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Latent variable mixture modeling represents a flexible approach to investigating population heterogeneity by sorting
cases into latent but non-arbitrary subgroups that are more homogeneous. The purpose of this selective review is to pro-
vide a non-technical introduction to mixture modeling in a cross-sectional context. Latent class analysis is used to classify
individuals into homogeneous subgroups (latent classes). Factor mixture modeling represents a newer approach that
represents a fusion of latent class analysis and factor analysis. Factor mixture models are adaptable to representing cat-
egorical and dimensional states of affairs. This article provides an overview of latent variable mixture models and illus-
trates the application of these methods by applying them to the study of the latent structure of psychotic experiences. The
flexibility of latent variable mixture models makes them adaptable to the study of heterogeneity in complex psychiatric
and psychological phenomena. They also allow researchers to address research questions that directly compare the via-
bility of dimensional, categorical and hybrid conceptions of constructs.
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Introduction

Researchers in the fields of psychiatry and psychology
are fundamentally interested in the nature of individ-
ual differences that explain variability observed
among people, objects, relationships and other entities.
The forms of heterogeneity that are of interest are fea-
tures of observations obtained from experimental, psy-
chopharmacological, physiological, clinical, genetic,
epidemiological and psychometric data. Latent vari-
able modeling is a flexible analytical approach that
allows researchers to study patterns of observations
in data and make inferences about unobserved sources
of population heterogeneity. The flexibility of latent
variable modeling also allows researchers to study pat-
terns of observations in data in relation to other exter-
nal variables including covariates and distal outcomes.
Latent variable mixture modeling (LVMM) is an exten-
sion of latent variable modeling to occasions when
researchers are interested in testing hypotheses

* Address for correspondence: J. Miettunen, Center for Life Course
Epidemiology and Systems Medicine, PO Box 5000, 90014 University
of Oulu, Finland.

(Email: jouko.miettunen@oulu.fi)

https://doi.org/10.1017/50033291715002305 Published online by Cambridge University Press

about categorical sources of population heterogeneity
within a dataset. The purpose of this review is to pro-
vide a primer on LVMM and illustrate the use of
LVMM by analysing cross-sectional data on psychotic
experiences.

A brief primer on LVMMs

Researchers interested in the sources of individual dif-
ferences are faced with an added conundrum of distin-
guishing among kinds of latent heterogeneity, that is,
whether the observed pattern of responses is best
explained by a few set dimensions or domains or non-
arbitrary boundaries that distinguish “types’ of respon-
ders. The LVMM modeling framework provides tools
that allows the researcher to sort cases into homoge-
neous subgroups of respondents that are more similar
to each other than other subgroups. LVMM allows the
researchers to directly test the comparative viability of
alternate conjectures of the number of subgroups that
underpin observations in the data. Recent analytic
strategies also allow researchers to distinguish data
with: (1) a categorical latent structure — that is, the
observed distribution comprises two or more latent
categories or subgroups of responders; (2) a


https://doi.org/10.1017/S0033291715002305

458 ]. Miettunen et al.

Source of Population

v Heterogeneity ¢
Ohserved Latent

P —————————————————————— e

Manifest variable 1
S R E I E dem o] | e | v
A 4 Y v h 4 A 4 v
: Continuous and : : Continuous and =
Continuous Categorical Categorical Continuous Categorical Categorical
(e e e e e P e ——
1 Latent :
l structure 1
—— e f— ——— — — o e o e ] w— o w— w— — — -
A v y A 4
Cimensional Categorical Hybrid Ci ional Categorical

v v \ v

v v v v

Independent
Samples T-test, Phi
ANOVA, e
Correlation/ Biserial Telraihonr. ¥ Factor
Regression, Path Correlation currelatlon,'d:n Analysis
Anac Square, Lo'eusm:
Ciscriminant fEgLeson
Analysis

Latent Factor Factor Latent Class
Profile Mixture ATz, Analysis,
Analysis Analysis Taxometrics

Fig. 1. A decision tree for selecting among different psychometric models for studying heterogeneity in datasets. ANOVA,

Analysis of variance.

dimensional structure — wherein observations subsume
a single population and are best explained by one or
more latent dimensions; and (3) a hybrid structure
with observations explained by categorical and dimen-
sional sources of heterogeneity.

