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Abstract. Radiofrequency heating in toroidal geometry is described. Starting from
a general theory, expressions for the dielectric response and the radiofrequency
diffusion operator are obtained. The computationally most efficient simplified ex-
pressions bear a close resemblance to the results of uniform plasma theory, but dif-
fer from them in their interpretation. In cases where the simplified expressions do
not describe the physics faithfully, more general but computationally slower ones
are available. Rigorously accounting for the geometry and the wave field yields
fine structure that is commonly overlooked. Aside from causing the well-known
k‖-upshift or downshift impacting on the Doppler shift, the non-zero poloidal mag-
netic field modifies the orbital topology and forces one to account for the poloidal
inhomogeneity of the static magnetic field. The expressions obtained restore intu-
ition on how an electric field interacts with a charged particle, but, in so doing, cast
doubt on the degree of realism of predictions of simplified models that do not ac-
count for the constructive or destructive interference phenomena introduced by the
orbital topology non-uniformity. The expressions represent a numerical challenge,
but show the necessity for the detailed description: the ‘coarse-graining’ under-
lying simplified models yields a result that has the right order of magnitude for
interference related to crosstalk between resonances or multiple encounters with
a given resonance, but may be an order of magnitude wrong for predictions on
the combined effect of a poloidal mode spectrum. A Fokker–Planck code BATCH
(Bounce-Averaged Tool for Cyclotron Heating), relying on the expressions obtained,
is presented and some results are discussed.

1. Introduction
Modelling radiofrequency (RF) heating is usually done relying on a number of
simplifying assumptions. Because of the widely differing time scales of the wave
oscillations and the diffusion processes, and because the externally launched elec-
tric field energy is small compared with that contained in the static magnetic field,
one can linearize the equations and separate the time scales. Although the resulting
equations (the wave equation on the one hand and the Fokker–Planck equation on
the other) describe different time scales, they are describing the same physics and
are intimately connected: the average energy transferred from the waves to the
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particles, when averaged over all fast processes as predicted by the wave equation
solver, should be identical to the RF power density gain by the particles as com-
puted by the Fokker–Planck solver. Unfortunately, the assumptions made to arrive
at a wave equation and those adopted for deriving a Fokker–Planck equation are
usually not the same. As a result, the question of consistency arises: How should
one ‘translate’ the output of the wave equation code into the input for the Fokker–
Planck code? One approximation that is often used is to compute the electric field
structure with a wave code assuming thermodynamic equilibrium, and to adjust
the magnitude of the field in the Fokker–Planck code to arrive at an integrated RF
power density that equals the experimentally launched power (see e.g. Scharer et al.
1985; Hamamatsu et al. 1989). Another approach consists of adopting a simplified
electric field, omitting details such as the local pattern and phase of the actual field
(see e.g. O’Brien et al. (1986) and Kupfer (1991), in which the rudimentary wave
description spoils an otherwise-sophisticated theory). Details such as the k‖-upshift
or downshift due to the finite poloidal magnetic field, the actual local wave phase
or the fact that the cyclotron frequency varies along the orbit are thus – not always
justifiably – omitted. Rather than accounting for the actual distribution (which is
outside the scope of the Maxwellian plasma-wave code), one subsequently computes
the average energy of the RF-heated distribution and modifies the temperature of
the Maxwellian in the wave code to coincide with two-thirds of the obtained aver-
age energy. This procedure is then repeated until numerical convergence is reached.
One may wonder if the result thus obtained reflects the actual physical situation.
In view of the fact that the RF heating only takes place in the Doppler-shifted
resonance region, can it, for example, be justified to assume that the RF heating
is uniformly smeared out over a magnetic surface in the Fokker–Planck code? In
view of the fact that harmonic heating preferentially acts on particles that already
have a large perpendicular energy, is it meaningful to replace in the wave code the
actual (highly non-isotropic) distribution by one that is isotropic?

To overcome the weaknesses of such crude (but numerically fast and therefore
appealing) models, one should develop a model that places the wave and Fokker–
Planck equations on the same footing. In such a model, the power launched from
the antenna in the wave description is equal to the summed RF power densities
on the various species as modelled by the Fokker–Plank description. In contrast
to the previous procedure, no ‘adjustment knob’ exists to fine-tune the RF power
densities of the two codes until they match. The skeleton of such a procedure was
proposed long ago by Kaufman (1972). In his paper, Kaufman adopted the Hamil-
tonian action-angle technique to tackle the two-time-scale RF problem. After a
coordinate transformation to the action-angle variables, solving the problem be-
came straightforward. The appealingly simple formulae he proposed would, how-
ever, have to wait a long time before anyone actually started to use them, the
reason being that a delicate part of the problem was not tackled in the paper,
namely the evaluation of the Fourier spectrum of various quantities needed in the
computation. As time passed, pieces of the puzzle were added one by one. Gam-
bier and Samain (1985) made a first attempt to ‘translate’ Kaufman’s formulae
to more intuitive ones. Then Edery and Picq applied these results to write the
ALCYON wave code in collaboration with Samain and Gambier (Edery and Picq
1986; Edery et al. 1987). Bécoulet et al. (1985, 1991) further refined the wave code.
In spite of the tremendous potential of the action-angle method, no attempt was
(at least to my knowledge) ever made to directly use the action-angle variables in
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a wave code for non-Maxwellian distributions in a tokamak. Adopting the more in-
tuitive trajectory integral method rather than that proposed by Kaufman, Lamalle
(1993, 1997) started to look into the wave aspects of the problem addressed by
Bécoulet et al. Because Kaufman showed how to devise a Fokker–Planck code in
total agreement with the wave code, work on a Fokker–Planck code also relying
on the trajectory method was initiated in parallel a little later (Van Eester 1995).
Although based on the same physical assumptions and thus necessarily equivalent,
the full equivalence of the trajectory method and the Hamiltonian approach was
demonstrated only recently (Van Eester 1999). Parallel with the developments re-
lying on the trajectory integral, Hedin et al. (1998, 1999) based themselves more
directly on Kaufman’s results to develop an equivalent approach to the same prob-
lem. Rather than solving the Fokker–Planck equation directly, they adopted the
Monte Carlo approach to solve this equation by considering a large enough number
of test particles to have good statistics on the distribution function (enough par-
ticles in each elementary box in configuration space) (Eriksson and Helander 1994;
Eriksson et al. 1999). Whereas the trajectory integral method used by Lamalle
and Van Eester expresses all quantities in terms of the constants of motion (c.o.m.)
in the absence of the perturbed field, and thus expresses dielectric response as a
function of these c.o.m., the results of the Monte Carlo approach are exploited to
do the opposite. Translating the c.o.m. into local values of the parallel and per-
pendicular velocities of the particle, the local distribution is reconstructed and the
local dielectric response, needed in the wave equation, evaluated. The advantage
of this approach is that it can account for finite-banana-width effects without par-
ticular problems. The major drawback is that it takes many particles (and thus
much computer time) to ensure a realistic statistical description. The presently
existing numerical codes relying on the Monte Carlo approach further implicitly
assume that decorrelation is sufficiently efficient to decouple resonances. Assum-
ing that sufficient computer power is available to guarantee good statistics, one
could envisage the addition of supplementary physics to refine this elegant descrip-
tion and test decorrelation from first principles. Various authors have pointed out
that the large excursions of guiding-centre orbits from a magnetic surface have a
non-negligible effect on the RF-heating performance (see e.g. Eriksson et al. 1993;
Hellsten et al. 1995; Chang et al. 1999; and the previously mentioned Monte Carlo
references). For the standard high-plasma-current experiments in ITER, their im-
pact is expected to be marginal – but in low-plasma-current experiments, their
impact is not a small physical effect. A rigorous treatment of effects such as RF-
enhanced particle exhaust and plasma rotation critically involves adding neoclassi-
cal RF-induced radial transport to the Fokker–Planck equation – not only making
the problem fully three-dimensional but also requiring that account be taken of
competing transport mechanisms to make a reasonable prediction of the fate of
RF-heated populations. These effects are beyond the scope of the work presented
in the present paper.

The key to practically solving the RF problem in a self-consistent way relying on
Kaufman’s work is the evaluation of the Fourier spectrum of the RF-induced energy
change. In view of the axisymmetry of the tokamak, and of the orthogonality of
the gyro-modes, the only Fourier amplitudes that are hard to determine in practice
are those of the bounce spectrum. Belikov and Kolesnichenko (1982, 1994) showed
how this can be done relying on asymptotic techniques. They omitted, however,
the role of the Doppler shift in their expressions. Adding the Doppler shift but
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still relying on the same asymptotic techniques, relating nearby stationary-phase
(SP) points and substituting the sum on the bounce modes for a bounce integral,
yields expressions that are appealingly simple (see later): to lowest order in the
drift parameter, they formally look like uniform plasma expressions, except that
they have a phase factor stemming from the poloidal-mode-dependence of the field
(which is what one would intuitively expect), and they need to be bounce-averaged
(as has been standard in Fokker–Planck descriptions for many years). The price
to pay for this simplicity is that the expressions obtained do not always faithfully
describe the RF heating. The failure of the approximate expressions leads to the
reappearance of an old problem even for a Maxwellian plasma, namely that positive-
definite power absorption cannot be guaranteed analytically. The more general
expressions do not suffer from this disadvantage, though, and should therefore be
used.

In this paper, the practical implementation in a bounce-averaged Fokker–Planck
code of both the simple and the more general expressions is discussed. A number of
examples are given to illustrate how the present description differs from descrip-
tions based implicitly on (quasi)uniform plasma expressions. A few preliminary
examples of the Fokker–Planck code are also discussed. At present, the BATCH
code is used as a stand-alone application. It either takes the electric field computed
by the CYRANO wave code (Lamalle 1994, 1998) or simple analytical expressions
for the field as input. The CYRANO code solves the wave equation for all three
components of the electric field in tokamak geometry. It assumes Maxwellian dis-
tribution functions and allows one to describe waves absorbed by Landau, TTMP
or fundamental cyclotron damping. Once CYRANO becomes able to solve the wave
equation for non-Maxwellian distributions, the BATCH code will directly receive
the RF diffusion coefficients from the CYRANO code (rather than evaluating them
autonomously starting from the Fourier components of the field, as it does now),
thus guaranteeing a fully self-consistent and as rapid as possible a description of
the RF-heating process. The coupled wave plus Fokker–Planck equations can then
be solved iteratively. As will be shown in this paper, the fine structure introduced
when accounting for the tokamak geometry in a more rigorous way is not evidently
resolved numerically. This is already a challenge for the Fokker–Planck code, which
only needs to account for the active part of the dielectric response (related to the
damping of the waves), and thus only needs information related to the resonant
bounce mode. Since the wave code requires knowledge of the full bounce spec-
trum to evaluate the reactive part of the response (related to wave propagation),
it represents an even more demanding challenge to describe the wave aspect of RF
heating with a fair degree of realism. Further analytical work may yield accept-
able approximations. The use of parallel computers may also help in tackling the
problem.

This paper is structured as follows. First, the adopted quasilinear diffusion ap-
proach is sketched. After that, the computation of the orbit is discussed. This step
yields expressions for the time history of the orbit. These expressions can be ma-
nipulated analytically, and make the computation of the bounce spectrum of the
RF-induced energy change (the key ingredient in the dielectric response) less ab-
stract. Illustrations are provided to show the strengths and weaknesses of various
approaches. After that, the collision operator is briefly discussed and some com-
ments on the adopted weak Galerkin method are given. Finally, a few examples of
the Fokker–Planck code are provided, and conclusions are drawn.
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2. Derivation of the wave equation and quasilinear diffusion operator
The basic equations describing RF heating relying on the trajectory integral
method have been discussed in detail elsewhere (see e.g. Van Eester 1995, 1998,
1999; and references therein), and will be discussed only briefly here. The stan-
dard quasilinear approach is adopted, and only leading-order contributions in the
drift parameter are considered (i.e. guiding-centre orbits are confined to magnetic
surfaces). The starting point is the evolution equation of the distribution function:

dF

dt
=
∂F

∂t

∣∣∣∣
slow

.

The total time derivative on the left-hand side is evaluated along the particle tra-
jectory, and the operator acting on the distribution on the right-hand side of the
equation represents Coulomb collisions as well as particle gains and losses. Realizing
that two time scales are involved in the heating process, one splits the distribution
into two parts:

F = F0(Λ, tslow) + fRF (Λ,Φ, tfast).

The first part is slowly varying, i.e. it depends only on a ‘slow’ time and on the
variables Λ that are c.o.m. in the absence of the RF perturbation. The second part
depends on the c.o.m. variables Λ as well as on the angles Φ parametrizing the per-
iodic and fast bounce, gyro, and toroidal drift aspects of the motion. It varies on a
rapid time scale, but has an amplitude that is small with respect to the slowly vary-
ing distribution. The assumed smallness of the electromagnetic field with respect to
the static magnetic field and of fRF with respect to the slowly varying distribution
function allows one to introduce an ordering in the evolution equation. The static
magnetic field imposes the charged particles’ orbits; these orbits are perturbed by
the time-dependent electromagnetic field. When the perturbing field oscillates at
the generator frequency ω, one can write

E = ERF (x, tfast),

B = B0(x) + BRF (x, tfast),

ERF ,BRF , fRF ∝ exp(−iωt).
Introducing the above into the evolution equation yields (i) contributions of order 1,
(ii) linear but rapidly varying terms and (iii) terms of second order in the linear
quantities. Averaging over all ‘fast’ processes (bounce, drift and gyro motion, as
well as driven temporal response) removes the linear but not the quadratic term
in the evolution equation. The linear equation allows one to express the perturbed
distribution in terms of F0. This result is re-inserted into the original equation and
the average is performed. The result is

∂F0

∂t
=
∂F0

∂t

∣∣∣∣
RF

+ slow processes, fRF = −
∫ t

dt′ aRF ·∇vF0, (1a,b)

∂F0

∂t

∣∣∣∣
RF

=
1
2

Re
{
〈∇v · a∗RF

∫ t

dt′ aRF ·∇v〉F0

}
, aRF =

qs
ms

(ERF + v× BRF ),

(1c,d)

aRF ·∇vΛi = Λ̇i

∣∣∣∣
RF

. (1e)
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Here the angular brackets 〈 〉 indicate the average over Φ and tfast, and the ‘overdot’
(·) indicates the RF-induced temporal derivative along the unperturbed orbit, i.e.
the orbit imposed by the zeroth-order magnetic field. Later in this paper, the sub-
script ‘RF ’ will be dropped whenever there is no ambiguity. The particular choice
of the independent variables Λ and Φ has great bearing on the algebraic complex-
ity of the computations. When c.o.m. are adopted as three of the variables Λ (as is
done here), the distribution function can, for example, be moved out of the trajec-
tory integral in the above expressions. Following Kaufman’s suggestion, one may
further adopt the angles introduced in the action-angle formalism. These angles
vary linearly with time and thus greatly facilitate the evaluation of the trajectory
integral. The relation between these angles and the usual ones is given by

θ = consttpΦb + periodic function(Φb),

ϕ = Φd + periodic function(Φb),

φ = Φb + periodic function(Φb).

