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COMPUTABILITY AND UNCOUNTABLE LINEAR ORDERS II:
DEGREE SPECTRA

NOAMGREENBERG, ASHERM. KACH, STEFFEN LEMPP, AND DANIEL D. TURETSKY

Abstract. We study the computable structure theory of linear orders of size ℵ1 within the framework
of admissible computability theory. In particular, we study degree spectra and the successor relation.

§1. Introduction. This paper is the second part of [10], in which the study of the
computable structure of uncountable linear orders was begun. This is part of a larger
program of studying uncountable structures through admissible computability
theory. We refer the reader to the previous paper for relevant background.
In Section 2, we study degree spectra of (order-types of) linear orderings of

size ℵ1. Jockusch and Soare [12] showed that there is a countable order-type having
low presentations but no computable presentation. Various strengthenings of this
result included the construction of R. Miller [14] of a countable linear ordering
which has a copy in every nonzero Δ02 Turing degree, but no computable copy;
Downey later observed that in fact this ordering has a copy in every hyperimmune
degree. In Theorem 2.7, we give an uncountable analogue of R. Miller’s result.
In the countable context, Goncharov, Harizanov, Knight, McCoy, R.Miller, and

Solomon [9] showed that there are structures whose degree spectra consist of exactly
the nonlow degrees; it is unknown if there is a countable linear ordering with this
degree spectrum. In Theorem 2.18, we show that for any finite n, there is a linear
ordering of size ℵ1 whose degree spectrum is the collection of �1-nonlown degrees.
This again is a testament to the stronger (or at least easier) coding power vested in
uncountable linear orderings.
In the same section, we also discuss finite jump degrees. As mentioned above,

Richter [17] showed that the only degree of a countable order-type is 0. Knight [13]
showed that the only jump degree of a countable order-type is 0′. However, Downey
and Knight [4] (building on work of Ash, Jockusch, and Knight [1] and Ash and
Knight [2]) showed that for all computable ordinals α ≥ 2, every degree d ≥ 0(α)
is the proper αth jump degree of a countable order-type. As mentioned above,
Greenberg and Knight [11] showed that every �1-Turing degree is the degree of an
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order-type. We show in Theorem 2.21 that every �1-Turing degree d ≥ 0(n) is the
proper nth jump degree of an order-type. In Theorem 2.10, however, we show that
the primary tool used by Downey and Knight for the countable case does not carry
over to the �1-setting.
In Section 3 we study the complexity of the successor relation on a linear order-
ing. Recently, Downey, Lempp, and Wu [5] complemented work by Frolov [7] to
show that for any �-computable linear ordering L, the collection of degrees of the
successor relation in computable copies of L is upward closed in the c.e. degrees, as
long as, of course, the order-type has infinitely many adjacent ordered pairs. For
orderings of size ℵ1, the situation is radically different. For example, in Example 3.2,
we show that the successor relation can be intrinsically computable, that is, there
is an �1-computable order-type � such that the successor relation is computable in
any computable presentation of �. We identify a dichotomy between two kinds of
linear orderings of size ℵ1: Roughly speaking, between those which contain a copy
of the rational numbers which demarcates the successivities of the linear ordering,
and those which do not. The latter case behaves similarly to countable linear order-
ings in that the degrees of the successor relation in computable copies are upward
closed in the c.e. degrees (Theorem 3.4). The other case is interesting; we identify an
interval in the c.e. degrees which contains all the degrees of the successor relation in
computable copies of the given linear ordering. The top and bottom degree in this
interval are always realized as the degrees of the successor relation in some copy,
but not all degrees in the interval need to be so realized (although they can be). As
a corollary, we see that for any �1-c.e. degree d, there is an �1-computable linear
ordering L such that the degree of the successor relation in every �1-computable
copy of L is d.
1.1. Notation, Terminology, Background. Throughout this paper, we will always
work under the assumption that all reals are constructible. We refer the reader to our
previous paper for much of our notation. Here we mention only the new notions.

Definition 1.1. Let A = (A,<A) be a linear ordering. If B ⊆ A, we let
dcl(B) := {b ∈ A : (∃c ∈ B)[b ≤A c]}

and

ucl(B) := {b ∈ A : (∃c ∈ B)[b ≥A c]}
be the downward closure and upward closure of B, respectively. WhenA is possibly
ambiguous, we write dclA(B) and uclA(B), respectively.

We will make use of the linear orderings Zα , where α ≤ �1.
Definition 1.2. By recursion on ordinals α, we define a directed system of linear
orderings and embeddings

〈
Zα, ��,α

〉
.We letZ0 := 1.GivenZα , we letZα+1 := Zα ·Z,

and define �α,α+1 : Zα → Zα+1 by letting �α,α+1(x) := (x, 0). In other words, Zα+1 is
obtained from Zα by adding � many copies of Zα to the right, and �∗ many copies
of Zα to the left. For � < α, we let ��,α+1 := �α,α+1 ◦ ��,α . At limit stages �, we let Z�
be the direct limit of the system

〈
Zα, ��,α

〉
�<α<�

, and the maps ��,� be the limit of the

maps
〈
��,α

〉
�<α<�

.

https://doi.org/10.1017/jsl.2014.69 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.69


COMPUTABILITY AND UNCOUNTABLELINEAR ORDERS II 147

By induction, it is easy to see that every map ��,α is a convex embedding of Z�

into Zα (i.e., its image is convex), that each Zα is discrete, and that the maximal
blocks in each Zα (for α > 0) are all infinite.

Lemma 1.3. Let α ≤ �1.
(1) (Zα)∗ ∼= Zα .
(2) There is no embedding ofZα into a proper initial segment of itself; so, a fortiori,
if � < � ≤ �1, then there is no embedding of Z� into Z� .

Proof. (1) is proved by induction on α, taking direct limits on both sides at limit
stages.
(2) is proved by induction on α. Suppose this is known for α. Suppose that

there is an embedding of Zα+1 into a proper initial segment of itself. Then there is
an embedding f : Zα+1 → Zα · �∗. By taking a rightmost copy of Zα in Zα · �∗

intersecting the range of f, we get an embedding of Zα · � into Zα , contradicting
the induction assumption for Zα .
Let α be a limit ordinal, suppose that the lemma is verified for all � < α, and

suppose that f is an embedding of Zα into a proper initial segment of itself. Since
Zα =

⋃
�<α ��,α

[
Z�

]
, and since each embedding ��,α is convex, there is a nonempty

final segment of Zα whose image under f is contained in ��,α[Z� ] for some � < α.
This allows us to find an embedding of Z�+1 into Z� , again contradicting the
induction assumption. �
We also use shuffle sums of linear orders. We recall that in the countable set-

ting, an 	0-shuffle sum of a countable collection of linear orders {Li}i∈I (denoted

0({Li}i∈I )) is the linear order obtained by partitioning 	0 into |I | many dense,
codense sets and replacing each point in the ith set by a copy of Li .
Definition 1.4. Let Q1 ∈ 	1, that is, let Q1 be a saturated linear ordering of

size ℵ1. A set Z ⊆ Q1 is saturated in Q1 if for all countable A,B ⊂ Q1, the interval
(A,B)Q1 ∩ Z is nonempty. A standard construction shows that for any cardinal
κ ≤ ℵ1, there is a partition ofQ1 into sets 〈Zα〉α<κ, each of which is saturated inQ1.
Let κ ≤ ℵ1 be a cardinal and let 〈Lα〉α<κ be a sequence of linear orderings. The

	1-shuffle sum of this sequence is obtained by replacing each point in Zα by Lα .
A back-and-forth argument shows that the order-type of the shuffle sum does not
depend on the choice of the sets Zα , nor does it depend on the ordering of the
sequence 〈Lα〉α<κ. We can thus unambiguously define, for a set Λ of order-types
such that |Λ| ≤ ℵ1, the order-type 
1(Λ) of the shuffle sum of the order-types in Λ.
Finally, we list results of �-computability theory and �-computable structure

theory (stated in the �1-framework) which also hold in the �1-framework, with
similar or easier proofs.

Fact 1.5.

(1) There is an �1-computable bijection between �1 and the universe H�1 . This
bijection induces an �1-computable ordering of H�1 of order-type �1, denoted
by <�1 .

(2) There is a uniformly �1-computable list
〈L�〉�<�1 of �1-computable linear

orderings such that for any �1-computable linear ordering A there is some
� < �1 such thatA ∼= L� .
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(3) For any �1-degrees b′ ≤ d, there is an �1-degree a > b such that a′ = d.
In fact, there are incomparable �1-degrees a1 and a2 such that a′1 = d = a

′
2.

Hence, there are non-�1-computable low degrees.
(4) For any n < � and any �1-degree d ≥ 0(n), there is an �1-degree a such that
a(n) = d. Moreover, provided d > 0(n), for every �1-degree a1 with d = a

(n)
1 ,

there is an �1-degree a2 with d = a
(n)
2 and a

(m)
1 | a(m)2 for anym < n.

§2. Degree Spectra of Linear Orderings. In this section, we exhibit an order-
type whose degree spectrum includes all hyperimmune �1-degrees but omits 0
(Subsection 2.1); a transfer theorem for all order-types (Subsection 2.2); for every
finite n, an order-type whose degree spectrum is precisely the collection of nonlown
�1-degrees (Subsection 2.3); and for each degree d ≥ 0′, an order-type of proper
jump degree d (Subsection 2.4).
We recall the definition of the degree spectrum of an order-type.

Definition 2.1. For an order-type � of size at most ℵ1, we let DegSpec(�), the
degree spectrum of �, be the collection of �1-Turing degrees of presentations of �.

In this paper we assume that the universe of any linear ordering is a subset ofH�1 ,
and so every linear ordering indeed has a Turing degree.
We abuse notation slightly by writing DegSpec(L) for DegSpec(otp(L)) for a
linear ordering L of size at most ℵ1.
A theorem of Knight [13] generalizes to the �1-context; for any order-type �
of size ℵ1, an �1-Turing degree d is in the degree spectrum of � if and only if it
computes a presentation of �.

2.1. A Hyperimmune Spectrum. As mentioned above, R. Miller [14] demon-
strated the existence of a countable, non-�-computable order-type that has a
presentation in every nonzero Δ02 �-degree. Miller built an order-type � of the
form

∑
i∈� (
i + κi), where 
i = 1+ 	+ i + 	+1 and κi was either � or ci + � for

some ci < �.
The purpose of the separators 
i (the idea of which originates in [12]) was to
divide � into countably many intervals; the purpose of the diagonalizers κi was to
diagonalize against the i th computable linear order.
An inspection of Miller’s proof shows that the linear ordering he constructed has
a copy in every hyperimmune �-degree. Recall that Rice [16] and Uspenskii [20]
showed an�-Turing degree is hyperimmune if andonly if it computes a total function
f : � → � such that for any total �-computable function g : � → � there are
infinitely many numbers n such that f(n) > g(n).
Beyond �, Chong and Wang [3] studied hyperimmune and hyperimmune-free
α-degrees for various admissible ordinals α. Under our assumption that all reals
are constructible, every subset of �1 is amenable and admissible (we refer the
reader to [18] for these terms). Under these conditions, Chong and Wang give a
straightforward generalization of the countable concept: an �1-Turing degree a is
hyperimmune if and only if it contains a set A such that for every computable list
〈Fα〉 of pairwise disjoint countable subsets of �1, there is some α < �1 such that
Fα ∩ A �= ∅. Chong and Wang show that an �1-Turing degree is hyperimmune
if and only if it computes a total function f : �1 → �1 such that for any total
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�1-computable function g : �1 → �1 there are uncountably many ordinals � such
that f(�) > g(�).
We build a linear order which has no �1-computable copy, but whose degree

spectrum contains every hyperimmune �1-degree. This ordering L will be of the
form

∑
�∈�1

(S� +K�
)
. The orderings S� will serve as separators, denoting the

location of the diagonalizers K� . We first discuss these building blocks of L, and
then give the construction defining L.
Definition 2.2. Fix an enumeration 〈qi〉i<� of the rational numbers Q and a

computable enumeration 〈rα〉α<�1 of the irrational numbers I.We let S� be obtained
from R by omitting all irrational numbers but r� , and by replacing the rational
number qi by i + 2 many points.
Formally, for r ∈ R, we define

Cr,� :=

⎧⎪⎨
⎪⎩
1 if r = r� ,
i + 2 if r = qi ,
0 otherwise,

and let S� :=
∑
r∈R Cr,� .

Each linear ordering S� is countable, and the map � �→ S� is computable.
Lemma 2.3. Let �, � < �1 be distinct.
(1) The linear order S� is not isomorphic to any proper convex subset of itself.
(2) The linear order S� is not isomorphic to any convex subset of S� .
Proof. The point is that for all i < � and all � < �1, the suborder Cqi ,� is

the unique maximal block of S� of size i + 2. Hence if f : S� → S� is a convex
embedding, then for all i < � it must be that f[Cqi ,� ] equals Cqi ,� . This implies that
the range of f is S� , and so also that � = �. �
The diagonalizers K� are built as sums of the linear orders Zα for α < �1. For

� ≤ �1, we let A� :=
∑
α<� Z

α and B� := (A�)∗; the latter is isomorphic to∑
α∈�∗ Z

α (with an abuse of notation). For � < � ≤ �1, let j�,� be the canonical
initial segment embedding of A� into A� .
Lemma 2.4. Let � ≤ �1.
(1) There is no embedding of A� into a proper initial segment of itself.
(2) If � is a limit ordinal, then there is no proper initial segment of A� into which
there is an embedding of A� for all � < � .