Fundamentally, all latent variable models involve
mathematical representations of the relation between
latent variables and observed variables (Muthén &
Muthén, 2008). Models investigated depend on the dis-
tribution of the observations (dichotomous, ordered/
unordered categorical, continuous, count, and mixed)
and latent variable, and the cross-sectional v. longitu-
dinal nature of the data. For example, latent class ana-
lysis (LCA) models categorical latent variables with
categorical cross-sectional observations. Latent profile
analysis is an extension of LCA to situations in
which the indicator variables are continuous rather
than categorical (Marsh et al. 2009). Factor analysis
models dimensional latent variables whereas LVMMs
involve at least one categorical latent variable.
Whereas individuals are represented along dimensions
in factor analysis, mixture models assign cases into
classes or subgroups. In LVMM, posterior probabil-
ities, which represent the probability that an individual
belongs to each class, are obtained and used to infer
the correct class membership. It is expected that
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posterior probabilities may be non-zero for many
classes (i.e. partial membership); however, individuals
are assigned to the class with which they have the
highest probability.

More complex latent variable models may incorpor-
ate causal or path relations (structural equation mod-
els, structural equation mixture models) or combine
multiple latent variable models into hybrid models
[e.g. factor mixture models (FMMs), growth mixture
models] (Hoyle, 2012). Fig. 1 provides a decision tree
for selecting among several psychometric models for
studying heterogeneity in datasets.

Previous reviews that discussed the application of
latent variable models in psychiatry or psychology re-
search (Raykov et al. 1991; Crowley & Fan, 1997;
MacCallum & Austin, 2000; Curran & Hussong, 2003;
Streiner, 2005, 2006; Nelson et al. 2008) are often
quite old or focus on specific latent variable methods.
The more recent reviews include those by Masyn
et al. (2010), Sterba & Bauer (2010), Hallquist &
Wright (2014) and Wright & Hallquist (2014). In this
article we present a mixture modeling framework
that allows a researcher to determine whether a psychi-
atric construct is best viewed as categorical, dimen-
sional or both (such that it conforms to a hybrid
model). This framework seeks evidence of the best
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structural model by comparing purely dimensional
models using the general factor model to categorical
models (see, for example, Kuo et al. 2008; Ahmed
et al. 2013, 2015; Wright et al. 2013; Eaton et al. 2014;
Lubke & Miller, 2015). The current effort focuses on
the modeling of cross-sectional data with LCA and fac-
tor mixture modeling. We will illustrate the use of mix-
ture models to study the latent structure of psychotic
symptoms using data from the National Comorbidity
Survey (NCS; Kessler et al. 1994).

LCA

We begin with LCA, a statistical procedure that can be
used to classify individuals into homogeneous sub-
groups or latent classes. The latent class model is es-
sentially a regression of observed indicator variables
onto a set of one or more latent class variables (with
dummy-coded variables representing individual cat-
egories of the latent class variable). The latent class
model can be configured for outcome indicators that
are binary, polytomous, ordered/unordered categorical,
count or a combination of these response types. LCA
may be appropriate for occasions in which the re-
searcher believes that sample heterogeneity is best
explained by two or more subgroups. LCA can be
used in such a context to determine the number of
classes or subgroups of respondents needed to suffi-
ciently explain the differences in observed response
patterns (Geiser, 2013). LCA makes a strong assump-
tion of local independence in which the latent class
variable accounts for all observed variation and covari-
ance patterns observed in the data. Within individual
classes, there is zero covariance and dependence
among the observed indicator variables. In practice,
the local independence assumption may be unrealistic
for many psychiatric and psychological constructs. For
example, within clinical samples, symptoms such as
hallucinations, delusions, depression and anxiety are
often fairly correlated and may be apt to violate local
independence assumptions in ordinary LCA.
Alternate configurations of the latent class model
may relax assumptions of local independence and
allow some observed variables to covary within classes
(Vermunt & Magidson, 2000). In such models, direct
effects or correlated errors may be incorporated to ac-
count for non-zero dependence among pairs of obser-
Models that relax the independence
assumption may be more appropriate for psychiatric

vations.

