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We theoretically and computationally investigate the physical processes of slug-flow
development in concurrent two-phase turbulent-gas/laminar-liquid flows in horizontal
channels. The objective is to understand the fundamental mechanisms governing
the initial growth and subsequent nonlinear evolution of interfacial waves, starting
from a smooth stratified flow of two fluids with disparity in density and viscosity
and ultimately leading to the formation of intermittent slug flow. We numerically
simulate the entire slug development by means of a fully coupled immersed flow
(FCIF) solver that couples the two disparate flow dynamics through an immersed
boundary (IB) method. From the analysis of spatial/temporal interface evolution, we
find that slugs develop through three major cascading processes: (I) stratified-to-wavy
transition; (II) development and coalescence of long solitary waves; and (III) rapid
channel bridging leading to slugging. In Process I, relatively short interfacial waves
form on the smooth interface, whose growth is governed by the Orr–Sommerfeld
instability. In Process II, interfacial waves evolve into long solitary waves through
multiple resonant and near-resonant wave–wave interactions. From instability analysis
of periodic solitary waves, we show that these waves are unstable to their subharmonic
disturbances and grow in amplitude and primary wavelength through wave coalescence.
The interfacial forcing from the turbulent gas–laminar liquid interactions significantly
precipitates the growth of instability of solitary waves and enhances coalescence of
solitary waves. In Process III, we show by an asymptotic analysis that interfacial
waves achieve multiple-exponential growth right before bridging the channel,
consistent with observations in existing experiments. The present study provides
important insights for effective modelling of slug-flow dynamics and the prediction
of slug frequency and length, important for design and operation of (heavy-oil/gas)
pipelines and production facilities.

Key words: gas/liquid flows, nonlinear instability, solitary waves

1. Introduction
Rapidly rising global energy demand coupled with dwindling conventional oil

resources has pushed unconventional oil, such as heavy oil, to become one of
the most important future energy resources. The design and operation of pipelines
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to transport these heavy-oil/gas flows has raised new challenges associated with
remarkably different flow regime transitions compared with conventional low-viscosity-
oil/low-density-gas flows. Laboratory experiments indicate that slug flow, a violent
and pipeline-destructive intermittent multiphase flow pattern (Fabre & Liné 1992), is
more probable for heavy-oil/gas flow (Marquez et al. 2010; Zhao et al. 2013). The
existing slug-flow prediction models developed for low-viscosity-oil/low-density-gas
flows often result in O(1) errors when applied to high-viscosity-oil/high-density-gas
flows because they fail to account for the important changes in physics and scales
that occur as the fluid properties substantially vary (Gokcal et al. 2008). Therefore,
understanding the mechanisms governing the entire interfacial evolution from stratified
flow to slugging for these high-viscosity-oil/high-density-gas flows is of critical
importance to the development of effective multi-phase hydrodynamics models in
support of more robust and cost-effective designs.

Previous efforts have established a thorough and complete understanding of the
initial transition from stratified to wavy pattern for two-phase laminar and turbulent
heavy-oil type flows. Classical Kelvin–Helmholtz (KH) instability for a stratified
flow of two incompressible inviscid fluids (Taitel & Dukler 1976; Lin & Hanratty
1986; Barnea & Taitel 1993; Funada & Joseph 2001) resulted in poor stability
predictions when compared with heavy-oil/gas flow experiments, owing to the
importance of viscosity (Mata et al. 2002). The more comprehensive Orr–Sommerfeld
(OS) formulation incorporates mechanisms due to density and viscosity stratification,
velocity profile curvature and shear effects to the inviscid KH instability (Yiantsios
& Higgins 1988; Boomkamp & Miesen 1996; Barmak et al. 2016). The turbulent
Orr–Sommerfeld (TOS) approach assumes a ‘quasi-steady’ description of the flow
using a base velocity profile from a time/ensemble-averaged value (Cohen & Hanratty
1965; Kuru et al. 1995). For turbulent gas flow over laminar liquids, TOS analysis
shows similar instability mechanisms to laminar–laminar stratified flows for both
shallow and deep liquids (see Náraigh et al. 2011a; Náraigh, Spelt & Zaki 2011b,
respectively). Thus, for the transition from stratified flows to wavy flows, KH and
laminar/turbulent OS interfacial instabilities (depending on the importance of viscosity)
provide the relevant stability predictions. The limitation of these works is the linearity
of their methods which fails to describe the subsequent transition from wavy to slug
flow, where nonlinearity should be important.

Experimental observations have shown that slugs form through nonlinear processes
involving wave–wave resonance and/or wave coalescence depending on the flow
conditions and fluid properties (Lin & Hanratty 1987; Fan, Lusseyran & Hanratty
1993; Woods & Hanratty 1999). For relatively low superficial gas velocities, Jurman,
Deutsch & McCready (1992) and Fan et al. (1993) demonstrated that slugs could
evolve from rather regular waves which grow in amplitude and eventually double in
wavelength as they propagate. Campbell & Liu (2013) and Campbell, Hendrickson
& Liu (2016) theoretically and numerically investigated this nonlinear process. They
identified a mechanism of nonlinear resonant wave interactions coupled with linear
interfacial instabilities, which causes an energy transfer from linearly unstable short
Fourier wave modes to stable subharmonics and/or long-wave components. Their
studies compare well with the experimental observations for both inviscid and viscous
gas–liquid flows under the low-flow-rate conditions.

For sufficiently high gas Reynolds number (Reg ∼ O(103)–O(104)) and/or high-
viscosity liquid (Rel ∼ O(10)–O(102)), the slug development usually involves an
additional nonlinear process: wave coalescence. Experimentalists (Andritsos, William
& Hanratty 1989; Fan et al. 1993; Woods & Hanratty 1999) observed that irregular
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waves (‘solitary waves’) with steep fronts and smooth troughs form at the interface
under this flow condition. These solitary waves have a range of wave velocities with
the larger one travelling faster and overtaking the smaller ones to form an even
larger wave. A series of solitary wave coalescence leads to a continuous down shift
in the median frequency in the wave spectrum. The result is a flat, broad spectrum
of low-frequency, long-wavelength waves. A similar wave coalescence phenomenon
also exists in certain one-layer flows such as free-falling thin films (e.g. Chang,
Demekhin & Kopelevich 1993; Chang 1994; Liu & Gollub 1994) and inclined
open-channel flows (e.g. Needham & Merkin 1984; Kranenburg 1992; Balmforth
& Mandre 2004). Their works show that the wave coalescence is a result of the
subharmonic instability of nonlinear periodic waves which are steady-state solutions
of the wave systems. However, whether the similar mechanism exists in the slug
development for high-viscosity-liquid/high-density-gas two-layer flows is unclear. In
addition, the influence from the gas layer during this process is also unknown.

With adequate liquid hold-ups and flow rates, waves would grow large enough
through the nonlinear processes to reach the pipe/channel top. Compared with earlier
processes, there have been fewer studies on the final stage of slug development
immediately before the occurrence of slugging. In the last stage, Kadri et al. (2009)
observed a prompt ‘jump’ in the liquid phase towards the pipe top before pipe
bridging occurs. This would produce a high impact hydrodynamic pressure and load
on the pipe causing the vibration of the pipeline in practice. The rapid nature of this
‘jump’ also imposes experimental challenges to document its details. A physics-based
model capable of describing this final pipe/channel bridging process is still lacking.

The objective of the present work is to investigate the mechanisms governing
the entire evolution from smooth stratified flows to large-amplitude waves that
bridge the channel causing the initiation of slug flow in a horizontal co-current
high-viscosity-liquid/high-density-gas flow. The evolution of the slug once the liquid
blocks the channel, namely elongation and gas/liquid entrainment, is a complex
phenomenon that is an active area of research (e.g. Fabre & Liné 1992; Frank 2005;
Xie et al. 2017) and we do not investigate it here. Our focus includes understanding
the nonlinear mechanism of wave coalescence, investigating the gas influence on the
slug development, and predicting the asymptotic behaviour of interfacial waves right
before slugging. We consider a canonical problem of a horizontal channel flow with
a turbulent gas flowing over a laminar liquid. We numerically and theoretically study
the slug formation in this two-phase problem using interfacial instability analysis
combined with a novel three-dimensional fully coupled immersed flow (FCIF) solver
(Miao, Hendrickson & Liu 2017). FCIF couples a turbulent gas simulator and a
laminar liquid solver on a non-boundary-conforming grid through an immersed
boundary (IB) method. The resulting approach is appropriate for non-mixing/breaking
fluid–fluid interaction and retains the efficiency of separate solvers for the two
disparate flows and the simplicity of non-moving grids.