Proof. Both parts follow from Lemma 1.3(2). �
It follows that if a linear order L is isomorphic to the sum Aα + B� for some

ordinals α and � , then there is a unique decomposition of L as a sum of linear
orderings L1 + L2 such that L1 ∼= Aα and L2 ∼= B� .
Lemma 2.5. Let � < �1.
(1) For any limit ordinal � ≤ �1, the order A� is isomorphic to the direct limit of
the directed system

〈A� , j�,�〉�<�<� .
(2) For any nonempty initial segment C of B�1 , there is an embedding ofA�+1 into

A� + C.
(3) There is an embedding of A� + B� into A�+1 extending j�,�+1.
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Proof. (1) is immediate. For (2), it suffices to show that for all � , the order Z� is
embeddable in C, which is immediate.
For (3), it suffices to show that there is an embedding ofB� intoZ� . This is proved
by induction. Suppose that f� is an embedding of B� into Z� . As B�+1 ∼= Z� + B� ,
we can extend f� to an embedding of B�+1 into Z� · 2, and hence into Z�+1. For a
limit ordinal � , let 〈�n〉n<� be an increasing and cofinal sequence in � ; for n < �,
let f�n be an embedding of B�n into Z�n . If j∗�n,�n+1 is the canonical final segment
embedding of B�n into B�n+1 (the analogue of j�n ,�n+1), we can inductively construct
embeddings g�n : B�n → Z�n+1 so that g�n+1 ◦ j�n ,�n+1 agrees with g�n . The limit of
these maps is then an embedding of B� into Z� . �
Our separators and building blocks do not interact:

Lemma 2.6. For all α, � < �1, no nonempty initial or final segment of S� is
isomorphic to any convex subset of Aα or Bα.
Proof. For anyα > 0, every maximal block in Zα is infinite, whereas S� contains
no infinite blocks. Hence for any α, no nonempty initial or final segment of S� is
isomorphic to any convex subset of Zα . The lemma follows. �
We are now ready to prove the main result of this subsection. We note that the
construction below only relies on the properties of the orderings S� , A� , and B�
detailed in Lemma 2.3, Lemma 2.4, Lemma 2.5, and Lemma 2.6. In a sense, this is
a modular approach to the construction, which we believe sheds light on Miller’s
construction as well.

Theorem 2.7. There is a linear orderingL of sizeℵ1 such thatDegSpec(L) contains
every hyperimmune �1-degree, but does not contain 0.

Proof. The linear order L we construct will be∑�∈�1
(S� +K�

)
, where K� is

either A�1 or Aα + B�1 for some countable ordinal α. By Fact 1.5(2), we fix a
sequence {L�}�∈�1 of all computable linear orderings. The purpose of K� is to
diagonalize against L� .
Lemma 2.6 implies that for all � < �1 and � < �1, no nonempty initial or final
segment of S� is isomorphic to a convex subset of K� . Lemma 2.3 and Lemma 2.6
now guarantee that if built according to our plan, for all � < �1, there is a unique
convex subset of L isomorphic to S� . We identify S� with that convex subset of L.
Construction: For each � < �1, we need to determine the largest ordinal α =
α(�) ≤ �1 such that Aα should be an initial segment of K� . If α = �1 then
K� := A�1 , and if α < �1 then K� := Aα + B�1 . The choice of α(�), of course,
will not be done effectively since we want to ensure that otp(L) is not computable.
However, we need to make this choice “as computably as possible” so that any
sufficiently fast-growing function does have the ability to compute, uniformly in � ,
a copy of K� .
The choice of eachα(�) is made independently, based only onL� . IfL� were to be
isomorphic to L, then L� would have a unique convex subset S = S(�) isomorphic
to S� , a unique convex subset T = T (�) isomorphic to S�+1, and would have
S(�) <L� T (�). Furthermore, any isomorphism between L� and L would have to
extend the isomorphisms between S and S� , and T and S�+1; so the isomorphism
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would map (S,T )L� onto K� . Since S and T are countable, both subsets would be
enumerated into L� in their entirety by some countable stage.
Thus, at each stage s < �1, we let (Ss (�), Ts (�)) be the <�1-least pair of convex

subsets ofL� � s such thatSs (�) is seen (at stage s) to be isomorphic to S� ,Ts (�) is
seen (at stage s) to be isomorphic toS�+1, andSs (�) <L� Ts (�), if such a pair exists.
We then let Is(�) = (Ss (�), Ts (�))L� be the L� -interval (not the (L� � s)-interval)
determined by these subsets. The plan is to ensure that if Is(�) stabilizes, then it is
not isomorphic to K� . If such subsets Ss (�) and Ts (�) are not found, then Is (�) is
undefined.
We describe how to define αs = αs(�), our stage s approximation for the ordi-

nal α(�). This approximationwill be nondecreasing and continuous. The sequences
〈Is(�)〉s<�1 and 〈αs(�)〉s<�1 will be �1-computable, uniformly in � .
We try to pick a point xs = xs(�) ∈ Is (�) which will aid our diagonalization

efforts.Once picked,we only change our choice of point if the ambient intervalIs(�)
changes. That is:

• If s = t + 1 is a successor stage, Is (�) = It(�) are both defined, and xt is
defined, then we let xs := xt ;

• If s is a limit stage, there is some t < s such that for all stages r ∈ [t, s),
Ir(�) = Is (�) are all defined, and xt is defined, then xs := xt .

If Is (�) is defined, but xs is not yet defined by the previous clause, and there is some
x ∈ Is (�) � s such thatAαs is seen, at stage s , to be embeddable into (−∞, x)Is (�),
then we let xs be the <�1-least such x; if there is no such x, then we leave xs
undefined.
If xs is undefined, then we let αs+1 := αs . If xs is defined, then we let αs+1

be the supremum of the ordinals α < �1 such that at stage s , Aα is seen to be
embeddable into (−∞, xs )Is (�). By induction on s , we can easily see that if xs
is defined, then Aα+1 is embeddable into (−∞, xs )Is (�) for all α < αs , and so
αs+1 ≥ αs .

We let α(�) = α�1 (�) := sups<�1 αs (�). This determines K� , and so completes
the definition of the linear ordering L.
Verification: Before we formally show that L is not isomorphic to L� for any
� < �1, and so that 0 /∈ DegSpec(L), we explain what goes wrong if we fol-
low a naive strategy for computing a copy of L. For s < �1, we let K�,s =
Aαs (�) + Bs . Suppose that, uniformly in � , we want to enumerate a direct system of
embeddings fs,t : K�,s → K�,t , whose direct limit will be K� . If αs+1(�) = αs (�),
then we add a copy of Zs between Aαs (�) to Bs to get a copy of K�,s+1; in other
words, fs,s+1 is the “disjoint union” of jαs ,αs+1 and j

∗
s,s+1. If αs+1(�) > αs(�), then

we want to “swallow” K�,s in Aαs+1(�), and then add a copy of Bs to the right; in
other words, we want fs,s+1 to be an embedding of K�,s in Aαs+1 extending jαs ,αs+1 .
The swallowing is necessary so that if α(�) = �1, then all copies of Bs disappear
into copies of greater Aα ’s and at the end we would get K� = A�1 . The problem
is that Lemma 2.5 (3) only ensures that K�,s is embeddable in a copy of As+1, and
it may be that αs+1(�), while greater than αs(�), is still smaller that s + 1, and
so Aαs+1 is not large enough to swallow K�,s . This failure can be translated into
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a proof that L has no computable copy, and modified (by looking sufficiently far
into the future) into a construction showing that any hyperimmune degree can
compute a copy of L.
Noncomputability: We now show that for each � ∈ �1, we have L �∼= L� , and so
0 /∈ DegSpec(L). Let � < �1, and for a contradiction suppose that f : L� → L is
an isomorphism.
Let S := S(�) := f−1S� and T := T (�) := f−1S�+1. As already noted, this
impliesS <L� T , the setS is the unique convex subset ofL� isomorphic toS� , andT
is the unique convex subset of L� isomorphic to S�+1. Hence, for every pair (S′, T ′)
of subsets of L� which precede (S,T ) in the canonical ordering <�1 of H�1 such
thatS′ <L� T

′, S′ ∼= S� andT ′ ∼= S�+1, either S′ is not a convex subset ofL� , orT ′

is not a convex subset of L� . It follows that for each pair (S′, T ′) <�1 (S,T ) there
is some stage s < �1 such that for all t ≥ s , (S′, T ′) �= (St(�), Tt(�)). Since �1 is
regular, for all but countably many stages s , we have Ss (�) = S and Ts (�) = T .
Let s0 be the least stage such that for all s ≥ s0, (Ss (�), Ts (�)) = (S,T ). Let
I = (S,T )L� = f−1K� ; then for all s ≥ s0, Is(�) = I. We show that there is some
stage s ≥ s0 at which xs(�) is defined. For the sake of a contradiction, suppose
that for no s ≥ s0 is xs(�) defined. Then for all s ≥ s0, αs(�) = αs0 (�), and so
α(�) = αs0 (�), and K� = Aαs0 (�) + B�1 . But then f−1 � Aα(�) is an embedding
of Aα(�) into a proper initial segment of I. This embedding is discovered at some
countable stage, at which we would define xs(�).
So let s1 ≥ s0 be the least stage s ≥ s0 at which xs(�) is defined. Let x = xs1 (�);
then for all s ≥ s1, we have xs(�) = x. The definition of α(�) implies that α(�) is
the supremum of the ordinals α such thatAα is embeddable into I(< x).
Now either f(x) ∈ Aα(�) or f(x) ∈ B�1 ; in either case, we reach a contra-
diction. If f(x) ∈ B�1 , then α(�) < �1; but by Lemma 2.5 (2), there is an
embedding ofAα(�)+1 intoAα(�) +B�1(< f(x)), and so into I(< x), contradicting
the definition of α(�).
On the other hand, suppose thatf(x) ∈ Aα(�). Ifα(�) is a successor ordinal, then
by definition of α(�), there is an embedding g of Aα(�) into I(< x). Composing g
with f gives an embedding of Aα(�) into a proper initial segment of Aα(�), which
is impossible by Lemma 2.4 (1). If α(�) is a limit ordinal, then the same argument
shows that for all � < α(�), there is an embedding of A� into the proper initial
segment Aα(�)(< f(x)), which is impossible by Lemma 2.4 (2).
HyperimmuneDegrees: Let g : �1 → �1 be a function such that for any computable
function f : �1 → �1, there are uncountably many ordinals � < �1 such that
g(�) > f(�). We show that g can compute, uniformly in � < �1, a copy of K� .
Hence DegSpec(L) contains every hyperimmune degree.
Fix � < �1; we omit the argument � and so write αs for αs(�), etc. We may
assume that for all s , g(s) > s .
We define a g-computable closed unbounded subset I of �1. For s ∈ I , we let

K�,s = Aαs +Bs . We define a g-computable system of embeddingsft,s : K�,t → K�,s
for t < s in I , where, of course, if t < r < s are in I then ft,s = ft,r ◦ fr,s . We
ensure that for t < s in I , ft,s � Aαt = jαt ,αs . If K� = A� +B�1 for some �, then we
will also ensure that ft,s � Bαt = j∗s,s+1 for all t ≥ t0, for some t0.
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Let s < �1, and suppose that we have already determined that s ∈ I , and that we
have defined ft,r for t < r ≤ s in I . Now there are two possibilities:

• If αg(s) > s , then as αs ≤ s , Lemma 2.5 (3) ensures that there is an embed-
ding fs,g(s) of K�,s into Aαg(s) extending jαs ,αg(s) . We let the next element of I
after s be g(s).

• If αg(s) ≤ s , we let s +1 be in I . We let fs,s+1 = jαs ,αs+1 + j∗s,s+1. That is, fs,s+1
embedsAαs intoAαs+1 and Bs into Bs+1 canonically; and so K�,s+1 \f[K�,s ] =
(f[Aαs ], f[Bs ])K�,s+1 .

For bookkeeping, we let J =
{
s ∈ I : αg(s) > s

}
.

Suppose that s ≤ �1 is a limit point of I (and so s ∈ I ). Let K�,<s be the direct
limit of the system

〈K�,t , ft,r〉r,t∈I,r<t<s , and for t < s in I , let ft,<s be the limit of
the maps 〈ft,r〉r∈I,t<r<s . As each map ft,r extends jαt ,αr , and as αs = supt<s αt , we
see that for all t < s in I , fα,<s � Aαt = jαt ,αs . As each jαt ,αr is an initial segment
embedding of Aαr into K�,r , we see thatAαs is an initial segment of K�,<s .
There are two possibilities:
• If J ∩ s is unbounded in s , then for all t < s in I , there is some r ∈ I such that
t < r < s and such that ft,r[Bt] ⊆ Aαr . This implies that K�,<s is the direct
limit of the maps jαt ,αr for t < r < s in I , that is, K�,<s = Aαs .

• If J ∩ s is bounded in s , let t0 = sup(J ) ∩ s . In this case, for all t, r ∈ I such
that t0 ≤ t < r < s , we have ft,r = jαt ,αr + j∗t,r , and so K�,<s , being the direct
limit of these maps, is Aαs + Bs = K�,s .