data and the researcher may consider such models in-
stead of ordinary LCA. It is reasonable to, however,
begin by fitting ordinary LCA to the data and compare
with one with relaxed local independence assump-
tions. This will allow the validity of the local independ-
ence assumption to be checked for the class solution
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imposed on the data to adjudge the appropriateness
of the ordinary LCA to the data. Independence
assumptions can be checked through an examination
of the bivariate residuals. More on LCA can be found
from previous reviews (Muthén, 2001; Hagenaars &
McCutcheon, 2002; Collins & Lanza, 2010).

One consideration in the application of LCA to psy-
chiatric data is determining the number of classes to fit
to the data or the class models to compare. It is helpful
in this case to be informed by theoretical conjectures
regarding the latent structure of the construct. LCA
may provide a means to compare the relative viabilities
of alternate conjectures regarding subtypes or sub-
groups. One common example is comparing a dimen-
sional (one-class) hypothesis to dichotomous or
polytomous conjectures. Many studies using LCA
have chosen to compare several class solutions by pro-
gressively increasing the number of classes fitted on
the data until a preferred solution is reached.
However, fitting multiple structural models to the
same data might inflate type 1 error rates for failing
to reject less complex models. Therefore, the results
may be less reliable using this approach.

FMMs

More recent investigations of subgroups in samples
have used a collection of modeling techniques that re-
present a fusion of LCA and factor analysis (Yung,
1997; Dolan & van der Maas, 1998; Arminger et al.
1999; Vermunt & Magidson, 2002; Lubke & Muthén,
2005; Muthén, 2006). This family of FMMs is advanta-
geous because they are capable of representing cat-
egorical and dimensional state of affairs (Muthén,
2006). FMMs can provide the numbers of latent classes
that best describe the data. FMMs can also provide fac-
tor scores, which may aid in determining whether dif-
ferences across groups on indicators are best viewed as
qualitative or quantitative through an examination of
class differences in factor scores. FMMs are based on
the premise that the observed relationship among a
set of indicators is influenced by one latent class vari-
able and one or more continuous factors. FMMs
draw from LCA in their assumption that a latent
class variable influences the observations in the popu-
lation, but depart from LCA in that they do not assume
local independence, but rather suggest that within
classes, one or more factors influence the indicator
variables, causing them to covary. As enumerated by
Muthén and colleagues, FMMs vary in their degree
of complexity (Lubke & Muthén, 2005; Clark et al.
2013). Indeed ordinary LCA is a very restricted form
of FMM with zero factor loadings or factor variance.
Compared with other FMMs, however, LCA tends to
extract many more classes given that response patterns
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and association among observed variables are attribu-
ted to mean differences across classes. Fewer classes
are needed to explain observed associations in FMM
if within-class covariance is permitted.

Latent class factor analysis (LCFA)

LCFA (Muthén, 2006) represents another simple confi-
guration of FMM. Relative to other FMMSs, LCFA is
characterized by class-invariant factor loading and
item thresholds — LCFA and other simple configura-
tions of FMMSs may fix factor loadings and item thresh-
olds to be equal across classes. In this case, the
computed factor variance and covariance are zero
whereas item probabilities are unequal. In more com-
plex configurations, factor variance/covariance across
classes can be relaxed and item thresholds may be un-
equal across classes (Clark et al. 2013). The flexibility of
FMMs also allows the researcher to incorporate the ef-
fect of covariates on latent variables. For example, if a
researcher is interested in whether a family history of
alcoholism contributes to the likelihood of group mem-
bership in a particular class, this variable may be incor-
porated into the model as a covariate on which factor
and class variables can be regressed. Lubke &
Muthén (2007) conceptualize the final step as a multi-
nomial logistic regression with the covariate predicting
the log odds of the probability of belonging to one
class as compared with belonging to the reference
category.

