty-First Century. Binghampton, New York: Food Products Press, pp.
315–351.

Piepho HP, Möhring J, Schulz-Streeck T and Ogutu JO (2012) A stage-wise
approach for analysis of multi-environment trials. Biometrical Journal 54,
844–860.

Plummer M, Best N, Cowles K and Vines K (2006) CODA: convergence
diagnosis and output analysis for MCMC. RNews 6, 7–11.

Searle SR, Casella G and McCulloch CE (2006) Variance Components.
Hoboken: Wiley.

Shukla GK (1972) Some statistical aspects of partitioning genotype-environment
components of variability. Heredity 29, 237–245.

Smith AB and Cullis BR (2018) Plant breeding selection tools built on factor
analytic mixed models for multi-environment trial data. Euphytica 214, 143.

Sorensen D and Gianola D (2002) Likelihood, Bayesian and MCMC Methods
in Quantitative Genetics. Statistics for Biology and Health. New York:
Springer-Verlag.

Speed TP, Williams ER and Patterson HD (1985) A note on the analysis of
resolvable block designs. Journal of the Royal Statistical Society Series B 47,
357–361.

Spiegelhalter DJ, Best NG, Carlin BP and van der Linde A (2002) Bayesian
measures of model complexity and fit. Journal of the Royal Statistical Society
Series B 64, 583–689.

Studnicki M, Paderewski J, Piepho HP and Wójcik-Gront E (2017)
Prediction accuracy and consistency in cultivar ranking for factor-analytic
linear mixed models for winter wheat multienvironmental trials. Crop
Science 57, 2506–2516.

Studnicki M, Derejko A, Wójcik-Gont E and Kosma M (2019) Adaptation
pattern of winter wheat in agro-ecological regions. Scientia Agricola 72,
148–156.

Theobald CM and Talbot M (2002) The Bayesian choice of crop variety and
fertilizer dose. Journal of the Royal Statistical Society Series C – Applied
Statistics 51, 23–36.

Theobald CM, Talbot M and Nabugoomu F (2002) Bayesian approach to
regional and local-area prediction from crop variety trials. Journal of
Agricultural, Biological and Environmental Statistics 7, 403–419.

Theobald CM, Roberts AMI, Talbot M and Spink JM (2006) Estimation of
economically optimum seed rates for winter wheat from series of trials.
Journal of Agricultural Science Cambridge 144, 303–316.

Villemereuil P (2012) Estimation of biological trait heritability using the animal
model: how to use MCMCglmm R package Guide. https://devillemereuil.
legtux.org/wpcontent/uploads/2012/tuto_eng.pdf.

Yan W and Kang MS (2003) GGE Biplot Analysis: A Graphical Tool for
Breeders, Genetists and Agronomists. Boca Raton: CRC Press.

The Journal of Agricultural Science 573

https://doi.org/10.1017/S0021859620000945 Published online by Cambridge University Press

http://www.VSNIntl.com
http://www.VSNIntl.com
https://devillemereuil.legtux.org/wpcontent/uploads/2012/tuto_eng.pdf
https://devillemereuil.legtux.org/wpcontent/uploads/2012/tuto_eng.pdf
https://devillemereuil.legtux.org/wpcontent/uploads/2012/tuto_eng.pdf
https://doi.org/10.1017/S0021859620000945

	Yielding stability of early maturing potato varieties: Bayesian analysis
	Introduction
	Materials and methods
	Data
	Statistical analysis

	Results
	Discussion
	References