Our numerical simulations by FCIF show the presence of three fundamental
cascaded processes for the slug development: (I) initial growth of relatively short
interfacial waves; (II) development and coalescence of long solitary waves; and
(III) rapid channel bridging leading to slugging. We confirm that the turbulent OS
instability governs the initial wave growth in Process I. We show that multiple
resonant and near-resonant wave–wave interactions lead to the generation of long
solitary waves, and the subharmonic instability of the long solitary waves results
in the wave coalescence leading to longer and larger-amplitude solitary waves in
Process II. We further elucidate that the nonlinear interaction between gas and liquid
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FIGURE 1. (Colour online) Sketch of a laminar liquid flow sheared by a co-current
turbulent gas flow in a horizontal channel.

largely accelerates the wave growth and coalescence during this process. Finally, we
show by an asymptotic analysis that waves grow faster than exponential immediately
prior to slugging in Process III.

The structure of the paper is as follows. Section 2 formulates the slug-generation
problem and briefly reviews the numerical algorithm of the FCIF solver. Section 3
summarizes the major characteristics of the three cascaded processes in the slug
generation. Section 4 examines Process I against the TOS instabilities. Section 5
presents the interfacial instability analysis on the mechanism behind wave coalescence
in Process II. Section 6 details the influence of the gas–liquid interaction on the slug
development in Processes I and II. Section 7 contains the asymptotic analysis on the
interfacial wave growth in Process III. Finally, § 8 draws the conclusions.

2. Problem statement and numerical method
2.1. Problem definition

We consider a co-current turbulent-gas/laminar-liquid flow driven by an external
pressure drop −dP/dx in a horizontal channel of length Lx, as sketched in figure 1.
The two fluids are immiscible, incompressible and Newtonian. The gas and liquid
have respective densities ρg and ρl and dynamic viscosities µg and µl. The gas has
an equilibrium depth Hg with mean velocity Ug, while the liquid has an equilibrium
depth Hl with mean velocity Ul. We define the coordinate system with the origin
located at the undisturbed interface at equilibrium with the x (or x1) axis in the
streamwise direction, y (or x2) axis in the vertical direction and z (or x3) axis in the
spanwise direction. We describe the vertical displacement of the interface away from
its undisturbed position by the function y = η(x, z, t), where t denotes time. Scaling
by ρg, µg, Hg and a characteristic velocity U provides the following dimensionless
governing parameters for this two-phase flow problem:

Re=
ρgUHg

µg
, Fr=

U√
gHg

, Px =

−Hg
dP
dx

ρgU 2
,

We=
γ

ρgU 2Hg
, r=

ρl

ρg
, m=

µl

µg
, d=

Hl

Hg
,

 (2.1)

where g is the gravitational acceleration and γ is the surface tension coefficient. We
choose U such that we normalize the external pressure gradient Px to be 1. We also
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define two Reynolds numbers based on the mean velocity and equilibrium depth for
each phase respectively:

Reg =
ρgUgHg

µg
, Rel =

ρlUlHl

µl
. (2.2a,b)

In this paper, we study the entire evolution from stratified flow to channel bridging
for co-current turbulent-gas/laminar-liquid flows in horizontal channels. The goal is
to identify the dominant mechanisms in distinctively different processes during the
evolution leading to slugging. In particular, we focus our attention on two-phase flows
with disparate Reynolds numbers: Reg ∼O(103)–O(105) and Rel ∼O(1)–O(102).

2.2. Governing equations and numerical methods
We apply an FCIF solver (Miao et al. 2017) for the simulation of slug-generation
processes in turbulent-gas/laminar-liquid horizontal channel flows. The FCIF solver
captures dynamic interactions between two disparate fluids on a non-boundary-
conforming grid by coupling two distinct flow solvers using an IB method or
second-order boundary data immersion method (BDIM) (Maertens & Weymouth
2015).

Consider an immiscible two-phase problem where one fluid (e.g. gas) occupies
domain Ωg with governing equation G(Ψ ), and the other fluid (e.g. liquid) occupies
domain Ωl with governing equation L(Ψ ). Here Ψ represents the field quantities to
be solved, such as velocities, turbulent kinetic energy (TKE), etc., and S(Ψ ) satisfies
appropriate boundary conditions at the interface σs. The general FCIF coupling
framework solves a single smooth meta-equation Mε(Ψε) throughout the whole
domain Ω comprising both phases by use of a nascent delta kernel Kε of finite
support ε over the interface σs:

Mε(Ψε) =

∫
Ωg

G(Ψ , xg)Kε(x, xg) dxg +

∫
Ωl

L(Ψ , xl)Kε(x, xl) dxl

+

∫
σs

S(Ψ , xs)Kε(x, xs) dxs for x ∈Ω. (2.3)

The formulation of the FCIF framework (2.3) guarantees a smooth transition
from gas equations G(Ψ ) to liquid equations L(Ψ ) over the interface σs within a
small distance of 2ε. It integrates the boundary information into the governing field
equations and is grid independent, ensuring a straightforward implementation with
minimal computational overhead.

For the slug-generation problem with turbulent gas over laminar liquid in a channel,
we couple an unsteady Reynolds-averaged Navier–Stokes (uRANS) gas solver with a
depth-integrated liquid solver (DIS) in the FCIF framework on a Cartesian grid. For
the turbulent gas in the upper layer in figure 1, the governing incompressible uRANS
equations G(Ψ ) are

∂ui

∂xi
= 0, (2.4)

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p
∂xi
+
∂τij

∂xj
, (2.5)
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where we normalize all the quantities by Hg, Ug and ρg in the gas layer. Here ui,
i= 1, 2, 3, represents the Reynolds-averaged velocity components, p is the Reynolds-
averaged pressure, and τij is the total stress tensor, which is the sum of viscous stress
and Reynolds stress. We model the turbulence with the Wilcox (1988) k–ω turbulence
closure model. We impose no-slip boundary conditions at both the top wall y=Hg and
the interface y=η for the gas layer given the interfacial shape and velocities computed
from the liquid solver because the interface acts like a wall to the gas motions owing
to the large density ratio between liquid and gas (Angelis, Lombardi & Banerjee 1997;
Liu et al. 2009; Yang & Shen 2011).

For the laminar liquid considered in the present study, the generated interfacial
waves generally have wavelengths much longer than the liquid thickness as the
high liquid viscosity damps out the short waves. This allows us to apply the standard
long-wave model to describe the liquid motions (Benney 1966; Shkadov 1967; Lavalle
et al. 2015). We model the liquid as a laminar flow over a bottom wall subject to
interfacial shear stress τ i

η, i = 1, 3, and pressure pη computed from the uRANS gas
solver. With the long-wave approximation, we derive the liquid governing equation
L(Ψ ) by integrating the standard boundary layer equations over depth:

∂h
∂t
+
∂qi

∂xi
= 0, (2.6)

∂qi

∂t
+
∂Iij

∂xj
=−

h
Fr2

l

∂h
∂xi
+

1
Rel

[
Γ ih+ (τ i

η − τ
i
w)+

∂

∂xj

(
∂qi

∂xj
+
∂qj

∂xi

)]
+

Welh∂3h
∂xi∂xj∂xj

,

(2.7)

where h is the instantaneous liquid thickness, qi =
∫ η
−Hl

ui dy is the flow rate, Γ i
=

Rel∂pη/∂xi is the interfacial pressure gradient, Iij = 6qiqj/(5h) + h3(τ i
ηΓ

jh + τ j
ηΓ

ih +
4τ i

ητ
j
η)/120 is the integrated convection term and τ i

w = 3qi/h2
− τ i

η/2 is the bottom
wall shear stress for i, j = 1, 3. Here, Hl, Ul, ρl and µl are relevant scales with
corresponding Froude and Weber numbers to be Frl=Ul/

√
gHl and Wel= γ /(ρlU2

l Hl).
As for the detailed coupling between uRANS and DIS, FCIF applies the following

algorithm. At each time step of the simulation, uRANS provides the interfacial
pressure gradient Γ x,z and shear stresses τ x,z

η to DIS as the driving force. The latter
provides the interface geometry η and velocity ux,z

η to uRANS as Dirichlet boundary
conditions. Miao et al. (2017) details the numerical implementation of FCIF including
the application of second-order BDIM and the coupling scheme between the two
solvers. We have performed extensive validations for FCIF to confirm its accuracy
and efficacy in capturing the essential physics of gas–liquid interaction (see Miao
et al. 2017).