The flexibility of the FMM approach allows the re-
searcher to build measurement models that may be
most reasonable for response patterns observed in
the data. In this context, decisions have to be made
about: (1) the number of factors to be imposed on the
model; (2) the number of classes to be fitted on the
model; and (3) whether factor loading should be vari-
ant or invariant across conjectured classes. As with
other latent variable models, a theory-driven approach
may confer the advantage of limiting the number of
factor—class configurations that would be fitted to the
data, thereby limiting the risk of type 1 error.
Competing conjectures about the factor structure
and/or class structure of the construct may be tested
directly in FMM. In the absence of strong theories, an
exploratory approach informed by previous findings
regarding factor and/or class structure may be useful.
Depending on the source of the data, one may expect
items that assess psychiatric symptoms to have low
probabilities in general population samples but higher
probabilities in hospital-based samples. Psychiatric
patients would be expected to endorse such items at
higher rates than non-clinical cases. LCFA may be
most appropriate for occasions in which item probabil-
ities are not expected to be starkly different across
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classes — that is, the observed variable is equally rele-
vant to each class. It might be, however, worthwhile
to free factor loading and variances across classes to
allow for more complex response patterns in general
population samples. This would allow items to vary
in the degree to which they contribute to within-class
severity differences and allow classes to differ in
their level of heterogeneity.

Interpretational framework

The family of LVMMs allows researchers to compare
the relative fits of competing structural models to the
research data. The structural hypotheses to be com-
pared often vary by the number of classes to be
imposed on the data and the number of underlying
factors or dimensions that explain the covariance
among outcome variables. Suppose a researcher were
interested in the optimal number of classes and dimen-
sions that underlie data. As previously discussed,
existing conjectures about the construct would serve
well to inform model specification and analytic strat-
egy. In the absence of guiding theory, an exploratory
approach could be taken but results have to be inter-
preted with caution. The first step would be to run a
series of confirmatory factor analyses (CFAs) to com-
pare the relative fits of either theoretically conjectured
or exploratory factor solutions to the data. The best fac-
tor structure can be selected informed by relevant fit
indices that include information criteria (discussed
below), confirmatory fit index (CFI), Tucker-Lewis
index (TLI) and the root mean square error of approxi-
mation (RMSEA). The available fit indices would de-
pend on the estimator selected to analyse the model.
The next step would be to run a series of LCAs testing
various class solutions. In the final step, FMMs can be
conducted, informed by the best factor solution from
CFA while imposing several class solutions. Given
the propensity of LCA to favor models with a larger
number of classes and extract too many classes from
the data, it is suggested that LCA set an upper limit
for the number of extracted classes in the FMM (see,
for example, Ahmed et al. 2013).

Model fit

The preferred class model is selected using fit indices;
however, the selection of preferred models should also
be informed by theory and previous research (Bauer &
Curran, 2003; Ram & Grimm, 2009). Likelihood ratio-
based statistics and three sets of information criteria in-
cluding the Akaike information criterion (AIC; Akaike,
1987), Bayesian information criterion (BIC; Schwarz,
1978) and sample size-adjusted BIC (aBIC; Sclove, 1987)
are available (e.g. in Mplus) as fit indices (Nylund et al.
2007). For more information on these fit indices and
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on available statistical software, see the online

Supplementary Appendices S1 and S2.

Mixture modeling of psychosis data from the NCS

This section illustrates the use of mixture modeling to
examine the latent structure of psychosis in the NCS
(Kessler et al. 1994). To investigate if classes underpin
psychotic experiences, several considerations can in-
form the model specification and analytic strategy.
Competing theories about the existence of boundaries
in the psychosis phenotype can inform a research ques-
tion and analytic strategy. The current Diagnostic and
Statistical Manual of Mental Disorders (DSM) classifi-
cation of psychotic disorders is informed by the
Kraepelinian dichotomy that distinguishes psychosis
in schizophrenia and other psychotic disorders from
psychotic experiences in mood disorders (Craddock
& Owen, 2005; Tandon et al. 2008). The DSM thus
posits a categorical approach to psychosis with two
or more classes. In contrast, dimensional models of
psychosis posit that psychotic experiences cut across
diagnostic boundaries so that they are feature of psych-
otic disorders, mood disturbances and other psychi-
atric illnesses (Strauss, 1969; Allardyce et al. 2007).
Dimensional views also argue that psychotic experi-
ences, which are prevalent among even the unaffected,
exist on a severity gradient, with people with psychotic
disorders at the severe end and the rest of the popula-
tion at various levels of the gradient (Strauss, 1969).
Previous LCA studies of psychosis have tended to
identify three or four classes (Shevlin et al. 2007;
Murphy et al. 2010; Gale et al. 2011; Ndetei et al.
2012; Mamabh et al. 2013). Shevlin et al. (2007), who
used data from the NCS, found evidence of four classes
of psychotic experiences. These studies, however, sug-
gested that a latent dimension may underlie the classes
they detected without actually testing a dimensional
hypothesis.