For passing particles, the angle Φb is unique. For trapped particles, the angle Φb
can be taken to be either the ‘bounce angle’ (varying from 0 to 2π in a complete
bounce including the co- and the counter-rotating parts of the orbit) or the ‘transit
angle’ (varying by 2π in between the two banana tips θmin and θmax, i.e. splitting
the trapped particle orbit in two and treating the trapped particle as the ‘sum’ of
two passing particles, for which part of the magnetic surface is excluded but which
feel the same collisional drag). The former definition links Φb to time via the bounce
frequency, but does not allow a 1-to-1 correspondence between the poloidal angle θ
and the angle Φb; for this choice consttp is 1 for passing and 0 for trapped particles.
The latter definition introduces the transit rather than the bounce frequency but
allows a 1-to-1 θ–Φb correspondence; for this choice consttp is 1 for the passing and
the (θmax − θmin)/2π for trapped particles. Note that, because the equilibrium does
not depend on the toroidal angle ϕ or on the gyroangle φ,

∂

∂Φg
=

∂

∂φ
,

∂

∂Φd
=

∂

∂ϕ
.

The perturbed distribution function also appears in the RF-perturbed current
density in the wave equation:

∇ ×∇× E− k2
0E

= iωµ0

Jantenna −
∑

species s

q

∫
dv
∫ t

dt′
qs
ms

(
E +

v×∇× E
iω

)
·∇vF0

 . (2)

To guarantee a fully self-consistent description of RF heating, the interaction be-
tween particles and waves can be analysed in terms of individual guiding-centre-
orbit contributions (‘building blocks’), which are independent of the distribution
function, and which are used both in the wave and Fokker–Planck solvers. When
adopting such elementary ‘building blocks’, changing the level of sophistication
with which the particle–wave interaction is described only requires changing these
blocks while leaving the rest of the numerical model untouched.
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Using the identity

E + v× B =
i

ω

(
d

dt
∇v −∇x

)
E · v,

the RF-induced time derivative of the c.o.m. Λ can be computed. Depending on
the variables Λ chosen, slightly different results are found. If the energy ε, the
magnetic moment µ and the toroidal angular momentum P are the adopted Λ, one
readily finds

Λ =
(
ε = 1

2msv
2, µ = ms

v2
⊥

2B0
, P = Ψ− 2πmsRvϕ

qs

)
,

Λ̇ =
q

m
(E + v× B) ·∇vΛ = −

∑
m

ε̇m
hm

ω
+
d

dt
(. . .),

ε̇ =
q

m
(E + v× B) ·∇vε = qE · v =

∑
m

ε̇me
im·Φ,

ε̇m =
1

(2π)3

∫ 2π

0
dΦqE · ve−im·Φ,

hm = (−ω,md,mg),

in which m is the vector of mode numbers mb,md and mg with reference to the
angles Φ = (Φb,Φd,Φg). Again the ‘overdot’ (·) indicates the RF-induced time
derivative along the unperturbed orbit. The corresponding quasilinear diffusion
operator is

Q =
1
2

Re


1
J

(
∂

∂ε

∂

∂µ

∂

∂P

)
J

×



〈
ε̇∗
∫ t
−∞ dt′ ε̇

〉 〈
ε̇∗
∫ t
−∞ dt′ µ̇

〉 〈
ε̇∗
∫ t
−∞ dt′ Ṗ

〉
〈
µ̇∗
∫ t
−∞ dt′ ε̇

〉 〈
µ̇∗
∫ t
−∞ dt′ µ̇

〉 〈
µ̇∗
∫ t
−∞ dt′ Ṗ

〉
〈
Ṗ ∗
∫ t
−∞ dt′ ε̇

〉 〈
Ṗ ∗
∫ t
−∞ dt′ µ̇

〉 〈
Ṗ ∗
∫ t
−∞ dt′ Ṗ

〉





∂

∂ε

∂

∂µ

∂

∂P





=
∑

m

∑
m′

1
2

Re


1
J

(
∂

∂ε

∂

∂µ

∂

∂P

)
· h∗m′J

〈
ε̇∗m′e

−im′·Φ+ωt

×
∫ t

−∞
dt′ε̇m e

im·Φ(t′)−ωt′
〉

hm ·



∂

∂ε

∂

∂µ

∂

∂P




. (3)
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When the action-angle variables are preferred, the vector hm is simply identical to
the vector m. Adopting the simplest possible decorrelation model (ω → ω+ iν), the
integrals in the above reduce to∑

m

∑
m′

h∗m′
〈
ε̇∗m′e

−im′·Φ+ωt
∫ t

−∞
dt′ε̇me

−im·Φ(t′)−ωt′
〉

hm =
∑

m

h∗m
|ε̇m|2

i(m · ω− ω)
hm.

(4)
In this paper, and anticipating the coupling to the CYRANO wave code, the Fokker–
Planck equation for the slowly varying distribution function F0 will henceforth be
written in terms of the particular constants of motion proposed in Lamalle (1997):
the velocity v and the normalized magnetic moment x = µBm/ε. Details on the
adopted up–down-symmetric D-shaped equilibrium can be found in Appendix A.
The Fokker–Planck equation is solved on the flux surface characterized by the
radial coordinate ρ (= r for a circular plasma) on which the guiding centres lie. In the
above,Bm is the strength of the static magnetic field at some reference position. The
specific choice for which the reference major-radius position corresponds to the low-
field-side intersection of the guiding-centre orbit with the midplane ensures that x
takes values between 0 and 1. This choice will be made henceforth. In the absence
of auxiliary heating, the first variable v is a true constant of the motion on the
rapid time scales on which the bounce, toroidal drift and gyro motions take place.
To leading order in the drift parameter, the magnetic moment evaluated at the
guiding-centre position and thus x are also invariants. Similarly, the guiding-centre
trajectories are assumed to be confined to magnetic surfaces, i.e. the toroidal angular
momentum P is reduced to the poloidal flux function Ψ, which only depends on
the flux surface labelling parameter ρ. The replacement of P by Ψ is not without
consequence: since the guiding centre makes radial excursions on a poloidal bounce,
Ψ is not a true constant of the motion on the rapid time scales over which the
Fokker–Planck equation is to be averaged. Consequently, P → Ψ implies that the
RF-induced radial transport is no longer faithfully described: whereas classical RF-
induced diffusion due to the gyro motion can be included by considering the full
three-dimensional Fokker–Planck equation in (v, x, ρ) space, neoclassical effects
on radial transport are currently not yet included in the model presented here,
although they are formally included in Kaufman’s original theory.

The distribution function F0 depends on the variables Λ = (v, x, ρ), but not on the
coordinates Φ = (Φb,Φd,Φg) parametrizing the fast but periodic bounce, toroidal
drift and cyclotron motions respectively. All traces of the fast aspects of the motion
are removed from the quasilinear equation by averaging its coefficients over the
period motion Φ and (fast) time. These averages are trivial when adopting Φ angles
that vary linearly with time such that dΦ/dt = ω in which the frequencies ω =
(ωb, ωd, ωg) depend only on Λ. The determination of the Φ-Fourier spectrum of the
coefficients, needed to perform the averaging, will be discussed later. To leading
order in the drift parameter, the Jacobian of the transformation (x, v)→ (Λ,Φ) is

J = JΛΦ =
dΨ
dρ

v3

4πωbBm
, (5)

in which ωb is the poloidal transit frequency (ωb is the bounce frequency for passing
and twice that for trapped particles). The Fokker–Planck equation,

∂

∂t
F0 = (Q + C−L)F0 + S, (6)
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is solved using the weak form of the Galerkin formalism. In the above, Q and C are
the RF and Coulomb collision operators while L represents the losses and S the
sources. The Fokker–Planck equation is multiplied by a sufficiently smooth test
function G and integrated by parts. The quasilinear term in the functional is of the
form

Q̃(G,F0) =
∫
dΛ JGQF0

=
∫
dΛ JG

1
J

(
∂

∂v

∂

∂x

)
J
∑
N

BN

v2

(
1 ηN

ηN η2
N

) ∂

∂v
∂

∂x

F0

= −
∫
dΛ J

∑
N

BNhN (G)hN (F0) + surface terms, (7)

in which the last expression was obtained by partial integration to reduce the
second-order differential operators acting on the distribution to first-order ones.
Here BN describes the interaction of the rapidly varying electric field

E =
∑
n

∑
m

Emn(ρ) exp[i(mθ + nϕ− ωt)]

with the orbit characterized by Λ,

ηN =
2(−x +NΩm/ω)

v

and N is the cyclotron harmonic number. The poloidal and toroidal angles are θ
and ϕ, and their respective mode numbers are m and n. BN contains the bounce-
spectrum information from the multiple integral in (4):

BN = Re

{
1
m2
s

∑
mb

|ε̇m|2
i(m · ω− ω)

}
(8)

(the change of variable from the energy to the velocity brings out the factor m−2
s in

the partial derivatives to the left and right of the integral) and hN is the differential
operator

hN (·) = −1
v

[
∂(·)
∂v

+ ηN
∂(·)
∂x

]
. (9a)

The computation of the building blocks BN is discussed in the next section. The
differential operator hN in the quasilinear term can locally along the guiding-centre
orbit be expressed in the more familiar form (see e.g. Kennel and Engelman 1966)

hN (·) =
(

1− k‖v‖
ω

)
1
v⊥

∂(·)
∂v⊥

+
k‖
ω

∂(·)
∂v‖

, (9b)

in which the variables should be evaluated at the local poloidal angle at which
the resonance condition is satisfied. Note that the trapped/passing edge is at the
constant normalized magnetic moment x = Ωm/Ω(π) and the tangent resonance at
the banana tip is at the constant x = NΩm/ω. More generally, the resonance is at

xres =
Bm

B0

[
1−

(
ω −NΩmB0/Bm

k‖v

)2
]
,
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and the value of the parallel velocity at resonance is

v‖res =
ω −NΩmB0/Bm

k‖
.

After having computed the building blocks BN , all coefficients appearing in the
Fokker–Planck equation (6) can be assembled and the equation can be directly
solved numerically (see further). The variables adopted in this paper were proposed
by Lamalle when studying the wave-equation counterpart of the description pre-
sented here; adopting other independent variables merely requires one to replace
the differential operators and the Jacobian by those corresponding to the new ones.
The weak Galerkin form of the wave equation is∫

dx
1

iωµ0
(∇× F∗ ·∇× ERF − k0F∗ · ERF )

=
∫
dS · F∗ × BRF

µ0
+
∫
dx F∗ · (JRF + Jantenna), (10)

JRF =
∑
s

qs

∫
dv vfRF ,

in which F is a sufficiently smooth test-function vector. For the particular case of
Maxwellian plasmas, an expression for the wave equation was obtained in Galerkin
form for a toroidally curved but otherwise one-dimensional slab. In this equation,
finite-Larmor-radius effects can be accounted for in principle up to any desired
order, but to have practical expressions one relies on the assumption that the elec-
tric field’s phase does not vary significantly on a Larmor radius requiring an a
posteriori check of the wave field obtained when solving the wave code to ensure
that the solution does not violate this basic assumption (and thereby to ensure
that it is physically relevant). This is the weakness of all mode-conversion models
based on a truncated finite-Larmor-radius series: if power is for example still car-
ried by the ion Bernstein wave away from its conversion point with the fast wave,
the predicted wave behaviour of this short-wavelength branch is doubtful at best.
The only rigorous way to properly predict the wave behaviour of short-wavelength
branches is to solve the integro-differential equation. The latter was done for ex-
ample, by Sauter and Václavı́k (1992) for slab geometry and recently by Jaeger et
al. (2000) for two-dimensional geometry. The TOMCAT (toroidal mode conversion
and absorption tool) code solves the above wave equation, retaining terms up to
second-order finite-Larmor-radius terms in the operator acting on the electric field
and on the test function. The resulting system guarantees positive-definite absorp-
tion for both long- and short-wavelength branches up to the third harmonic (Van
Eester and Koch 1998). The adopted method is equivalent to that proposed by
Colestock and Kashuba (1983), but carried out further to consistently contain all
second-order finite-Larmor-radius terms in the differential operator in the varia-
tional form of the wave equation rather than keeping only the dominant terms for
each cyclotron harmonic. It is more common to truncate the dielectric response
(rather than the operator acting on the field and the test function) at second-order
finite-Larmor-radius terms (see e.g. Brambilla 1999). Such a truncation cannot
guarantee positivity of the absorbed power when short-wavelength modes, which
violate the basic assumption, are excited.
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The surface terms in (7) correspond to the fluxes associated with the quantity
G. For G ≡ 1, they represent the physical particle fluxes flowing from one finite
element into the neighbouring ones. Because the physical flux is continuous, the nu-
merical continuity of the surface terms is ensured by a choice of sufficiently smooth
base functions. Provided that such an appropriate choice is made, these terms do
not appear explicitly in the global linear system. They do, however, contribute to
the local power and particle balance, so they have to be included when computing,
for example, the RF-induced power density in a given finite element. Identifying
G with the energy and integrating over the angles Φ, the total power absorption
by all particles whose guiding centres are confined between two magnetic surfaces
is obtained:

Pabs =
∫
dx dv

mv2

2
QF0 = −

∑
N

(2π)3
∫
dΛ J BNhN

(
1
2
mv2

)
hN (F0)

=
∑
N

(2π)3ms

∫
dΛ JBNhN (F0) =

1
2

Re
{∫

dx E∗ · JRFs
}
. (11)

The functions BN shared by the wave and Fokker–Planck equations guarantee a
fully self-consistent treatment of the RF heating.

3. Computation of the orbits and related quantities
Prior to evaluating the building blocks, it is necesssary to compute the orbits. We
start from the general expressions for the time derivative of the poloidal angle (for
details on geometric quantities, the reader is referred to Appendix A), the toroidal
angle and the gyrophase:

θ̇ =
dθ

dt
=
v‖ sin α

|∂x/∂θ| = v
sin α

|∂x/∂θ| sign(v‖)
(

1− xB0

Bm

)1/2

, (12a)

ϕ̇ =
dϕ

dt
=
v‖ cos α

R
, (12b)

φ̇ =
dφ

dt
≈ −Ω = −qsB0

ms
, (12c)

in which α is the angle between the toroidal and parallel directions. Removing all
velocity dependence from the right-hand side of (12a), one arrives at the evolution
equation for the time that it takes for a guiding centre with v = 1 m s−1 and
sign(v∗‖) = 1 to arrive at the poloidal position θ:

dt

dθ̃
=

dt

d[θ/v sign(v‖)]
=

|∂x/∂θ|
sin α(1− xB0/Bm)1/2

.