2.3. Simulation set-up
The experiments carried out by Andritsos et al. (1989) show the occurrence of
wave coalescence phenomenon in the stratified–slug transition for a co-current
turbulent-air/high-viscosity-liquid flow travelling through a horizontal pipe. Motivated
by these experiments, we perform the numerical simulation (see figure 1) at
similar flow conditions. We choose the physical parameters Re = 400.0, Fr2

= 2.5,
Px = 1.0, r = 1000.0, m= 5555.5 and d = 2.0. The corresponding Reynolds numbers
based on the mean flows for the two phases are Reg = 4121.5 and Rel = 19.1,
respectively. The surface tension effect is negligible for the two-phase problems
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y+
˙ = yu*
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FIGURE 2. (Colour online) Mean velocity profile for (a) interfacial region and (b) wall
region:E (blue), present numerical simulation by FCIF solver; —— (red), approximation
from Náraigh et al. (2011a); – – –, theoretical asymptotics for viscous sub-layer and log
layers. The linear laws for the viscous sub-layers of the interfacial and wall regions are
u+η = u(0)U/u∗η + y+i and u+H = y+H , respectively. The log-law for the logarithmic regions is
u+η/H = (1/κ) log y+ + Bη/H with κ = 0.41, Bη = 6 and BH = 5.1.

we consider here, so we let We = 0. Recent simulations (e.g. Xie et al. 2017)
and our three-dimensional stability analysis in appendix A show that the dominant
physics associated with the onset of slugging are two-dimensional, thus we choose
a two-dimensional domain for our high-resolution simulation. The computational
domain spans (Lx/Hg, Ly/Hg) ∈ [0, 20π] × [−0.25, 1] and the number of grid points
is (Nx,Ny)= (128, 256) with 1y+ =' 1.66. We impose periodic boundary conditions
in the streamwise direction and discretize the domain using uniform structured grids.
Frank (2005) establishes that Lx/D ∼ 75 is necessary for quantitative prediction of
slug length/period when utilizing periodic boundary conditions, where D is the pipe
diameter. This work focuses on physical mechanisms associated with the onset of
slugging rather than capturing the full slug length, thus our aspect ratio is less than
this value. The freely evolving interface separating the two fluids is initially flat
at y = 0. To capture the entire interfacial evolution under the effect of a turbulent
gas flowing over a laminar liquid layer, we generate a stratified smooth base flow
with a turbulent gas field as the initial condition. Once the base flow develops, we
introduce white-noise perturbations at the flat interface to simulate the slug-generation
processes.

To generate the base flow with a fully developed turbulence gas field over a laminar
liquid layer, we initialize the simulation as a two-fluid laminar–laminar Poiseuille flow
with a uniform TKE field (∼O(10−2)) in the gas domain. The interface remains flat
throughout the development of the gas turbulence. The simulation evolves in time until
the velocity field reaches a steady state. Figure 2(a,b) shows the resulting profile of
the turbulent mean gas flow normalized respectively by interfacial velocity (u∗η) and
wall-shear velocity (u∗H), where u∗η/H=

√
τη/H . The present simulation result agrees well

with the linear law of the wall profile in the viscous sub-layers and the log-law profiles
in the logarithmic regions. It also compares well with the approximation from Náraigh
et al. (2011a).
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FIGURE 3. (Colour online) Space–time waterfall plot of the interface evolution at Rel =

19.1 and Reg = 4121.5. The domain is tripled in the streamwise direction for visual
purposes. The shading of the plot represents the liquid depth, following the colour bar
on the right.

With the initial base flow established, we then consider the slug generation
by introducing small-amplitude white noise at the flat interface. We continue the
simulation until the interface (nearly) bridges the channel leading to slugging.

3. Characteristics of interface evolution towards slugging

Figure 3 displays the spatio-temporal evolution of the gas–liquid interface under
the influence of turbulent gas flow. The lines in this space–time plot show the trace
of peaks of the travelling waves, with their inverse slope corresponding to the wave
speed. Brighter regions correspond to small wave amplitudes, whereas darker regions
correspond to large wave amplitudes. The bending and shading of several distinct dark
lines at t> 120 implies that larger waves travel faster. These larger waves accelerate
and gain mass by absorbing slower waves (indicated by the darkening of the line)
through rapid sequences of wave coalescence.

Figure 4 shows the successive profile evolution during the slug generation. We
establish the slug formation through three major processes. In Process I (t= 0–O(50)
in figure 4a), the initial perturbations produce short ripples that grow larger and
longer as the nonlinear effect becomes relevant. In Process II (t = O(50)–O(200) in
figure 4b,c), short waves saturate and long solitary waves form at the interface due to
a series of wave coalescences. These long irregular waves have steep wave fronts and
smooth tails, which resemble experimental observations (Andritsos & Hanratty 1987b;
Andritsos et al. 1989; Jurman & McCready 1989). The characteristic features of
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FIGURE 4. Successive profiles of the gas–liquid interface during time evolution of the
slug development. Note that the vertical scale for the vertical elevation of the interface
differs in each panel of figures for better visualization of the characteristics of interfacial
profile evolution (Rel = 19.1 and Reg = 4121.5). The wave peak scale stands for around
0.02 (a), 0.5 (b) and 1.0 (c), respectively, which are non-dimensionalized with respect to
the gas equilibrium height Hg (equal to 1/3 of the channel height).
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FIGURE 5. Wave elevation η and the corresponding Fourier spectrum S(k) at
t= 8 (a,b), t= 130 (c,d) and t= 210 (e, f ).

wave coalescence leading to the initiation of slug flow for the high-density gas flow
over high-viscous liquid also agree qualitatively with those found in the two-phase
air/water simulation of Höhne & Mehlhoop (2014). In Process III, one solitary wave
grows by sweeping up enough intermediate waves such that its crest approaches the
top wall rapidly with a time scale ∼O(10−1), leading to slugging with a nearly flat
interface in its wake (see the top of figures 4c and 5e).

Figure 5 shows analysis of the Fourier spectra of the wave elevation throughout
these three processes. We observe a clear shift in energy from shorter to longer waves
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FIGURE 6. (a) Linear wave frequency and (b) growth-rate spectrum computed using the
quasi-laminar hypothesis and the approximated mean velocity profile based on the model
in Náraigh et al. (2011a) for Rel = 19.1 and Reg = 4121.5.

as slug develops. In the following sections, we detail these three processes of the slug
formation and study the dominant physics in each process.

4. Process I: linear interfacial instabilities
Process I is the growth of minuscule waves through linear interfacial instabilities.

It begins with a flat interface and continues until nonlinearity dominates the wave
growth (near t = 35 in figure 4a). Performing the linear instability analysis for the
full system of the governing equations for this turbulent-gas/laminar-liquid flow is
a formidable task. Thus, we follow a simplified analysis approach by Náraigh et al.
(2011a), which utilizes the approximated base flow velocity profile (denoted as the
red solid lines in figure 2) and the quasi-laminar (QL) hypothesis that neglects
wave-induced Reynolds stress. We solve the resulting linearized TOS equations
for the linear wave frequency and growth-rate spectrum of the stratified base flow.
Figure 6(a) shows that the linear wave frequency ωr experiences a nearly linear
dependence on wavenumbers k for kHg < 0.5. The growth-rate spectrum, shown in
figure 6(b), presents an unstable band of wavenumbers in the long-wave regime from
kHg = 0 to kHg ' 1.3, with the peak growth rate occurring at kHg ' 0.5. Table 1
presents a quantitative comparison of the dispersion relation between this theoretical
approximation and our numerical estimates from the FCIF simulation for the first
few harmonic wave modes in the present computational domain. Overall we obtain
good agreement for these long-wave modes, which is consistent with the long-wave
assumption employed in the FCIF solver. The difference in the turbulence model for
Reynolds stress (k–ω model in our FCIF numerical simulation; QL hypothesis in TOS
theoretical prediction) and the nonlinear adjustments to the dispersion relationship are
potential reasons for the discrepancies between the theoretical and numerical estimates
of the wave frequencies. This validation confirms that the linear interfacial instability
governs the initial transition from stratified to wavy flows in Process I (Valluri et al.
2008, 2010; Campbell et al. 2016). Quantitative comparison of the initial wave
growth rate from our FCIF simulation (with k–ω model and long-wave assumption)
and the theoretical TOS prediction (with QL model) is not possible because: (1) the
DIS used in the FCIF simulation is only accurate to leading order (O(1)) and the
wave growth rate ωi is a first-order (O(kHl)) quantity in the long-wave limit kHl� 1;
and (2) the QL model used in the TOS prediction is known to introduce large errors

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

86
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.868


234 S. Miao, K. Hendrickson and Y. Liu

kjHg 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ωN
r 0.1011 0.2160 0.3188 0.4139 0.5184 0.5422 0.7054
ωT

r 0.0839 0.1725 0.2585 0.3396 0.4151 0.4846 0.5493

TABLE 1. Comparison of interfacial modal frequencies between numerical evaluations from
the FCIF solver (ωN

r ) and theoretical approximations following the analysis in Náraigh
et al. (2011a) (ωT

r ). Here kj denotes the interfacial wavenumber.

in the wall shear stress phase angle at long-wave regime (for example, in turbulent
flows over solid wavy surfaces in the long-wave regime in figure 5 of Abrams &
Hanratty 1985).