Factor analytic studies of subclinical psychotic
experiences have been less consistent, mostly due to
differences in the item coverage of symptoms
(Kitamura et al. 1998, Wuthrich & Bates, 2006;
Fonseca-Pedrero et al. 2010; Murphy et al. 2010;
Bakhshaie et al. 2011; Heering et al. 2013). Factor solu-
tions have ranged from two to as many as five factors.
One study using data from the NCS produced evi-
dence of a three-factor structure of psychotic experi-
ences (Murphy et al. 2010). No studies have,
however, examined the structure of psychosis using
hybrid FMMs. The greater question of whether psych-
otic experiences are categorical, dimensional or possess
elements of both can be addressed by comparing pure-
ly dimensional models with class models and hybrid
FMMs. Previous investigations in the NCS data have
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favored as many as four classes and three factors;
thus it might make sense to fit as many classes and
factors in LCA and CFA models, respectively.

Although psychotic experiences were prevalent in
the NCS sample, endorsed by 28.4% of respondents,
the actual prevalence of non-affective psychosis
in the sample was no greater than 0.7% (Kendler
et al. 1996). One question is how to handle the majority
of respondents who neither meet criteria nor endorse
any psychotic experiences. One consideration could
be to exclude those individuals from the analysis
but this is an undesirable approach given that zero-
response patterns are a property by virtue of many
psychiatric constructs when measured in the general
population. Moreover, covariates of zero response pat-
terns may be useful and informative in some context.
A more defensible approach is to incorporate a zero
class in which factor means and variances are set to
zero for the specified zero class whereas non-zero
classes are allowed to be estimated (Muthén &
Asparouhov, 2006). The degree to which incorporating
a zero class improves or degrades a model can be
investigated.

With regard to psychiatric theory, purely dimen-
sional models may suggest that factor loading should
be naturally invariant across the entire sample and
similar for both individuals that meet criteria for non-
affective psychosis and unaffected cases. Hybrid theor-
etical models can, however, accommodate the presence
or absence of measurement invariance. An example is
the similarities in the dimensions that underlie schizo-
typy across clinical samples and unaffected individuals
(Reynolds et al. 2000). Analytically, it is possible to fit
and compare models that assume that the same factors
influence item probabilities across classes (i.e. LCFA)
and more complex models that relax this assumption
(more complex FMMs). In the latter, the dimensions
are not equivalent across classes.

Sample size considerations

Adequate sample sizes are needed for implementing
mixture models. Although conventions common to la-
tent variable models such as 10 observations to each
parameter estimated have been applied to LVMM,
this has been found to be unreliable (Wolf et al.
2013). Moreover, the sample size requirements depend
on many factors including the complexity of the mod-
els to be estimated, the number of variables and their
distribution, and the number of classes to be estimated
(Muthén & Muthén, 2002; Wolf et al. 2013). The use of
Monte Carlo samples has been recommended as a
method for determining the adequacy of sample size
for latent variable models (Muthén & Muthén, 2002;
Wolf et al. 2013). The models to be evaluated are
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imposed on several samples that mimic the character-
istics of the research data. Adequate sample sizes are
necessary for attenuating bias in the estimation of para-
meters and standard errors, and decreasing the risk of
non-convergence, and improper solutions. Relevant
and meaningful classes, particularly those with small
class probabilities, may be poorly represented and
difficult to detect in small samples. The use of an epi-
demiological sample in the current demonstration,
however, ensures that putative classes are well repre-
sented for the analysis.

