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A Bayesian Account of the Virtue
of Unification*

Wayne C. Myrvold†‡

A Bayesian account of the virtue of unification is given. On this account, the ability of
a theory to unify disparate phenomena consists in the ability of the theory to render
such phenomena informationally relevant to each other. It is shown that such ability
contributes to the evidential support of the theory, and hence that preference for the-
ories that unify the phenomena need not, on a Bayesian account, be built into the prior
probabilities of theories.

1. Introduction. An account of unification of phenomena by theory should
make it clear what reasons, if any, we might have for preferring a theory
that provides a unified account of what otherwise might seem to be in-
dependent phenomena. Is the ability of a theory to unify phenomena an
epistemic virtue, relevant to the degree of confidence we can justifiably
place in the theory, or is it merely a pragmatic one? If epistemic, is this
based on a priori knowledge that Nature is simple, or does the ability of
the theory to provide a unified account of disparate phenomena contribute
to the evidential support these phenomena lend to the theory?

There is a surprisingly persistent tradition in the philosophy of science
that locates the whole of the empirical support of a theory in its ability to
save the phenomena. On such an account, if two theories both account
for all available empirical evidence, then the choice between them, if a
choice is to be made at all, must rest on extra-empirical considerations.
Simplicity and unification are popular candidates for such extra-empirical
considerations; these are often held to be pragmatic, or perhaps even aes-
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thetic, virtues, rather than epistemic virtues. We should ask whether sim-
plicity and unification can be defended from the charge of being extra-
empirical virtues and regarded instead as contributory to the empirical
support of the theory. It will be argued below that these qualities can play
a role in the degree to which empirical evidence supports a theory.

It is the purpose of this paper to give a Bayesian account of unification
that captures one interesting sense in which a theory can unify phenomena.
On this account, the ability of a theory to unify phenomena consists in its
ability to render what, on prior grounds, appear to be independent phe-
nomena informationally relevant to each other. It will be shown that it is
a consequence of Bayes’ theorem that this ability does, indeed, contribute
to the degree of support provided to the theory by the phenomena unified
by the theory; one need not base a preference for theories that unify on a
prior belief in the simplicity of Nature. No claim is being made that every
case that one can reasonably regard exhibiting unification will be captured
by this account. Nor is it claimed that the contribution made by unification
to the degree of support that the theory enjoys exhausts what is valuable
in unification; as William Harper (1989, 2002b) has argued, unification
can also result in greater resiliency in the face of apparently disconfirming
evidence.

A few words are in order about what is meant by a Bayesian account,
in the context of this paper. Bayesianism, as it is construed here, is an
approach to the construction of canons of scientific inference that takes
as its central notion degree of justified belief, represented by a real-valued
function Pr( • | • ) that takes propositions as its arguments and is assumed
to satisfy the axioms of the probability calculus. It will not be assumed
that there is a unique correct probability function; this feature of Bayes-
ianism is sometimes misleadingly called personalism.

The canons of inference that result are meant to have a status similar
to that of the canons of deductive inference. Neither are descriptive of the
way in which people actually think. No human being has a deductively
closed set of beliefs, and it is likely that no human being has a consistent
set of beliefs. These facts are, however, to be regarded as departures from
ideal rationality; if one comes to realize that one believes a set {p1, . . . ,
pn} of propositions but not some logical consequence q of this set, then
one ought not to rest content with this state of affairs but ought to consider
whether to accept q or to reject one or more of {p1, . . . , pn}. Similarly, it
is doubtful that anyone has numerical degrees of belief satisfying the ax-
ioms of probability. If, however, one becomes aware that one’s rankings
of propositions (perhaps only qualitative) as highly probable, somewhat
probable, highly improbable, etc., are inconsistent with the existence of
such numerical degrees of belief, then such rankings should be regarded
as failing to meet the standards of rationality. Moreover, it will not be
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1. The Copernican and Tychonic systems are, as far as the relative motions of the
planets are concerned, kinematically equivalent. For the purposes of this section, Ty-
cho’s and Copernicus’ systems can both be regarded as heliocentric, in that they both
center the planetary orbits near the sun, and hence both attribute part of the apparent
motion of the planets to the relative motion of the earth and sun. If one expects (as did
Kepler) that the sun will play a pre-eminent dynamical role in the motions of all the
planets, then such a consideration will support the Copernican system over the Ty-
chonic.

assumed that conformity with the axioms of probability will be all that
matters; some assignments of probability, on the basis of a given body of
evidence, are more reasonable than others, and we will be appealing to
the reader’s judgments about such reasonableness. The Bayesianism of
this paper is, to borrow a term from Shimony (1970), of the tempered sort.