In view of the fact that finite-banana-width effects are neglected (only leading-
order terms in the drift parameter are kept), the above differential equation has to
be solved numerically only once for a given x, and yields the evolution for any v and
sign (v‖) by multiplying by the factor v sign (v‖). The integration is performed from
the equatorial plane to π for passing particles. For trapped particles, the denomi-
nator becomes zero at the banana tip θmax. Except at the trapped/passing edge,
the integral is well behaved, however, and so one can find a good approximation
to t(θmax) by stopping the integration very close to but not at the banana tip (see
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Appendix B, which provides analytical expressions for the special case of a circular
cross-section, for which all relevant quantities can be expressed in terms of elliptic
functions). Once t(θ) has been determined numerically, one readily finds the Fourier
spectrum Pl,Tl and Gl of dθ(Φb)/dt = dθ(ωbt)/dt, dϕ(Φb)/dt and dφ(Φb)/dt for
v(m s−1 = sign(v‖) = 1 relying on the fast Fourier technique. Once the Fourier
spectrum is known, one can analytically determine θ(Φb), ϕ(Φb) and φ(Φb):

θ = sign(v‖)

[
P0

ωb/v
Φb +

∑
l=1

Pl

lωb/v
sin(lΦb)

]
, (13a)

ϕ = sign(v‖)

[
T0

ωb/v
Φb +

∑
l=1

Tl

lωb/v
sin(lΦb)

]
, (13b)

φ =
1
v

[
G0

ωb/v
Φb +

∑
l=1

Gl

lωb/v
sin(lΦb)

]
, (13c)

as well as any required derivative of these angles for any v and sign (v‖). In the
above, the transit frequency ωb was chosen always to be positive: Φb always grows
with time, while θ may decrease or increase for advancing t. The transit frequency,
toroidal drift frequency and (averaged) gyrofrequency can be found in the above:

ωb =
π

θ max
vP0, (14a)

ωd = sign(v‖) vT0, (14b)

ωg = G0. (14c)

The factor π/θmax in (14a) reminds us of the fact that we have split the trapped
orbits in two and formally treat these orbits as a sum of two passing orbits belonging
to particles for which part of the magnetic circumference is excluded. One orbit
contains the history of the trapped particle between θmin and θmax, and the other
the history between θmax and θmin. For the particular D-shaped equilibrium chosen
here, up–down symmetry is assumed (see Appendix A), and θmin = −θmax. The angle
Φb varies by 2π in both cases. The phase factor of the RF-induced energy change
associated with the poloidal mode number m, the toroidal mode number n and the
gyro mode number N is of the form

Ξ(Φb) = mθ + nϕ−Nφ = ξ0Φb +
∑
l=1

ξl sin(lΦb), (15)

the first term in which varies linearly with time while the others result from the
poloidal non-uniformity of the static magnetic field.

4. Computation of the building blocks BN

In this section, the practical computation of the functions BN is discussed. More
details on the form of the RF diffusion operator and a short discussion of its connec-
tion to more familiar ones can be found in Van Eester (1995, 1998, 1999). Relying
on causality, i.e. assuming the driver frequency to have a vanishingly small but
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positive imaginary part, the most general expression for the desired term is

BN = Re

{
1
m2
s

∑
mb

|ε̇m|2
i(m · ω− ω)

}
=

π

m2
s

|ε̇(mb,n,−N )|2 δ(mb − [ω − nωd +Nωg]/ωb)
ωb

=
π

m2
s

|ε̇(mb,n,−N )|2 δ(mb −mbres )
ωb

, (16)

in which ε̇m is the Fourier amplitude of the RF-induced energy time derivative.
The evaluation of this amplitude is immediate for the drift and gyro-angles Φd

and Φg, but owing to poloidal inhomogeneity the bounce integral is more cumber-
some. Various methods have been proposed to evaluate this integral:

(i) Semi-analytical integration by first taking a fast Fourier transform of the
guiding-centre motion, and subsequently performing the bounce integral ana-
lytically;

(ii) directly adopting the fast Fourier transform method to the full integral;

(iii) making use of the stationary-phase method.

The first method has the advantage that the bounce integrals are evaluated
analytically without approximations, but requires bookkeeping of Bessel function
indices; the abbreviation ‘SA’ will be adopted henceforth when referring to this
semi-analytical method. It is most useful if the guiding-centre motion is well rep-
resented by a few Fourier components (limited phase variations per bounce).

The second method hinges on the integrand of the bounce integral to be well
described by a limited number of Fourier modes, and is thus also most useful when
the phase varies little in a transit. The abbreviation ‘FFT’ will be adopted for this
direct fast Fourier transform method.

The last method requires the opposite: here the phase of the integrand needs to
be rapidly varying. The first two methods are best suited to describe the Landau
or TTMP interaction (in which case no cyclotron frequency appears in the phase
of the integrand), while the third is best suited to describe the cyclotron inter-
action: since the cyclotron frequency is typically a factor of 1000 larger than the
bounce frequency, the poloidal inhomogeneity of the cyclotron frequency results in
rapid phase variations during a bounce. When referring to the adopted asymptotic
stationary-phase technique, the label ‘SP’ will be used.

Louis (1995) demonstrated that the FFT and asymptotic methods are comple-
mentary: one is computationally fast when the other is slow, and vice versa.

4.1. A first crude model for cyclotron interaction

Before trying to derive expressions for BN that hold for various different heating
scenarios and orbits, it is useful to explore the simplest possible case, i.e. the case
that bears the closest resemblance to familiar uniform or quasi-uniform plasma
expressions. Ideally, this would amount to expressions in which the uniform plasma
expressions can immediately be recognized. In view of the great many steps, only
a sketch of the philosophy will be given here. For details, the reader is referred to
the papers of Van Eester and Lamalle (and the references therein) in the reference
list. One ingredient that one desires to appear is the resonant denominator k‖v‖ +
NΩ − ω. It is known that if the phase of the RF-induced energy change varies
rapidly as a function of the bounce angle, the stationary-phase method can be used
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to evaluate the bounce integral in the definition of ε̇m. As the stationary-phase
condition is k‖v‖ +NΩ = m · ω (see e.g. equation (21) in Van Eester 1998) and the
resonance condition m · ω = ω, the desired resonance condition appears. Orbits on
which there is appreciable variation of Ω are thus likely candidates to serve our
present purpose. In the present section, we implicitly assume that N� 0, that the
considered magnetic surface is not too close to the magnetic axis and that the orbit
is not deeply trapped.

For cyclotron interaction, away from the magnetic axis and excluding deeply
trapped orbits, the stationary-phase method is well suited to evaluate the bounce
integral (see e.g. Van Eester (1995, 1998) for the genera1 procedure, and see further
for more details on practical formulae). In that case, the bounce spectrum consists
of many modes (since the stationary-phase condition is mbωb + mdωd + mgωg =
k‖v‖+NΩ, the bounce spectrum has of order Ω/ωb modes whenN� 0) and thus the
stationary-phase points are densely packed: the many bounce modes correspond
to as many stationary-phase points. Nearby bounce modes are thus expected to
have nearby stationary-phase points. In case the simplest decorrelation model is
adopted (ω → ω+iν) and decorrelation is sufficiently rapid (ν sufficiently large; see
also Sec. 4.2), many of these bounce modes contribute to absorption, and therefore
one can replace the sum on the bounce modes by a bounce integral. The function
BN in (16) is the square of a quantity involving the total electric field. It can
therefore be written as a double sum on the poloidal mode m1 and m2. Making
a Taylor expansion of the phase factor in the stationary-phase expression around
the average poloidal mode 1

2 (m1 +m2), the combined phase factor takes the simple
form (m1 −m2)θ and so the factor BN , can be written as follows (Lamalle 1997;
Van Eester 1999):

BN =
1
2

Re

{(
qs
ms

)2∑
n

∑
m1

∑
m2

1
2π

×
∫ 2π

0
dΦb

Lm1 (Em1 (ρ))L∗m2
(Em2 (ρ)) exp[i(m1 −m2)θ]

i(k‖v‖ +NΩ − ω)

}
=
(

qs
2ms

)2∑
n

∑
m1

∑
m2

∑
res

Re{Lm1 (Em1 (ρ))L∗m2
(Em2 (ρ)) exp[i(m1 −m2)θ]}

ωb
∣∣d2Ξ/dΦ2

b

∣∣ .

(17)

The parallel wavenumber in the above is that associated with the average poloidal
mode number. The resonant positions thus depend on bothm1 andm2, The operator
L in the above is that due to Kennel and Engelmann (1966):

LE = 1
2v⊥(JN+1e

i(N+1)ΨE− + JN−1e
i(N−1)ΨE+) + v‖JNeiNΨE‖, (18a)

JLe
iLΨ =

(
−i v⊥

2Ω
∇−
)L ∞∑

j=0

( v⊥
2Ω

)2j ∆j⊥
j!(L + j)!

, (18b)

J−Le−iLΨ =
(

+i
v⊥
2Ω
∇+

)L ∞∑
j=0

( v⊥
2Ω

)2j ∆j⊥
j!(L + j)!

, (18c)

∇± = (e⊥1 ∓ ie⊥2) ·∇. (18d)
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Here Ψ is the angle between k⊥ and e⊥1, ∆⊥ is the perpendicular Laplace operator,
L is positive or zero, e⊥1 = eρ and e⊥2 = e‖ × eρ. The expression (17) suggests that
the way to generalize uniform plasma expressions is straightforward: after substan-
tial algebra, one finds that it suffices to account for the full poloidal spectrum of the
field and to perform a bounce average. Both are ‘intuitive’ generalizations that one
expects when going to a poloidally non-uniform plasma. The appealing simplicity
hides a weakness, however: whereas the genera1 expression (8) guarantees a strictly
positive power absorption for a Maxwellian plasma (which is what one expects),
the above expression does not: considering two differing poloidal modes and the
four corresponding contributions ([m1,m1], [m1,m2], [m2,m1] and [m2,m2]) to the
above sum, one finds two strictly positive and two complex-conjugate contributions
to be evaluated at three different SP points, namely the SP points corresponding
to m = m1, m = m2 and m = 1

2 (m1 + m2) respectively. The former do not pose a
problem for the positivity of the result, but the sum of the latter two does not have
a definite sign. A numerical example for a monomodal field (in which no problem
occurs) as well as an example for a multimodal field (in which positivity is not guar-
anteed) is shown in Fig. 1. Shown is the vv coefficient Qvv = BN/v

2 of the diffusion
operator Q = (1/J)(∂/∂v)JQvv∂/∂v + . . . (see (7)) for a costreaming 3He popu-
lation in TEXTOR. In this paper, the labels ‘co’ and ‘counter’ are with reference
to the static magnetic field direction, not the plasma current. The major radius
R0 = 1.75 m, the magnetic surface is circular and has minor radius r = 0.15 m, the
toroidal mode number n = −13, the radial wave vector component is 40 m−1, the
frequency f = 38 MHz, the central toroidal magnetic field B0 = 1.8 T, and the (for
circular surfaces constant) angle between the parallel and the toroidal direction
is α = 0.15. In the region in c.o.m. space that corresponds to the tangent reso-
nance region on the magnetic surface, the predicted Qvv is unphysical (negative!)
and rapidly varying, while it is well behaved in velocity regions corresponding to
resonances away from the turning points.

The expression (17) for the active dielectric response of a toroidal plasma is not
the only one proposed in the literature. In attempts to try to guarantee a positive-
definite power absorption for a Maxwellian tokamak plasma, various expressions
for the dielectric response have been obtained (see e.g. Jaeger et al. 1998; Bram-
billa 1999). When the wave equation is written using a weak Galerkin form, the
positive-definiteness requires the symmetry of the operator acting on the test func-
tion (which becomes the electric field if the power conservation law is looked at) and
acting on the wave field, and requires the resonant denominator to be independent
of a specific poloidal mode. Although the Kennel–Engelman operator can easily be
made symmetric (see Colestock and Kashuba (1983) for dominant terms and Van
Eester and Koch (1988) for all up to second-order finite-Larmor-radius terms), the
resonant denominator (arising from the time-history integral in the expression for
the perturbed distribution function) contains the poloidal mode number of the elec-
tric field via the parallel wavenumber in the Doppler-shift factor k‖v‖. Kaufman’s
expressions do guarantee this symmetry and independence, and so it seems logi-
cal to return to his philosophy to derive the wave and associated Fokker–Planck
equations. The expression (17) starts from Kaufman’s expressions, but relies on a
truncated Taylor series expansion of the phase factors corresponding to the two
poloidal modes m1 and m2 of the field and test function, and yields, upon dropping
higher-order corrections, a symmetrized expression for the resonant denominator.
Because the resonant denominator still explicitly contains poloidal mode numbers,
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Figure 1. The RF diffusion coefficient Qvv for a co-streaming 3He particle population heated
at ω = 2Ω3He in the TEXTOR tokamak. Simple analytical wave field amplitudes are used:
(a) result for the monomodal field with poloidal mode number m = −6 and (b) result for a
multimodal field with 13 poloidal mode numbers ranging form −6 to +6. The result is given
for v = 3× 106 m s−1.

positivity, however, still cannot be guaranteed, unless the Doppler shift is omitted
altogether. This was done in Belikov and Kolesnichenko (1982). In that particular
case, the numerator can be rewritten as the sum over the poloidal modes of the
absolute value of the Fourier mode squared. Since this is not justified in general,
because the Dopple shift is small but essential, the basic problem remains: although
it seems a logical generalization of the uniform-plasma expression, the exponential
factor exp[i(m1−m2)θ] prevents the power absorption from being positive-definite.
All expressions that contain this factor but have poloidal mode dependence in the
resonant denominator face this limitation. In the expressions of Kaufman, the res-
onant denominator depends on the bounce mode, not the poloidal mode, and thus
the summation in the numerator can justifiably be performed.

4.2. Decorrelation: a note on ‘collisionless’ damping

The computationally most appealing evaluation relies on asymptotic techniques.
Combining the stationary-phase condition k‖v‖ + NΩ = m · ω and the resonance
condition m · ω = ω yields the resonant bounce mode number mbres . Note that
causality commonly yields a real rather than an integer resonant mode number.
Strictly speaking, the absorption is thus only non-zero on a discrete number of
surfaces on which this real number is an integer! This at first sight unfamiliar
result unveils inaccurate nomenclature: the term ‘collisionless’ damping plasma
is unfortunate for a tokamak plasma, since the absorption referred to depends
critically on collisions or, more generally, some other decorrelation mechanism.
This is most evident on looking at the resonant denominator and how it is related
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to damping. We start from the (quasi-)uniform plasma case for which the total
absorbed power Pabs is of the form

Pabs =
1
2

Re
{∫

dx E∗ · J
}

=
1
2

Re
{
. . .

∫
dv dx

. . .

i(k‖v‖ +NΩ − ω)

}
Since collisionality can be accounted for in the dielectric response by identifying a
finite ν with the collision frequency νc, since νc� ω and since it makes no difference
in practice if ν is taken very small or infinitesimal (ν → 0+), the term ‘collisionless’
damping is justified in the (quasi-)uniform case. Absorption takes place when k‖v‖+
nΩ − ω = 0. In a tokamak, the absorbed power Pabs in a volume delimited by two
magnetic surfaces is given by

Pabs =
1
2

Re
{∫

dx E∗ · J
}

=
1
2

Re

{
(. . .)