The NCS was completed by the Survey Research
Center of the University of Michigan between 1990
and 1992. The epidemiological survey assessed several
psychiatric symptoms in 8098 non-institutionalized
individuals aged 18-54 years, living in the USA. The
NCS obtained information about psychotic experiences
from 5908 respondents using survey questions
drawn from the World Mental Health Composite
International Diagnostic Interview (WMH-CIDI). The
NCS psychosis questionnaire comprised 90 items that
assessed positive symptoms, age of onset, duration,
rule outs and treatment seeking. For the ease of run-
ning the mixture models, we selected 20 symptom
items from the psychotic disorders section (Table 1).
The selected items assessed hallucinations of all sen-
sory domains, although many more items focused on
auditory hallucinations. Participants’ responses to the
20 items were submitted to LCA, CFA, LCFA and a
less restrictive form of FMM. All analyses were com-
pleted using Mplus 5 (Muthén & Muthén, 2008).
Annotated syntaxes are presented in the online
Supplementary Appendix S3.

CFA of NCS psychosis data

First, factor models were fitted to the psychosis symp-
tom items. We fitted one to four factors because fitting
these models would allow us to compare the three-
factor model of Murphy et al. (2010) of the NCS psych-
osis items to alternative models. Each CFA was tested
using two estimators — maximum likelihood parameter
estimates with standard errors robust to non-normality
(robust maximum likelihood; MLR) and robust
weighted least square (WLSM). The fit statistics for
the factor models are presented in Table 2 including
maximum log-likelihood estimates, information cri-
teria, CFI, TLI and RMSEA. Examination of the fit sta-
tistics suggests that a three-factor model is the
preferred model. The information criteria are lowest
for a three-factor model. Moreover, examination of
the CFI, TLI and RMSEA shows little improvement
from a three-factor to a four-factor model. The CFA
results confirmed the finding of Murphy et al. (2010)
of a three-factor structure for the NCS psychosis
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items. Table 2 also includes results of an exploratory
factor analytic run which similarly favored a three-
factor model.

LCA of NCS psychosis data

Next, the 20 psychosis items were submitted to LCA
with solutions ranging from two to five classes.
Fitting this number of models will allow us to
confirm/disconfirm prevalent LCA models of psych-
osis that often suggest three or four classes, including
the finding of Shevlin et al. (2007) of a four-class
model. Table 2 summarizes the fit statistics obtained
from all analytic models. The AIC and the aBIC
slightly favored the four-class model whereas the BIC
favored the three-class model. While the four-class
preference of Shevlin ef al. (2007) is supported, an argu-
ment can also be made for a three-class model. The
aBIC only decreases by nine points and the AIC by
about 22 points going from the three-class to the four-
class model, suggesting that not much is gained be-
yond the three-class model. Fig. 2 depicts the item
profiles of the three-class solution with the item num-
bers on the x-axis and the item probability on the
y-axis. The item endorsement profile across classes is
parallel with the classes, appearing to be ordered
from lowest to highest in item endorsement probabil-
ities. The mixing proportions of the three classes
from class 1, which has the highest endorsement prob-
ability, to class 3, which has the lowest, are 2.34, 81.95
and 15.71%. The classification quality (entropy) or the
degree to which classes could readily be distinguish-
able is adequate at 0.826.

FMM of NCS psychosis data

Given that the endorsement of psychosis items is high-
est among people who met criteria for a psychotic dis-
order and lowest among unaffected individuals, it
made sense to fit a FMM that relaxes measurement in-
variance assumptions to the data. We compared this
relatively more complex FMM with a simple FMM
with class-invariant factor loadings and item thresh-
olds (LCFA). All of the fitted hybrid models included
three factors, informed by the best-fit CFA model.
We set a four-class structure as the upper limit for
the number of classes, informed partly by the preferred
model from the LCA. It should be noted that for both
the LCFA and the more complex FMMV, the three-factor
four-class solution could not be estimated by the pro-
gram. In some cases, this may suggest that too many
classes are being extracted from the data.