We will want to consider probabilities of the form Pr(h | e & b), where
h is a hypothesis, e some body of evidence being explicitly considered, and
b an appropriate body of background information. The background b
need not be the sum total of facts known to an agent at some time, and,
in particular, should not include the evidence e being considered, as we
will want to judge the relevance of e to h and hence will want to take b
such that Pr(h | e & b) is not equal to Pr(h | b). It will be assumed that we
have available to us judgments (which may be somewhat vague) about the
reasonableness of assigning certain probabilities to hypotheses on the basis
of bodies of knowledge that differ from the sum total of our own knowl-
edge.

2. Examples. Two examples will be used to illustrate the notion of unifi-
cation to be discussed in this paper, and to guide our Bayesian account of
the epistemic value of such unification. The examples we will use are the
choice between geocentric and heliocentric world systems, and Newton’s
inference to the inverse square law of gravitation. It will become clear that
examples of this sort could be multiplied, and that the features exhibited
by these examples that are relevant to our account are quite common in
science.

2.1. Copernicus v. Ptolemy. As is well-known, Earth-based observations
concerning the positions (if not the phases) of planets can be predicted, with
good accuracy, both by systems such as Ptolemy’s, on which the planets
orbit the Earth, and systems such as the Copernican system or the Tychonic
system, on which the planets orbit the Sun.1 This has led to the suggestion
that a body of data consisting only of geocentric positions of the planets
leaves the decision between the systems a decision to be made on non-
empirical grounds; simplicity is frequently invoked as a non-empirical ad-
vantage possessed by the Copernican system.
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2. The following discussion ignores the variation in latitude of the planets. Also, for
Mercury, Ptolemy was compelled to resort to a more complicated arrangement; the
simple deferent/epicycle model mentioned here gives at best a first approximation of
Mercury’s motion.

The phenomena to be saved are the apparent motions of the planets with
respect to the fixed stars, as seen from Earth. Each planet traverses its path
through the zodiac, with its own period. This motion is not uniform, how-
ever; the planets proceed at varying rates, at times stopping and reversing
direction. In the case of the “superior” planets, Mars, Jupiter, and Saturn,
these retrogressions occur only when the planet is near opposition to the
Sun, with the greatest retrograde angular velocity occurring at opposition.
The period between successive oppositions, and hence between successive
maximally retrograde motions, is called the synodic period.

A geocentric system can recover these qualitative features of the motion
of the planets, and achieve a fairly good quantitative fit, by means of a
system consisting of a deferent and one epicycle for each planet.2 The
deferent is a circle centered near the Earth. The epicycle is a circle centered
on a point on the deferent which, in Ptolemy’s system, moves along the
deferent at an angular rate that appears constant when viewed, not from
the center of the circle, but from an equant point placed on the diameter
joining the Earth with the center of the deferent, at the same distance from
the center as the Earth but on the opposite side of the center. The planet
moves on the epicycle at a constant angular rate. Retrograde motion oc-
curs when the swifter motion of the planet on its epicycle is directed con-
trary to the motion of the center of the epicycle along the deferent.

The main features of these motions can be recovered by a single circle,
centered near the Sun, for each planet. The chief deviations of the apparent
motion of the planets from a uniform traversal of the ecliptic, which, on
the Ptolemaic system, are accounted for by the epicyclic motion, are, on
the Copernican system, due to the motion of the Earth about the Sun,
and, on the Tychonic system, to the motion of the Sun, carrying the plan-
ets’ orbits with it, about the Earth. On the Copernican system, apparent
retrograde motion occurs, in the case of the superior planets, when the
Earth catches up with and passes the planet in its orbit and, in the case of
the inferior planets, when the planet passes the Earth.

A heliocentric system is, in a certain sense, simpler than the Ptolemaic,
in that “[t]he motion of the Earth alone . . . suffices to explain so many
apparent inequalities in the heavens” (Copernicus, Commentariolus, in
Rosen 1959, 59). Rheticus, in his Narratio Prima, invokes the frugality of
Nature in support of the Copernican hypothesis:

Mathematicians as well as physicians must agree with the statements
emphasized by Galen here and there: “Nature does nothing without
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3. The Latin formulation given by Galileo (1953 [1632], 143), “frustra fit per plura quod
potest fieri per pauciora,” does not seem to be a translation of any dictum of Aristotle.
It does, however, occur in Duns Scotus’ commentary on Aristotle’s Physics, as well as
a number of other places in the writings of Scotus and of his student, William of Ock-
ham, and, though not originating with Ockham, has come to be associated with him
as one formulation of Ockham’s razor. For a discussion, see Thorburn 1918; Adams
1987, 156–161. The maxim is invoked by Newton in the third edition of the Principia
in support of Rule 1. As Thorburn points out, by the seventeenth century the maxim
had gained considerable currency, appearing even in a collection of legal maxims (Win-
gate 1653, 319, maxim 177). Newton’s invocation of it need not be regarded as a ref-
erence to any specific source.