In either case, we can let, for t < s in I , ft,s = ft,<s , where in the first case, the
maps are composed with the identity inclusion of K�,<s into K�,s = K�,<s + Bs .
Nowwe argue thatK�,<�1 , which is computable in g, uniformly in � , is isomorphic

to K� . We have verified that if J is bounded below �1, then K�,<�1 ∼= Aα(�) + B�1 ,
and that if J is cofinal in �1, thenK�,<�1 ∼= Aα(�). Certainly if J is unbounded in�1
then α(�) = �1. We thus only need to show that if α(�) = �1, then J is cofinal
in �1.
Assume that α(�) = �1, and suppose, for contradiction, that J is bounded

below �1. Let s0 = sup(J ). Then (s0, �1) ⊆ I . Define a computable function
h : �1 → �1 by letting h(�) be the least stage s < �1 such that αs > �. By our
assumption, there is some s > s0 such that g(s) > h(s), so αg(s) ≥ αh(s) > s . As
s ∈ I , it follows that s ∈ J , contradicting s > s0.
This completes the proof. �
Remark 2.8. The construction is flexible in that it is not important that L be an

�1-sum of separators and diagonalizers. For example, we can obtain L from R by
replacing the i th rational number qi by Si , and the αth irrational number rα by Kα .
We just need the location of Aα to be determined by the location of a countable
uniformly computable set of S� ’s.
2.2. Transfer Theorems. Within the �-setting, there are several well-known and

widely used theorems stating that if an order-type � is a-�-computable (for some
fixed theorem-dependent degree a), then κ · � is �-computable (for some fixed
theorem-dependent order-type κ). For example, the following theorem has been
used to exhibit linear orders having spectra exactly the nonlown degrees for n ≥ 2
(see [8]) and to exhibit linear orders having arbitrary αth jump degree (see [4]).
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Theorem 2.9 (Downey and Knight [4]). If � is 0′-�-computable, then (	0 + 2 +
	0) · � is �-computable.
Here, we show that there are no such simple transfer theorems of the above type
(involving only multiplication of linear orders) in the �1-setting. The following
theorem is an extension of Theorem 6.5 of Greenberg and Knight [11].

Theorem 2.10. For any degree a > 0, there is an a-�1-computable order-type �
such that κ · � is not �1-computable for any (nonempty) order-type κ.
Moreover, the order-type � can be chosen so that, for any nonempty order-type κ,
the degree spectrum of κ · � is the intersection ofDegSpec(κ) with the cone of degrees
above a.

Proof of Theorem 2.10. Given an �1-degree a, we fix a set A ∈ a. Then the set
S := A⊕ (�1 \A) has the property that S is �1-c.e. in an �1-degree b if and only if
b ≥ a.
Let I := R\Q be the collection of irrational real numbers. This is an uncountable
computable set, and so is isomorphic to �1 by a computable bijection h : �1 → I.
LetLS := Q∪h[S], with the ordering inherited fromR. We argue that � := otp(LS)
has the desired properties.
Let κ be any nonempty order-type. If b ∈ DegSpec(�) ∩ DegSpec(κ), then it is
immediate that b ∈ DegSpec(κ · �). For the reverse direction, we show that any
linear order B in κ · � computes both a and a presentation of κ.
Fix a presentation B ∈ κ · �. Fix an order-preserving embedding g : Q → B by
picking, for each rational q ∈ Q, a point g(q) in the qth copy of κ. Using g as a
countable parameter, we show that B can enumerate the set S.
Indeed, for x ∈ �1, let (Lx,Rx) be the cut of Q such that (Lx,Rx)R = {h(x)}.
Then x ∈ S if and only if (g[Lx ], g[Rx ])B is nonempty. Since the cut (Lx,Rx) can
be effectively obtained from x, this gives a Σ01(B) definition of S. By our choice of S,
this implies B ≥T a.
As a > 0, it must be the case that S is nonempty. We fix z ∈ S and consider the
interval (g[Lz ], g[Rz ])B. It has order-type κ. As g[Lz ] and g[Rz ] are countable, it
follows that B � (g[Lz ], g[Rz ])B is a B-computable presentation of κ.
Thus, an arbitrary presentation B of κ · � computes both a and a presentation
of κ. �
The proof of Theorem 2.10, or simply using the theorem with any computable
order-type κ, yields the Greenberg–Knight result:

Theorem 2.11 (Greenberg andKnight [11]). For any�1-degree a, there is a linear
ordering whose degree spectrum is the cone of degrees above a (including a).

Although multiplication does not work, transfer theorems do exist.

Definition 2.12. For a linear orderL, define an equivalence relation∼on subsets
of L by

A0 ∼ A1 if and only if dclA0∪A1(A0) = dclA0∪A1 (A1).

It is easily checked that ∼ is an equivalence relation.
Define Lc to be the smallest extension of L satisfying

|(dclL(A),L − dclL(A))Lc | = 1
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for every at most countable A ⊆ L. In other words, the linear ordering Lc is the
linear ordering formed from L by filling with one point every cut such that the set
of points to the left of the cut has at most countable cofinality.
Define Lt (termed the transfer of L) to be the linear ordering

Lt :=
∑
x∈Lc
Ax,

where Ax := 2 if x ∈ L and Ax := 	1 if x ∈ Lc − L.
Note that if L is computable, the linear orderings Lc and Lt are computable.
Lemma 2.13. Fix an �1-degree a. A linear ordering L is a′-computable if and only

if Lt is a-computable. Further, the transition between L andLt is uniform in the indices
in both directions.

Proof. (⇐=) Given an a-computable presentation of Lt, let K := Succ(Lt), the
set of adjacencies of Lt with the natural ordering. Then K is a′-computable and has
the appropriate order-type when given the induced order from Lt.

(=⇒) By the universal property of 	1, we may assume that L is an a′-computable
subset of a computable presentation of 	1. We will, of course, approximate L
in an a-computable manner, building a linear ordering K ∈ otp(Lt) from this
approximation.
When we see an element enter L, we add an appropriate pair of elements into K.

When we see an element leave L, since we cannot remove the corresponding pair
fromK, we instead incorporate it into the copy of 	1 immediately to its left. Since the
approximation at every stage is at most countable, there are at most countably many
points in the current approximation toLwhich are to the left of the removed point—
call this set A. So there is always a copy of 	1 to the immediate left of the removed
pair—the copy of 	1 corresponding to the unique element of Lc in (dclL(A),L −
dclL(A))Lc .
Of course, we must also build the copies of 	1. Naively, one might hope to

consider every countable subset of the current approximation to L and build a
corresponding copy of 	1. Unfortunately, there may be uncountably many such
subsets, so we cannot do this in a single stage. Instead, at every stage we consider
a single countable subset of 	1. If this set is a subset of the current approximation
to L, then we build a copy of 	1 for it. Every countable subset ofLwill eventually be
a subset of the approximation, so as long as we arrange to consider every subset at
uncountably many stages, every countable set of L will eventually be handled. We
must also build a copy of 	1 if it does not already exist when we seek to incorporate
a pair into it as described above.
Of course, since 	1 is an uncountable object, we cannot actually build an entire

copy of it at a single stage. Instead, we declare what we call a saturating interval.
At uncountably many later stages, we will add points to this saturating interval,
causing it to grow into a copy of 	1.
If a point x leaves the approximation to L, we must consider the effect on the

saturating intervals we have built so far. If I is a saturating interval built on behalf
of the countable set X , and x is not the largest element of X , then we do not need
to adjust I ; since X ∼ X − {x}, I can continue to be the saturating interval which
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we build on behalf of X − {x}. If x is the largest point in X , however, then there is
no longer a need for I . In this case, I must be the interval immediately to the right
of the pair which corresponds to x. This pair will be merged with the saturating
interval to its left, and we can merge I with the same interval.
Finally, we must concern ourselves with what happens at limit stages. We assume
that the approximation to L at a limit stage is the limit infimum of the approxi-
mations at previous stages. Thus, the only points in the approximation at a limit
stage are the points which were in for a terminal segment of previous stages. Hence,
for pairs, there is nothing to do. For saturating intervals, however, we may need to
cause more mergers.
For example, consider the following situation: The approximation toL at stage�
has order type �2. At stage �, we have saturating intervals in order type � + 1,
built on behalf of the “sets” ∅, �, � · 2, � · 3, . . . , and �2. Suppose that at every
stage � + 〈m,k〉, the point corresponding to � · m + k leaves the approximation,
but otherwise there is no change.
Then at every stage � + n, every pair of the original � + 1 saturating intervals
is separated by countably many elements, and so will not merge. However, at stage
� + �, the approximation is empty and so there are no elements separating any of
the saturating intervals. As 	1 and 	1 ·� are not isomorphic, we will need to merge
these saturating intervals.
In general, at a limit stage we will merge all saturating intervals which are not
separated by a pair.
We will also define a sequence of functions Fs and Gs , which will assist us in
tracking the relationship between L and K. The function Fs will map the elements
ofLs to their corresponding pair inKs . The functionGs will map a saturating inter-
val in Ks to its corresponding at most countable subset in Ls . It will be convenient
to assume that these subsets are downward closed. So even if we make no changes
to a saturating interval I between stages s and s + 1, we will redefine Gs+1(I ) to be
the downward closure (in Ls+1) ofGs(I ). It will be the case thatGs(I ) is downward
closed automatically at limit stages.

Preliminaries: Let (Ls )s<�1 be an a-computable sequence of countable subsets of 	1
satisfying:

• L0 = ∅;
• Ls�Ls+1 = {zs} for some zs ;
• for s a limit ordinal, Ls = lim inf t<s Lt ; and
• L = lims Ls .
We construct K as the union of countable linear orders (Ks )s<�1 . Each Ks will be
partitioned into saturating intervals and pairs.
As discussed earlier, we also build sequences of functions (Fs)s<�1 and (Gs )s<�1 .
The sequence (Fs)s<�1 will be continuous, and each Fs will be order-preserving.
The map Gs will also be order-preserving, in that if I <Ks J , then Gs (I ) ⊂ Gs (J ).
For x ∈ Ls , we let (Fs(x))1 and (Fs(x))2 denote the left and right elements of the
pair Fs(x), respectively.
We fix a computable enumeration (As,Bs )s<�1 of pairs fromH�1 such that every
pair occurs uncountably many times in the enumeration, and fix a computable
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enumeration (Ys)s<�1 of H�1 such that every element occurs uncountably many
times. These will be used in the creation of the saturating intervals.

Construction: At stage s = 0, we define K0, F0, and G0 to be empty.
At a successor stage s + 1, we work in three steps, building intermediate

ordersK1s+1 andK2s+1 and intermediate functionsG1s+1 andG2s+1: First, we adjustFs
and the pairs inKs for the change fromLs toLs+1; second, we create new saturating
intervals as necessary; third, we work to build the saturating intervals into 	1.

(1) If Ls+1 = Ls ∪ {zs}, then we add a new pair to be the image of zs . More
precisely, let

R := uclKs {(Fs(y))1 : y ∈ Ls and zs <Ls+1 y}
and let Q := Ks − R. We choose two new elements a and b and define
K1s+1 := Ks ∪ {a, b} with

Q <K1s+1 a <K1s+1 b <K1s+1 R.

Wemake (a, b) a pair inK1s+1 and define Fs+1 := Fs ∪{(zs , (a, b))}. For every
saturating interval I ⊆ Ks , we define G1s+1(I ) := dclLs+1(Gs (I )).
If insteadLs = Ls+1∪{zs}, thenwemerge the pairFs(zs )with the saturating
interval to its left. More precisely, let (a, b) := Fs(zs ) and let

Q := {y : y ∈ Ls and y <Ls zs}.
There may already exist saturating intervals I, J ⊆ Ks with Gs (I ) = Q and
Gs (J ) = Q ∪ {zs}. Let L = I ∪ {a, b} ∪ J , omitting I , J , or both when
those intervals do not exist. We make L a saturating interval ofMK1s+1 with
G1s+1(L) = Q.
We define Fs+1 := Fs � Ls+1. We do not make (a, b) a pair in K1s+1. All
other pairs and saturating intervals ofKs other than I and J remain pairs and
saturating intervals of K1s+1, respectively. For any saturating interval H ⊆ Ks
other than I and J , we define G1s+1(H ) := Gs (H )− {zs}.

(2) If there is no saturating interval I ⊆ K1s+1 with G1s+1(I ) = dclL1s+1 (Ys ), let
Q := {(Fs+1(y))2 : y ∈ Ys},
R := {(Fs+1(y))1 : y ∈ Ls+1 and Ys <Ls+1 y}.

We choose a new element c and define K2s+1 := K1s+1 ∪ {c} with
Q <K2s+1 c <K2s+1 R.

We make {c} a saturating interval in K2s+1 with G2s+1({c}) = dclL1s+1 (Ys).
Otherwise, we define K2s+1 := K1s+1.
For every saturating interval I ⊆ K1s+1, we define G2s+1(I ) := G1s+1(I ),
noting these are downward closed subsets.

(3) If there is some saturating interval I ⊆ K2s+1 withAs,Bs ⊆ I andAs <K2s+1 Bs
and (As,Bs )K2s+1 = ∅, we choose a new element d and define Ks+1 := K2s+1 ∪
{d}. We define <Ks+1 by extending <K2s+1 with

As <Ks+1 d <Ks+1 Bs .

https://doi.org/10.1017/jsl.2014.69 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.69


158 N. GREENBERG, A. M. KACH, S. LEMPP, AND D. D. TURETSKY

Wemake I ∪{d} a saturating interval inKs+1 withGs+1(I ∪{d}) := G2s+1(I ).
For every other saturating interval J ⊆ K2s+1, we define Gs+1(J ) := G2s+1(J ).