∑
m

∫
dΛ

(. . .)
i(m · ω− ω)

}
,

which is closely related to the uniform-plasma expression: for the particular case
of well-passing particles in a tokamak with circular cross-section, the relations
ωb ≈ v‖ sinα/r and ωd ≈ v‖ cos α/R hold, and the bounce and poloidal mode
numbers coincide, so the uniform resonance condition is recaptured, except that
the orbit is helicoidal and not straight. The above expression is thus closely related
to that of the uniform case for that particular situation.

There is, however, one important difference between the two cases: in the first,
the total absorption is an integral over the continuous wave spectrum, while, owing
to the periodicity of the geometry, it is a discrete sum on the mode spectrum in the
tokamak. It is instructive to study the behaviour of the function

Re
{

1
i[m · ω− (ω + iν)]

}
=

1
ωb

ν/ωb
(mb −mbres )2 + (ν/ωb)2 ,

with

mbres =
ω −mdωd −mgωg

ωb
, (19)

as a function of the bounce mode number and the parameter ν� ω. In the case
where mb is a continuous variable varying from −∞ to +∞, this function is peaked
around the resonant bounce mode and the integral of the function is always π/ωb,
independent of the exact value of ν. The width of the peak depends on the magni-
tude of ν with respect to ωb. If ν/ωb is large, then this function is non-negligible in
a very wide interval of mb values. If it is small, then the function is very strongly
peaked around the resonant mode. In the limit ν → 0+, a delta function appears. In
the case where mb is a discrete integer rather than a continuous real variable, the
local value of the function in (19) is the same as before, but, depending on the mag-
nitude of ν/ωb, the discrete sum and the continuous integral may be very different:
for small ν/ωb, the function is poorly sampled and the sum is much smaller than
the integral, the extreme situation being that where the resonant bounce mode lies
between two integer bounce modes, and the width of the curve is much smaller
than 1 (the distance between two integer mb values). In that case, the integral is
still π/ωb while the sum is zero!

The consequence of the k‖ quantization is that the condition ν � ω no longer
uniquely defines the ‘collisionless’ regime. Since the bounce frequency is small with
respect to ω as well, three different regimes now occur. When the decorrelation
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frequency is large with respect to the bounce frequency, the sum over the bounce
spectrum yields essentially the same result as the bounce integral, as just explained.
Note, however, that ν is necessarily non-zero (i.e. the regime is essentially collisional
when thinking of ν as a collision frequency), since it is large compared with ωb.
When, on the contrary, the bounce frequency is large compared with ν, the same
reasoning yields a regime much more entitled to the label ‘collisionless’, but only
in the exceptional case when the above-defined mbres is an integer is the absorption
non-zero. The smaller is ν, the smaller is the probability to have finite absorption
for a given set of constants of motion. The bounce integral and the sum over the
bounce spectrum now yield two totally different results: the integral still picks
up the delta-function contribution at the local resonance and predicts the same
damping as in the previous case, while the bounce sum usually picks up negligible
contributions and predicts poor or no damping. Although truly entitled to the
name ‘collisionless’ damping, this regime (known as the superadiabatic regime –
Faulconer and Liboff 1972) is not what is commonly understood when referring to
collisionless damping. Rather than being localized at the poloidal position satisfying
the resonance condition k‖v‖+NΩ−ω = 0, this damping occurs globally on a finite
set of magnetic surfaces. A third regime occurs when ωb and ν are comparable.
Constructive or destructive interference of various encounters of a particle with
the same resonance is then important. This is the only regime where the details
of the decorrelation model actually matter (for an example, see Van Eester et al.
1996).

Two of the above three regimes do not exist in the uniform-plasma case. The fun-
damental difference is not caused by the toroidicity but by the poloidal field needed
for the plasma’s stability: the poloidally closed orbits give rise to a supplementary
class of particles (trapped versus passing particles) and to a different absorption
phenomenon (global versus local absorption). This is how ‘quasi-uniform’ needs to
be interpreted: as long as relevant quantities only exhibit modest variations and as
long as the orbit is open, no conceptually new physics is added to the RF-heating
model. It does, however, not yield new insights.

The decorrelation frequency in (19) is not directly to be interpreted as a collision
frequency. Adopting a simplified collision operator, Kasilov pointed out that the
decorrelation frequency associated with the collisions is significantly larger than
the collision frequency itself. Consequently, collisions are expected to yield a decor-
relation time that is short on the transit time scale but long on the cyclotron time
scale (Kasilov et al. 1990). Other decorrelation mechanisms not involving collisions
(e.g. Hamiltonian stochastization of the electric field itself) may equally suffice to
decorrelate a particle on its orbit. It is sufficient that in the typically O(1000)
gyrorevolutions that a particle makes in a bounce, the parallel velocity is deflected
by 1/1000 to completely decorrelate the particle on a bounce. If decorrelation is
sufficiently fast, the resonance function is non-zero for a large number of bounce
modes (corresponding to many densely spaced resonant positions contributing to
the total wave absorption), and thus the sum over the resonant modes is almost
equivalent to an integral over the resonant positions. From that point of view, it
is plausible to let the unique resonant bounce mode be a real number to guarantee
finite damping on every magnetic surface. Mathematically, this is not a very satis-
fying procedure: periodic functions are fully described by a set of basis functions
exp(imbΦb) with integer mb. A better and mathematically rigorous description is
to add the decorrelation physics by adopting a more general decorrelation function
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(see e.g. Louis 1995; Van Eester et al. 1996). For the physical regime of interest,
this yields a sum over many bounce-mode contributions, and thus leads to a signifi-
cantly longer computation time, but does not give new insights.

4.3. Back to basics: a better model for cyclotron interaction

Crudely speaking, positivity is guaranteed when the stationary-phase points corre-
sponding to m1 and m2, lie very close to each other (in which case the numerator
of the above sum combines approximately to the absolute value of the sum on the
poloidal modes). This is often guaranteed, but two important exceptions occur:

(i) When the mode numbers themselves are very different, the corresponding
stationary-phase points differ significantly as well.

(ii) Even when the poloidal mode numbers do not differ much, the stationary-phase
points are widely spaced near turning points.

A numerical demonstration of the spacing for both cases can be found in Van
Eester (1997). Remembering that the bounce and cyclotron frequency differ from
one another by typically a factor of 103, and realizing that in the case of N� 0, the
phase function contains the rapidly varying cyclotron gyration term, one sees that
a small but perfectly acceptable relative error of order 10−3 on the cyclotron term in
the Taylor series corresponds to an error/indetermination of a full poloidal bounce!
The applicability of the Taylor series expansion for more or less distant stationary-
phase points is therefore arguable. Near the turning points in the equatorial plane,
the wide spacing occurs even if the poloidal mode numbers are not very different.
Both the arguments just above and the discussion of ‘collisionless’ damping in a
tokamak indicate that the replacement of the bounce sum by a bounce integral
is not trivially justifiable there. The wide spacing between stationary-phase points
corresponding to different bounce modes and/or poloidal modes is not an argument
for not using asymptotic techniques to evaluate the Fourier amplitudes, however.
It just prevents one from further simplifying the product of the expressions for
two modes by relating not so nearby SP points via approximate phase conditions.
Adopting a Taylor series expansion truncated at second-order terms for the phase,
an individual Fourier component can be approximated by

(E · v)m =
1

2π

∫ 2π

0
dΦb LeiΘ =

∑
spp

Lei[Θ+sign(Θ′′) π/4]

(2π)1/2|Θ′′|1/2

=
Lei[Θ+sign(Θ′′) π/4]

(2π)1/2|Θ′′|1/2
+

Le−i[Θ+sign(Θ′′) π/4]

(2π)1/2|Θ′′|1/2

=
(

2
π

)1/2
L cos[Θ + sign(Θ′′) π/4]

|Θ′′|1/2

∣∣∣∣∣
up

, (20)

in which L is the previously mentioned Kennel–Engelman operator and

Θ(Φb) = Ξ(Φb)−m ·Φ = Ξ(Φb)− mbωb + nωd −Nωg
ωb

Φb. (21)

The poloidal mode number m, the toroidal mode number n = md, the gyro mode
number N = −mg and the bounce mode number mb are implicit in (21). In the
sum on the first line of (20) the functions are evaluated at the stationary-phase
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points, satisfying

Θ′(Φb) = 0 or Θ̇(Φb) = 0, i.e. k‖v‖ +NΩ = m · ω (22)

(′= ∂/∂Φb and˙= d/dt). In the second line of (19), everything has been expressed as
a function of the stationary-phase point above the midplane and use has been made
of the fact that the chosen equilibrium is up–down-symmetric. As can be seen in (18)
and (21), and using (13), L has the same value for the two stationary-phase points,
but Θ changes sign: L involves the electric field amplitude (and its radial and
poloidal derivatives), the cyclotron frequeny, and the parallel and the perpendicu-
lar velocity, which are symmetric about the midplane for an up–down-symmetric
equilibrium, while Θ involves Φb and sin(l Φb) terms. The two stationary-phase
point contributions can then be grouped in a single one. In case of an up–down-
asymmetric equilibrium, the cos factor in (20) is wrong, although the expression
with the sum over the stationary-phase points is still correct. The resonant de-
nominator in the expression for the dielectric response now reduces to its familiar
form k‖v‖ + NΩ − ω. At no point, however, do we associate a single stationary-
phase point of a particular poloidal mode with this resonant denominator. Via the
resonance condition, the resonant bounce modembres , and thus the resonant denom-
inator is a fixed quantity for fixed v and x. For this fixed resonant denominator,
different stationary-phase points are obtained for different poloidal mode numbers.
The Fourier amplitude of the total RF-induced energy change (summed over the
poloidal spectrum) is the sum of the obtained stationary-phase point contributions
for the various poloidal mode numbers. The square of the absolute value of this
total Fourier amplitude appears in the RF diffusion coefficient and the absorbed
power density.

4.4. Tangent resonance: Is more detailed necessarily better?

When the second derivative of the phase goes to zero (turning point), the sim-
ple stationary-phase evaluation becomes invalid and a higher-order expansion is
needed. The expression for the bounce-mode amplitude for a cubic approximation
of the phase is

(E · v)m =
1

2π

∫ 2π

0
dΦb LeiΘ ≈ L eiΘtp∣∣Θ′′′tp∣∣1/3

Ai

(
− |Θ′tp|∣∣ 1

2 Θ′′′tp
∣∣1/3

)

≈ Ltpe
i(Θspp+Θ′′3spp/3Θ′′′2spp)∣∣ 1

2 Θ′′′spp
∣∣1/3

Ai

(
−

∣∣Θ′′2spp∣∣
|22/3Θ′′′4/3

spp |

)
, (23)

which can be expressed in terms of the stationary-phase point or of the nearby
turning point. Using the cubic approximation of the phase Θ, one can find an
expression relating the derivatives Θn(n = 0, . . . , 3) at the stationary-phase point
(spp) and those at the turning point (tp). One finds

Θtp = Θspp − 1
3 Θ′′′spp∆

3, Θspp = Θtp + 1
3 Θ′′′tp∆

3,

Θ′tp = − 1
2 Θ′′′spp∆

2, Θ′spp = 0,

Θ′′tp = 0, Θ′′spp = −Θ′′′tp∆,

Θ′′′tp = Θ′′′spp, Θ′′′spp = Θ′′′tp,

∆ = Φbtp − Φbspp = −Θ′′spp
Θ′′′spp

, ∆ = ±
(−2Θ′tp

Θ′′′tp

)1/2

.


(24)
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The subscripts of the various functions refer to the position at which the functions
are evaluated. For real stationary-phase points, the cubic approximation prescribes
that the first and third derivatives of the turning-point phase are of opposite sign,
and that the stationary-phase points lie symmetrically about the turning point, at
which the second derivative changes sign.

It is tempting to always use this higher-order formula. Note, however, that the
cubic expansion (with coefficients evaluated at the true stationary-phase point) al-
ways predicts a nearby turning point and symmetric about this approximate ‘cubic’
turning point, a second stationary-phase point. Neither the turning point nor the
second stationary-phase point have any physical significance except when the ‘cubic’
turning point coincides with the actual turning point. The above expression, which
always contains the contribution of two correlated stationary-phase points, thus
cannot trivially be used as a better approximation. This becomes more clear when
the asymptotic expression (well-separated stationary-phase points) is considered:

(E · v)m ≈ Ltpe
iΘtp

|2Θ′tpΘ′′′tp|1/4

(
2
π

)1/2

cos

(
23/2|Θ′tp|3/2

3|Θ′′′tp|1/2
− π

4

)
. (25)

Writing the cosine as the sum of two exponential factors and using (24), one rec-
ognizes the two contributions of the earlier found simple form given in (20). This
demonstrates that the simple and higher-order expressions are in agreement when
both are valid, as one would expect. One of the terms in (25) corresponds to one
of the physical contributions appearing in (20) (in the phase factor of the exponen-
tial, the terms involving the derivatives of the phase at the stationary-phase point
cancel for this stationary-phase point). The other stationary-phase point (and the
associated turning point halfway between the two stationary-phase points of the
cubic phase) is, however, an artefact of the cubic truncation of the phase. Adopting
(23) to evaluate the RF-induced energy change thus yields erroneous results, each
stationary-phase point contribution in (23) containing a physical and an unphysical
part, the latter giving rise to artificial interference.

In the light of the wider spacing of the stationary-phase points near a turning
point, one may wonder if the more accurate expression is of much use. If the ‘cu-
bic’ turning point coincides with the actual turning point (which means that the
truncated Taylor series with coefficients evaluated at the stationary phase point
is still valid at the true turning point, notwithstanding the relatively large phase
difference between two points), the higher-order expression must be used instead
of the diverging sum of the two saddle-point contributions of the simple asymp-
totic expression. If the ‘cubic’ turning point does not coincide with the actual one
(i.e. the – relatively small – errors in the phase cause non-negligible errors in the
predicted positions for the nearby turning point and the second stationary-phase
point), the higher-order expression is strictly invalid, but is expected to be more
physically relevant than the predictions from the simple expression, since the latter
diverges unphysically. Because of this divergence, the prediction using the higher-
order expression is therefore preferred for stationary-phase points very close to the
true turning point, but it must be realized that the interference pattern it shows is
not necessarily physically correct.

4.5. Čerenkov interaction and/or orbits with limited extent

When the phase does not vary rapidly, the stationary-phase point evaluation tech-
nique no longer predicts the Fourier amplitude correctly. In this case, a fast Fourier
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transformation or a brute numerical integration of the integral yields a better ap-
proximation. Another possibility is to benefit from the fact that a small number of
Fourier modes contribute significantly to the integral, allowing one to perform the
integral in (20) semi-analytically. The first step is to find the Fourier spectrum of
the slowly varying factor L in the integrand. This may be done using the FFT on
a limited set of Φb grid points using (13). The next step is to write the exponential
in the integrand as a product of sums of Bessel functions, relying on (Abramowitz
Stegun 1964)

eiξ sin γ =
+∞∑

k=−∞
Jk(ξ)eikγ .