purpose” and “So wise is our Maker that each of his works has not
one use, but two or three or often more.” Since we see that this one
motion of the Earth satisfies an almost infinite number of appear-
ances, should we not attribute to God, the creator of nature, that skill
which we observe in the common makers of clocks? For they carefully
avoid inserting in the mechanism any superfluous wheel or any whose
function could be served better by another with a slight change of
position. (Rosen 1959, 137–38)

Galileo has Salviati make an analogous claim, concerning the related
point that the apparent diurnal motions of all the heavenly bodies are, on
the Copernican system, attributed not to these bodies severally, but to the
Earth alone:

who is going to believe that nature (which by general agreement does
not act by means of many things when it can do so by means by few)
has chosen to make an immense number of extremely large bodies
move with inconceivable velocities, to achieve what could have been
done by a moderate movement of one single body around its own
center? (Galileo [1632] 1953, 135)

Both Rheticus and Galileo’s Salviati are making strong claims about
the nature of the world. Neither gives any argument beyond authority,
Rheticus citing Galen, Salviati the authority of “general agreement” and,
a few pages later, in a shrewd rhetorical move, of Aristotle.3 Nor can it
be claimed that such a principle is justified on empirical grounds; the as-
pect Nature presents to our observation contains a bewildering mixture
of parsimony and profligacy.

Simplicity is sometimes held to be a pragmatic virtue, rather than an
epistemic one. Even if the simplicity of a theory is not grounds for believ-
ing in its approximate truth, it may be a pragmatic reason for preferring
one theory over the other, because a simpler theory is easier to work with.
Both the Copernican and Ptolemaic systems are capable of recovering the
phenomena; to a first approximation, at least, the Copernican system does
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so with fewer circles, and for this reason has been regarded as simpler.
That the Copernican system surpasses the Ptolemaic in this sort of sim-
plicity, when all complications of the two systems are taken into account,
has been disputed (see, e.g. Neugebauer 1957, 204; Dijksterhuis 1961, 294;
Hoskin and Gingerich 1999, 88); to achieve the same precision as Ptolemy
without the use of Ptolemy’s equants, Copernicus had to introduce com-
plications into the simple system outlined above. Kuhn declared that, since
the Copernican system fails to surpass the Ptolemaic on grounds of either
simplicity (measured by circle-count) or accuracy of predictions, there
were, at the time of Copernicus, not only no epistemic grounds for pre-
ferring the Copernican system over the Ptolemaic, but also no pragmatic
grounds:

But this apparent economy of the Copernican system, though it is a
propaganda victory that the proponents of the new astronomy rarely
failed to emphasize, is largely an illusion. . . . Copernicus, too, was
forced to use minor epicycles and eccentrics. His full system was little
if any less cumbersome than Ptolemy’s had been. Both employed over
thirty circles; there was little to choose between them in economy. Nor
could the two systems be distinguished in accuracy. When Copernicus
had finished adding circles, his cumbersome sun-centered system gave
results as accurate as Ptolemy’s but it did not give more accurate
results. Copernicus did not solve the problem of the planets. (Kuhn
1959, 169)

The only superiority of the Copernican system over the Ptolemaic system,
according to Kuhn, lay in its greater harmony and beauty:

as Copernicus himself recognized, the real appeal of sun-centered as-
tronomy was aesthetic rather than pragmatic. To astronomers the
initial choice between Copernicus’ system and Ptolemy’s could only
be a matter of taste, and matters of taste are the most difficult of all
to define or debate. Yet, as the Copernican Revolution itself indicates,
matters of taste are not negligible. (Kuhn 1959, 172)

This conclusion is, I believe, premature. Let us consider a bit more care-
fully the manner in which each of the two systems saves the phenomena.