At a limit stage s , we work in two steps, building an intermediate function G ′
s :

First we define the pairs and saturating intervals as the limits of the previous stages.
Then we merge saturating intervals where necessary.
Before doing so, we define Ks :=

⋃
t<s Kt and Fs := limt<s Ft , noting the limit

exists because Ls = lim inf t<s Lt .
(1) We make (a, b) a pair in Ks if there is a stage s0 < s such that (a, b) is a pair
in Kt for every t with s0 < t < s .
ByClaim 2.13.1, for every twith s0 < t < s and every saturating interval I ⊆

Ks0 , there is a unique saturating interval It ⊆ Kt with I ∩ It �= ∅, and further
this unique saturating interval satisfies I ⊆ It .
Thus for every s0 < s and every saturating interval I ⊆ Ks0 , the set
I ′s :=

⋃
s0<t<s

It is convex. We let G ′
s(I

′
s ) := lim inf t<s Gt(It), observing this is

downward closed.
To see that this is well-defined, suppose I ′s = J ′s . Then there is some stage
r > s0 and some saturating intervalL ⊆ Kr with I ∪J ⊆ L. Then for all t > r,
It = Jt = Lt , and so

lim inf
t<s

Gt(It) = lim inf
t<s

Gt(Lt) = lim inf
t<s

Gt(Jt),

Thus, the choice of the stage s0 and starting interval I is unimportant.
(2) As discussed above, there may be I and J such that I ′s �= J ′s but G ′

s (I
′
s ) =

G ′
s (J

′
s). Note that in this case, there can be no y ∈ Ls with F (y) = (a, b) and

I ′s <Ls a <Ls b <Ls J ′s , because then y would be in G
′
s (J

′
s)\G ′

s (I
′
s ). Also the

converse holds, so if there is no such y, then G ′
s (I

′
s ) = G

′
s (J

′
s).

For every saturating interval I ⊂ Kt for some t < s , we make

Is =
⋃

G′
s (J

′
s )=G

′
s (I

′
s )

J ′s

a saturating interval in Ks . We define Gs (Is ) := G ′
s (I

′
s ).

This completes the construction.
We letK := K�1 , F := F�1 andG := G ′

�1
.We note that sets in the range ofG may

be uncountable, unlike sets in the range of Gs for s < �1; also we do not perform
the final step of combining saturating intervals at stage�1 (we argue in Claim 2.13.4
that it is unnecessary).

Verification: Clearly K is a-computable, F is an order-preserving bijection from L
to the pairs in K, and G is an order-preserving map from the saturating intervals to
the downward closed subsets of L. Also, by the action of Step 3 at successor stages,
every saturating interval in K has order type 	1.
Claim 2.13.1. For every t ≤ s and every saturating interval I ⊆ Kt , there is a
unique saturating interval Is ⊆ Ks with I ∩ Is �= ∅. Furthermore, I ⊆ Is and Gs (Is )
is contained in the downward closure of Gt(I ) in 	1 (recalling that L ⊆ 	1).
Proof. Immediate by construction and induction on s . �
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Claim 2.13.2. If I ⊆ K is a saturating interval, then there is an at most countable
Y ⊆ L with Y ∼ G(I ).
Proof. Fix a saturating interval J ⊆ Ks such that J ⊆ I . By regularity, there

is a stage t > s such that Lt′ extends Lt for all t′ > t. Let Jt be the saturating
interval ofKt containing J . Then Gt(Jt) ⊆ G(I ) by construction, andG(I ) is con-
tained in the downward closure of Gt(Jt). Hence, the set Gt(Jt) suffices as a choice
for Y . �
Claim 2.13.3. At every stage s , the map Gs is injective.

Proof. This follows by induction on s : At limit stages, this is by explicit con-
struction. At successor stages, this is by construction and the inductive hypothesis.

�
Claim 2.13.4. For every Y ∈ [L]<�1 , there is precisely one saturating interval I ⊆

K with G(I ) ∼ Y .
Proof. Let s0 be a stage such thatY ⊆ Ls for all s ≥ s0, and let s1 > s0 be a stage

such thatY = Ys1 . Then there is a saturating interval J ⊆ Ks1+1 withGs1+1(J ) ∼ Y
(which is created if it did not already exist). For every t > s1, let Jt be the unique
saturating interval in Kt with J ⊆ Jt . By Claim 2.13.1, Gt(Jt) ∼ Y for all t. Thus
the saturating interval J ′�1 ⊆ K has G(J ′�1 ) ∼ Y .
Towards uniqueness, assume there were two such intervals I0 and I1. Let s be a

stage such that there are saturating intervals J0, J1 ⊆ Ks with J0 ⊆ I0 and J1 ⊆ I1,
and such that Lt extends Ls for all t > s . Then by the argument in Claim 2.13.2,
Gs (J0) ∼ Gs(J1). But since these sets are downward closed in Ls , we would have
Gs (J0) = Gs (J1), contrary to Claim 2.13.3. �
Claim 2.13.5. If I, J ⊆ K are saturating intervals withG(I ) ⊂ G(J ), then I <K J .
Furthermore, if y ∈ L with G(I ) <L y and y ∈ G(J ), then I <K (F (y))1 <K

(F (y))2 <K J .

Proof. Fix s . By construction, this is true for any saturating intervals I ′, J ′ ⊆ Ks
with I ′ ⊂ I and J ′ ⊂ J . Thus it is true for I, J ⊆ K = ⋃

s<�1
Ks . �

Thus we can map x ∈ Lc to Ax ⊆ K by sending x ∈ L to F (x) and x ∈ Lc − L
to G−1{y ∈ L | y < x}, and this map is order-preserving and its image covers K.
This completes the proof of Lemma 2.13. �

2.3. ANonlow-n Spectrum. Forn ≥ 2, there are countable linear orderingswhose
degree spectrums consist of the nonlown �-degrees [8]. For n = 1, though, while
it is known (see [9]) that the collection of nonlow �-degrees is a degree spectrum,
it is yet unknown if it is the degree spectrum of a linear order. We show that this
problem has a solution in the �1-context: For every n, including n = 1, there is an
order-type of size ℵ1 whose degree spectrum consists of the nonlown �1-degrees,
that is, of the �1-Turing degrees a such that a(n) > 0(n).
We begin with the case n = 1. The order-type whose degree spectrum is the

nonlow degrees will be the 	1-shuffle sum of linear orders coding a family F of sets
which is Σ02 in every nonlow �1-degree, but not Σ

0
2.

As in Section 2.1, let A� :=
∑
α<� Z

α and B� := A∗
� .
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Lemma 2.14. Let S ⊆ �1 and a be an �1-Turing degree. There is a sequence of
uniformly a-computable linear orders 〈Li 〉i<�1 such that

Li ∼=
{
A�1 if i ∈ S,
A�1 + B�1 otherwise,

if and only if the set S is Π02(a).
Moreover, the passage between an a-computable index for the sequence of
�1-computable linear orders and a Π02(a)-index for S is effective.
Proof. (=⇒) Let 〈Li〉i<�1 be a uniformly a-computable sequence of linear orders.
Then the collection of i < �1 such that cf(Li) = �1 is Π02(a), as cf(Li ) = �1 if and
only if every countable subset of Li is strictly bounded in Li . It is easy to see that
cf(A�1 ) = �1 and that cf(A�1 + B�1 ) = 1.

(⇐=) Fix a Π02(a) set S. We can, uniformly in a, enumerate sets Ui such that for
all i , the set Ui is uncountable if and only if i ∈ S. Fixing i , at stage s we define
Cs := As +Bs and an embedding fis,s+1 of Cs into Cs+1 extending the initial segment
embedding js,s+1 of As into As+1. If a new number is enumerated into Ui (i.e.,
we see new evidence that i ∈ S), then we let fs,s+1 embed Cs into As+1 (i.e., we
move past work built for B into A); otherwise, we let fs,s+1 = js,s+1 + j∗s,s+1 (i.e.,
we continue building A and B separately). We let Li be the direct limit of the
system

〈Cs , fis,t〉s≤t<�1 . The arguments of the previous section show that if Ui is
uncountable, then all copies of Bs are “swallowed” and we get Li ∼= A�1 ; otherwise,
we get Li ∼= A�1 + B�1 . �
As is done in the countable framework, we say that a set F of subsets of �1 is
�1-c.e. in some degree a if there is a uniformly a-c.e. sequence of sets 〈Fi〉i<�1 such
that F = {Fi : i < �1}. Similarly, a set F of subsets of �1 is �1-Σ02 in a if there is a
uniformly Σ02(a) sequence of sets 〈Fi〉i<�1 such that F = {Fi : i < �1}.
Lemma 2.15. There is a family F of sets which is Σ02 in a degree a if and only if a is
nonlow. In fact, fixing a degree c, there is a family F of sets which is Σ02 in a degree a
if and only if a is nonlow over c.
Proof. As in the countable framework, for any �1-degree d, a set is Σ02(d) if and
only if it is�1-c.e. in d′. Hence, we are looking for a family F of sets which is �1-c.e.
in a′ for every a with a′ > 0′ but is not �1-c.e. in 0′.
The construction of F is the relativization to ∅′ of Wehner [21] of a family of sets
which is c.e. in every nonzero �-Turing degree but is not c.e. The change of setting
to �1 does not change any of the details. Namely, we let

F :=
{
{α} ⊕ A : A is countable, and A �=W ∅′

α

}
.

The Recursion Theorem shows that F is not �1-c.e. in 0′; but F is �1-c.e. in every
degree a > 0′, because a can code, element by element, a setW ∈ a which is not Σ02,
to escape equality with a givenW ∅′

α . �
We introduce the order-types that will be used to code the sets in F .
Definition 2.16. Again fix an enumeration 〈qi〉i<� of the set of rational
numbers Q. Let I be the set of irrationals. For q = qi , let Pq = i + 2.
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For X ⊆ I and r ∈ R, define

QX,r :=

⎧⎪⎨
⎪⎩
Pr if r ∈ Q,

A�1 + B�1 if r ∈ X,
A�1 if r ∈ I \ X,

and let QX :=
∑
r∈R QX,r .

Let P := ∑
q∈Q Pq . For X ⊆ I, let fX be the natural embedding of P into QX ;

for q ∈ Q, fX maps the copy of Pq in P toQX,q . The range of fX consists of those
points in QX which are contained in finite maximal blocks of size larger than one.
Furthermore, the argument of Lemma 2.3 shows that if X,Y ⊆ I and X �= Y ,

then QX is not isomorphic to any convex subset ofQY .
We see that the linear ordering QX indeed “jump-codes” the set X .
Lemma 2.17. For any X ⊆ I and �1-degree a, the set X is Σ02(a) if and only

if a ∈ DegSpec(QX ). Furthermore, the equivalence is uniform: From a Σ02(a)-index
forX we can effectively pass to an a-computable index for a linear ordering isomorphic
to QX , and vice versa.
Proof. Suppose first that X is Σ02(a). Taking an effective bijection between �1

and I, by Lemma 2.14, there is a uniformly a-computable sequence 〈Lr〉r∈I of linear
orderings such that if r ∈ X then Lr ∼= A�1 +B�1 , and if r /∈ X then Lr ∼= A�1 . We
then see that

∑
r∈R Dr , where

Dr :=
{
Pr if r ∈ Q,

Lr if r ∈ I,

is a-computable and is isomorphic toQX .
For the other direction, suppose that L is a-computable, and that g : QX → L

is an isomorphism. We first note that if we did not insist on uniformity, then the
conclusion that X is Σ02(a) follows from Lemma 2.14 as follows. Since g ◦ fX
and P are countable, we can fix them as parameters. For r ∈ I, let Cr :=

⋃
q<r Pq

and Dr :=
⋃
q>r Pq be the indicated subsets of P , noting that the pair (Cr,Dr)

can be obtained effectively from r. Let Lr := ((g ◦ fX )[Cr ], (g ◦ fX )[Dr ])L. Then
Lr = g[QX,r ] and so 〈Lr〉r∈I is a sequence which witnesses, by Lemma 2.14, that X
is Σ02(a).
However, this argument is nonuniform, as it required fixing the parameter g ◦fX .