5. Process II: nonlinear wave coalescence
The monochromatic waves induced by linear interfacial instabilities in Process I

gradually evolve into travelling solitary humps with steep fronts and smooth tails
through nonlinear resonant and near-resonant wave–wave interactions in Process II
(see figure 4b). These solitary humps travel faster than the monochromatic waves
without much variation in shape and resemble the periodic solitary-wave solutions
for free-falling thin films (Chang et al. 1993) or the roll waves for the inclined
open channels of shallow-water flows (Needham & Merkin 1984). As these
humps propagate downstream, they further coalesce to form an even longer and
larger-amplitude hump which will bridge the channel to form slugging (see figure 4c).

5.1. Formation of periodic solitary waves
To assist in understanding this complex process observed in FCIF simulation, we first
consider a simpler one-way interaction problem with a laminar liquid layer driven
by constant interfacial forces based on numerical analysis on the liquid governing
equations (2.6) and (2.7). We only consider the nonlinearity of interfacial waves
sheared by a turbulent gas flow without invoking the influence of these waves on the
turbulent gas. Under this assumption, we can approximate the gas flow as a steady
Poiseuille flow producing the following constant interfacial forces:

−
dpη
dx
=

2τ x
η

Hg
,

dpη
dz
= τ z

η = 0. (5.1a,b)

From the interfacial forcing terms in (2.6) and (2.7), we obtain that the liquid hold-up

Rf = 2d=
−

dpη
dx

Hl

τ x
η

(5.2)

characterizes the strength ratio between the pressure and shear stress forcing from the
gas, where the definition of depth ratio d is consistent with that in simulation defined
in (2.1).

We rewrite (2.6) and (2.7) in a frame of reference moving with speed c in the
streamwise direction:

∂h
∂t
+
∂qx

∂x
+
∂qz

∂z
= c

∂h
∂x
, (5.3)
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∂qx

∂t
+
∂Ixx

∂x
+
∂Ixz

∂z
= c

∂qx

∂x
−

h
Fr2

l

∂h
∂x
+
Γ x

Rel
h+

1
Rel

×

[
(τ x
η − τ

x
w)+

∂

∂x

(
2
∂qx

∂x

)
+
∂

∂z

(
∂qx

∂z
+
∂qz

∂x

)]
+Welh

(
∂3h
∂x3
+

∂3h
∂x∂z2

)
, (5.4)

∂qz

∂t
+
∂Ixz

∂x
+
∂Izz

∂z
= c

∂qz

∂x
−

h
Fr2

l

∂h
∂z
+
Γ z

Rel
h+

1
Rel

×

[
(τ z
η − τ

z
w)+

∂

∂x

(
∂qx

∂z
+
∂qz

∂x

)
+
∂

∂z

(
2
∂qz

∂z

)]
+Welh

(
∂3h
∂x2∂z

+
∂3h
∂z3

)
. (5.5)

We have retained the same independent variable ‘x’ for the moving coordinate for
convenience. We seek two-dimensional periodic steady-state solutions (∂/∂t= ∂/∂z=0,
qz= 0) of (5.3)–(5.5) with constant interfacial forcing (5.1). Integrating (5.3) once, we
obtain

qx = ch+C0, (5.6)

where C0 is the constant of integration depending on the initial liquid flow
rate. Since we introduce additional unknowns C0 and c, we impose a derivative
condition ∂h/∂x|x=0 = 0 and an integral condition for constant mass under one wave∫ π/k0

−π/k0
h dx = 2π/k0, where k0 is the wavenumber of periodic solution. Eliminating

qx by (5.6), we numerically solve (5.4) together with the derivative and integral
conditions to obtain the nonlinear steady wave solution for given k0. For this one-way
interaction problem, we consider similar flow conditions as in the two-way interaction
simulation by FCIF: Rel = 19.1, Frl = 1.32, Wel = 0.0, r = 1000.0 and m = 5555.5.
We consider different depth ratios d = 1/2, 1, 2 to study the characteristics of the
nonlinear periodic waves driven by interfacial forces with different pressure-to-shear
ratios Rf .

Figure 7 shows the dependence of the travelling speed c and maximum wave
elevation hmax of the nonlinear periodic waves on different k0 with various Rf (d)
for this one-way interaction problem. For a given Rf (d), there exists a one-
parameter family of nonlinear periodic travelling-wave solutions parametrized by
their wavenumber k0, similar to the one-layer free-falling thin films or the inclined
shallow-water flows (Needham & Merkin 1984; Hwang & Chang 1987; Prokopiou,
Cheng & Chang 1991). These periodic waves correspond to limit cycles branched
out from the Hopf bifurcation point of the flat-interface base state in the phase plane.
In addition, longer waves have larger amplitudes and travel faster for a given Rf (d).
For a given k0, increasing the interfacial pressure-to-shear strength ratio Rf results
in larger wave amplitude and travelling speed. This implies that interfacial pressure
gradient transfers energy to liquid more efficiently than the shear stress.

All of these nonlinear waves present a soliton-like shape but asymmetric with the
wave front steeper than the back tail, similar to the solitary waves we observe in
the two-way interaction simulation by FCIF (see figure 4). Figure 8 shows a typical
periodic solitary wave of k0Hl = 0.06 with d = 1/2 in a frame travelling with its
wave speed c/Ul = 2.53. In this moving frame, the liquid flows from right to left
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FIGURE 7. (a) Travelling speed c and (b) maximum wave height hmax of the periodic
solitary waves as functions of k0Hl with different interfacial pressure-to-shear strength
ratios Rf (i.e. different liquid hold-ups d) for the one-way interaction problem.
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FIGURE 8. (a) Wave elevation profile, (b) relative depth-averaged streamwise velocity
magnitude |qx/h− c| and (c) corresponding Fourier spectrum of a steady periodic solitary
wave of k0Hl = 0.06 in the one-way interaction problem for d = 1/2 in the frame of
reference moving with the wave speed c/Ul = 2.53. In this moving frame, the relative
liquid velocity is from right to left.
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FIGURE 9. (Colour online) (a) Modal amplitude evolution of the first five Fourier modes
during the evolution from flat interface with small white noise to the steady solitary
wave of k0Hl = 0.06 under constant interfacial forces with d= 1/2; (b) the corresponding
trajectory (– – –) from the Hopf point (1, 0) (equilibrium for a flat interface) to the solitary
wave in the phase-plane diagram. Here —— (red) denotes the limit cycle corresponding
to the periodic solitary wave.

with a constant relative flow rate qrel = qx − ch=C0. The relative flow velocity drops
significantly from A to B with an abrupt rise of the interface, similar to a stationary
hydraulic jump. The corresponding Fourier spectrum of this single solitary wave of
k0 comprises many Fourier modes k0, 2k0, 3k0, . . . . These flow characteristics are
consistent with experimental observations (Jurman, Bruno & McCready 1989; Jurman
& McCready 1989; Jepson 1990).

The evolution from the flat interface to any of these periodic solitary waves
involves linear interfacial instabilities and nonlinear wave–wave interactions that may
directly lead to slugging for relatively low superficial gas velocities (Campbell &
Liu 2013; Campbell et al. 2016). As an illustration, figure 9 provides a sample
evolution process of generating the solitary wave in figure 8 starting from a flat
interface with small-amplitude white-noise perturbations. A linear interfacial stability
analysis of (2.6) and (2.7) for the flat-interface base flow of this one-way interaction
problem obtains a weakly dispersive and linearly unstable Fourier spectrum in the
long-wave regime, similar to Process I of the two-way interaction problem (figure 6).
As these weakly dispersive Fourier waves grow from the effect of linear instability,
they generate new free Fourier waves and transfer energy among them through (triad
and higher-order) resonant and/or near-resonant wave–wave interactions (Phillips
1960; Chang 1994; Campbell et al. 2016). Figure 9(a) confirms that the amplitudes
of the fundamental Fourier mode and its first few harmonics grow exponentially
initially following the linear instability, then oscillate in time exchanging energy
among them due to nonlinear near-resonant wave–wave interactions, and eventually
saturate at the equilibrium values when the steady solitary wave forms. We also plot
the corresponding trajectory in the phase plane of (h, dh/dt) at x = 0, as shown in
figure 9(b). The trajectory path spirals out from the Hopf point (1, 0), eventually
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settling down at a limit cycle corresponding to the steady periodic solitary wave
solution.