As mentioned, the Ptolemaic system recovers the bulk of the variation
of the angular speed of each planet via an epicycle for each planet; the
Copernican system accounts for this variation, for all of the planets, by
the orbital motion of the Earth. The separate epicycles of the planets are,
on the Ptolemaic system, kinematically independent; there is no kinemat-
ically necessary relation between the motion of any two epicycles, or be-
tween the motion of one planet’s epicycle and the motion of any other
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planet. By adjusting the speed of the planet on its epicycle, one could
produce any number of episodes of retrograde motion per synodic period,
in place of the single episode that is observed. It so happens, however,
that the epicyclic motion required on the Ptolemaic system to recover the
actual observed behaviour of the planets displays a curious correlation
with the motion of the Sun. The period of a planet’s epicyclic motion is
its synodic period, if calculated, as Ptolemy does, with respect to the line
joining the Earth with the center of the epicycle; this means that, with
respect to a fixed reference direction, the epicyclic period of a superior
planet is the same as that of the Sun, and, moreover, the radius drawn
from the center of the epicycle to the planet remains parallel, at all times,
to the radius drawn from the Earth to the mean sun. For the inferior
planets, the period of the center of the epicycle in its journey around the
deferent is equal to the Sun’s period, and the radius between the Earth
and center of the epicycle passes through the mean sun at all times. This
correlation between the motions of the planets and that of the Sun was,
of course, recognized by Ptolemy, who, in setting out his preliminary hy-
potheses for the planets, says that there are “two apparent anomalies for
each planet: that anomaly which varies according to its position on the
ecliptic, and that which varies according to its position relative to the Sun”
(Ptolemy 1984, 442). Michael Hoskin, in The Cambridge Concise History
of Astronomy, remarks that “[t]his unexplained involvement of the Sun in
the geometry of the other planets was to puzzle later astronomers” (Hos-
kin 1999, 47); Georg Peurbach (1423–61), for one, was no heliocentrist
but nevertheless observed, “It is clear that each of the six planets in its
motion shares something with the Sun, and the Sun is, so to speak, the
common mirror and measure for their motions” (quoted in Hoskin and
Gingerich 1999, 88–89).

On the Ptolemaic system, then, the longitudinal motion of each planet
(other than Mercury, for which Ptolemy had to introduce a more com-
plicated hypothesis) is composed of two circular motions: one whose pe-
riod is peculiar to the planet, and one whose period is equal to that of the
Sun about the Earth. On the Tychonic system, the orbits of the planets
are centered on the Sun, and so this second motion simply is the Sun’s
motion. On the Copernican system, the apparent motion of each planet
is again composed of two circular motions: the planet’s own motion, and
the motion of the observer’s vantage point on the Earth. The component
of motion recognized by Ptolemy to be related to the Sun, is, on either the
Tychonic or the Copernican system, the relative motion of the Sun and
Earth.

As Kepler clearly perceived, the Copernican system explains what on
the Ptolemaic system is a mysterious connection between the Sun and the
motion of the other planets:
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For in the first place one might ask of Ptolemy how it comes about
that the three eccentrics of the Sun, Venus, and Mercury have equal
times of revolution? . . . Why do the five planets make retrogressions,
whereas the luminous stars do not? . . . Similarly the ancients rightly
wondered why the three superior planets are always in opposition to
the Sun when they are at the bottom of their epicycles, but in con-
junction when they are at the top. (Kepler [1596] 1981, 81)

On the Ptolemaic system, the periods of the planets and the intervals be-
tween episodes of retrograde motion are independent parameters. It so
happens that the maximal retrogressions of the superior planets occur at
intervals equal to their synodic periods (which are calculable from the
periods of the planet and that of the Sun). On the heliocentric explanation
of retrograde motion, however, fixing the periods of the planets (including
the Earth) fixes also the intervals between episodes of retrogression. A
system, such as Tycho’s or Copernicus’, which centers the orbits of the
planets on the Sun, makes one set of phenomena—the mean apparent
motions of the planets, and the Sun, along the ecliptic—carry information
about what, on the Ptolemaic system, are independent phenomena, the
deviations of the planets from their mean apparent motions.

2.2. Newton and the Inverse Square Law of Gravitation. Proposition 2
of Book 3 of Newton’s Principia states:

The forces by which the primary planets are continually drawn away
from rectilinear motions and are maintained in their respective orbits
are directed to the sun and are inversely as the squares of their dis-
tances from its center. (Newton [1726] 1999, 802)

For the first part of this proposition, the sun-directedness of the force,
Newton cites Phenomenon 5 of Book 3, namely, Kepler’s Area Law. For
the second part, the inverse square dependence of the force on distance
from the Sun, he cites two phenomena. One is Phenomenon 4, Kepler’s
Harmonic Law: the periods of the planets are proportional to the 3/2
power of their mean distances from the Sun. He then adds, “But this
second part of the proposition is proved with the greatest exactness from
the fact that the aphelia are at rest. For the slightest departure from the
ratio of the square would (by Bk. 1, Prop. 45, Corol. 1) necessarily result
in a noticeable motion of the apsides in a single revolution and an immense
such motion in many revolutions.”