The results of the FMM and the fit statistics are sum-
marized in Table 3. When the LCFA and the complex
FMM are compared, the LCFA is a slightly better fit
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Table 1. Selected National Comorbidity Survey Items, endorsement rates and loadings from exploratory factor analysis®

Item

National Comorbidity Survey item probability Factor 1 Factor2 Factor 3

Ul: Have you ever believed that people were spying on you or following you? 12.70 0.546° —0213 —0.157

U2: Have you ever believed that you were being secretly tested or experimented on, that someone was plotting against you, or that someone  3.70 0.741°> —0527 —0.177
was trying to poison you or hurt you?

U3: Have you ever believed that someone was reading your mind? 7.10 0.634>  0.201 0.053

U4: Have you ever believed that others could hear your thoughts? 3.70 0.611°  0.229 0.100

U5: Have you ever believed you could actually hear what another person was thinking even though that person was not speaking? 6.50 0.638" 0.297 0.163

U6: Have you ever been convinced that you were under the control of some power or force, so that your actions and thoughts were not your ~ 3.20 0.748° 0.073  -0.022
own?

U7: Have you ever been convinced that strange thoughts, or thoughts that were not your own, were being put directly into your mind, or ~ 2.40 0.757° 0.089  —0.016
that someone or something could steal your thoughts out of your mind?

U8: Have you ever believed that you were being sent special messages through television or the radio, or that a program had been arranged ~ 2.30 0.809° —0.069 0.006
just for you alone?

U9: Have you ever felt strange forces working on you, as if you were being hypnotized or magic was being performed on you, or you were ~ 1.20 0.641° 0.257 —-0.112
being hit by laser beams or X-rays?

U10: Have you ever had the experience of seeing something or someone that others present could not see, that is, had a vision when you  8.40 0.524° 0.200 —0.161
were wide awake?

U11: Have you ever had the experience of hearing things that other people could not hear, such as noises or a voice? 7.90 —0.142 0.118  —1.150°

U12: Did you ever hear voices others could not hear? 0.30 0147 —0231 —0.748"

U13: Did this voice come from some part of your body? 0.80 0.215 0.470°  —0.430

U14: Did you ever hear voices that other people could not hear that were commenting on what you were doing or thinking? 1.20 0.375 0367 —0.456°

U15: Did you ever hear two or more voices talking to each other that other people could not hear? 1.10 0.376 0.140 —0.573°

U16: Were these voices discussing you? 0.50 0.348  —0.059  —0.748"

U17: Did you ever carry on a two-way conversation with the voices just as though someone was there with you? 1.10 0.321 0.526°  —0.409

U18: Did you ever actually see who you were talking to when you carried on a conversation with the voices? 0.40 0.174 0.797°  —0.289

U19: Have you ever been bothered by strange smells around you that nobody else was able to smell, perhaps even odors coming from your — 4.40 0410° —0.053 —0.298
own body?

U20: Have you ever had unusual feelings inside or on your body, like being touched when nothing was there or feeling something moving ~ 7.20 0.517° 0.101  —0.246

inside your body?

?Loadings were generated from a Quartimin rotation.
b Preferred factor assignment.
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Table 2. Factor analysis of National Comorbidity Survey psychosis data: model fit results

LL k AIC BIC aBIC k CFI TLI RMSEA

Psychosis CFA

One-factor —7202.51 41 14487.03 14732.56 14602.29 41 0.964 0.976 0.034

Two-factor —7150.69 42 14 385.37 14 636.89 14503.44 42 0.976 0.984 0.028

Three-factor” —7121.96 44 14331.93 14 595.42 14.455.62 44 0.981 0.987 0.025

Four-factor —7137.22 47 14 401.55 14 688.74 14564.19 47 0.982 0.988 0.024
Psychosis EFA

One-factor —7310.30 41 14702.60 14 948.13 14 817.86 20 0.978 0.976 0.034

Two-factor —7128.10 60 14376.21 14735.52 14544.88 39 0.990 0.988 0.024

Three-factor” —7079.97 78 14 315.95 14783.05 14 535.22 57 0.996 0.994 0.017

Four-factor —7086.39 95 14362.78 14 931.69 14 629.84 74 0.998 0.997 0.011

LL, Log-likelihood; k, number of free parameters; AIC, Akaike information criterion; BIC, Bayesian information criterion;
aBIC, sample size-adjusted BIC; CFI, confirmatory fit index; TLI, Tucker—Lewis index; RMSEA, root mean square error of ap-
proximation; CFA, confirmatory factor analysis; EFA, exploratory factor analysis.