To construct a quantitative measure of nonlinear triad resonant wave interactions
when a solitary wave forms, we define the following bi-coherence:

Bi(k1, k2)=
|〈a∗1(k1)a2(k2)a3(k3 = k1 + k2)〉|

〈|a1(k1)||a2(k2)||a3(k3 = k1 + k2)|〉
, (5.7)

with 〈 〉 denoting the time average, ∗ the complex conjugate and ai(ki) the spatial
Fourier component of the wave elevation at wavenumber ki. Here Bi measures the
phase coupling of the three Fourier wave components k1, k2 and k3 = k1 + k2. The
bi-coherence Bi has the value in the range of 0 to 1 with Bi= 0 (or 1) corresponding
to completely no (or perfect) coupling among the three wave modes. In general, Bi
obtains high values for resonant and near-resonant triads of (k1, k2, k3) which satisfy
the condition Re{ω3 − ω1 − ω2} = δ, δ � 1, and low values for non-resonant triads.
We compute Bi(k1, k2) when the steady solitary wave in figure 9 forms. We obtain
Bi(k1, k2) > 0.9998 for any k1/k0, k2/k0 = 1, 2, . . . , 15. This means that the weak
dispersion of the Fourier waves leads to near-resonance triads for any three of them.
Eventually through multiple resonant and near-resonant interactions, all the Fourier
modes k0, 2k0, 3k0, . . . are phase-locked into one solitary hump of k0. This nonlinear
process is different from the one or two dominant (near-)resonance triads that lead
to slugging for relatively low gas flow rates (Campbell & Liu 2013; Campbell et al.
2016). Examination of the bi-coherence of the solitary wave developed at the end of
Process II in the two-way interaction simulation (figure 4c) obtains the same features.

5.2. Coalescence of solitary waves
We note from figure 4(c) that two long solitary waves further coalesce to form a
longer one at t∼O(200) in the FCIF simulation. We attribute the mechanism behind
this solitary wave coalescence to their subharmonic instabilities. To illustrate this
mechanism, we study the instability of a two-dimensional periodic solitary wave
of wavenumber k0, which we derive for the one-way interaction problem in § 5.1,
subject to an infinitesimal three-dimensional disturbance. Appendix A details the
stability analysis.

We focus here on the two-dimensional instability of the periodic solitary waves.
Appendix A provides several typical three-dimensional instability results for solitary
waves of different steepness, which justifies that the instability is dominantly
two-dimensional. We study the dependence of the maximum two-dimensional
perturbation growth rates on the steepness of solitary waves and the interfacial
pressure-to-shear strength ratio Rf , as shown in figure 10. Under constant interfacial
forcings, we find that periodic solitary waves in a wide range of steepness, particularly
for short steep waves, are unstable to subharmonic disturbances (α/k0< 1), where α is
the wavenumber of the disturbances in the streamwise direction. This destabilization
mechanism would create a cascade of solitary wave coarsening until the resulting
waves either touch the channel/pipe top or become stable. Figure 10 also reveals
that a larger pressure-to-shear strength ratio tends to produce a stronger subharmonic
instability.

To further illustrate that this destabilization mechanism is responsible for the wave
coalescence in the FCIF simulation, we approximate the two large irregular waves at
t ∼ O(160) (figure 4c) by a periodic solitary wave train in the one-way interaction
problem with the same depth ratio d = 2. We choose the solitary wavenumber k0
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FIGURE 10. (Colour online) (a) Typical computed growth rates of the most unstable two-
dimensional disturbance of the periodic solitary waves of different steepness k0Hl with
various Rf for the one-way interaction problem. (b) The corresponding wavenumbers of
the most unstable disturbance in (a). The results shown are for Rf = 4 (E), Rf = 2 (@,
blue) and Rf = 1 (C, red).
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FIGURE 11. Two-dimensional stability results of the periodic solitary wave of k0Hg =

0.2 under constant interfacial forcing with d = 2 in the one-way interaction problem.
(a) Growth rate ωi = Im(σ ) and (b) frequency ωr = Re(σ ) + k0c as a function of α/k0.
Solid lines represent the results computed by the linear stability analysis, while symbols
denote the results evaluated by direct spatio-temporal numerical simulation of (2.6)–(2.7).

such that two waves exist in the same computational domain length. We compute the
two-dimensional stability spectrum of this solitary wave, as plotted in figure 11. The
stability analysis compares well with the direct numerical simulation of (2.6)–(2.7).
We see that this solitary wave of k0 is unstable to all the two-dimensional subharmonic
disturbances with α = 0.5k0 growing fastest. Figure 12 shows the response of this
solitary wave train to the most unstable two-dimensional perturbation α= 0.5k0 with a
much smaller amplitude. The wave train initially appears to propagate steadily. As the
subharmonic perturbation grows, the two waves gradually merge, eventually leaving
a single solitary wave in the domain. This process is similar to figure 4(c) in the
FCIF simulation even though it only includes a constant interfacial forcing. We thus
interpret the wave coalescence in the two-way interaction problem as the analogue of
the subharmonic instabilities of solitary waves.

We summarize Process II from the perspective of dynamic theory. A laminar
liquid flow driven by interfacial forcings is a nonlinear dynamic system allowing
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FIGURE 12. (a) The eigenfunction corresponding to the most unstable two-dimensional
disturbance of the periodic solitary wave of k0Hg = 0.2 with d = 2 in the one-way
interaction problem. The eigenfunction has been normalized so that its amplitude is 1/3
times the crest-to-trough height of the unperturbed wave. The corresponding eigenvalue
(i.e. complex frequency) σ = 0.00183i. (b) The unperturbed solitary wave profile (——)
and the final solitary wave after coalescence for reference (– – –). (c) Spatio-temporal
evolution of the interface with a small two-dimensional perturbation of α = 0.5k0 on the
steady solitary wave in (a) by direct numerical simulation of (2.6)–(2.7).

for multiple steady solutions. Process II is equivalent to successive bifurcations from
these steady solutions. Take the one-way interaction problem as an example. The most
trivial solution is the flat interface corresponding to an equilibrium point in the phase
diagram (figure 13a,b). Owing to linear interfacial instabilities, the system undergoes
a Hopf bifurcation and gradually evolves from the flat interface into a periodic
solitary wave that corresponds to a limit cycle in the phase diagram (figure 13c,d).
We have shown these solitary waves to be generally unstable to their subharmonic
disturbances, so the system further bifurcates from the present limit cycle into a
larger limit cycle in the phase plane (figure 13f ). This corresponds to forming a
larger solitary wave through wave coalescence in the physical domain (figure 13e).
A series of such bifurcations result in slug generation. Figure 14 shows the similar
characteristics in the phase plane trajectory of the FCIF simulation.

For the FCIF simulation, the wave grows to touch the channel top through
wave coalescence after t ∼ 240. We estimate the slug-initiation distance utilizing
the velocity of the largest wave (with Cg = 1.0) to be approximately 80 channel
height from the inlet. This result compares qualitatively well in terms of time/length
scale with the experimental observation of Andritsos et al. (1989) who reported
that first slugging through wave coalescence occurred in the region of 30–100 pipe
diameters for turbulent air and laminar liquid with viscosity of 20–100cp (Rel∼O(10),
Reg ∼O(104)).
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FIGURE 13. (Colour online) Interfacial evolution through wave coalescence for the one-
way interaction problem with d= 2 in the physical domain (a,c,e) and the corresponding
phase plane (b,d, f ). Solid lines and symbols represent different equilibria, whereas dashed
lines denote phase plane trajectories.
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FIGURE 14. (Colour online) Phase plane trajectory (– – –) for the interfacial evolution in
the two-way interaction problem by FCIF, where t1 = 130.2, t2 = 141.2 and t3 = 238.5.
Hereu (red) represents the flat interface equilibrium in the physical domain.