The relevance of these two phenomena to the force law are provided,
respectively, by Proposition 4 of Book 1, and Proposition 45 of the same
book. The argument from the Harmonic Law to the inverse square law is
the familiar one found in many physics textbooks. Proposition 4 concerns
the centripetal acceleration of uniform circular motion. If the planets move
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4. Newton, therefore, not only showed that the force on the planets is given very nearly
by the inverse square law, but also showed how to detect small deviations from the
inverse square law via an examination of the precession of the orbit. Such a method
has since been put to good use.

in orbits that approximate uniform circular motion about the Sun, and
their periods are some function T(r) of their mean distances from the Sun,
their accelerations will satisfy

a r r T r( ) ( ) .∝ /
2 (1)

This is Newton’s Corollary 2 to Proposition 4. Putting T(r) � r3/2 yields
Corollary 6,

a r r( ) .∝ 1 2
/ (2)

That is, the accelerations of the planets towards the Sun vary inversely as
the square of their distances from the Sun.

The argument from the quiescence of the apsides to the inverse square
dependence of the force law is less familiar (see Harper 2002a for a clear
exposition). Newton was able to show (Bk. 1, Props. 43, 44) that, if a body
moves in an orbit under the action of a centripetal force f(r), adding an
inverse cube term to the force produces a second orbit, whose distance
from the center of force at any time is the same as that of the first orbit
(r2(t) � r1(t)), and whose angular displacement is a constant multiple of
that of the first (h2(t) � � h1(t)) (this is posed as an exercise problem by
Goldstein 1980, 123; see also Whittaker 1944, 83; Chandrasekhar 1995,
184). Since Newton had shown that an inverse square force law produces
a quiescent elliptical orbit, he is able to conclude that a force law that
takes the form of an inverse square term plus an inverse cube term pro-
duces a precessing ellipse. Newton then proceeds (Prop. 45) to approxi-
mate, over a small range of r, an arbitrary force f(r) by a sum of an inverse
square term and an inverse cube term by taking (what we now call) a
Taylor series expansion, to the first power in r, of g(r) � r3 f(r) around
the aphelion distance a of the orbit. This approximation yields the result
that for each revolution there will be an advance of the aphelion by an
amount (measured in degrees) equal to

p g a ag a= ′ −( )360 1( ) ( ) ./ (3)

Therefore, for orbits that are approximately circular, so that this Taylor
series approximation is valid, a measurement of the aphelion advance of
a planet yields information about the distance dependence of the force on
the planet, in the small range of distances explored by the planet.4
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Suppose we make the hypothesis hPL that, to a high degree of approx-
imation, the acceleration of all of the planets is due to a single field of
force centered on the Sun, obeying some power-law:

f r k r( ) .= λ (4)

Application of Newton’s Proposition 45 to such a law gives, for an ap-
proximately circular orbit,

p = + −( )360 1 3 1/ λ , (5)

or,

λ = + −1 360 1 32
/ /( ) .p (6)

A quiescent orbit, for which p � 0, gives us –2 as an estimate of the
parameter k, and this in turn entails Kepler’s Harmonic Law, that the
periods of the planets vary as the three-halves power of their distances
from the sun. On the hypothesis hPL of a single power-law force, a mea-
surement of the perihelion precession (or lack thereof) of each planet yields
information about the exponent of the power law and thereby yields in-
formation about the dependence of their relative periods on their dis-
tances, and vice versa. What a priori are independent phenomena, namely,
the approximate quiescence of the aphelia of the planets, and Kepler’s
Harmonic Law, are no longer independent on the supposition hPL of a
single heliocentric power-law force; if such a hypothesis is true or approx-
imately true, each of the two phenomena strongly constrains the other.

The hypothesized form of the force law can be replaced by more general
families of functions. In order for the hypothesis to make our two a priori
independent phenomena yield information about each other, all that is
required of the hypothesized form of the force law is that the behaviour
of the force law over the range of distances explored by one planet yield
information about its behaviour at other planetary distances. If, on the
other hand, one merely hypothesized that the force law is some function,
with no preference given to any function over another—that is, if one had
a prior probability measure that was sufficiently uniform over the space
of possible force laws—then such a hypothesis would leave the a priori
independent phenomena independent.