To obtain uniformity, we will prove that a′ can find this parameter. The argument
of the previous paragraph and of the easy direction of Lemma 2.14 then shows that,
given this parameter, the�1-degree a′ can enumerateX : For each r, the�1-degree a′

can obtain an a-computable index for Lr and can then enumerate those r for which
it discovers a maximal element in Lr .
To show that g ◦ fX can be uniformly obtained from L in a Δ02(a)-fashion, we

unfortunately cannot use the characterization of g ◦fX as the unique isomorphism
between P and the set of points in L contained in maximal finite blocks of size
greater than one. This is because, in general, the computation of the maximal
block containing an element takes two jumps rather than one jump. However,
there are a′-computable properties whose conjunction is satisfied only by g ◦ fX .
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For q ∈ Q, letAq andBq be the subsets of P (for the copy we fixed above) such that
P = Aq +Pq +Bq . Since the copy of P is fixed, this decomposition (note that Pq is
a subset of P , not an order-type, so it is unique within P) is effective in q. We claim
that g ◦fX is the unique embedding h of P into L such that for all q ∈ Q,

(1) h[Pq] is a convex subset of L; and
(2) (h[Aq ], h[Pq ])L and (h[Pq ], h[Bq ])L are both empty.
Both conditions are Π01(a), since it is Π

0
1(a) to tell, given countable C,D ⊂ L,

whether (C,D)L is empty or not. Certainly g ◦ fX satisfies both conditions for all
q ∈ Q. To show that this is the only embedding of P into L which satisfies both
conditions for all q ∈ Q, we show that fX is the only embedding of P into QX
which satisfies the corresponding conditions for all q ∈ Q.
Suppose that h : P → QX is an embedding, that for all q ∈ Q, the set h[Pq ]
is a convex subset of QX , and that for all q ∈ Q, both (h[Aq ], h[Pq ])QX and
(h[Pq], h[Bq ])QX are empty. We first show that h[P] ⊆ fX [P]. In other words, we
show if r ∈ I and q ∈ Q then h[Pq] ∩ QX,r is empty. If not, then as h[Pq] is a finite
convex subset of QX and the maximal blocks of QX,r are of size one or infinite, we
must have h[Pq] ⊂ QX,r , and the initial segment of QX consisting of the points to
the left of h[Pq] contains a greatest element x. Now Aq does not contain a greatest
element, so h[Aq ] cannot contain x; so h[Aq] <QX x <QX h[Pq], contradicting
the assumption on h. A similar argument shows that if i < j then h[Pqi ] cannot
intersect QX,qj
Finally, if q, r ∈ Q and h[Pq]∩QX,r is nonempty, then asQX,r is a maximal block
of QX and h[Pq] is convex in QX , we must have h[Pq] ⊆ QX,r . This shows that if
i > j, then h[Pqi ] does not intersect QX,qj . Hence for all q ∈ Q, h[Pq] = QX,q ,
which shows that h = fX . �
Theorem 2.18. There is an order-typewhose degree spectrumconsists of the nonlow
�1-degrees. In fact, fixing a degree c, there is an order-type whose degree spectrum
consists of the �1-degrees nonlow over c.
Proof. Fix a family F as in Lemma 2.15; by fixing an effective bijection
between H�1 and I, we may assume that every element of F is a subset of I.
We show that the 	1-shuffle sum

� := 
1 ({QX : X ∈ F})
(recall Definition 1.4) has presentations in exactly the nonlow �1-degrees.
By Lemma 2.15, it is sufficient to show that a degree a computes a presentation
of � if and only if F is Σ02 in a.
Let a be an�1-Turing degree. Suppose first thatF is Σ02 in a. Then the uniformity
guaranteed by Lemma 2.17 shows that there is a sequence 〈Lα〉α<�1 of uniformly
a-computable linear orders such that

{otp(Lα) : α < �1} = {otp(QX ) : X ∈ F} .
From the sequence 〈Lα〉 we can easily build a presentation of �, noting that a
computable presentationQ1 of 	1 can be split into a partition of�1-many uniformly
computable subsets, each saturated in Q1.
For the converse, suppose that L is an a-computable presentation of �. With
oracle a′, we enumerate the sets in F . To do so, with this oracle, we enumerate
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all the countable functions g ◦ fX , where X ∈ F and g is a convex embedding
of QX into L. The Δ02(a)-conditions on an embedding h : P → L to be one of these
functions are the conditions (1) and (2) of the proof of Lemma 2.17, together the
following condition:

(3) For all r ∈ I, the interval (h[Cr ], h[Dr ])L is scattered (i.e., does not contain a
copy of Q). Here, again, Cr :=

⋃
q<r Pq and Dr :=

⋃
q>r Pq .

Condition (3), together with the previous conditions, implies that h[P] must be
contained in a single convex copy of someQX inside L. Otherwise, fix some convex
copy K of some QX in L which intersects h[P]. Again, if q ∈ Q and h[Pq] ∩K �= ∅
then h[Pq] ⊂ K. If it is not the case that h[P] ⊂ K, say, without loss of generality,
that there are some s, q ∈ Q such that s < q, h[Pq] ⊂ K and h[Ps ]∩K = ∅, then let r
be the greatest lower bound of the rationals q such that h[Pq] ⊂ K. Now condition
(2) implies that r ∈ I; but the interval (h[Cr ], h[Dr ])L must embed 	1, and so the
rationals, contradicting (3). Then the argument proving Lemma 2.17 shows that
h = g ◦ fX where g : QX → K is an isomorphism.
Condition (3) is Π01(a), the universal quantification being over both irrational

numbers and potential embeddings of Q into the intervals (h[Cr ], h[Dr ])L. Hence
condition (3) can also be verified by a′. The method, from the proof of Lemma 2.17,
of enumerating X with oracle a′ from g ◦fX , is now applied to each of these maps,
giving the desired a′-computable enumeration of F . �
We can now use the result for n = 1 to extend it to all finite ordinals.

Theorem 2.19. For any degree a and any nonzero n < �, there is an order-type
whose degree spectrum is {b : b > a and b(n) > a(n)}.
In particular, for any nonzero n < �, there is an order-type whose degree spectrum

consists of exactly the nonlown degrees.
Proof. We induct on n, simultaneously for all degrees a, beginning with the case

n = 1.
First, we relativize the proof of Theorem 2.18 to a, obtaining a linear order L

with presentations in every degree bwith b > a and b′ > a′. Furthermore, the linear
order L does not have a presentation in any degree b with b ≥ a and b′ = a′.
Next, in order to handle degrees bwith b �≥ a, using Theorem 2.11, we fix a linear

order K whose degree spectrum is the cone above a. Then the degree spectrum of
L+ 1+K is the intersection of the degree spectra of L and K, and so is as desired.
For n > 1, let L be a linear order whose degree spectrum consists of the degrees

b > a′ such that b(n−1) > a(n) (by the inductive hypothesis applied to a′). Then
the transfer Lt has presentations in every degree b with b > a and b(n) > a(n).
Furthermore, Lt does not have a presentation in any degree b with b ≥ a and
b(n) = a(n). As in the case n = 1, the order Lt + 1 +K is as desired. �
2.4. Arbitrary Finite Jump Degrees. The results of the previous section allow us

to obtain results about the finite jump degrees of linear orders.

Definition 2.20. Fix a structure A, a natural number n < �, and a degree a.
The structureA has nth jump degree a if a is the least element of the set

{d(n) : d ∈ DegSpec(A)}.
When n = 0, we say thatA has degree a.
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For n > 0, the structureA has proper nth jump degree a ifA has nth jump degree a,
but does not have any (n − 1)st jump degree.

Thus, Theorem 2.11 can be restated as saying that every �1-degree is the degree
of some linear ordering. Of course, as already noted, this contrasts rather sharply
with the countable setting, whereRichter [17] showed if a linear ordering has degree,
that�-degreemust be 0. Furthermore, Knight [13] showed that if a countable linear
ordering has a first jump degree, then this jump-degree must be 0′; whereas Downey
and Knight [4] showed that for all n ≥ 2, every degree a ≥ 0(n) is the proper nth
jump-degree of a countable linear ordering. In the uncountable setting, for every
n < �, all possible (proper) jump degrees are realized.

Theorem 2.21. Fix a finite ordinal n < �. For every �1-degree b ≥ 0(n), there is
an order-type with proper nth jump degree b.

Proof. For n = 0, this is Theorem 2.11.
For n = 1, fromFact 1.5, we obtain an�1-degree awith a′ = b.We then relativize
the proof of Theorem 2.7 to a, obtaining a linear orderL. Then L has a presentation
in every �1-degree c with c > a and c ∈ Δ02(a). Notably, there are such �1-degrees c
that are low over a. Furthermore, the linear ordering L does not have a presentation
in a. As in the proof of Theorem 2.19, we takeL+1+K, whereK is a linear ordering
such that DegSpec(K) is the cone above a.
For n > 1, from Fact 1.5 we obtain an �1-degree a with a(n) = b. From
Theorem 2.19 with a and n− 1, we obtain a linear ordering L with degree spectrum
{c : c > a and c(n−1) > a(n−1)}. By Fact 1.5 again, there is a d > a(n−1) with d′ = b,
and an m with m(n−1) = d. Then m ∈ DegSpec(L), and m(n) = b. Conversely, for
every c ∈ DegSpec(L), since c > a, c(n) ≥ a(n) = b. �
2.5. Open Questions on Degree Spectra. We close this section with some open
questions on the degree spectra of linear orders.

Question 2.22. Is there an order-type of size ℵ1 whose degree spectrum consists
of the nonzero �1-degrees?

Question 2.23. Is there, for each ordinal α < �1, an order-type with proper αth

jump degree a(α)?

§3. The Successor Relation. The successor (or adjacency) relation is central to
understanding countable linear orders, both classically and effectively. For example,
Hausdorff’s analysis of universal (nonscattered) countable linear orders relies on
his derivative operation of identifying adjacent points. Effectively, we mentioned
the Remmel-Dzgoev characterization of computably categorical linear orderings
in terms of their successor relation. Moses [15] showed that a computable linear
ordering L is 1-decidable if and only if the successor relation on L is computable.
This is one reason why the complexity of the successor relation on computable
linear orderings was studied intensively, in particular in the theorem of Downey,
Lempp and Wu mentioned above. Their result states that the Turing degrees of
the successor relation of computable presentations of a computable order-type are
closed upwards in the c.e. degrees, as long as, of course, the order-type has infinitely
many adjacent ordered pairs. In this section, we show that theDowney–Lempp–Wu
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theorem can fail for uncountable linear orderings and consider the consequences of
this failure.
For a linear order L, we denote the set of adjacent pairs in L by Succ(L).
Definition 3.1. Let � be an �1-computable order-type. Define

DegSpecSucc(�) := {degT(Succ(L)) : L is a computable presentation of �} .
Since the successor relation Succ(L) has a Π01(L)-definition, for any

�1-computable order-type �, the set DegSpecSucc(�) consists only of�1-c.e. degrees.
We start by demonstrating that the natural analogue of the Downey, Lempp, and
Wu theorem (the assumption that � contains uncountably many adjacent pairs)
fails in the uncountable setting. We then provide a sufficient condition for upward
closure.

Example 3.2. The �1-computable order-type 2 · 
 (where 
 is the order-type
of R) has uncountably many adjacent pairs and satisfies DegSpecSucc(2 · 
) = {0}.
For let L be a computable presentation of 2 ·
; letf : 2 ·R → L be an isomorphism,
and let Q := f[2 ·Q]. Then x, y in L are adjacent if and only if they lie in the same
Q-interval. Since we can fix Q as a countable parameter, this gives an algorithm for
computing Succ(L).
Our previous paper noted that 2·
 is also�1-computably categorical, despite hav-

ing uncountably many adjacent pairs. The sufficient condition we offer for upwards
closure (Theorem 3.4) is also related to the condition for �1-computable categoric-
ity. Here, the difference is that any level of density (rather than only ℵ1-saturation)
suffices as the successor relation is empty within any dense interval (regardless of
whether or not it is saturated). Nonetheless, again the crucial hypothesis is the
existence of something like a copy of the rational numbers, relative to which the
intervals behave in a uniform way. The linear ordering 2 · R is “
-like”: It contains
a countable subset Q such that every Q-interval is finite.

Definition 3.3. A linear order L is weakly separable if it contains a countable
subset Q such that every Q-interval is either finite or dense.

Theorem 3.4. If � is an �1-computable order-type which is not weakly separable,
then the spectrumDegSpecSucc(�) is closed upwards in the �1-c.e. degrees.

Proof. Let L be an �1-computable presentation of �. Let W be an �1-c.e. set
which computes Succ(L). Let 〈Ws 〉s<�1 be a computable, increasing sequence of
countable sets withW =

⋃
s Ws . We build an �1-computable presentation K ∈ �

such that Succ(K) ≡T W .
As in previous constructions, we let Ls := L � s and build K as the union of an

increasing, �1-computable sequence 〈Ks〉 of countable linear orderings. To ensure
thatK is isomorphic toL, we construct a Δ02-isomorphism F : K → L as the limit of
an �1-computable sequence of isomorphisms Fs : Ks → Ls . Of course, we cannot
make K and L computably isomorphic, else we would have Succ(K) ≡T Succ(L).
To getW to compute Succ(K), wewill ensure thatW computesF . To get Succ(K)

to computeW , we will ensure that the complement ofW is �1-c.e. in Succ(K). We
define an enumeration functional Φ; axioms enumerated into Φ at stage s will name
countablymany successor pairs inKs , and declare that if all of these pairs are indeed
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successor pairs in K, then some number x is enumerated into the Succ(K)-c.e. set
Φ(Succ(K)). At stage s , we let Φ(Succ(K))[s] be the result of applying Φs , the
functional as enumerated up to stage s , on the collection of adjacencies in Ks . For
all i < �1, requirement Ri states that i ∈ Φ(Succ(K)) if and only if i /∈W .
Informally, we describe the strategy for meeting a requirement Ri . As long as
i /∈ Ws , we take the <�1 -least available successor pair (a, b) in Ks , and with the
information that (a, b) ∈ Succ(Ks ) we enumerate i into Φ(Succ(K))[s]. If later we
see that i entersWt , we want to enumerate a new element into Kt between a and b.
We need to, in advance, pick the pair (a, b) so that adding such an element will still
allow us to embed Kt into Lt , possibly by changing F . Not surprisingly, the choice
of (a, b) depends on whether Ls is scattered or nonscattered; in the scattered case,
we will in fact need to use all the pairs in some infinite block.
Meanwhile, if i does not enter W , we need to maintain the adjacency of the
pair (a, b). Of course L may force us to enumerate an element between a and b, by
enumerating an element between Fs(a) and Fs(b). In this case, we just need to pick
another pair; this will reach a limit. However, we need to actively prevent weaker
requirements Rj for j > i from enumerating elements between a and b. This is
done by imposing restraint; weaker requirements are not allowed to change Fs(a)
and Fs(b). This accumulated restraint gives a requirement Ri a countable set on
which it is not allowed to change F ; it needs to work in the intervals determined by
this countable set, and find adjacencies in one of them. This is where the assumption
on the structure of L comes into use.
Construction: For j < �1, by recursion, we let Ij,s be the set of stages less than s at
which requirement Rj requires attention (as defined below). We define

rj,s := sup
{
t + 1 : t ∈

⋃
i<j

Ii,s

}
.