? Preferred model.

0.954 ——O—— s 1,24%

0.94 —A—— s 2, 785%
0.85- ——0asa 3, 121%

0.8
0.754
0.7+
0.65
0.6+
0.55

o
w
1

0.454

Item Probability

o
.
L

0.354
0.3
0.254
0.2
0.15+
0.1
0.05+

i

Item Number

Fes Pet
T T T | T 1
uwy w P~ @ b=zl =
—_ —_ — — - o

Fig. 2. Item profiles of the three-class solution with the item numbers on the x-axis and the item probability on the y-axis.

when all of the fit indices are examined. However,
when all of the hybrid models are compared with the
three-factor CFA, the information criteria are lower
for the latter. Next, we examine the p values obtained
when the three-factor solution is nested within the
more complex three-factor two-class solution. Here,
the p values produced by the LMR, aLMR and boot-
strap likelihood ratio test exceed the 0.05 a level. We
therefore fail to reject the three-factor solution. Across
all latent variable models (CFA, LCA, LCFA and

https://doi.org/10.1017/50033291715002305 Published online by Cambridge University Press

FMM), the fit indices suggest that the psychosis data
are best described by three factors and one population
(i.e. a purely dimensional model).

On the latent structure of the psychosis phenotype

Responses to psychosis items on the NCS conform to a
three-factor structure, suggesting that psychotic experi-
ences exist on continua of severity in the general popu-
lation. The absence of distinct boundaries in psychotic
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2 Note that the three-factor, four-class models were non-identified.

b Preferred model.
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experiences is consistent with dimensional conceptions
of the psychosis phenotype (Strauss, 1969; Allardyce
et al. 2007; Ahmed et al. 20124, b).

Conclusions

Latent variable models are a family of flexible proce-
dures that allow researchers to describe the associa-
tions that exists among latent variables, their
manifest indicators and their covariates. The flexibility
of latent variable models allows the latent variables of
interest and their manifest indicators to be continuous,
categorical or both. Factor analytic models depict asso-
ciations between a continuous latent variable and a set
of categorical and/or continuous manifest (outcome)
variables. LVMM is an extension of latent variable
modeling to occasions when researchers are interested
in testing hypotheses about categorical sources of
population heterogeneity within a dataset. LCA depicts
the association between a categorical latent variable
and its categorical and/or dimensional manifest vari-
ables. The family of FMMs combines factor analysis
and LCA to estimate models that conjecture the exist-
ence of co-occurring categorical and dimensional latent
variables that both influence manifest variables.

LVMMs have seen an increased use in their applica-
tion to study psychiatric and psychological constructs,
no doubt due to the simultaneous development of
computer capacity and the availability of analysis soft-
ware. LVMMSs, however, remain underutilized.
Although ideal for this sort of investigations, very
few studies have used FMMs to study discontinuities
in psychiatric disorders. This represents an unfavor-
able contrast to the wide application of LCA and multi-
variate taxometric methods (Meehl, 1999; Haslam et al.
2012). The current application of LVMM to NCS psych-
osis data demonstrates that it can provide results that
are consistent with those of taxometric methods.
Specifically, the dimensional structure of psychotic
experiences in the general population is further sup-
ported by the current demonstration.

LVMMs require several choices from the re-
searchers — the variables that are to be used in analyses,
the associations to be modeled and how the latent vari-
ables are named and interpreted. All these choices
should be well justified. LVMM offers substantial
advantages over more traditional statistical methods
and use of these methods is recommended for various
research questions and designs in psychiatric and psy-
chological research.

Supplementary material

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/50033291715002305
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