These two examples suggest an interesting way in which a hypothesis
can unify disparate phenomena: the hypothesis can make two phenomena
that in the absence of the hypothesis seem to be independent phenomena
yield information about each other. In the next section we will tender an
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explication, in Bayesian terms, of information yielded by one proposition
about another, and of unification of a body of evidence by a hypothesis.
Such an account seems to capture at least part of the intuition invoked by
Michael Friedman:

this is the essence of scientific explanation—science increases our un-
derstanding of the world by reducing the total number of independent
phenomena that we have to accept as ultimate or given. A world with
fewer independent phenomena is, other things equal, more compre-
hensible than one with more. (Friedman 1974, 15)

The Bayesian account of such unification will differ greatly in its details
from the account given by Friedman; in particular, Friedman’s notion of
independent acceptability will be replaced by the notion of probabilistic
independence; a unifying hypothesis will reduce, not the number of inde-
pendently acceptable phenomena, but the degree of informational inde-
pendence of a body of phenomena.

3. Informational Relevance and Evidential Support. We wish to give a
Bayesian account of this notion of unification of disparate phenomena,
which consists of the ability of the theory to make the phenomena yield
information about each other. For this, we will need a Bayesian notion of
the information one proposition p yields about another proposition q. We
will assume a body of background knowledge b, and that we have avail-
able a probability function Pr( • |b). Learning that a proposition p is true
can be either positively or negatively relevant to another proposition q; if
it is positively relevant to q, then learning p furnishes a certain amount of
information about whether or not q is true. Moreover, the relevance of p
to q—that is, how much we learn about whether or not q is true when we
learn that p is true—is the sort of thing that admits degrees. Accordingly,
we will want to define a measure of the informational relevance of p to q,
on background b. We will call the degree of informational relevance of p
to q, on background b, I(q, p | b). I(q, p | b) will be assumed to be definable
in terms of the probability function Pr( • | b) (and, in fact, continuously
definable, so that small changes in probabilities yield small changes in
information). By convention, we will take this quantity to be positive when
p is positively relevant to q, negative when p is negatively relevant to q,
and zero when p is irrelevant to q. Furthermore, we will define our measure
of informational relevance so that independent evidence is additive—when
p1 and p1 are independent items of evidence, the information yielded about
q by the conjunction of p1 and p1 will be simply the sum of the information
yielded by p1 and the information yielded by p2 (see the Appendix for a
precise statement of this condition). Finally, we will assume a normali-
zation convention that agrees with the convention adopted in information
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5. For a different argument that this quantity ought to be regarded as a measure of the
amount of information yielded by one proposition about another, see Good 1966. For
a related theorem, see Milne 1996.

6. As an anonymous referee has pointed out, this notion of unification is related to the
notion of “inductive systematization” introduced by Niiniluoto and Tuomela (1973,
11–12). On one of the versions of inductive systematization suggested by Niiniluoto
and Tuomela, h establishes inductive systematization if and only if, for some p, q,

a) Pr(q | h & p) � Pr(q | h).
b) Pr(q | p) � Pr(q).
c) p & h does not entail q.

Conditions (a) and (b) entail that U(p, q; h) is positive. Niiniluoto and Tuomela do
not define a degree of inductive systematization and hence do not demonstrate a relation
between such a degree and degree of confirmation.

Some readers may wonder whether the quantity U is subject to an “irrelevant con-
junction” problem; does the mere conjunction of any p1, p2 count as a hypothesis that
unifies them? Conditional on p1 & p2, p1 and p2 both have probability one and hence
are independent; I(p1, p2 | p1 & p2 & b) � 0. Therefore, if p1 and p2 are independent
phenomena, U(p1, p2; p1 & p2 | b) � 0. If p1 and p3 are not independent on b—if they
are negatively (or positively) relevant to each other—then conditionalization on their
conjunction brings them up (or down) to independence and hence in a sense “unifies”
(or “disunifies”) them. Although this is in some sense “unification,” in most cases the
mere conjunction of p1 and p2 will not be a very interesting hypothesis, and in these
cases this will not be a very interesting form of unification.

theory for the special case when our information about q amounts to
certainty that q obtains. If q is one of 2N equiprobable, mutually exclusive,
and jointly exhaustive alternatives, then the information that q obtains
amounts to N bits of information, and, in general, information that q
obtains will count as �Log2(Pr(q | b)) bits of information.

It is shown in the Appendix that these conditions uniquely determine
a measure of degree of informational relevance:5

I q p b q p b q b, Pr( & ) Pr( ) .( ) = ( )Log2 / (7)

It is worth noting that the informational relevance function I(q , p | b) so
obtained is symmetric in its two arguments: I(q , p | b) � I( p, q | b).