Rather than having to consider an infinite series of products, one may truncate the
product at a term for which all but the zeroth-order Bessel functions are negligible
(the amplitude of the Fourier series of the phase is smaller than any desired accuracy
beyond a certain index; for an example, see Van Eester (1998)). The different sums
in the product can be truncated as well: for a given argument ξ, the Bessel function
becomes small if its index exceeds 0.5ξe (see Abramowitz and Stegun 1964). One
gets

ε̇m =
1

2π

∫ 2π

0
dΦbLeiΘ ≈

jmax∑
j=−jmax

Lj
1

2π

∫ 2π

0
dΦb eijΦb exp

(
i

kmax∑
k=−kmax

ξk sin Φb

)

≈
jmax∑

j=−jmax

Lj
1

2π

∫ 2π

0
dΦb ei(ξ0+j)Φb

×
 k′max∑
k′=−k′max

Jk′ (ξ−kmax )e
ik′(−kmax)Φb

 . . .
 k′′max∑
k′′=−k′′max

Jk′′ (ξkmax )e
ik′′(+kmax)Φb



≈
jmax∑

j=−jmax

Lj

k′max∑
k′=−k′max

Jk′ (ξ−kmax ) . . .
k′′max∑

k′′=−k′′max

Jk′′ (ξkmax )
1

2π

×
∫ 2π

0
dΦb ei(ξ0+j−k′kmax+···+k′′kmax)Φb , (26)

in which j is the Fourier-component index of L (−jmax 6 j 6 jmax), k is the Fourier-
component index of the phase Ξ (see (15); −kmax 6 k 6 kmax), k′ is the index of the
series corresponding to the first ξ (ξkmax ;−k′max 6 k′ 6 k′max,) in the Fourier series of
Ξ, k′′ is the index of the last one, and the ‘ . . .’ represent the various of contributions
of the intermediate ks. Owing to the large number of relevant Fourier modes of the
phase (and, to a lesser extent, of L), and to the fact that each of the Fourier
components of the phase gives rise to a sum of terms, the final expression contains
many terms unless N = 0. The last step of the computation is straightforward:
grouping the various exponential factors, the integral can be evaluated analytically.
The result is only non-zero when the factor j + ξ0 − k′kmax + . . . + k′′kmax is zero.
Although the above formula is in principle valid for slowly as well as rapidly varying
phases, it is evident that the large number of terms to be kept and the associated
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Figure 2. The RF diffusion coefficient Qvv for an electron population heated by Landau
or TTMP damping in the JET tokamak. Simple analytical wave field amplitudes are used
and uncorrelated resonances are assumed. The toroidal mode number is (a) n = +18 or
(b) n = 180; the plots are for (a) x = 0.45 and (b) x=0.95. The labels SP, SA and FFT
indicate the method used to evaluate the coefficient (stationary-phase, semi-analytical and
fast Fourier transform technique, respectively).

‘bookkeeping’ to be done make it numerically unattractive when many terms have
to be kept in the Fourier series.

4.6. Numerical examples: the structure of the RF diffusion coefficients

4.6.1. Performance of the various methods. The asymptotic and FFT methods are
complementary: when one cannot be used, the other most easily yields an accurate
result. A detailed discussion can be found in Louis (1995), in which not only the
active (as is done here) but also the reactive contributions to the dielectric response
were computed. Figure 2 shows the diffusion coefficient for an electron population
in JET heated by Čerenkov interaction (N = 0). The major radius R = 3.1 m, the
minor radius is 1.25 m, the magnetic surface is a Shafranov-shifted D with equa-
torial half-width ρ = 0.2 m, the elongation is 1.6, Shafranov shift of the magnetic
axis is 0.3 m and the triangularity is 0.3, the poloidal mode number m = 6, the
radial wave vector component kρ = −30 m−1, the frequency f = 26 MHz, the cen-
tral toroidal magnetic field B0 = 3.1 T, and the angle between the parallel and
the toroidal direction is α = 0.15 at the outboard side of the equatorial plane.
Figure 2(a) is the result when the toroidal mode number n = 18. The (physically
correct) predictions of the SA formula (26) and the FFT coincide, while those of the
(failing) stationary-phase method predicts a narrower and higher peak. Only the
first three terms in the Fourier spectrum of the phase are retained in the SA model,
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Figure 3. The RF diffusion coefficient Qvv for a co-streaming H population heated on axis
at its fundamental cyclotron frequency in the JET tokamak. Simple analytical wave field
amplitudes are used and uncorrelated resonances are assumed. The velocity v = 106 m s−1.

and the maximal number of Bessel functions considered is limited. When n = 180,
one sees that the prediction of the asymptotic method is already in better agreement
with the (correct) FFT prediction, as one expects for a more rapidly varying phase.
For the case of cyclotron heating, the bounce spectrum of the RF induced energy
change containing a few thousand modes, and an oscillation being reasonably well
captured by O(20) points per period, one needs O(105) points to capture the most
rapid oscillations when using the FFT method. Happily a somewhat smaller num-
ber suffices to get a reasonably good approximation. This is illustrated in Fig. 3,
showing both the FFT and SP point prediction for a cyclotron heating case. The
major radius R0 = 3.12 m, the magnetic surface has a D-shaped cross-section with
half-width ρ = 0.8 m, an elongation of 1.6, and a triangularity of 0.3. The Shaf-
ranov shift of the magnetic axis is 0.3 m. The toroidal mode number n = +20, the
poloidal mode number m = 5 and the radial wave vector component kρ = −30 m−1.
The frequency f = 47.13 MHz, the central toroidal magnetic field B0 = 3.4 T, and
the angle between the parallel and the toroidal direction is taken as α = 0.15 at
the outboard side of the equatorial plane. For the parameters taken, both meth-
ods roughly agree when 5000 Φb points are used to evaluate the bounce integral.
When only 1500 points are used, the FFT integration fails to predict the correct
coefficient near the trapped/passing boundary. In either case, the FFT procedure
requires much more CPU time to estimate the bounce integral than the asymptotic
technique does. Louis showed that accounting for a finite decorrelation time has an
advantage in this respect: he found that neighbouring bounce modes further filter
the rapid oscillations and allow more accurate predictions (better agreement with
the asymptotic technique) for a given grid.

4.6.2. Crosstalk between points on an orbit. Glancing at either of the two asymptotic
expressions (20) or (23) reveals that the Fourier amplitudes contain rapidly varying
terms (the oscillatory ones) and slowly varying terms (e.g. the |Θ′′| term in the
simple expression). This behaviour was already predicted as well as analytically
analysed for a simple example in Van Eester (1995): relatively small variations in v
or x cause the Fourier amplitude (and the associated RF diffusion coefficient and
dielectric response) to oscillate around an average value. An example is depicted in
Fig. 4, in which both the full expression (based on the cosine in (20) or (25), the
average amplitude of the square of which is 1

2 ) and the averaged expression (based
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Figure 4. RF diffusion coefficient Qvv for a co-streaming 3He population with velocities
ranging from 106 to 1.1 × 106 m s−1 heated at its fundamental cyclotron frequency in the
TEXTOR tokamak. Simple analytical wave field amplitudes are used and uncorrelated res-
onances are assumed. (a) decorrelated SP points. (b) Correlated SP points. (c) Correlated SP
points of the cubic approximation of the phase.

on the sum of the two uncorrelated SP point contributions, involving the square of
the absolute value of the exponential, the amplitude of which is 1) are given. Unless
the true and approximate turning points lie close to one another, the cubic term
in the approximate phase accounted for in (23) causes an unphysical interference
pattern on a shorter scale than the actual interference pattern. Note that only
a small fraction of the velocity domain was depicted: when highly energetic tails
of a few hundreds of kiloelectrovolts are formed, the minimal velocities are small
(thermal region) while the maximal velocities to be considered are a few times
106 m s−1.

The fine structure observed in the pictures of the diffusion coefficient has severe
consequences for the required grid space in case one desires to make a fully rig-
orous computation. Figure 4 presents an illustration for the TEXTOR case. The
major radius R0 = 1.75 m and the magnetic surface has a Shafranov-shifted cir-
cular cross-section with radius r = 0.25 m. The Shafranov shift of the magnetic
axis is 0.07 m. The toroidal mode number n = +13, the poloidal mode number is 6
and the radial wave vector component kρ = −30 m−1. The frequency f = 25 MHz,
the central toroidal magnetic field B0 = 2.6 T, and the angle between the parallel
and the toroidal direction is taken as α = 0.05. Figure 4 suggests that it is rea-
sonable to ‘coarse-grain’ and use the average expressions. This is what was done
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in the well-known computation of Stix (1975), in which only one SP point contri-
bution is evaluated and a factor of 2 is used to include the effect of the second SP
point. Moreover, Stix considers the local value of the field, leaving the sum on the
poloidal modes implicit. Summing on all individual (decoupled) contributions from
the individual SP points (omitting the faulty cross-talk between cubic SP points
exemplified by the oscillatory behaviour of the asymptotic part of the Airy function
expression, which always accounts for two SP points at the time) also seems the
most straightforward and computationally appealing approach to generalise to non-
up–down-symmetric equilibria. Note that the SA method is slightly altered now:
rather than only yielding finite results when the factor j+ ξ0−k′kmax + . . .+k′′kmax

is zero, there are extra contributions whenever it is odd.
The physical interpretation of the obtained oscillatory behaviour is straightfor-

ward: whether a particle is accelerated or decelerated by an electric field depends
on the relative phase of the particle’s velocity and of the electric field. Subsequent
encounters with resonant layers may either be constructive or destructive. Omitting
collisions or any other decorrelation mechanism, the relative phase factor between
the two encounters (one above, one below the midplane) with a given resonance
determines the correlation between the two energy kicks, i.e. determines the net
effect per transit. This relative phase information is embedded in the above asymp-
totic expressions. Remember that the asymptotic technique is used to make an
easy evaluation of the RF response possible but that collisions or decorrelation do
not enter the computations at this point, except for the fact that causality ensures
finite non-zero damping at the resonant bounce mode (see (19)). The most difficult
step in the computation (for which the SP, FFT or SA technique is used) involves
nothing more than the evaluation of the Fourier components of quantities, and is
the consequence of the choice of making a coordinate transformation to coordinates
that are more suitable for the (later to be done and much easier) evaluation of the
dielectric response. If both the active and reactive terms of the dielectric response
are wanted, all Fourier integrals in the bounce spectrum have to be computed. In
the present work, only the active terms are looked at, and thus only the resonant
bounce mode has to be computed. When decorrelation (e.g. the finiteness of the
decorrelation time) is accounted for in a rigorous way, the phase factor will be of
importance to determine the net effect of the wave–particle encounters over many
transits. With the presently adopted ‘causality’ decorrelation model (zero decorre-
lation time with respect to the transit time, infinite decorrelation time with respect
to cyclotron time), this relative phase is somewhat superfluous in that it merely
causes a local wiggle in the absorption efficiency.

4.6.3. Influence of the orbital topology and of the poloidal magnetic field. An important
difference between the diffusion coefficient adopted here and that from a uniform
plasma theory is that resonant interaction only occurs if the orbit actually cuts the
resonance curve. This is demonstrated in Fig. 5, in which the diffusion coefficient
for a given field is depicted for a co-streaming deuterium population v = 106 m−1 s
in the present JET. The major radius Ro = 2.9 m, the minor radius is 1 m, the
magnetic surfaces are D-shaped with a Shafranov shift of the magnetic axis of
0.065 m, an elongation of 1.7 and a triangularity of 0.21, the poloidal mode num-
ber is m = 6, the radial wave vector component kρ = −30 m−1, the frequency
f = 25.5 MHz, the central toroidal magnetic field Bo = 3.7 T, and the angle be-
tween the parallel and the toroidal direction is α = 0.15 at the outboard side of the
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Figure 5. RF diffusion coefficient Qvv for a co-streaming D population with velocity
v = 106 m s−1 heated at the fundamental cyclotron frequency in the JET tokamak. Sim-
ple analytical wave field amplitudes are used and uncorrelated resonances are assumed.
(a) ρ = 0.35 m; (b) 0.39 m; (c) 0.4 m; (d) 0.6 m.

equatorial plane. For the chosen parameters, the non-Doppler-shifted resonance is
at 0.03 m to the high-field side of the geometric axis. On surfaces too close to the
magnetic axis (e.g. ρ = 0.2 m), only counter-streaming particles (v‖ < 0) can ab-
sorb wave energy. At more externally situated magnetic surfaces, the co-streaming
particles also interact with the wave. First, interaction only occurs in the trapped
region, but for increasing ρ the tangent resonance towards the high-field side of
the non-Doppler-shifted resonance gradually moves towards the trapped/passing
edge. At ρ = 0.39 m, a small fraction of the co-passing particles contribute to the
damping. At ρ = 0.6 m, all passing particles interact with the field. The efficient
heating of particles that have their resonance near the tangent resonance is clearly
distinguishable. At the tangent resonance close to the trapped/passing boundary,
particles are very efficiently heated.

In a uniform plasma, either a particle is everywhere in resonance with the RF
field or it is not resonant at all. Non-uniformity results in varying v‖,Ω and k‖
and confines the resonant cyclotron interaction to discrete points along the orbit.
Whereas for a uniform plasma the diffusion is always non-zero for some subclass of
particles (notably those that satisfy

v‖ = v‖res =
ω −NΩ
k‖

for given ω,Ω and k‖), the orbital topology excludes regions in c.o.m.-space to be eli-
gible for resonant interaction. The transition from the subspace where no damping
occurs to that where the resonance condition can be satisfied is not characterized
by a simple ‘switch-on’ Heaviside function behaviour. Making a number of sim-
plifying assumptions (constant v‖ near the resonance, circular cross-section, rapid
decorrelation), Stix (1975) noted that the diffusion coefficient becomes infinite at
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the frontier between the damping and non-damping regions. Adding a more so-
phisticated description gives rise to a better non-diverging prediction (revealing,
for example, that the damping is switched off in a narrow region) but qualitatively
adds nothing new. The physical interpretation of the behaviour that Stix observed
is straightforward: because the Doppler shift depends on the considered c.o.m., the
resonance for varying c.o.m. is satisfied at varying poloidal positions along the or-
bit. When the resonance approaches the point where it no longer cuts the orbit,
the two resonance points lying symmetrically about the midplane move toward
the turning point in the midplane at which (provided the SP point condition is
satisfied at the turning point) they merge and their velocity component along the
major radius goes to zero (Ṙ = 0, i.e. the particle remains in resonance for a long
time). Beyond that point, no crossing and thus no damping occurs anymore.