Let s < �1, and suppose that Ks and Fs are recursively defined. A require-
ment Rj requires attention at stage s if j < s , Φ(Succ(K))(j) = W (j) [s] (i.e.
j ∈ Φ(Succ(K))[s] ⇐⇒ j ∈ Ws), and there is some Krj,s -interval of Ks (i.e. a
maximal interval in Ks disjoint from Krj,s ) which is infinite and not dense. We act
on behalf of the strongest requirement which requires attention, as described below.
If no requirement requires attention at stage s , then we simply let Ks+1 and Fs+1 be
extensions of Ks and Fs such that Fs+1 : Ks+1 → Ls+1 is an isomorphism.
Otherwise, let Rj be the strongest requirement requiring attention at stage s . If
j /∈ Ws , we let (S1, S2) be the <�1-least cut of Krj,s such that As := (S1, S2)Ks is
infinite and not dense. If As is scattered, let Ts be the<�1-least infinite block of As .
If As is nonscattered, let Ts be the <�1-least subset {a, b} of As such that a and b
are adjacent in As . In either case, enumerate a new axiom into Φ, enumerating j
into Φ(Succ(K))[s + 1]. The use of this computation is Succ(Ts ) ∪

(
Succ(Krj,s ) ∩

Succ(Ks )
)
, the collection of all successor pairs in Ts , along with all successor pairs

in Krj,s that remain successor pairs in Ks . We again let Ks+1 and Fs+1 be extensions
so that Fs+1 : Ks+1 → Ls+1 is an isomorphism.
If j ∈Ws , we need to changeKs+1 to extract j fromΦ(Succ(K)). Let t < s be the
stage at which the computation j ∈ Φ(Succ(K))[s] was defined. (Note that at most
one such computation can apply to the current oracle Succ(K)[s] at any stage.) Say
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At = (S1, S2)Kt . Then Tt is still a convex subset of As = (S1, S2)Ks , as otherwise j
would already be extracted fromΦ(Succ(K)). We can find a self-embeddingf ofAs
such that for some adjacent a, b ∈ Tt , f(a) and f(b) are not adjacent in As ; this is
either because Tt is an infinite block of As , or As is nonscattered. As As is a convex
subset ofKs , we extendf to a self-embedding ofKs by being the identity outsideAs .
We then extend Ks and Fs ◦ f to Ks+1 and an isomorphism Fs+1 : Ks+1 → Ls+1.
This definition ensures the enumeration of some point between some successor pair
of Tt , and so j /∈ Φ(Succ(K))[s + 1].
At limit stages, we define K<s :=

⋃
t<s Kt , and define F<s := limt→s Ft to be

the limit embedding of K<s into Ls . We then let Ks and Fs be an extension of K<s
and F<s to an isomorphism from Ks to Ls .
We argue now that F<s is well-defined, using Claim 3.4.2. Suppose that 〈Ft〉t<s

is not increasing on some final segment of s . One of two cases must hold. Suppose
first that there is some limit j ≤ s such that for all i < j, ri,s < s but s = supi<j ri,s .
In this case, F<s =

⋃
i<j Fri,s .

Otherwise, there is some j < s such that rj,s < s but Ij,s is unbounded in s . In
this case, consider Ij,s ∩ [rj,s , s). If rj,s < q < s and t is the greatest element of
Ij,s ∩ [rj,s , s) with t < q, then rj+1,q = t+1. By Claim 3.4.2, Fq extends Ft+1. At the
same time, sinceRj requires attention at cofinally many stages before stage s , it must
be that j �∈ Ws , so at each t ∈ Ij,s ∩ [rj,s , s), our action makes Ft+1 an extension
of Ft . Thus (Ft+1)t∈Ij,s∩[rj,s ,s) is an increasing sequence. Since Fq extends Ft+1 for t
the greatest element of Ij,s ∩ [rj,s , s) with t < q, it follows that F<s =

⋃
t Ft+1 for

t ∈ Ij,s ∩ [rj,s , s).
Verification: First, we show that restraints are respected. The following two claims
are proved by simultaneous induction on s , and verify the promises made during
the construction.

Claim 3.4.1. Fix i, j, s < �1 with i < j < s , i �∈ Ws , and j ∈ Φ(Succ(K))[s].
Then i ∈ Φ(Succ(K))[s]. Moreover, the computation i ∈ Φ(Succ(K))[s] was defined
before the stage at which the computation j ∈ Φ(Succ(K))[s] was defined. It follows
that every successor pair used in the computation of i ∈ Φ(Succ(K))[s] is also used in
the computation of j ∈ Φ(Succ(K))[s].
Proof. Let t < s be the stage at which the computation j ∈ Φ(Succ(K))[s] was

defined. Then there is some infinite, nondense Krj,t -interval of Kt . Since rj,t ≥ ri,t ,
there is an infinite, nondenseKri,t -interval ofKt . Since i /∈Wt , we can conclude that
i ∈ Φ(Succ(K))[t], as otherwise Ri would require attention at stage t. Let u < t be
the stage at which the computation i ∈ Φ(Succ(K))[t] was defined by Ri .
By construction, the computation asserting that j ∈ Φ(Succ(K))[s] uses every

successor pair in Krj,t . Since u ∈ Ii,t , we have rj,t > u, and thus rj,t ≥ u + 1.
By construction, every successor pair used in the computation i ∈ Φ(Succ(K))[t]
is a successor pair of Ku+1. Since t ≥ rj,t ≥ u + 1, and the computation i ∈
Φ(Succ(K))[t] persisted from stage u + 1 to stage t, it must be that every successor
pair used in this second computation remains a successor pair at stage t, and
so also at stage rj,t . So the computation asserting that j ∈ Φ(Succ(K))[s] uses
every successor pair that was used in the computation i ∈ Φ(Succ(K))[t]. Since
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j ∈ Φ(Succ(K))[s] holds, all of these pairs must be successor pairs of Ks , so
i ∈ Φ(Succ(K))[s]. �
Claim 3.4.2. For all j, s < �1 with j < s , the map Fs extends the map Frj,s .
Proof. We prove this by induction on s . As we take limits at limit stages, we need
only consider a successor stage s . Suppose that rj,s < s . By induction, the map Fs−1
extends the map Fr. If Fs extends Fs−1 then we are done. Suppose otherwise. Some
requirement Ri receives attention at stage s − 1, and extracts i from Φ(Succ(K))[s].
Since rj,s < s , we must have i ≥ j by definition of rj,s . Let t < s − 1 be the stage
at which the computation i ∈ Φ(Succ(K))[s − 1] was defined. Note that we have
Fs(x) = Fs−1(x) for all x /∈ As−1.
Since i ≥ j, we have ri,s−1 ≥ rj,s−1 = rj,s . Suppose Rk is some stronger require-
ment. By Claim 3.4.1, the persistence of the computation i ∈ Φ(Succ(K))[s − 1]
shows that there can be no stage q ∈ [t, s − 1) with k �∈ Wq and Rk requiring
attention.
Suppose there is a stage q ∈ [t, s − 1) with k ∈ Wq and we act for Rk at stage q.
Let u < q be the stage at which the computation i ∈ Φ(Succ(K))[q] was defined.
Then at this stageRk required attention and k �∈Wu , so u < t. But then rj,t ≥ u+1
by definition, so every successor pair used in the computation k ∈ Φ(Succ(K))[q]
was also used in the computation i ∈ Φ(Succ(K))[s − 1]. But our action at stage q
enumerated a point between one of these pairs, contrary to the persistence of
i ∈ Φ(Succ(K))[s − 1]. So there can be no such stage q.
The fact that we acted for Ri shows that no requirement Rk stronger than Ri
required attention at stage s − 1. So no stronger requirement required attention
at any stage in [t, s − 1]. Hence ri,s−1 = ri,t . Since At is a Kri,t -interval, it follows
thatAs−1 is anKrj,s -interval. HenceAs−1 andKrj,s are disjoint; so Fs andFs−1 agree
on Krj,s as required. �
The argument defining F<s for a limit stage s shows that F := F<�1 = lims<�1 Fs
is well-defined, and is an isomorphism from K := K<�1 to L.
Claim 3.4.3. For all j < �1, rj,�1 < �1, and requirement Rj is met.
Proof. To show rj,�1 < �1, for all j, it suffices to show that Ij,�1 is bounded for
all j. This is proved by induction.
If rj,�1 < �1, then we show that Ij,�1 is bounded. If j ∈ W , then Rj requires
attention at most once after a stage s at which j ∈Ws ; when we act forRj then, we
ensure j /∈ Φ(Succ(K)), and then by definition Rj never again requires attention.
Suppose that j /∈W . LetS := Krj,�1 . SinceL is not weakly separable, neither isK.
Hence there is some S-interval ofKwhich is infinite and nondense. Since S is count-
able, there is a stage t ≥ rj,�1 such that if (a, b) ∈ Succ(Kt) and a, b ∈ S then (a, b) ∈
Succ(K). Let (S1, S2) be the <�1 -least cut of S such that (S1, S2)K is infinite and
nondense. If (S1, S2)K is scattered, let T be the<�1 -least infinite block of (S1, S2)K.
If (S1, S2)K is nonscattered, letT be the<�1 -least adjacent pair of (S1, S2)K. Then if
requirement Rj requires attention at cofinitely many stages, eventually a computa-
tion j ∈ Φ(Succ(K)) is created at some stage s > t where the use of this computation
is Succ(T )∪(Succ(Krj,s )∩Succ(Ks )). Since s > t, Succ(Krj,s )∩Succ(Ks ) ⊆ Succ(K).
By assumption, Succ(T ) ⊆ Succ(K). Thus this computation will persist at all later
stages, implying both thatRj never again requires attention, and thatRj ensures its
requirement. �
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Claim 3.4.4. F is computable fromW .

Proof. Let x ∈ K. To compute F (x) with oracleW , find a stage s < �1 and an
index j such that x ∈ Krj,s ,W � j =Ws � j, and Φ(Succ(K))(i) �=W (i) [s] for all
i < j. We claim that F (x) = Fs(x) = Frj,s (x). This is because no requirement Ri ,
for i < j, will cause a redefinition of Ft after stage s , and so for all t > s , the
map Frj,t extends the map Frj,s , and so Ft extends Frj,s (Claim 3.4.2). �
Since W computes both F and Succ(L), it also computes Succ(K). Moreover,

Φ(Succ(K)) and therefore the complement of W are �1-c.e. in Succ(K), and so
Succ(K) computesW . This completes the proof. �
We turn our attention now to weakly separable linear orders. Example 3.2 shows

that upward closure can fail for such orders. It is natural to ask if this is the only
way in which such failure can occur; if DegSpecSucc(L) is not upwards closed, must
it be {0}? We require the following definition.
Definition 3.5. Let A be an uncountable �1-c.e. set. If f : �1 → A and g :

�1 → A are injective �1-computable enumerations of A, then for all B ⊆ A, the
sets f−1B and g−1B are Turing equivalent (indeed they are 1-1 equivalent). We
thus define, for all B ⊆ A, degT(B|A) to be the Turing degree of f−1B, where f is
any injective computable enumeration of A.

The point is that passing from B to f−1B erases the complexity of A. Certainly
degT(A|A) = 0. For all B ⊆ A, degT(B|A) ≤ degT(B). IfA is computable, then for
all B ⊆ A, degT(B|A) = degT(B).
The degree degT(B|A) is the amount of information coded in B once we know

that it is a subset of A. This intuition is explained as follows. For all C , degT(C ) ≤
degT(B|A) if and only if there is a reduction ofC toB which only queries the oracle
on elements of A. Similarly, degT(B|A) ≤ degT(C ) if and only if there is a partial
reduction Φ such that for all x ∈ A, B(x) = Φ(C, x); the reduction Φ(C ) may not
halt on inputs outsideA. This is why we informally write, for example,C ≤T (B|A),
even though there is no fixed set B|A.
This definition alsoworks for strong reducibilities.We say thatB ≤wtt C (whereB

and C are subsets of �1) if there is a Turing functional Φ and a computable
function ϕ such that Φ(C ) = B and such that for all x < �1, Φ(C � ϕ(x)) extends
B � x. In other words, the use of the computation is bounded by ϕ. We say that
B ≤m C if there is a computable function g with x ∈ B ⇐⇒ g(x) ∈ C .
For B ⊆ A, we write degwtt(B|A) for degwtt(f−1B), where f is any injective
computable enumeration of A. Similarly, we write degm(B|A) for degm(f−1B)
for any such B. We note that neither of these depend on the choice of computable
function f.