Suppose that p1, p2 are independent phenomena; that is, I(p1, p2 | b) �
0. A hypothesis h makes p2 yield information about p1 if I(p1, p2 | h & b) �
0, and, in such a case, we can take I( p1, p2 | h & b) as a measure of the
extent to which h makes p2 yield information about p1. If I( p1, p2 | b) � 0,
the excess of I(p1, p2 | h & b) over I(p1, p2 | b) measures the extent to which
h makes p2 yield information about p1 . Let us call this quantity U, as it is
a measure of the extent to which h unifies the set of phenomena {p1, p2}.6

U p p h b I p p h b I p p b2 2 1 2 1 2, ; , & , .( ) = ( ) − ( ) (8)
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We will also want to consider bodies of phenomena {p1, p2, . . . , pn}
consisting of more than two elements. We define the n-place function I(n),
which is a measure of the degree of mutual dependence to be found in the
set {p1, p2, . . . , pn}, as the information about p2 yielded by p1, plus the
information about p3 yielded by the conjunction of p1 and p2, and so on,
up to the information about pn yielded by the conjunction of all the other
members of the set. This gives

I p p p b

p p p b p b p b p

n
n

n n

( ) , , ,

Pr( & & & ) Pr( ) Pr( ) Pr(

1 2

2 1 2 1 2

…

… …

( ) =

Log / bb) .( ) (9)

It can easily be seen that this quantity is also independent of the order in
which the elements are taken. We now define the quantity U(n), which is
the degree to which h unifies the set {p1, p2, . . . , pn}:

U p p p h b

I p p p h b I p p p b

n
n

n
n

n
n

( )

( ) ( )

, , , ;

, , , & , , , .

1 2

1 2 1 2

…

… …

( ) =

( ) − ( ) (10)

The question to be asked now is whether the ability of a hypothesis to
unify a set of phenomena contributes to the degree to which the phenom-
ena lend evidential support to the hypothesis. To ask this we will need a
measure of the degree to which evidence e supports hypothesis h on back-
ground b. The quantity Pr(h | e & b)/Pr(h | b), or its logarithm, is a popular
choice for such a measure, and is often referred to as the “degree of con-
firmation” of h by e on background b, confirmation being taken in the
relative, or incremental sense, rather than the absolute—that is, to say that
e confirms h, in this sense, is to say that e is positively relevant to h, and
is not to say that e provides sufficient grounds for accepting h (for dis-
cussions of this distinction, see Carnap 1962, xv–xix; Salmon 1975, 3–36).
The logarithm of Pr(h | e & b)/Pr(h | b) is the informational relevance
I(h, e | b). This quantity, is, therefore, a candidate for a measure of the
degree to which a piece of evidence supports a hypothesis. Another can-
didate is what I. J. Good (1950; 1983) has called the “weight of evidence,”

W h e b I h e b I h e b

h e b h e b

h b

, , ,

Pr( & ) Pr( & )

Pr( )

( ) = ( ) − ( )
= ( )

−

∼

∼Log

Log

/

//

/

Pr( )

Pr( & ) Pr( & ) .

∼

∼

h b

e h b e h b

( )
= ( )Log

(11)

It will not be necessary to adjudicate between these two candidates, as
there is an interesting relation between the power of a hypothesis to unify
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7. This result is essentially the same as equation (5) of Myrvold 1996; the only difference
is that we are here dealing with the logarithms of the quantities involved. It is not
known to the present author whether an earlier appearance of this way of parsing the
degree of confirmation of h by e1 & e2 exists in the literature.

8. Recall that, in a misleading bit of terminology, the likelihood of h on evidence e is
Pr(e | h), not Pr(h | e).

a body of evidence and its degree of confirmation on either choice of
explicatum for the latter. On either choice of measure of degree of eviden-
tial support, it can be shown that the ability of a hypothesis to unify a
body of evidence contributes in a direct way to the support provided to h
by the body of evidence. It follows from Bayes’ theorem that7

I h e e b I h e b I h e b U e e h b, & , , , ; .1 2 1 2 1 2( ) = ( ) + ( ) + ( ) (12)

That is: the degree of support provided to h by e1 and e2 taken together is
the sum of three terms: the degree of support of h by e1 alone, the degree
of support of h by e2 alone, and an additional term which is simply the
degree of unification of the set {e1, e1} by h. An analogous result holds for
larger bodies of evidence; the degree of support provided to h by the set
{e1, e2, . . . , en} taken together is simply the sum of the degrees of support
provided to h by each of the evidence items taken individually, plus an
additional term which is the degree to which h unifies the body of evi-
dence.