It is not straightforward to relate uniform and non-uniform plasma results, be-
cause of the basic difference in orbit topology. Considering an orbit very close to
the magnetic axis ensures small variations of the magnetic field, and in that sense
mimics the uniform-plasma case in which only ‘well-passing’ particles with constant
v‖ exist. ‘Off-axis’ heating on such a surface (with a non-Doppler-shifted resonance
that lies well outside the considered surface) resembles the uniform case in the sense
that resonance takes place along a (somewhat broadened) line v‖ = v‖res in the pass-
ing region, but on-axis heating on this surface (small or zero, v‖res, and thus most of
the resonant particles are trapped) has no immediate counterpart. On such a sur-
face close to the magnetic axis, the SP point expressions, which formally look like
uniform-plasma expressions, are not adequate, since the phase of the RF-induced
energy change varies too slowly to ensure that the asymptotic method yields mean-
ingful results (in that case the – less localized – FFT or SA prediction is correct).
The other extreme is to consider a surface far away from the magnetic axis. Now
the asymptotic methods yield meaningful results and the uniform-plasma intuition
is recaptured, but the resonance is fulfilled in a wide region in velocity space, and
a non-negligible fraction of the particles are trapped.

The localization of the region in configuration space in which absorption occurs
is generally delimited both in x and in v: on a given magnetic surface, only a subset
of the Doppler-shifted resonances intersect the orbits. This is more pronounced
when one looks at the effect of the RF field on the particles near the magnetic axis
for an off-axis heating scenario. Because of the limited extent of the orbit, only
a small subcategory of resonant v‖ values are physically acceptable. For small v,
either no resonant x exist or the width in x of the values for which resonance occurs
is large. The larger v is, the narrower is the width. Conversely, for a given x (i.e.
for a given equatorial pitch angle), absorption only happens for sufficiently large
v, guaranteeing a sufficiently large Doppler shift to move the non-Doppler-shifted
resonance (which does not intersect the magnetic surface) to the orbit. For x beyond
the tangent resonance, no intersection of the resonance with the orbit exists. The
tangent resonance position at the banana tip of trapped particles occurs at a fixed
x, independent of the poloidal or toroidal mode number. In contrast to tangent
resonance at banana tips, the tangent resonance in the equatorial plane does not
necessitate that the parallel velocity cancels. Consequently, for a given x (or v),
this tangent resonance takes place at a different v (or x) for a different poloidal
or toroidal mode number. Figure 1 demonstrated that the RF diffusion coefficient
undergoes violent excursions there. Even having adopted expressions that guaran-
tee that the diffusion coefficient is positive for the usual ‘causal’ decorrelation does
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Figure 6. RF diffusion coefficient Qvv for a co-streaming D population with x = 0.38 heated
at the fundamental cyclotron frequency on the surface ρ = 0.4 in the JET tokamak. Simple
analytical wave field amplitudes are used, the poloidal mode numbers range from −6 to 6
and uncorrelated resonances are assumed. (a) Standard current (poloidal field), αm = 0.15 m.
(b) Reduced current, αm = 0.015 m.

not prevent the coefficient from varying rapidly there. Figure 6 depicts the RF
diffusion coefficient Qvv for a case for which the tangent resonance falls inside
the region of interest for the co-streaming particles but outside it for the counter-
streaming ones. The parameters are those of Fig. 5. Figure 6(a) is for the actual αm
(i.e. for the actual poloidal field magnitude or local plasma current), while Fig. 6(b)
shows the result for a reduced current. In the latter case and with the Doppler
shift being a function of the plasma current via the parallel wavenumber, much
larger velocities are required to arrive at the tangent resonance point than in the
case with the normal current. While in the former case some particles benefit from
large energy excursions caused by the efficient heating at the tangent resonance,
this does not happen in the latter in the depicted velocity region.

Looking at the expression for the Jacobian in (5) and that of the function BN

in (17), both of which are inversely proportional to the transit frequency, one is
induced to overestimate the importance of the tangent resonance in the equatorial
plane at the high-field side (where the transit frequency vanishes) compared with
that at the low-field side. This dependence on the transit frequency is deceiving,
however, since the factor ω2

b disappears when all quantities are expressed as func-
tions of time. When that is done, the same major radius velocity factor dR/dt
appears and the high- and low-field-side intersections of the magnetic surface with
the equatorial plane play an identical role. It is this factor that makes heating
at a banana tip efficient. Recall, also, that the simple ‘causal’ decorrelation used
throughout this paper always assumes sufficiently dense spacing of the SP points
to always have a resonant mode. Considering a given decorrelation frequency, the
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‘causal’ treatment seems most justified near the turning point, since the transit
frequency goes to zero there, which guarantees that many terms contribute to the
resonant interaction (‘dense’ set of contributions in (19)). On the other hand, the
fact that many bounce modes resonantly interact with the particles (at most one
bounce mode of which has a SP point for which the actual turning point and the
‘cubic’ one coincide) shows that the contribution associated with the true turning
point is less pronounced than the naive application of the causal treatment (which
– because of the assumed continuous bounce mode SP point density always yields
a resonant interaction if the orbit intersects the resonance curve) suggests.

The coordinate transformation is deceiving in a second way: particles seem to
be bunching at the trapped/passing edge, since the Jacobian is inversely propor-
tional to the transit frequency, and so for a plasma in thermodynamical equilib-
rium (Maxwellian), the local density distribution JF0 seems to peak there. This is
to be expected, however: because of the particle trapping, all particles cross the
low-field-side equatorial point (where their parallel velocity is maximal) while only
the passing ones cross the high-field-side point. Transforming to the local velocity
components in a given infinitesimal volume involves transforming the elementary
angle dΦb into the poloidal angle dθ = (dθ/dt)(dt/dΦb) dΦb. The factor that appears
ensures that regions where the poloidal velocity is higher than the average poloidal
velocity cover a larger poloidal domain than regions where the velocity is low. As a
result, the same number of particles reside in each infinitesimal box. The usual local
expression for the density (independent of the poloidal angle) emerges, as it should.

4.6.4. Crosstalk between modes in the wave spectrum. On Fig. 6, one can see that
the RF diffusion coefficient, and the associated heating, goes to zero near v =
4 × 105 ms−1 (a) and v = 7 × 105 ms−1 (b). The reason for this is not the familiar
finite-Larmor-radius effect associated with the zeros of the Bessel functions in the
Kennel–Engelman operator, but an effect that is absent in uniform plasma the-
ory: owing to the presence of the multiple poloidal harmonics of the electric field,
independent poloidal modes can constructively or destructively interact with one
another. This again is an effect that is in agreement with physical intuition: the
particle will be accelerated or decelerated, depending on the relative phase of its
velocity and that of the total electric field. Some poloidal modes may be in phase
with the particle velocity, while others are in phase opposition. One would intu-
itively expect that the terms corresponding to interference average out to give a
zero contribution. This is indeed formally the case. There is a subtlety, however.
This becomes clear when we look at the combined effect of two of the poloidal
modes. We start from the Fourier amplitude of the field, and subsequently express
the term corresponding to the second poloidal mode (evaluated at the SP point
of this mode) in terms of quantities related to the first SP point using a Taylor
series expansion (we assume that we are away from the turning point and that the
poloidal modes are not too different, so that the Taylor series can be truncated
after the linear term). We can then write∣∣∣∣∣∑

m

L(m)e
i[mθ(Φb)+nϕ(Φb)−Nφ(Φb)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
m

L(m)e
i[mθ(Φb)+H(Φb)

∣∣∣∣∣
2

≈ |ei[m1θ(Φb1 )+H(Φb1 )|2
∣∣∣∣∣L(m1) +

∑
m�m1

L(m)e
i[(m−m1)g(Φb1 )

∣∣∣∣∣
2

, (27)
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Figure 7. RF diffusion coefficient Qvv for a counter-streaming D population heated at its
fundamental cyclotron layer in JET: (a,b) m = 0 and m = 6; (c,d) m = 6 and m = +6;
(e,f ) m ranges from −6 to +6; (a,c,e) actual wave phase (correlated modes); (b,d,f ) no phase
information (decoupled modes).

which, for two poloidal modes, is a sum of four terms, two of which are positive-
definite and represent the decoupled contribution of the individual poloidal modes.
The other two terms oscillate around this average. To a good approximation, the
second term in the phase of the exponential is negligible with respect to the first.
It is, however, important to note that, expressed in terms of one of the independent
variables (e.g. the velocity), the phase of this oscillating term varies by 2π (full
period) when the velocity changes by

∆v ≈ 2π
(m−m1) ∂g/∂v

, g(Φb) ≈ θ(Φb)− R(Φb)
dR/dθ|(Φb)

.

This interval is large when the SP point varies slowly with v, or when the consid-
ered poloidal modes do not differ much. This is clearly demonstrated in Fig. 7, in
which both the total sum and the sum of the individual decoupled contributions are
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plotted for (a,b) two neighbouring modes (m = 0 or 6) and (c,d) two more distant
modes (m = −6 and +6) and for a wide velocity range. The plots (a), (c) and (e) are
for the actual field, while the coupling terms are omitted in (b), (d) and (e). The pa-
rameters are those of Fig. 5 and ρ = 0.4 m. In the case corresponding to Fig. 7(c,d),
‘coarse-graining’ by omitting the oscillatory behaviour may still crudely be justi-
fied; in the former it is already more questionable. The last figures (e,f) presents the
result for a total of 13 modes, and show that approximating the effect of the total
field by the effect of the individual modes locally in velocity space overestimates
the RF diffusion and local damping by a factor of 4–8! The conclusion that one
has to draw from this exercise is that adopting simplified wave profiles may lead to
erroneous predictions for the absorption efficiency. Whereas ‘coarse-graining’ com-
monly makes sense when looking at the combined effect of different resonances
because of a sufficiently fast collision-related decorrelation (see Figure 4), such
procedure has to be avoided when evaluating the local heating efficiency.

4.7. Summary

The results of Sections 4.1–4.6 can be summarized as follows:

1. The general formulae for the dielectric response proposed by Kaufman guaran-
tee positivity of the absorbed power for Maxwellian plasmas for any wave mode
and particle orbit. Approximate expressions based on asymptotic techniques
lose this important characteristic.

2. Asymptotic techniques may nevertheless be used in many cases to compute the
Fourier amplitudes of the RF-induced energy change needed for the evaluation
of the response and in particular the absorption. When asymptotic techniques
fail, FFT or SA methods or even direct numerical integration yields the needed
coefficients.

3. Asymptotic techniques clearly show the effect of the constructive/destructive
interference of various energy kicks on a single transit. Some of the obtained
fine structure has a physical origin (Fig. 4b) while some is an artefact of the
adopted model (Fig. 4c). Using the simplest possible (‘causal’) decorrelation,
one can distinguish three regimes:

(a) When the decorrelation time is fast compared with the bounce time but slow
compared with the cyclotron time scale, the various resonances along the
orbit are decoupled and the total energy change is the sum of the kicks the
particle receives at the individual resonances. Changing the decorrelation
time does not change the net absorption rate.

(b) When the decorrelation time is slow compared with the bounce time, many
resonant interactions have to be accounted for and the relative phase of
the RF-induced energy change between resonances matters. This second
regime is known as the superadiabatic regime. Except for a limited set of
orbit parameters, the net energy change is zero.

(c) The final regime is that where the decorrelation time is of the order of the
bounce time. The details of the decorrelation model now critically distin-
guish between efficient and inefficient absorption for a given electric field.

4. The first of the above-mentioned cases (fast decorrelation) is the one that is
relevant for particle populations that are not too energetic. It yields formulae
that bear close resemblance to those of the uniform plasma, but, unlike the
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uniform case, the nomenclature ‘collisionless’ is misplaced, since collisions –
or some other decorrelation mechanisms – are a necessary ingredient of the
model. For this case, the interference is so fine-structured that it is of secondary
importance and can be neglected (minuscule variations in one of the parameters
can significantly change the phase, and so the detailed phase information loses
its meaning while the average – much less fine-structured – response is what
eventually matters).

5. The inferference associated with the different phasings of the various poloidal
and toroidal modes in the wave spectrum has to be accounted for to get a real-
istic prediction of the absorption efficiency for a given field: it is not sufficient
to account only for the local wave amplitude or for an average wave amplitude
on an orbit to make a reasonable prediction of the heating efficiency for a given
field.

Until now, only the local values of the RF response for given x and v have been
computed. In the weak Galerkin form of the Fokker–Planck equation, suitable for
finite-element treatment, integrals of this response over small domains appear. The
simplest possible way to provide the needed information is to rely on the fact that
the basis functions vary on a much shorter scale than the coefficients and to approxi-
mate the required integrals by the value of the coefficient at the centre point of
the element multiplied by the analytical integral of products of the basis functions.
Better approximations can be provided by relying on interpolation schemes, using
a truncated Taylor series expansions of the required integrand and analytically
obtaining a better approximation of the integral. Some useful expressions can be
found in Prudnikov et al. (1986).

4.8. Note on finite-banana-width effects
Although the general theory due to Kaufman allows for it, the present paper does
not account for finite-banana-width effects, i.e. it assumes that guiding centres are
confined to magnetic surfaces. One of the consequences of this approximation is
that RF-induced transport is neglected and that the Fokker–Planck equation is a
partial differential equation with only two independent variables. Computationally,
this has a clear advantage, since it requires less computer time and memory, but
physically it decouples in a somewhat artificial way the radial transport from the
diffusion in velocity space. The full (3D) resolution of the Fokker–Planck equation
is, at least formally, not more difficult than that of its 2D counterpart but it requires
enhanced bookkeeping in practice. The first step is the computation of expressions
for the Fourier coefficients of the RF-induced temporal change of the energy on a
grid of Λ. The toroidal angular momentum P now appears instead of the flux Ψ
as one of the variables. The obtained expressions require the relation between the
3D guiding-centre position, the Λ and the bounce angle to be known. An analyti-
cal expression for the bounce-angle dependence along an orbit is not available in
general, but one can rely on numerical integration to find it (as is routinely done
when solving the diffusion equation using the Monte Carlo approach). Formally,
the expressions for the building blocks are identical to those presented earlier in
this section.

5. The collision operator
Since, by construction, the slowly varying distribution function does not depend on
any of the short-time-scale variables Φ, removing all short-time-scale dependence
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from the collision term in the Fokker–Planck equation only requires performing a
bounce average of the coefficients of the collision operator. When P is approximated
by Ψ and when the background on which the examined species collisionally relax
is assumed to be in thermodynamic equilibrium, the result is formally identical to
the uniform plasma expression except that the coefficient v2

‖/v
2
⊥ in the expression

for the Sx flux is now bounce-averaged:

∂F0

∂t

∣∣∣∣
collisions

=
1
J

{
∂

∂v

[
J

(
Dvv

∂F0

∂v
− FvF0

)]

+
∂
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(
J

{
DΦΦ

(
2x
v

)2
〈
v2
‖
v2
⊥

〉
∂F0

∂x

})}
. (28)

The expressions for Dvv, Fv and DΦΦ (where Φ is the pitch angle) can be found, for
example, in Karney (1986). Since the collision operator is written as the divergence
of a flux, the corresponding term in the weak Galerkin form of the Fokker–Planck
equation is∫

dΛ JG
∂F0

∂t

∣∣∣∣
collisions

= −
∫
dΛ J

{
∂G

∂v

(
Dvv

∂F0
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)
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∂G

∂x

[
DΦΦ

(
2x
v

)2
〈
v2
‖
v2
⊥

〉
∂F0

∂x

]}
. (29)

The surface terms are not trivially zero, but do not appear at the internal boundaries
of the finite elements in the final equations when choosing basis functions that are
sufficiently smooth to guarantee the – physical – continuity of the flux between
neighbouring finite elements. As boundary conditions at the edges of the integration
domain, the fluxes are required to be zero. This prevents particles to escape from
or enter the considered region, i.e. it ensures conservation of the total number of
particles.