Definition 3.6. Let L be an �1-computable, weakly separable linear order,
witnessed by a countable subset Q of L.
For a set C of cardinals, we let I QC (L) be the set of cuts (Q1, Q2) ofQ such that the

size of (Q1, Q2)L is in C.We use obvious abbreviations: For example, wewrite I
Q
κ (L)

for I Q{κ}(L), I Q>κ(L) for I Q(κ,ℵ1](L), and I Q∞(L) for I
Q
{ℵ0,ℵ1}(L).

Observe that I Q>1(L) is a c.e. set.
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Lemma 3.7. Let � be an �1-computable, weakly separable order-type. Let C be
a set of finite cardinals. Then degm(I

Q
C (L)) does not depend on the choice of the

computable presentation L of � and the countable subset Q of L witnessing that L is
weakly separable.

Proof. If L and K are �1-computable presentations of �, F : L → K is an
isomorphism, andQ witnesses thatL is weakly separable, then I QC (L) and I F [Q]C (K)
are 1-1 equivalent. Here F need not be computable, since we only use the countable
parameter F � Q.
Hence it suffices to fix an �1-computable presentation L of � and show that if S
and Q both witness that L is weakly separable, then I QC (L) ≤m I SC (L).
Fix such Q and S. If I QC (L) is computable, then there is nothing to show. Thus
we may assume that L contains uncountably many maximal finite blocks. Since Q
and S are countable, they intersect only countably many maximal (finite) blocks
of L. Since infinite S- and Q-intervals of L are dense, it follows that for all but
countably many cuts (Q1, Q2) of Q, if the interval (Q1, Q2)L is finite, then it is a
maximal block of L, and must be an S-interval as well.
So outside a countable set of cuts, given a cut (Q1, Q2) of Q, we search for either
a cut (S1, S2) such that (Q1, Q2)L = (S1, S2)L, or a stage at which we see that
(Q1, Q2)L is infinite. In the former case, we, of course, know that (Q1, Q2) ∈ I QC (L)
if and only if (S1, S2) ∈ I SC (L). In the latter case, we know without consulting the
oracle that (Q1, Q2) /∈ I QC (L). �
Definition 3.8. Let � be an �1-computable weakly separable order-type with
uncountably many adjacencies. Fix any computable presentationL of � and any set
Q ⊆ L witnessing that L is weakly separable. We define the following degrees:

min(�) := degT
(
I Q∞(L)

∣∣ I Q>1(L)) ,
minwtt(�) := degwtt

(
I Q∞(L)

∣∣ I Q>1(L)) ,
max(�) :=

∨
n≥2
degT

(
I Qn (L)

∣∣ I Q>1(L)) ,
and

maxwtt(�) :=
∨
n≥2
degwtt

(
I Qn (L)

∣∣ I Q>1(L)) .
By Lemma 3.7, these do not depend on the choice of L and Q. The set I Q∞(L)
is c.e., and so min(�) is a c.e. degree. It is not immediately clear, but we will see
that max(�) is also a c.e. degree.
As we shall immediately see, the degrees min(�) andmax(�) constrain the degree
spectrumDegSpecSucc(�). This explains why they are both defined inside I

Q
>1(L): In

measuring the complexity of Succ(L), we need to avoid the false complexity that
can be added by the set of intervals containing fewer than two points. Of course,
such intervals cannot add complexity to the successor relation.

Theorem 3.9. Let � be an �1-computable, weakly separable order-type with
uncountably many adjacencies. Then DegSpecSucc(�) is contained in the interval of
degrees [min(�),max(�)].
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In fact, for every computable presentation L of �, Succ(L) ≤wtt maxwtt(�).
Proof. Let L be an �1-computable presentation of �; let Q witness that L is

weakly separable. We need to show that Succ(L) ≥T
(
I Q∞(L) | I Q>1(L)

)
and that

Succ(L) ≤wtt
⊕
n≥2

(
I Qn (L) | I Q>1(L)

)
.

Since I Q∞(L) is c.e., to compute it from Succ(L) inside I Q>1(L) it is sufficient to
enumerate its complement inside I Q>1(L), i.e., to enumerate the set

⋃
n≥2 I

Q
n (L) with

oracle Succ(L). To do so, given some cut (Q1, Q2) such that the interval (Q1, Q2)L
contains at least two points, we enumerate (Q1, Q2) if we find some pair (a, b) in
Succ(L) with a, b ∈ (Q1, Q2)L; the point, of course, is that the interval is infinite if
and only if it is dense. Note that the use of this enumeration may not be bounded by
a computable function, as the <�1-least successor pair in a finite interval (Q1, Q2)L
may appear much later than the cut (Q1, Q2).
For the second reduction, we first note that(

I Q∞(L)|I Q>1(L)
)
≤wtt

⊕
n≥2

(
I Qn (K)|I Q>1(L)

)
,

which is, of course, necessary for the theorem. This is because inside I Q>1(L), I Q∞(L)
and

⋃
n≥2 I

Q
n (L) are complements. In other words, given (Q1, Q2) ∈ I Q>1(L), we

need only make the queries “(Q1, Q2) ∈ I Qn (L)?” for all n ≥ 2. If any of these
queries returns positively, then (Q1, Q2) �∈ I Q∞(L), while if they all return negatively,
then (Q1, Q2) ∈ I Q∞(L). Since this is only countably many queries, it describes a
Turing reduction. Further, since we can precisely compute the set of queries we will
need from the input, there is a computable bound on (the codes for) the queries.

We compute Succ(L) from⊕
n≥2

(
I Qn (L) | I Q>1(L)

)
. Let a <L b be elements of L;

we want to decide if (a, b) ∈ Succ(L). Wemay assume that a, b /∈ Q. This is because
Succ(L) ∩ (

(Q × L) ∪ (L ×Q)) is countable, as Q is countable and every element
of Q has at most one successor and one predecessor.
We first decide if a and b are in the sameQ-interval; if not, then (a, b) /∈ Succ(L).

If so, let (Q1, Q2) be the cut ofQ such that a, b ∈ (Q1, Q2)K. Then (Q1, Q2) ∈ I Q>1(L).
Wemay therefore ask the oracle if the interval (Q1, Q2)L is finite, using the reduction
just described above. If not, then it is dense, and so (a, b) /∈ Succ(L). If so, the oracle
gives us the size n of (Q1, Q2)K. We wait for a stage s such that (Q1, Q2)K�s already
contains n points; then (a, b) ∈ Succ(L) if and only if a and b are adjacent in L � s .
The use of this computation is bounded by a computable function because the

cut (Q1, Q2) is obtained effectively from a and b. �
Having shown that the complexity of the successor relation is bounded within

an interval, we turn to seeing which degrees in this interval belong to the spectrum
of the successor relation. We first show that both endpoints always belong to the
spectrum.

Theorem 3.10. Let � be an �1-computable, weakly separable order-type with
uncountably many adjacencies. Then max(�) ∈ DegSpecSucc(�).
In particular, the degree max(�) is c.e.
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Proof. Let L be an �1-computable presentation of �, and let Q witness that L
is weakly separable. We build a computable copy K of L and an isomorphism
F : K → L such that F−1Q = Q, and such that for all n ≥ 2, (I Qn (K) | I Q>1(K)) ≤T
Succ(K). By Theorem 3.9 this is sufficient. Note that uniformity in n is free in
�1-computability, but is anyway obvious from the proof.
By regularity of�1, let 〈Ls 〉 be a continuous, computable and increasing sequence
of countable linear orderings such thatL = ⋃

s Ls , such thatL0 = Q, and such that
for all s , every Q-interval of Ls is either finite or dense. We define K as the union
of a computable and increasing sequence 〈Ks 〉; for all s , we define an isomorphism
Fs : Ks → Ls .We start withK0 = L0 = Q andF0 = idQ . For all s , Fs will extendF0,
so to defineKs and Fs , it is sufficient, given a nonemptyQ-intervalBs = (Q1, Q2)Ls
of Ls , to define As = (Q1, Q2)Ks and the isomorphism Fs � As from As to Bs .
The idea for coding I Qn (L) for each n ≥ 2 into Succ(K) is by copying L, but
whenever we extend a finite Q-interval As to a larger As+1, we insert new points so
that we destroy at least one adjacency in As . This way, Succ(K) can keep track of
the size of (Q1, Q2)L.
So the instructions are simple. At stage s , given Ks and Fs , fix a cut (Q1, Q2)
ofQ such thatBs+1 = (Q1, Q2)Ls+1 is nonempty. Suppose thatBs+1 �= Bs (where, of
course, Bs = (Q1, Q2)Ls ), that Bs+1 is finite and that As = (Q1, Q2)Ks contains at
least two points. We then defineAs+1 extending As which has the same size asBs+1,
but such that some a, b ∈ As which are adjacent in As are no longer adjacent
in As+1. We then let Fs+1 � As+1 be the unique isomorphism from As+1 to Bs+1.
In all other cases (if Bs+1 = Bs , or |As | ≤ 1, orBs+1 is infinite), we let Fs+1 � As+1
be an extension of Fs � As to an isomorphism from As+1 to Bs+1, and, of course,
define As+1 accordingly.
At a limit stage s , let K<s =

⋃
t<s Kt . Let Bs = (Q1, Q2)Ls be a nonempty

Q-interval of Ls ; let A<s = (Q1, Q2)K<s =
⋃
t<s At , where, of course, At =

(Q1, Q2)Kt . We define an embedding F<s � A<s from A<s to Bs , and then extend it
to an isomorphism Fs � As from As to Bs by adding points to A<s . If 〈Ft � At〉t<s
is increasing on some final segment of s , then we let F<s � A<s be the limit of these
maps. Otherwise, since Ft � At only changes when Bt+1 �= Bt , we see that Bs is
infinite, and so dense, so we let F<s be any embedding of A<s into Bs .
This defines K. We argue that F = lims Fs is an isomorphism from K to L.
This is because for every Q-interval A�1 of K, the sequence 〈Fs � As 〉 is eventually
increasing. For either A�1 is finite, in which case eventually the sequence stabilizes;
or eventually As is infinite, after which the sequence is increasing.
Now let n ≥ 2; and we will see how to compute (I Qn (K)|I Q>1(K)) from Succ(K).
Let (Q1, Q2) be a cut of Q, and suppose thatA�1 = (Q1, Q2)K contains at least two
points. With oracle Succ(K) we can find a stage s such that either As = (Q1, Q2)Ks
is infinite, orAs is finite, contains at least two points, and every adjacency inAs is an
adjacency in K. The construction ensures that in the latter case we have As = A�1 ,
so we can compute the size of A�1 . �
Again we emphasize the need to work within I Q>1(L). The procedure above will
not halt if we start with a cut (Q1, Q2) such that (Q1, Q2)L contains at most one
point. This is why degT(Succ(K)) lies above each degT(I Qn (K) | I Q>1(K)), and not
necessarily above degT(I

Q
n (K)).
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Note that the use of the reduction of (I Qn (K) | I Q>1(K)) to Succ(K) is not necessarily
computably bounded.Wedonot know if there is always a computable presentationL
of � such that Succ(L) ∈ maxwtt(�).
Theorem 3.11. Let � be an �1-computable, weakly separable order-type with

uncountably many adjacencies. Then min(�) ∈ DegSpecSucc(�).
In fact, we can build an �1-computable presentation L of � such that Succ(L) ∈

minwtt(�).

Proof. The construction is the opposite of that of Theorem 3.10.We fix 〈Ls 〉 and
build 〈Ks 〉 and 〈Fs〉 as before, but in this construction we preserve adjacencies in
finiteQ-intervals. So the construction is identical to that of the previous proposition,
but when extending As to As+1 in the case that As contains at least two points
and Bs+1 is finite, we make sure to define As+1 so that every adjacency in As is still
an adjacency inAs+1 (by, say, enumerating all new points inAs+1 to the right ofAs ).
This too may require changing the value of F onAs , as some adjacencies in Bs may
no longer be adjacencies in Bs+1.
Given a <K b, we want to decide, with oracle (I Q∞(K)|I Q>1(K)), whether (a, b) ∈

Succ(K). As in the proof of Theorem 3.9, we may assume that a, b /∈ Q, and that a
and b lie in the same Q-interval (Q1, Q2)K. We know that this interval contains at
least two points, so we can ask the oracle if this interval is infinite or not. If it is
infinite, then it is dense, so (a, b) /∈ Succ(K). If it is finite, then (a, b) ∈ Succ(K)
if and only if (a, b) ∈ Succ(Ks ), where s is any stage such that a, b ∈ Ks . This has
bounded use since Q1 and Q2 can be effectively determined from a and b.
For the other direction, we modify slightly the algorithm given in the proof of

Theorem 3.9. Given some cut (Q1, Q2), we wait until the first stage s such that
|(Q1, Q2)K| > 1. If (Q1, Q2)Ks is finite and for some a, b ∈ (Q1, Q2)Ks , (a, b) ∈
Succ(K), then we know (Q1, Q2) �∈ I Q∞(K). Otherwise, we know (Q1, Q2) ∈ I Q∞(K).
Note that for any (Q1, Q2) ∈ I Q>1(K), this algorithm will halt. For such (Q1, Q2),

we can effectively compute the least s with (Q1, Q2)Ks of size greater than one. If
(Q1, Q2)Ks is infinite, then the algorithmmakes no queries of the oracle. Otherwise,
the queries made are precisely those of the form “(a, b) ∈ Succ(K)?”, for (a, b) ∈
((Q1, Q2)Ks )2. Thus we can compute the set of queries we will make, and since this
set is finite, we can compute a bound on (the codes for) the queries. This establishes
(I Q∞(K)|I Q>1(K)) ≤wtt Succ(K). �
Wenote that for � = 2 ·
 (see Example 3.2),max(�) = min(�) = 0. We generalize

this example.