6. Influence of gas–liquid interactions on Processes I and II

We have shown the mechanism behind the growth of long waves through wave
coalescence without invoking any complex interfacial force models. In fact, similar
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FIGURE 15. Snapshots of instantaneous contours of Reynolds-averaged velocity u with
mean streamlines by relative velocity (ux

r, uy
r) = (ux − ux

η, uy − uy
η), Reynolds-averaged

pressure p and TKE at t = 6 in the early stage of the interfacial evolution leading to
slugging in the turbulent-gas/laminar-liquid two-phase horizontal flow.

wave dynamics also exist in other wave systems such as one-layer falling thin films
(e.g. Chang 1994; Liu & Gollub 1994) and inclined open-channel shallow water
flows (e.g. Kranenburg 1992; Balmforth & Mandre 2004). However, the energy
sources for the interfacial instabilities are different. Gravity is the driving force for
the falling thin films and inclined open-channel flows, while the fast gas flow is
responsible for transferring energy to liquid via interfacial forces in two-layer flows.
A constant interfacial pressure gradient in the latter is equivalent to the role of gravity
in the former. In reality, the interfacial forcing is never constant in two-phase flows.
Comparing figure 12 against figure 4(c), we find that wave coalescence takes much
longer time in the one-way interaction problem and the resultant wave is smaller
compared with the two-way interaction simulation. In this section, we show that
with the two-way interaction between two phases included, the magnitude and phase
correlation of the interfacial forces vary as waves evolve, which further accelerates
the wave coalescence and wave growth.

6.1. Influence of interfacial waves on turbulent gas
Figures 15 and 16 provide the gas flow visualization including the contours of
Reynolds-averaged streamwise velocity u, pressure p and TKE for early (e.g. t = 6)
and late (e.g. t= 134) stages, respectively. At the early stage when interfacial waves
are small, the contours of u, p and TKE in the gas layer present a stratified pattern
with perturbations due to small interfacial waves. The streamlines behave like a
horizontally uniform flow. The turbulent stratified base flow dominates over the
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FIGURE 16. Snapshots of instantaneous contours of Reynolds-averaged velocity u with
mean streamlines by relative velocity (ux

r, uy
r) = (ux − ux

η, uy − uy
η), Reynolds-averaged

pressure p and TKE at t = 134 in the later stage of the interfacial evolution leading to
slugging in the turbulent-gas/laminar-liquid two-phase horizontal flow.

interfacial wave perturbations. However, once large interfacial waves are developed,
the gas layer behaves similar to turbulent flow over hills and moving walls (Belcher
& Hunt 1998). The gas flow contours align with the interfacial waves, indicating that
the influence of interfacial waves gradually dominates over the turbulent base flow as
waves grow larger. In addition, the pressure drops rapidly at the two large wave crests
due to the Bernoulli effect, but it does not immediately recover downstream of the
crests where the effective gas cross-section widens. This means the viscosity effect is
relevant at the later stage of slug generation. The closed streamlines (see figure 16a)
show that the flow separation occurs at the leeward side of the two large waves. This
is consistent with the strong turbulence in the same region (see figure 16c).

Figure 17 shows the flow separation details near the large solitary wave at
x = 7π–8π in figure 16, which is consistent with separated flows over hills/moving
walls (Tobak & Peake 1982; Belcher & Hunt 1998). The adverse pressure gradient
downstream of the wave crest results in a locally reversed flow. The interfacial shear
layer detaches the interface past the wave crest, shedding a large negative vortex into
the flow. This is similar to the finding of Xie et al. (2017) for the two-layer laminar
flows in inclined channels that negative vorticity mostly results from the interface.
The flow separation due to the large interfacial waves at the later stage thickens the
boundary layer on the leeward side of the wave, thereby displacing the outer mean
flow asymmetrically about the wave. This explains the slow recovery of the pressure
downstream of the crests shown in figure 16(b), which is also consistent with the
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FIGURE 17. (a) The relative velocity vector field (ux
r, uy

r) = (ux − ux
η, uy − uy

η), (b) the
detailed mean pressure contour and (c) the mean vorticity contour near the large wave at
x= 7π–8π and t= 134 (see figure 16). The dashed contour lines denote negative values.
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FIGURE 18. Comparisons of wave-induced interfacial pressure gradient 1(−dpη/dx),
interfacial shear stress τ x

η and wave elevation η profiles at t = 6 in the early stage
(a–c), and t= 134 in the late stage (d–f ) of the interfacial evolution leading to slugging
in laminar liquid sheared by turbulent gas in horizontal channels. Dashed lines (– – –)
represent the profiles in the base flow for reference.

sheltering hypothesis of Jeffreys (1925). We further discuss this asymmetry of the
pressure distribution in § 6.3.

6.2. Influence of turbulent gas on interfacial pressure-to-shear strength ratio
The evolving influence of interfacial waves on the turbulent gas layer would
in return influence the interfacial forces driving the liquid motion. Figure 18
shows two representative profiles of the wave-induced interfacial pressure drop
1(−dpη/dx)= (−dpη/dx)− Px and interfacial shear stress τ x

η at early and late stages,
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FIGURE 19. Time evolution of interfacial pressure-to-shear strength ratio Rf (t) during slug
generation in the two-phase turbulent-gas/laminar-liquid horizontal flow.

respectively. At the early stage, the leading order of the flow is the stratified base flow.
The magnitude of the wave-induced pressure drop 1(−dpη/dx) is small compared
with the applied pressure drop Px. At the later stage with much larger interfacial
waves, 1(−dpη/dx) completely dominates over Px. The magnitude of the interfacial
shear stress at the later stage is also much smaller than that at the initial stage. The
shear stress may turn into drag force where flow separation occurs. Compared with
the interfacial pressure, the shear stress effect at the later stage is negligible.

To quantify the strength ratio between interfacial pressure and shear stress during
the slug-generation process, we define the following metric similar to (5.2):

Rf (t)=

〈
−

dpη
dx

h
〉

〈τ x
η 〉

, (6.1)

where 〈a〉=
∫

a dx/
∫

dx denotes the space average of quantity a. We compute the time
variation of Rf (t) during the entire slug generation, which is displayed in figure 19.
We observe a monotonic increase of Rf throughout the slug development. It is clear
from § 5 that larger pressure-to-shear ratio tends to form larger faster solitary waves
(see figure 7) and produce stronger subharmonic instabilities (see figure 10). Thus, the
increase of Rf (t) with time indicates that the dynamic interaction between gas and
liquid further accelerates the wave coalescence and facilitates the formation of larger
longer solitary waves.

The evolution of interfacial pressure-to-shear strength ratio in the two-layer flow
also results in the energy source for interfacial wave growth differing from many
one-layer wave systems driven by a constant force (e.g. gravity). Figure 20 shows
the gas-to-liquid energy flux during the slug development. The dynamic interaction
between gas and liquid results in a more rapid energy transfer rate in the later stage,
indicating an increasing interfacial wave growth rate as the waves grow. The energy
transfer is initially by interfacial shear stress and then ultimately by interfacial pressure
forcing. This is consistent with the evolution of Rf in figure 19.
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FIGURE 20. Energy flux from turbulent gas to laminar liquid through interfacial forces
during the slug-generation process: – – –, through pη; — ·—, through τ x

η ; ——, total energy
flux.

6.3. Influence of turbulent gas on the phase correlation of the interfacial pressure
gradient

The wave-affected turbulent gas also influences the phase distribution of the interfacial
pressure in addition to its magnitude throughout the interfacial evolution towards
slugging. From figure 18(d, f ), we see that both Bernoulli (KH) and viscous effects
due to the gas–liquid interaction influence the interfacial pressure distribution. The
pressure drop upstream of the wave crests is positive due to the acceleration of
the gas flow induced by the reduction in the cross-sectional area (Bernoulli effect).
Conversely, the pressure drop is negative downstream of the wave crests. Such a
pressure distribution drives the liquid from troughs to crest, elevating the interface
similar to the KH instability. The asymmetry (with respect to the wave crest) of
the boundary layer thickness due to the flow separation at the lee side of the large
waves (figures 16 and 17) modifies the symmetry of the interfacial pressure gradient.
This viscous effect attenuates the interfacial pressure gradient downstream of the
wave, resulting in a larger net driving force on larger waves. This helps precipitate
the wave coalescence as displayed in figure 3. Overall, these two effects result in a
strong correlation between interfacial pressure gradient and wave elevation at t= 134,
which was weak at t= 6 (figure 18a,c).

There has been a debate on the phase correlation of the interfacial pressure
with the wave elevation (e.g. KH model) and wave slope (e.g. Jeffreys’ sheltering
mechanism) for two-phase flows (e.g. Hanratty & Engen 1957; Cohen & Hanratty
1965; Campbell et al. 2016). We compute the correlation coefficient of the interfacial
pressure drop −dpη/dx with both wave elevation η and wave slope −dη/dx during
the slug development, as shown in figure 21. We see a transition point at around
t = 100–120. The interfacial pressure gradient correlates dominantly first with wave
slope and then with elevation.