6. Comments on the weak form of the Galerkin formalism
The Fokker–Planck equation is solved using the finite-element method. Since this
method is well known, only a short sketch of the practical implementation is
given. Continuity of the integrated flux across finite-element boundaries is en-
sured numerically by a proper choice of the basis functions. In each finite element
[vi, vi+1]× [xj , xj+1], the adopted 2D basis functions are of the form

Gαij(v, x) = Hβ

(
v − vi

∆v

)
Hχ

(
x− xj

∆x

)
, (30a)

in which the functions Hi(ξ) satisfy

H1|ξ=0 =
dH2

dξ

∣∣∣∣
ξ=0

= H3|ξ=1 =
dH4

dξ

∣∣∣∣
ξ=1

= 1, (30b)

while all other values of either the functions or their derivatives are zero at both
boundaries. Approximating F0 by a polynomial of order three in each finite element,
F0 can be written as fTij · Gij , and so the Fokker–Planck equation, after projection
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on the 16 basis functions G = gTij · Gij , reduces to the local linear 16× 16 system

gTij · Ŝ · sij = gTij · (Q̂ + Ĉ + L̂) · f0ij (31)

in which the elementary Ŝ, Q̂, Ĉ and L̂ are matrices of integrals of products of
two basis functions multiplied by a function M of v and x. These integrals can be
evaluated in various ways:

(a) using a 2D Gaussian integration scheme, which yields correct results for poly-
nomial functions M of up to order three both in v and x;

(b) using analytical expressions while approximating the coefficients by low-order
polynomials; or simply

(c) dropping the variation of the coefficients and just analytically integrating the
products of base function.

Note that when the 2-element basis functions

Hβ

(
v − vi

∆v

)[
Hχ

(
x− xj

∆x

)
+Hχ+2

(
x− xj−1

∆x

)]
with χ = 1 or 2 are used, the basis functions and their derivatives are continuous in-
side the finite element as well as across the finite-element boundary line connecting
the neighbouring elements (vi, xj) and (vi, xj−1). Projecting onto these two-element
basis functions thus results in the exact cancellation of the left surface term in el-
ements j by the right one in j − 1. Choosing lower-order basis elements that are
continuous in the element but that do not guarantee continuity of all derivatives
in the basis functions can be taken as well, provided that it is possible to install
numerical jumps in the surface terms to guarantee that the physical flux itself is
nonetheless continuous. Assembling all the local systems into a large linear system
by combining them pair-wise to emulate such 2-element base functions, leads to four
sets of overlapping 4 × 4 sub-blocks. The global linear system thus has a limited
bandwidth and can be solved using standard banded-matrix inversion routines

7. Solving the Fokker–Planck equation: two small examples
As practical examples, the JET (D)–T fundamental cyclotron heating scenario and
the combined NBI+RF heated (3He)–(H)–D scenario of TEXTOR will now be
discussed briefly. The aim of the presented examples is to provide an illustration
showing the sensitivity of the predictions on the details of the considered model, and
to provide an idea of the scenarios that can be modelled with the BATCH code. No
attempt has been made to capture the full physics: although the particles feel the
effect of the total electric field and notwithstanding the fact that the toroidal and
the poloidal spectra contain about 60 modes (in the case where the field structure
is essentially that of a fast wave – many more in the case where the Bernstein
wave plays a role), only 1 toroidal mode and a limited number of poloidal modes
are retained. Furthermore, the electric field was evaluated for Maxwellian species
rather than being computed iteratively to self-consistently account for the non-
Maxwellian distribution. The electric field computations have been performed using
the present CYRANO code, which retains all three electric field components and
allows one to study minority fundamental cyclotron heating scenarios. The BATCH
Fokker–Planck code uses bidimensional cubic basis functions in the finite elements.

https://doi.org/10.1017/S0022377801001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001246


442 D. Van Eester

8

7

6

5

4

3

2

1

0
–4 –3 –1 1

Parallel velocity (106 m s–1)
–2 0 2 3 4

Pe
rp

en
di

cu
la

r 
ve

lo
ci

ty
 (

10
6 

m
 s

–1
)

Figure 8. Distribution function of a D population heated by central fundamental cyclotron
heating in JET. The lines are level lines with levels jF0,max/20(j = 0, . . . , 19) between the
maximum value F0,max in the thermal region and the minimum F0,min = 0 in the large-velocity
region. The thermal velocity (kT/m)1/2 of the background ions is 4.3× 105 m s−1.

For standard runs, 60 elements are used in both the velocity and the x direction.
The velocity domain is subdivided into two parts: in the region close to v = 0,
a rather fine grid spacing is used to capture the thermalization process. In the
remaining velocity region, a coarser grid is taken. Likewise the co- and counter-
streaming particles are each modeled by 30 finite elements, 15 of which are taken
in the passing and 15 in the trapped region. In each subinterval, uniform grid
spacing is used. Remembering the fine structure of the RF diffusion coefficient
near the trapped/passing edge (see e.g. Fig. 7e), the adopted grid dimensions may
be marginal, and thus the results obtained here should be considered as indicative
only. Their only purpose is to illustrate the sensitivity of the obtained solutions to
the details of the RF diffusion operator.

The parameters for the JET case are as follows. The central density is 5 ×
1019 m−3, the edge density is 5×1018 m−3, and the density profile factor is 0.01. The
central temperatures are 7.3 keV and 6.6 keV for electrons and ions, respectively.
The temperature profile factor is 2. The toroidal magnetic field strength B0 = 3.7 T,
the total plasma current is 3.3 MA and the current density profile factor is 3. The
magnetic shift is 0.065 m, the elongation is 1.7 and the triangularity is 0.21. These
data are typical for shot number 43015 during the D–T campaign at JET. A minor-
ity D concentration of 9% is taken. The generator frequency is 28 MHz and only
one toroidal mode will be considered: n = 28. The non-Doppler shifted resonance
lies at the geometric centre, 0.065 m on the high-field side from the magnetic axis.

The adopted parameters correspond to central fundamental cyclotron heating
of the deuterium minority. Figure 8 shows the distribution function at ρ = 0.26 m.
The actual local phase of the electric field is used. The figure shows a contour plot
of the distribution in the equatorial plane expressed in function of the local parallel
and perpendicular velocities corresponding to the independent variables v and x
with which the actual computation was done. A total of 20 contour lines, equally
spaced between the highest and lowest value of the distribution, is used. In the
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Figure 9. Level lines of the distribution function for off-axis heating of a D minority in JET
accounting for (a) the actual local electric field, (b) the amplitudes of the poloidal components
of the electric field but not the associated phase, and (c) the total amplitude of the field. The
thermal velocity (kT/m)1/2 of the background ions is 3.4 × 105 m s−1. Trapped orbits are
decoupled into two passing orbits.

thermal region a slightly deformed Maxwellian is found (for a Maxwellian, the con-
tour lines are circles). This is what one expects for a minority heating regime for
which, for a given constant electric field, the RF diffusion coefficient is maximal in
the thermal region (zeroth-order Bessel function in front of the electric field com-
ponent rotating with the ions in the Kennel–Engelmann operator). Note also that
the co- and counter-streaming particles are not heated with the same efficiency: the
counter-streaming particles reach higher velocities than their co-streaming counter-
parts. The two straight lines indicate the trapped/passing boundary. In the trapped
region, the typical ‘rabbit-ear’ distribution function is observed, the ‘ears’ of the
rabbit corresponding to the tangent resonance at the banana tips where efficient
heating takes place (for an elegant analytical treatment, see e.g. Chang and Cole-
stock 1990). The ears are only well pronounced at high velocities. At lower velocities,
the RF heating is also present, but more frequent Coulomb collisions make the dis-
tribution more isotropic. For the adopted field, the RF power density on the surface
ρ = 0.26 m is 0.42 MW m−3 and the average energy of the population is 185 keV
(i.e. the effective temperature is 122 keV).

To illustrate the importance of retaining the details of the electric field, Fig. 9 de-
picts the obtained distribution function at ρ = 0.5 m for the same field but lowering
the frequency to 25 MHz (off-axis heating) and making three different approxi-
mations. The figure shows the contour lines of the minority distribution, maximal
in the small-v (‘thermal’) region and exhibiting more or less energetic tails (position
of the contour line corresponding to the lowest F0 level). In all figures, 33 contour
lines are drawn. The contour lines in Fig. 9(a) depict the result when the actual field
structure is considered. Figure 9(b) gives the result when only the amplitudes of the
various components is accounted for but the actual phase information is omitted

https://doi.org/10.1017/S0022377801001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001246


444 D. Van Eester

(see (27)). Figure 9(c) finally shows the result when only one electric field component
having the amplitude of the total field but having m = 0 (poloidal dependence of
the field and role of the poloidal field omitted) is considered. All three results agree
on which population is most affected by the heating: the particles streaming in the
same direction as the magnetic field. This is what one would intuitively expect from
a one-dimensional reasoning: the field amplitude of a fast wave (for which the elec-
tromagnetic flux dominates the kinetic flux) is large when the wave in undamped
(flux maximal), and its amplitude decreases when it propagates further away from
the antenna and penetrates deeper into the damping zone. Consequently, particles
with a large, positive Doppler shift resonantly interact with a larger field than par-
ticles whose Doppler shift is small or negative. Since the toroidal motion dominates
the Doppler shift unless m is large or near the magnetic axis, co-streaming par-
ticles fall in the first and counter-streaming ones in the second category. The effect
of the poloidal magnetic field is clear when one compares Fig. 9(c) with the other
two cases: accounting for the finite poloidal field (cases (a) and (b)) suppresses the
absorption of the counter-streaming particles. Neglecting the phasing between the
various poloidal components further accentuates this difference: In (a), the forma-
tion of an asymmetric tail is most clearly observed. In (b), it is less clear, since both
the co- and counter-streaming populations are less affected than in (c). The RF
power densities equally reflect the effect: omitting all poloidal details yields an RF
power density of 0.22 MW m−3 and an average energy of 26 keV. Fully including
the poloidal non-uniformity yields an RF power density of 0.15 MW m−3 and an
energy of 18 keV. Only accounting for the various amplitudes of the poloidal com-
ponents but omitting the interference gives the lowest estimate for the RF power
density (0.12 MW m−3) and average energy (12 keV).

TEXTOR can be heated using neutral-beam injection and/or RF heating. In
TEXTOR, the plasma current is antiparallel to the magnetic field, and thus a
co/counter-beam is fired antiparallel/parallel to the direction of the current. It was
observed experimentally that synergistic effects occur on combining both heating
methods. This effect is due to the fact that the beam ions are highly energetic and
thus weakly collisional, which renders the RF heating more efficient for a given RF
power level. A collective Thomson scattering diagnostic is being installed on TEX-
TOR. It will provide experimental information on what the distribution function
of the energetic particles looks like (Bindslev et al. 1999). A preliminary theoreti-
cal prediction, based on a simplified electric field, is given in Fig. 10. It shows the
distribution function of a counter-injected 3He beam heated at its fundamental
cyclotron frequency on a magnetic surface close to the magnetic axis (ρ = 0.11 m).
The parameters for this TEXTOR scenario are as follows. The central density is
5.2× 1019 m−3, the edge density is 5.2× 1017 m−3 and the density profile factor is
0.7. The central temperatures are 1.55 keV for both electrons and ions. The tem-
perature profile factor is 3.3. The plasma consists of a majority of 65% deuterium
and a minority of 15% hydrogen. The toroidal magnetic field strength B0 = 2.6 T,
the total plasma current is 0.3 MA and the current density profile factor is 4.95.
The magnetic shift is 0.07 m, the elongation is 1.0 and the triangularity is 0. The
generator frequency is assumed to be 25 MHz and only one toroidal mode will be
considered: n = 13. The total power launched is 400 kW. It is mainly absorbed
in the central region (ρ < 0.15–0.20 m). In Fig. 10, one can clearly recognize the
maximum near the injection velocity corresponding to 40 keV (c.f. Gaffey (1976), in
which an analytical expression for the distribution function of a beam can be found)
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Figure 10. Level lines of the distribution function for a 3He beam injected into TEXTOR
and heated at its fundamental cyclotron frequency. The thermal velocity (kT/m)1/2 of the
background ions is 3.5× 105 m s−1

as well as the typical ‘rabbit-ear’ distribution function resulting from efficient RF
heating near the tangent resonance at the banana tips of the trapped particles. In
TEXTOR, the slowing-down time is small (a few tens of milliseconds), and thus
the thermalized population dominates over that of the energetic particles. To re-
move the thermalized part from the distribution, the collision operator proposed
by Gaffey was used when solving the Fokker–Planck equation. This operator rigor-
ously models the collisions when the velocity lies in between the thermal velocities
of the ions and the electrons, but fails to describe the thermal region and has a sink
at v = 0. The average energy of the particle beam depicted in Fig. 10 is 40 keV and
the local RF power density is 0.5 MW m−3.

The BATCH code is still under development and further improvement. The re-
sults presented here were computed on a Macintosh computer. The variational prin-
ciple on which the code is based allows to write down the particle number and power
balance upon replacing the test function by 1 and by the energy, respectively. Al-
though the power and particle balance associated with the Fokker–Planck equa-
tion were satisfied for each of the cases (showing that the linear system is solved
satisfactorily), the solutions of the Fokker–Planck equation discussed above should
only be considered indicative, since memory and speed limitations rather than rig-
orous convergence testing of the physical solution dictated the adopted grid size.
Some of the fine structure may not be captured appropriately. Initial benchmarking
was done by reproducing a number of distributions for situations for which ana-
lytical solutions exist: using the full collision operator, a Maxwellian distribution
with the proper effective temperature was found in the absence of auxiliary heat-
ing. Adopting-the simplified collision operator appropriate for energetic ion beams
(Gaffey 1976), the slowing-down distribution function for an ‘isotropic’ beam was
reproduced. For an anisotropic beam, there was qualitative agreement, but the
orbital topology included in the code and not in Gaffey’s analytical expression
(in particular the trapped/passing edge) distinguish the solution found by BATCH
from that found by Gaffey.
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8. Conclusions
Starting from a formalism due to Kaufman (1972), a model allowing a fully self-
consistent treatment of RF heating in toroidal geometry has been formulated (see
e.g. Lamalle (1997, 1998) and Van Eester (1995, 1998), and references therein, for
details of the wave equation and the Fokker–Planck equations, respectively). It
relies on the evaluation of elementary ‘building blocks’ shared by the wave and
Fokker–Planck equations and independent of the distribution function and the
actual electric field pattern. The sophistication of these building blocks (describing
the interaction between a guiding centre and a wave polarization) determines the
sophistication of the description, but their shared use always guarantees that the
wave and Fokker–Planck equations are treated on a common footing and are solved
self-consistently.