Proposition 3.12. If a, b are �1-c.e. degrees and a ≤ b, then there is an �1-com-
putable weakly separable order-type � with uncountably many adjacencies such that
min(�) = a and max(�) = b.

Proof. Let A ∈ a and B ∈ b be c.e., disjoint subsets of the collection of cuts of
the rationalsQ. Define a computable linear orderL by starting withQ, and defining
(Q1, Q2)L for every cut (Q1, Q2) of Q:

(Q1, Q2)L ∼=

⎧⎪⎨
⎪⎩
Q, if (Q1, Q2) ∈ A;
3, if (Q1, Q2) ∈ B; and
2, if (Q1, Q2) /∈ A ∪ B.
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Then IQ>1(L) is computable, IQ∞(L) = A, and⊕
n≥2
IQn (L) ≡T B ⊕ (�1 \ (A ∪ B)) ≡T B. �

Corollary 3.13. For every �1-c.e. degree d there is an �1-computable order-type
such thatDegSpecSucc(�) = {d}.
Wenote thatCorollary 3.13 fails for�-computability:By theDowney-Lempp-Wu
theorem, if � is an�-computable order-type andDegSpecSucc(�) is a singleton, then
it must be {0′}. Downey and Moses [6] constructed an �-computable order-type
such that DegSpecSucc(�) = {0′} (a computable linear ordering with an intrinsically
complete successor relation). Their construction is much more difficult than ours.
We turn to investigate how many of the intermediate degrees in the interval
[min(�),max(�)] must be contained in DegSpecSucc(�).
Theorem 3.14. There is an �1-computable, weakly separable order-type � with
uncountablymany adjacencies such thatDegSpecSucc(�) �= [min(�),max(�)]. Indeed,
there is an �1-c.e. set M with min(�) ≤T M ≤wtt maxwtt(�) but degT(M ) �∈
DegSpecSucc(L).
Proof. We build an �1-computable linear ordering L by starting with Q and
inserting either two or three points into every cut of Q. This means that every cut
ofQ is in IQ>1(L), so IQ>1(L) is computable. Also IQ∞(L) is empty. Somin(�) = 0, and
maxwtt(�) = degwtt(I

Q
3 (L)).

Hence, it is sufficient to build L and a c.e. set M such that M ≤wtt IQ3 (L),
but degT(M ) /∈ DegSpecSucc(L). We build L by enumerating IQ3 (L). That is, we
enumerate a c.e. set P of cuts of Q with P = IQ3 (L).
We can effectively list all “partial” computable orderings, that is, computable
linear orders of c.e. domains.Weuse this to get a list 〈Ai ,Φi ,Ψi , �i〉 of all quadruples
consisting of a partial computable linear order, two Turing functionals, and an
injective countable function �i whose domain is Q. The intended oracle of Ψi is
Succ(Ai ); we require that any query Ψi makes to the oracle does not mention pairs
involving elements in the range of �i .
For all i < �1, the requirement Ri states that one of three outcomes must
happen:

(a) There is no isomorphism from L to Ai extending �i .
(b) Φi(M ) �= Succ(Ai).
(c) M �= Ψi (Succ(Ai )).
If every requirement Ri is met, then degT(M ) /∈ DegSpecSucc(L). For suppose
that A is a computable copy of L, and that Succ(A) ≡T M . Let F : L → A be an
isomorphism. The point is that there is a reduction of M to Succ(A) which does
not query any pairs containing elements of F � Q, as there are only countably many
such pairs. This shows that there is some i for which Ri fails.

The construction is a priority argument. A requirement Ri may be assigned a
witness—a cut (Q1(i), Q2(i)) of Q—to work with. If we act for requirement Ri at
stage s , then the witnesses (Q1(j), Q2(j)) for j > i are all canceled, and will need
to be later redefined (with large value). In this way, the requirement Ri imposes
restraint on weaker requirements Rj . If not reset by stronger requirements, the
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witness persists to the next stage and across limit stages. A requirementRi may also
appoint a follower m(i), targeted forM ; the same rules apply.
We say that Ai appears correct at stage s if range�i ⊆ Ai,s , �i is an embedding

of Q into Ai , and for all cuts (Q1, Q2) <�1 s of Q, (�i [Q1], �i [Q2])Ai,s contains two
points if (Q1, Q2) /∈ Ps , and three points if (Q1, Q2) ∈ Ps . The point, of course, is
that if F is an isomorphism fromL toAi which extends �i , then for all cuts (Q1, Q2)
of Q, F (Q1, Q2)L = (�i [Q1], �i [Q2])Ai , and so the latter contains two points if
(Q1, Q2) /∈ P, and three otherwise.
If the witness (Q1(i), Q2(i)) is defined at stage s >�1 (Q1(i), Q2(i)), and Ai

appears correct at stage s , then the interval (�i [Q1(i)], �i [Q2(i)])Ai contains at least
two points; we let a(i) and b(i) be the two points which are first enumerated in this
interval.
A requirementRi requires attention at stage s ifAi appears correct at stage s , and

one of the following hold:
(1) A witness (Q1(i), Q2(i)) is not defined at stage s .
(2) A witness (Q1(i), Q2(i)) <�1 s is defined, Φi(M, (a(i), b(i)))↓= 1 [s], and a
follower m(i) is not defined at stage s .

(3) A follower m(i) is defined, Ψi(Succ(Ai), m(i))↓= 0 [s], and m(i) �∈Ms .
At stage s we act on behalf of the strongest requirement which requires attention.

Say we act for Ri at stage s . In case (1), we define a new witness (Q1(i), Q2(i))
with large value. In case (2), we appoint a new follower m(i) with large value. In
case (3), we enumerate m(i) into Ms+1, and enumerate (Q1(i), Q2(i)) into Ps+1.
This construction definesM and P, and so defines �.
We first show that M ≤wtt IQ3 (L). Observe that x ∈ M only if x is chosen as

a follower for some requirement by stage x. If x is a follower for Ri at stage x,
then x ∈ M if and only if the interval (Q1(i), Q2(i))L contains three points. The
cut (Q1(i), Q2(i)) is obtained effectively from x, and so the use of this reduction
is computably bounded. We note that this reduction is the only driver for making
intervals of size 3; the requirementsRi would be easilymet if everyQ-interval has two
elements, making Succ(L) intrinsically computable andmakingM noncomputable.
Finally, we see that every requirement is met. An inductive “countable injury”

argument shows that for every i < �1, Ri is only reset countably many times. For
if Ri is never injured after stage s , then we act for Ri at most three times after
stage s , possibly once at step (1), maybe later at step (2), and then maybe later at
step (3).
Fix i < �1; we show that the requirement Ri is met. Let r∗ be a stage after

which Ri is never reset. Suppose that there is an isomorphism F from L to Ai
extending �i , so Ri is not satisfied by clause (a) above. The regularity of �1 shows
that the set of stages at which Ai looks correct is closed and unbounded in �1.
This means that there is some stage s > r∗ at which we act for Ri by step (1),

appointing a witness cut (Q1(i), Q2(i)). This witness is never canceled. Since F
extends �i , the interval (�i [Q1(i)], �i [Q2(i)])Ai has the same number of points as
the interval (Q1, Q2)L, namely three if Ri ever reaches step (3) after stage r∗, and
two otherwise. Let a(i) and b(i) be the two points which are enumerated earliest
into (�i [Q1(i)], �i [Q2(i)])Ai .
If Ri never reaches step (2) after stage r∗, then (a(i), b(i)) ∈ Succ(Ai), but it is

not the case that Φi(M, (a(i), b(i))) = 1. In this case, Ri is satisfied by clause (b)
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above. Suppose that Ri reaches step (2) at some stage s ′ > r∗. The resetting of
weaker requirements at stage s ′, the fact that s ′ > r∗, and the fact that at step (2),
m(i) is chosen to be large, show that Φi(M, (a(i), b(i))) = 1.
At step (2), Ri appoints a follower m(i) which is never canceled. If Ri never
reaches step (3) after that, then m(i) /∈ M but Ψi(Succ(Ai), m(i)) �= 0, so Ri is
satisfied by clause (c) above. Suppose that Ri reaches step (3) at some stage t > r∗.
Thenm(i) ∈M ; we argue that Ψi(Succ(Ai), m(i)) = 0, which would mean thatRi
is satisfied by clause (c).
At stage t, Ψi(Succ(Ai), m(i)) = 0. We show that Succ(Ai ) and Succ(Ai,t) agree
on the use of the computation at stage t. Since Ψi does not query pairs involving
elements of �i [Q], and since pairs of elements from distinct �i [Q]-intervals of Ai
are not successor pairs in either Ai or Ai,t , it suffices to show that for all Q-cuts
(Q1, Q2) <�1 t, for all a <Ai b in (�i [Q1], �i [Q2])Ai,t , (a, b) ∈ Succ(Ai,t) if and only
if (a, b) ∈ Succ(Ai).
Let (Q1, Q2) <�1 t be a cut of Q, and let a <Ai b be elements of the interval
(�i [Q1], �i [Q2])Ai,t . There are two cases. If (Q1, Q2) �= (Q1(i), Q2(i)), then the fact
that t > r∗, and the fact that Ri resets weaker requirements at stage s (and later
these requirements choose large witnesses) means that (Q1, Q2) ∈ P if and only
if (Q1, Q2) ∈ Pt . At stage t, Ai appears correct, so (�i [Q1], �i [Q2])Ai,t contains
three points if and only if (Q1, Q2) ∈ Pt ; and since F extends �i , the interval
(�i [Q1], �i [Q2])Ai contains three points if and only if (Q1, Q2) ∈ P. It follows that
(�i [Q1], �i [Q2])Ai ,t = (�i [Q1], �i [Q2])Ai , so Succ(Ai) cannot change on (a, b) after
stage t.
If (Q1, Q2) = (Q1(i), Q2(i)), then as (Q1, Q2) /∈ Pt , we must have a = a(i) and
b = b(i). We have (a(i), b(i)) ∈ Succ(Ai,t), and by assumption, (a(i), b(i)) ∈
Succ(Ai ). In other words, the third point enumerated into (�i [Q1], �i [Q2])Ai after
stage t does not break the adjacency (a(i), b(i)), or otherwiseRi is already satisfied
by clause (b) as explained above. �
At the opposite extreme, there is an �1-computable linear order L such that the
degree spectrum of its successor relation contains every �1-c.e. degree. This follows
from Theorem 3.4, applying it to any�1-computable linear ordering L which is not
weakly separable but such that Succ(L) is �1-computable; an example for such an
ordering is (�1, <). Here, we show that the example can be weakly separable.

Theorem 3.15. There is an�1-computable,weakly separable order-type� such that
the degree spectrum DegSpecSucc(�) contains every c.e. degree. Further, every �1-c.e.
set is weak truth-table equivalent to Succ(L) for some �1-computable presentation
of L.
Proof. The idea is to effectively encode the setWα intoL by replacing the (α, �)th
irrational with the order-type 2 or 3 depending on whether � ∈Wα . Fix an effective
list

〈
rα,�

〉
α,�<�1

of all the irrational numbers.
The order L is obtained from R by replacing rα,� by two points if � �∈ Wα and
by three points if � ∈ Wα . Then L is computable, and Q ⊆ L witnesses that L is
weakly separable.
For any � < �1, we construct a computable A ∼= L such that Succ(A) ≡wtt W� .
We start withQ; for any irrational number r, letCr be theQ-interval ofA replacing r.
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We start by enumerating two points into each Cr . If � enters Wα , and α �= �, we
enumerate a third point into Crα,� to the right of the existing two points. If �
enters W� , then we enumerate a third point into Cr�,� between the existing two
points.
To compute Succ(A) fromW� , we take a <A b; again, wemay assume that a, b /∈

Q, and that they lie in the same Q-interval Crα,� ; α and � are effectively obtained
from a and b. If α �= �, then (a, b) ∈ Succ(A) if and only if (a, b) ∈ Succ(As ) for
any stage s at which a, b ∈ As . If α = �, thenW� tells us the size of Cr�,� , and so
a stage s at which Cr�,� ,s = Cr�,� ; then, of course, (a, b) ∈ Succ(A) if and only if
(a, b) ∈ Succ(As ).
To computeW� from Succ(A), for � < �1, we let a <A b be the first two points

enumerated into Cr�,� ; these are obtained effectively from � . Then � ∈ W� if and
only if (a, b) ∈ Succ(A). �
3.1. Open Questions on Spectra of Relations. We close this section with some

open questions concerning the spectra of relations on �1-computable linear orders.

Question 3.16. Is there an�1-computable weakly separable linear order such that
min(�) < max(�) butDegSpecSucc(�) = {min(�),max(�)}? In general, what are the
possible relations between DegSpecSucc(�) and the interval [min(�),max(�)]?

Question 3.17. What can be said about the degree spectra of the block relation
“a <L b and (a, b)L is finite” or the countable-distance relation “a <L b and (a, b)L is
countable” in�1-computable linear orderings?These areΠ01 andΣ

0
2, respectively; when

are the degree spectra of these relations upwards closed in the appropriate degrees?
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