This correlation evolution is a result of the competition between Bernoulli (KH)
and viscous effects as waves grow. For an unbounded turbulent flow over one
wavy wall, such a competition exists depending on the strength of the boundary
effect in different flow regions (Belcher & Hunt 1998). The perturbed horizontal
pressure drop is mainly balanced with the perturbed shear stress gradient in the
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FIGURE 21. Evolution of correlation coefficients (CC) of interfacial pressure gradient
−dpη/dx with wave elevation η (——), and with elevation slope dη/dx (– – –).

inner (local-equilibrium) region (Townsend 1961), while it is determined by the
Bernoulli effect in the outer (rapid-distortion) region (Batchelor & Proudman 1954;
Hunt 1973). Similarly, the turbulent gas layer during the slug generation is a bounded
flow between two walls gradually approaching each other because the gas sees the
liquid as a moving wall. The bulk region of the gas flow thus gradually transitions
from outer (rapid-distortion) to inner (local-equilibrium) region as waves approach
the channel top. Therefore, the perturbed pressure gradient initially balances with
the wave-induced convection term (Bernoulli/KH effect) and then with shear stress
gradient (viscous effect), resulting in the phase-correlation evolution.

In summary, the two-way interaction between the bounded turbulent gas and
laminar liquid further accelerates the wave growth and coalescence in slug generation
by increasing the interfacial pressure-to-shear strength ratio and changing the phase
correlation of interfacial pressure gradient. The interfacial pressure gradient initially
correlates with wave slope to destabilize the interface as the KH instability due
to the Bernoulli effect. In the later stage, it correlates with wave elevation due to a
stronger stress gradient effect competing over the Bernoulli effect in a wave-influenced
turbulent gas layer in a bounded domain, which tends to drive larger waves to travel
faster for wave coalescence and growth.

7. Process III: slugging
Through the initial linear instabilities and the subsequent nonlinear coalescence,

interfacial waves grow larger and longer such that they approach the top channel wall
leading to rapid slugging. In this section, we perform a short-time asymptotic analysis
on this final stage of slug formation when waves are close to bridging the channel,
i.e. when H − h� 1, where H is the total channel height and h is the interfacial
wave height.

7.1. Reduced model
The gas layer transfers energy to liquid mainly through interfacial pressure in the later
stage. To describe the dynamics of the interface in the last stage, we first perform a
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control volume analysis for the turbulent gas layer to model the interfacial pressure
gradient. Within the context of two-dimensional problems, we select a control volume
covering the cross-section of the gas layer and spanning from x to x+ dx for dx→ 0,
with the top wall and the interface as the top and bottom boundaries, respectively.
From the mass conservation, we obtain

∂(H − h)
∂t

+
∂Qx

∂x
= 0, (7.1)

where Qx is the gas flow rate:

Qx =

∫ H

h
u dy. (7.2)

Combining (7.1) with (2.6)–(2.7) yields

Qx + qx =Q(t), (7.3)

and here we focus on the case of constant total flow rate, Q(t)≡Q. In general, gas
travels much faster than liquid, thus we assume the gas layer is in a quasi-steady state
(Taitel & Dukler 1976; Lin & Hanratty 1986). Then the momentum conservation of
the control volume yields

∂

∂x

∫ H

h
u2 dy=−(H − h)

dpη
dx
− (τ x

H + τ
x
η ). (7.4)

From (7.3) to (7.4), we have

−
dpη
dx
=Φ

∂

∂x

[
Q− qx

H − h

]2

+
τ x

H + τ
x
η

H − h
, (7.5)

where Φ is the shape factor defined as (Lin & Hanratty 1986)

Φ =
H − h

(Q− qx)2

∫ H

h
u2 dy. (7.6)

The value of Φ depends on the mean flow velocity profile and here we choose Φ = 1
(Balmforth & Mandre 2004).

We calculate the stress gradient term in the right-hand side of (7.5) using the
expression

τ x
H + τ

x
η

H − h
= I2

(
Q− qx

H − h

)2

, (7.7)

where I represents the turbulence intensity modelled by the following Blasius-type
power law correlation (Taitel & Dukler 1976; Andritsos & Hanratty 1987a; Spedding
& Hand 1997; Issa & Kempf 2003):

I = aRe−b
g = a

[
ρg(Q− qx)

µg

]−b

, (7.8)

where a and b are unknown coefficients to be determined by the specific problem.
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Substituting equations (7.7)–(7.8) into (7.5), we obtain the following model for
interfacial pressure gradient:

−
dpη
dx
=
∂

∂x

[
Q− qx

H − h

]2

+ a
(
ρg

µg

)−b
(Q− qx)

−b+2

(H − h)3
. (7.9)

For H − h� 1, the second term on the right-hand side dominates, consistent with
the inner (local-equilibrium) region behaviour of the whole gas layer at the later
stage of slug generation (see § 6.3). By neglecting the first term on the right-hand
side, we substitute the interfacial pressure gradient model (7.9) into (2.6)–(2.7). The
dominance of the pressure term for H − h� 1 allows us to further neglect all the
other forcing terms, yielding the following reduced equations describing the rapid
growth of interfacial waves in Process III:

∂h
∂t
+
∂qx

∂x
= 0 (7.10a)

∂qx

∂t
+

6
5
∂

∂x

(
q2

x

h

)
= ra

(
ρg

µg

)−b
(Q− qx)

−b+2

(H − h)3
h. (7.10b)

7.2. Asymptotic results
We perform an asymptotic analysis on the final slugging event in Process III for the
turbulent-gas/laminar-liquid horizontal two-phase flow. We determine a and b of the
interfacial pressure gradient model (7.9) using the distributions of dpη/dx at different
time instants throughout Process I and II from the FCIF simulation. We randomly
choose multiple sets of dpη/dx from the FCIF simulation results to combine into a
training set. The remaining data then form a test set. Using the power regression with
the training set obtains a = 4.752 × 10−3, b = −1.618, which are also validated by
the test set. Figure 22 provides several sample comparisons between the interfacial
pressure model and the numerical simulation results by FCIF for the test datasets
throughout Process I and II. The comparison is satisfactory.

Once a and b are determined, we numerically solve the governing equations (7.10)
of Process III using the quasi-steady solitary wave at t= 240 as the initial condition.
Figure 23 shows the asymptotic behaviour of the wave growth right before slugging
occurs. We see that when the wave nears the top channel wall, it achieves faster than
exponential, or even tri-exponential growth rate until bridging the channel to form a
slug. The characteristic feature of rapid approach of the interface to the top wall in the
occurrence of slugging is consistent with the experimental observation (e.g. figure 6
in Kadri et al. 2009).

8. Conclusion
This work has numerically and theoretically investigated the mechanisms of slug

generation for a two-phase turbulent-gas/laminar-liquid flow in a horizontal channel
using a newly developed FCIF solver combined with interfacial instability analyses.
FCIF couples a uRANS gas simulator with a depth-integrated (long-wave) liquid
solver via an IB method to efficiently simulate the dynamic interaction between
two disparate flows on a single non-boundary conforming grid. The analyses of
numerical simulations by FCIF and interfacial instabilities and comparisons with
available experimental observations have shown that the slugs develop from stratified
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FIGURE 22. Comparisons of the interfacial pressure gradient distributions dpη/dx between
the numerical simulation by FCIF (——) and the interfacial pressure model (7.9) with
a= 4.752× 10−3, b=−1.618 (– – –) at (a) t= 30, (b) t= 80, (c) t= 150 and (d) t= 240
in the slug-generation process of turbulent-gas/laminar-liquid two-phase horizontal flow.
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FIGURE 23. (Colour online) (a) Growth of the wave crest (——) in Process III when
the wave nears the top wall for the turbulent-gas/laminar-liquid two-phase flow. Here
– – – and — ·— represent exponential and tri-exponential functions, respectively. (b) The
corresponding elevation profiles at the beginning (t0 = 240) (——, blue) and the end
(t= t0 + 0.5) (– – –, red) of Process III immediately before slugging.
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two-phase flows through three fundamental cascaded processes. This paper has
detailed the characteristics of the dynamics and the associated governing mechanisms
associated with the three processes.

Process I is the growth of minuscule waves on the flat interface. We have performed
a TOS analysis, based on the QL hypothesis, of the Poiseuille base flow and have
shown that the base flow is linearly unstable for the long Fourier wave modes of
disturbances. The numerical simulation by FCIF confirms that the linear OS instability
causes the stratified-to-wavy transition in Process I.