Relying on asymptotic techniques, approximate expressions can be found for
the dielectric response and the RF diffusion operator. These expressions bear close
resemblance to uniform-plasma formulae, and, although they are not always valid,
allow one to gain insight into the impact of the non-Maxwellian character of the
distribution function on the propagation and absorption of externally launched
waves, and in the role played by the electric field profile in setting up the slowly
varying distribution function. When asymptotic methods fail, the FFT method and
a semi-analytical technique are available to evaluate the building blocks describing
the particle-field interaction.

Various available methods for evaluating the building blocks have been discussed.
The equivalence of all methods in regions where they are all valid has been demon-
strated numerically. In the case of electron Landau or TTMP damping, the reson-
ance is noticeably less localized than the asymptotic result predicts. A detailed
study is made of the performance of various asymptotic expressions. It has been
shown that the more detailed stationary-phase method commonly proposed for
modelling cyclotron interaction near turning points gives rise to unphysical inter-
ference.

In the past, the effect of the tokamak geometry has not always been accounted for
in a rigorous way. In this paper, a number of aspects of a more rigorous accounting
of the tokamak geometry have been identified and discussed. The variation of the
parallel and perpendicular velocity along particle orbits is accounted for, but finite-
banana-width effects are omitted.

1. The essentially collisional character of a ‘collisionless’ tokamak heating scheme
has been discussed. It restores the intuition that an electric field does not nec-
essarily accelerate a particle and recalls the hidden but important role of decor-
relation: the assumption that the decorrelation is slow on the cyclotron but fast
on the diffusion time scale usually made in plasma physics is essential in order
to have net RF heating.

2. It has been shown how the orbital topology and the poloidal magnetic field
strength influence the RF heating efficiency through the Doppler shift. In a
uniform plasma, only particles with the well-defined parallel velocity (ω −
NΩ)/k|| benefit from RF heating. In a non-uniform plasma, the magnitude
of the poloidal field and the extent of the orbit determines whether or not a
particle is heated. Resonant wave–particle interaction occurs in a band rather
than along a single line in configuration space.

3. The role of the constructive or destructive interference of resonances related
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to the same resonance condition can usually (at least for the just-mentioned
decorrelation time) be omitted using a ‘coarse-graining’ procedure, avoiding
the need to use unpractically fine grids to solve the Fokker–Planck equation
numerically. Once again, the intuitive picture that, in absence of decorrelation,
the net effect of multiple resonance crossings along an orbit does not trivially
lead to heating is recaptured.

4. Finally, the interference caused by the contributions of the individual modes of
the poloidal wave spectrum is retained and the effect discussed. Here again, one
sees that the intuitive picture of particle heating by an electric field is violated
when in practical computations simplifying assumptions are unjustifiably made.
In contrast to the previous situation, ‘coarse-graining’ (often used to avoid
having to account for the details of the wave structure in the Fokker–Planck
computations) is not permitted here, i.e. the actual local electric field has to
be accounted for when computing the net effect that RF heating has on a
population. An example discussed in the text indicates that the constructive
or destructive interference of the various wave components can modify the RF
diffusion, and thus the heating, by an order of magnitude. These interference
effects cannot be dismissed, so the Fokker–Planck equation should be solved
accounting for the local value of the wave phase and not just accounting for its
local or surface or orbit averaged magnitude.

The BATCH (Bounce-Averaged Tool for Cyclotron Heating) Fokker–Planck code
accounts for the physics in the various expressions discussed in this paper. It evalu-
ates the distribution function for a population heated by RF and/or neutral-beam-
injection heating. It uses the complex Fourier amplitudes of the wave field to ac-
count for the local electric field value sensed by the particle. At present one toroidal
mode and a limited set of poloidal modes only are considered. RF-induced particle
transport across magnetic surfaces is neglected, since the Fokker–Planck equation
is solved in the zero-banana-width limit (with guiding centres staying on magnetic
surfaces). A few preliminary examples have been discussed.
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Appendix A. The magnetic topology and associated coordinate choice
Starting from an arbitrary radial variable ψ and an arbitrary poloidal angle θ, but
adopting the standard toroidal angle ϕ, one can write the co- and contravariant
basis vectors and the components of the metric tensor as

g1 =∇ψ, g1 = Jψθϕ∇θ ×∇ϕ, ∇ψ =
∂ψ

∂R
eR +

∂ψ

∂Z
eZ ,

g2 =∇θ, g2 = Jψθϕ∇ϕ×∇ψ, ∇θ =
∂θ

∂R
eR +

∂θ

∂Z
eZ ,

g3 =∇ϕ =
1
R

eϕ, g3 = Jψθϕ∇ψ ×∇θ = Reϕ,

https://doi.org/10.1017/S0022377801001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001246


448 D. Van Eester

g13 = g31 = g23 = g32 = 0, g11 = J2
ψθϕ

|∇θ|2
R2 ,

g33 =∇ϕ ·∇ϕ = |∇ϕ|2 =
1
R2 , g12 = −J2

ψθϕ

∇ψ ·∇θ
R2 ,

g13 = g31 = g23 = g32 = 0, g22 = J2
ψθϕ

|∇ψ|2
R2 ,

g33 = R2,

dlθ = dR

[
1 +

(
∂ψ

∂R

/
∂ψ

∂Z

)2
]1/2

= dZ

[
1 +

(
∂ψ

∂Z

/
∂ψ

∂R

)2
]1/2

.

The poloidal flux Ψ is defined by

Ψ =
∫
dSpol · B0 =

∫
dϕ

∫
dψ

∂x
∂ϕ
× ∂x
∂ψ
· B0

= 2π
∫
dψ Jψθϕ

∂θ

∂x
· B0 =

∫
dψ

2πJψθϕBθ
|∂x/∂θ| ,

in which ψ is an – up to now arbitrary – radial variable. If this radial coordinate
ψ is identified with the poloidal flux Ψ, the integrand of the above integral should
be 1 (Ψ =

∫
dΨ), and so the poloidal magnetic field can be written as

Bθ =
1

2πJψθϕ

∣∣∣∣∂x
∂θ

∣∣∣∣ =
|∇Ψ|
2πR

(
for any ψ,

∣∣∣∣∂x
∂θ

∣∣∣∣ =
√
g22 =

Jψθϕ|∇ψ|
R

)
.

Consequently,

B0 =
1
R

[( |∇Ψ|
2π

)2

+B2
ϕmR

2
m

]1/2

,

cosα =
Bϕ
B0

[
1 +

( |∇Ψ|
2πBϕmRm

)2
]−1/2

,

sinα =
Bθ
B0

[
1 +

(
2πBϕmRm
|∇Ψ|

)2
]−1/2

.

If another choice is made, the identity∇Ψ =∇Ψ(ψ) = (dΨ/dψ)∇ψ is used. Defin-
ing the local safety factor in the usual manner as the variation of the toroidal angle
with the poloidal angle along a magnetic field line,

q =
dϕ

dθ

∣∣∣∣
alongB0

=
dlϕ
dlθ

(g22)1/2

R
=
Bϕ
Bθ

(g22)1/2

R
,

yields an expression relating the Jacobian and q:

Jψθϕ =
qR

2πBϕ
.

This equality stresses that if one requires q to be a surface quantity (‘the’ safety
factor, which unlike the above local q is independent of the choice of the poloidal
angle), one cannot freely choose the poloidal angle. Conversely, choosing an arbi-
trary poloidal angle requires the local safety factor to satisfy the above relation
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with the Jacobian, so, unless Jψθϕ/R2 is a surface quantity, the local and average
safety factors on the magnetic surface are not identical. The current I and the
current density J0 are related through

I(Ψ) =
1
µ0

∫
dStor ·∇× B =

1
µ0

∫
dθ

∣∣∣∣∂x
∂θ

∣∣∣∣Bθ =
1

µ0BϕmRm

∫
dθ q

∣∣∣∣∇Ψ
2π

∣∣∣∣2
=

1
2πµ0

∫
dθ

Jψθϕ
R2 |∇Ψ|2 =

∫
dΨ J0(Ψ)

∫
dθ
Jψθϕ
R

J = J0(Ψ)eϕ, J0(Ψ) =
dI(Ψ)
dΨ

/∫
dθ
Jψθϕ
R

.

For the particular choice q = q(Ψ), the directional derivative along the magnetic
field can be written as

e‖ ·∇ =
1

2πB0Jψθϕ

[
∂

∂θ
+ q(Ψ)

∂

∂ϕ

]
,

and the Doppler shift takes the simple form

k‖v‖ = (m + nq)θ̇,

in which

θ̇ =
dθ

dt
=
v‖ sinα
|∂x/∂θ| , v‖ = v

(
1− xB0

Bm

)1/2

.

It is advantageous to choose a coordinate system for which all geometric coef-
ficients can easily be computed analytically. For the particular choice adopted
here, originally proposed for the BRAYCOH ray-tracing code (Van Eester et al.
1985),

R = R0 + ∆̃0

[
1−

(
ρ

ap

)2
]

+ ρ cos θ +
δρ2

2ap
(cos 2θ − 1),

Z = κρ sin θ,

the inverse transformation is available in explicit analytical form:

ρ =
1
|β|
[

1
2 − α̃β − ( 1

4 − α̃β − γρ2)1/2
]1/2

, θ = arcsin
[

Z

κρ(R,Z)

]
,

with

α̃ = R−R0 − ∆̃0 +
δ

ap

(
Z

κ

)2

, β =
∆̃0

a2
p

, γ =
(
Z

κ

)2

,

so that analytical expressions for all geometric quantities can be found. One has,
for example,

Jψθϕ =
κρR cos θ
dψ

dρ

∂ρ

∂R

,

∂ρ

∂R
=

cos θ

1− 2∆̃0ρ

a2
p

cos θ

,
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∂ρ

∂Z
=

sin θ

κ

1 +
2δρ
ap

cos θ

1− 2∆̃0ρ

a2
p

cos θ

.

In the above, the coordinate ρ is the half-width of the magnetic surface in the
equatorial plane, ∆̃0 is the Shafranov shift of the magnetic axis, δ is the triangularity
and κ is the elongation. The poloidal angle reduces to the usual one for magnetic
surfaces with circular cross-section. If the angle between the toroidal and total
magnetic fields is known at the reference position on the outboard side of the
midplane, the radial derivative of the poloidal flux needed in the Jacobian can be
evaluated by making use of ∇Ψ =∇Ψ(ρ) = (dΨ/dρ)∇ρ. One readily finds

dΨ
dρ

=
2πtgαmB0ϕ (Rm)Rm

∇ρ|m =
2πtgαmB0ϕ (R0)R0

∇ρ|m .

Conversely this expression allows one to find the poloidal field strength for a given
current density profile.

Appendix B. Analytical expressions for circular orbits
When describing RF heating in tokamak geometry, finding the bounce-mode spec-
trum is a major task, since analytical expressions are usually not available for the
nonlinear relation between the poloidal angle and the time that a guiding centre
needs to arrive at that poloidal angle starting from the equatorial plane. For the
case of a circular cross-section and when guiding centres are assumed to be confined
to magnetic surfaces (i.e. when the toroidal angular momentum and the poloidal
flux are confused), analytical espressions can be found for various bounce-averaged
quantities (see Prudnikov et al. 1986). For passing particles (2ε̃/(1 + ε̃) 6 ξ2

m 6 1,

t(θ) =
2r

| sin α|v
[

1 + ε̃

(1− ε̃)ξ2
m

]1/2

Π(ϕpa, νpa, kpa),

while for trapped particles (0 6 ξ2
m 6 2ε̃/(1 + ε̃)),

t(θ) =
2r

| sin α|v
[

1 + ε̃

2ε̃(1− ξ2
m)

]1/2

Π(ϕtr, νtr, ktr).

In these expressions, r is the magnetic surface on which the guiding-centre orbit
lies, Π is the incomplete elliptic integral of the third kind,

ε̃ =
r

R0
, ξm =

v‖(θ = 0)
v

, νpa =
2ε̃
ε̃− 1

, νtr =
1

1− 1/ξ2
m

, k2
pa =

1
k2

tr
=
νpa

νtr
,

ϕpa = arcsin

{[
(1− cos θ)(R0/r − 1)

2(R0/r + cos θ)

]1/2
}
,

ϕtr = arcsin

{[
(1− cos θ)(R0/r + cos θmax)
(1− cos θmax)(R0/r + cos θ)

]1/2
}
.

From the above, half the transit time is easily found by letting θ = π, i.e. ϕpa = 1
2π,

for passing particles and θ = θmax, i.e. ϕtr = 1
2π, for trapped particles. For passing
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particles, the transit time is the bounce time, while for trapped particles, it is half
the bounce time. The bounce average of v2

‖/v
2
⊥ in the collision operator becomes〈

v2
‖
v2
⊥

〉
=

2r2H

vxttransit sin α
,

in which

Hpassing =
[
2 + (x− 1)

Rm
r

] [
R0 − r

Rm(1− x)

]1/2

×χ
2E(k) + (k2 − χ2)K(k) + (2χ2 − χ4 − k2)Π(χ2, k)

χ2(χ2 − 1)
,

Htrapped =
R2
m(1− x)/r2

[2xRm/r]1/2

χ2E(k) + (k2 − χ2)K(k) + (2k2χ2 − ν4 − k2)Π(χ2, k)
χ2(k2 − χ2)

.

Here, E, K and Π are elliptic integrals and

k2
pa =

1
k2

tr
=

2xr
(1− x)(R0 − r) , χ2

pa =
2r

(1− x)Rm
, χ2

tr = 1− 1
x
.

When the cross-section of the magnetic surface is not circular, the relation be-
tween the poloidal position and the time that a guiding centre needs to arrive at that
position has to be evaluated numerically. Although the parallel velocity vanishes
at the banana tips (which suggests that bounce integrals cannot easily be com-
puted numerically, since the integrand diverges), the contribution from the region
close to the bounce tips is negligible. For the transit time one has, for example, for
vanishingly small ν

ttransit = 2
∫ θmax

0

dθ

dθ/dt
= 2

(∫ θmax−ν

0

dθ

dθ/dt
+
∫ θmax

θmax−ν

dθ

dθ/dt

)

≈ 2

[
const

ν1/2

(sin θmax)1/2
+
∫ θmax

θmax−ν

dθ

dθ/dt

]
Only at the trapped/passing boundary (where the transit time goes to infinity;
θmax = π) is the contribution close to the banana tip not negligible.
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