Process II is the formation and coalescence of long solitary waves evolved from
relatively shorter waves induced by linear instability in Process I. To assist in
understanding the mechanisms behind this process, we first consider a relatively
simple problem by neglecting the influence of interfacial waves on turbulent gas. By
performing wave spectrum and normal-mode perturbation analyses for this one-way
coupling problem, we show that nonlinear solitary waves, which result from multiple
resonant and/or near-resonant triad (or higher-order) interactions of weakly dispersive
Fourier modes (from the initial linear instability in Process I), coalesce due to the
instabilities to their subharmonic disturbances. This mechanism results in a continuous
coalescence of solitary waves to produce waves of increasing size (in both wavelength
and wave amplitude), eventually leading to slugging. We then investigate the influence
of two-way interaction of turbulent gas and laminar liquid flows on this nonlinear
interfacial wave evolution process. Examination on interfacial force variations in the
two-way coupling simulation indicates that the gas–liquid interaction precipitates the
wave growth and coalescence, further accelerating the slug generation.

Finally, through the linear instabilities in Process I and nonlinear coalescence in
Process II, Process III is the rapid wave growth immediately before bridging the
channel. By developing a reduced physical model and performing an asymptotic
analysis on the wave behaviour as waves approach the channel top, we find that
waves could achieve multiple-exponential growth (with time) before hitting the
channel top to initiate slugging. This is mechanically consistent with the observation
of high-impact pressure/force on pipe/channel wall when a slug forms.

Together, the analysis of these three fundamental processes provides a comprehensive
understanding on the entire slug generation from a stratified flow regime in
horizontal turbulent-gas/laminar-liquid two-phase flows. Our mechanistic study
provides important insights and guidance for developing interfacial force closure
models, predicting slug transition criteria, and estimating slug frequency/length. The
FCIF simulations and three-dimensional stability analysis presented here (as well
as the simulations of Xie et al. 2017) establish the dominant mechanism for wave
coalescence and the onset of slugging as mainly a two-dimensional mechanism.
The interfacial evolution of the FCIF simulations is also characteristically similar to
those observed in the pipe experiments (e.g. Andritsos et al. 1989; Fan et al. 1993;
Woods & Hanratty 1999) and three-dimensional simulations (e.g. Issa & Kempf 2003;
Frank 2005; Höhne & Mehlhoop 2014). We expect the details of pipe curvature and
three-dimensional turbulence structures to have an influence on the rate at which the
process occurs; however, we do not expect it to significantly alter the underlying
two-dimensional mechanisms driving the phenomenon.
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Appendix A. Three-dimensional instability analysis of periodic solitary waves
In this appendix, we study the instability of a two-dimensional periodic solitary

wave of k0 derived for the one-way interaction problem in § 5.1. Consider the solitary
wave subject to an infinitesimal three-dimensional disturbance. In a frame of reference
moving with the wave speed c, let

h= h0(x)+ h′, qx = q0
x(x)+ q′x, qz = q′z, (A 1a−c)

where h0 and q0
x are the elevation and flow rate profiles of the base solitary wave,

and h′� h0 and q′x, q′z� q0
x are small perturbations. To first order in the perturbations,

from (5.3)–(5.5) we obtain

∂h′

∂t
− c

∂h′

∂x
+
∂q′x
∂x
+
∂q′z
∂z
= 0, (A 2)

∂q′x
∂t
+Ah′ +B

∂h′

∂x
+ Cq′x +D

∂q′x
∂x
+ (I + c)

∂q′z
∂z
=

1
Rel

[
2
∂2q′x
∂x2
+
∂2q′x
∂z2
+
∂2q′z
∂x∂z

]
+Welh0

[
∂3h′

∂x3
+

∂3h′

∂x∂z2

]
, (A 3)

∂q′z
∂t
+

h0

Fr2
l

∂h′

∂z
+ Gq′z + I

∂q′z
∂x
=

1
Rel

[
∂2q′z
∂x2
+

2∂2q′z
∂z2
+
∂2q′z
∂x∂z

]
+Welh0

[
∂3h′

∂z3
+

∂3h′

∂x2∂z

]
, (A 4)

where

A = −
6
5
∂

∂x

(
q0

x

h0

)2

+
1
5
τ x
ηΓ

xh2
0
∂h0

∂x
+

1
5
(τ x
η )

2h0
∂h0

∂x
(A 5a)

+
1

Fr2
l

∂h0

∂x
−
Γ x

Rel
−

6
Rel

q0
x

h3
0
−Wel

∂3h0

∂x3
, (A 5b)

B=−
6
5

(
q0

x

h0

)2

+
1
15
τ x
ηΓ

xh3
0 +

1
10
(τ x
ηh0)

2
+

h0

Fr2
l
, (A 5c)

C =
12
5
∂

∂x

(
q0

x

h0

)
+

3
Rel

1
h2

0
, (A 5d)

D=
12
5

q0

h0
− c, (A 5e)

G =
6
5
∂

∂x

(
q0

x

h0

)
+

3
Rel

1
h2

0
, (A 5f )

I =
6
5

q0

h0
− c. (A 5g)

We consider a normal mode perturbation of the formh′
q′x
q′z

= e−iσ teiαx+iβz

 ĥ
q̂x
q̂z

 , (A 6)
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where σ is the complex frequency, and α and β are arbitrary real numbers,
representing the wavenumbers of the perturbation in the streamwise and spanwise
directions, respectively. The physical disturbance corresponds to the real part of (A 6).
Substitution of (A 6) into (A 2)–(A 4) obtains three ordinary differential equations of
(ĥ, q̂x, q̂z) with periodic coefficients. To look for non-trivial periodic solutions with
period k0, we further expand (ĥ, q̂x, q̂z) into the Fourier series ĥ

q̂x
q̂z

=
∞∑

n=−∞

an
bn
cn

 eink0x. (A 7)

We only need to consider 0<α< k0/2 since the value of α outside this range does
not provide additional information. By substituting (A 6) and (A 7) into (A 2), (A 3)
and (A 4), we obtain

σ

∞∑
−∞

eink0xan =

∞∑
−∞

−c(nk0 + α)eink0xan

+

∞∑
−∞

(nk0 + α)eink0xbn +

∞∑
−∞

βeink0xcn, (A 8)

σ

∞∑
−∞

eink0xbn =

∞∑
−∞

{−iA+ (nk0 + α)E}eink0xan

+

∞∑
−∞

{
−iC + (nk0 + α)D−

i
Rel
[2(nk0 + α)

2
+ β2
]

}
eink0xbn

+

∞∑
−∞

{
−

i
Rel
(nk0 + α)β + (I + c)β

}
eink0xcn, (A 9)

σ

∞∑
−∞

eink0xcn =

∞∑
−∞

βFeink0xan

+

∞∑
−∞

{
−

i
Rel
(nk0 + α)β

}
eink0xbn

+

∞∑
−∞

{
−iG + (nk0 + α)I −

i
Rel
[(nk0 + p)2 + 2β2

]

}
eink0xcn (A 10)

for 0 6 x 6 2π/k0, where

E =B+Welh0[(nk0 + α)
2
+ β2
], (A 11a)

F =
h0

Fr2
l
+Welh0[(nk0 + α)

2
+ β2
]. (A 11b)

With the unperturbed base wave solution h0, q0
x derived from § 5.1, we evaluate the

coefficients in (A 8)–(A 10), yielding an eigenvalue problem for σ with eigenvector
{an, bn, cn}. Instability corresponds to Im{σ } > 0. We approximate the perturbations
by truncating (A 6) at N Fourier modes. We choose {an, bn, cn}, n=−N + 1, . . . , N,
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FIGURE 24. (Colour online) Instability regions with growth rate contours of three-
dimensional perturbations on periodic solitary waves of different steepness k0Hl with d=2:
(a) k0Hl = 0.5; (b) k0Hl = 0.4; (c) k0Hl = 0.2; (d) k0Hl = 0.06; (e) k0Hl = 0.02.

to satisfy (A 8)–(A 10) at 2N collocation points which are uniformly spaced within
one wavelength of the unperturbed solitary wave. The resulting system of order 6N
is of the form

(R − σS)u= 0, (A 12)

where u={a−N+1, . . . , aN, b−N+1, . . . , bN, c−N+1, . . . , cN} and the matrices R and S are
complex functions of α, β and k0. We solve for the eigenvalues of the system (A 12)
based on the standard QZ algorithm. We increase N until the convergence of the
eigenvalues with the last components of the corresponding eigenvector is sufficiently
small.

Figure 24 provides several typical three-dimensional instability diagrams for
solitary waves of different steepness k0Hl with d = 2 in the one-way interaction
problem. We see that shorter steeper waves generally tend to be less susceptible
to three-dimensional perturbations with smaller unstable regions. Throughout this
range of steepness, we always attain the maximum instability at β = 0, meaning the
instability is dominantly two-dimensional. In addition, steeper waves generally obtain
larger growth rates.
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