To understand what equation (12) means, suppose that two phenom-
ena, e1 and e2, which on prior grounds are regarded as having little to do
with each other, both occur. If h1 makes e1 informationally relevant to e2—
that is, if the truth of h1 would render it more probable that e2 occurs if
e1 does—then the joint occurrence of e1 and e2 is more probable on the
supposition of h1 than it would be if h1 didn’t unify e1 and e2 in this sense.
Even if the likelihoods8 of two hypotheses h1 and h2 are equal to each other
on evidence e1 taken alone, and on e2 taken alone, if h1 unifies the pair
{e1, e2} by making them informationally relevant to each other, and h2

doesn’t, then the likelihood of h1 on the evidence e1&e2 is higher than
that of h2, and consequently h1 is better supported by e1&e2 than h2 is.
Furthermore, if h1 unifies the pair {e1, e2} more than h2 does by making
them more relevant to each other, then h1 is again better supported by
e1&e2 than h2 is.

For Good’s weight of evidence, we have an analogous result,

W h e e b W h e b W h e b

U e e h b U e e h b

, & , ,

, ; , ; .

1 2 1 2

1 2 1 2

( ) = ( ) + ( ) +

( ) − ( )∼
(13)

Here what counts is the excess of the degree of unification of the evi-

https://doi.org/10.1086/375475 Published online by Cambridge University Press

https://doi.org/10.1086/375475


        413

9. The following conversation took place between an itinerant Preacher of Unification
and van Fraassen’s Bayesian Peter (see van Fraassen 1989, 166–169).“You should raise
your credence in a hypothesis that unifies the evidence better than its rivals.”“More
than I would anyway?” asked Peter.“No,” said the Preacher. “Exactly as much as you
would anyway.”

dence by h over its degree of unification by �h. In this case also the cor-
responding result holds for larger bodies of evidence.

On this Bayesian account, therefore, the power of a theory to unify a
body of evidence is not an extra-empirical virtue but contributes directly to
the degree to which the evidence supports the theory. Note that these results
do not depend on a special form of the prior probabilities and will hold for
any probability assignment; in particular, it is not necessary to build a pref-
erence for unification or simplicity into the assignment of prior probabilities.
Nor do we have to invoke a preference for unification as an extra, supple-
mentary rule, beyond the usual Bayesian updating rules, or add an extra
boost of confirmation to the unifying theory beyond the degree of confir-
mation it receives from simple Bayesian conditionalization.9

4. Application to Our Examples. Let b be a body of background knowledge
including qualitative information about the apparent course of the planets
(including, perhaps, the fact that they undergo retrograde motion), but
not including precise values of the periods of the planets, or detailed in-
formation about their retrogressions. This body of knowledge is, of
course, not the body of knowledge possessed by any of the readers of this
paper; the motivation for considering such a body of knowledge will be
made clear shortly. Let hC be the hypothesis that some system following
the outlines of the Copernican system, as sketched in Section 2.1 above,
is true. Note that hC by itself makes no specific predictions as to the ob-
served location of any planet at any time, as it contains a number of
parameters—the size of the planetary orbits, their periods, and the loca-
tion of the planets at some initial epoch—that must be filled in from em-
pirical data. Similarly, let hP be the hypothesis that some Ptolemaic system
is correct, again, with parameters concerning the periods of the planets,
and the frequency, time, and length of their retrogressions, left unspecified.

We suppose that we have some probability distributions, conditional
on background b, over the periods of the planets and of the times of their
retrogressions. Let pm be the statement that Mars traverses the sphere of
fixed stars with a period that, within a small observational error, is equal
to1.88 years, and let rm be the statement that it retrogresses when it is near
opposition to the Sun, within a period equal to 2.14 years (plus or minus
a small observational error). Now, the Copernican hypothesis hC entails
that pm holds if and only rm does; hence, these two propositions, condi-
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10. It is difficult for a modern reader to take such criticisms seriously. As Galileo plainly
saw, such criticisms must be answered if the Copernican hypothesis is to count as a

tional on hC, have a maximal degree of informational relevance to each
other:

I r p h b r h bm m C m C, & Pr( & ) .( ) = − ( )Log2 (14)

Since, by hypothesis, the background knowledge b contains only qual-
itative information about the motions of the planets, it is not to be ex-
pected that one could anticipate, in advance, the precise values of these
parameters; hence, the quantity Pr(rm | hC & b) ought to be quite small,
and I(rm, pm | hC & b) will be quite large. If, conditional on all serious rivals
to hC, pm and rm are independent, then I(rm, pm | b) will be fairly small, and
so U(rm, pm; hC | b) will be positive—hC unifies {pm, rm}, relative to back-
ground b.

On the other hand, if only the bare-bones Ptolemaic hypothesis hP is
assumed, then pm affords little or no information about whether or not rm

is true, and so a reasonable probability assignment will have them infor-
mationally independent, or nearly so, conditional on hP:

Pr & & Pr & Pr & ,p r h b p h b r h bm m p m p m p( ) ≈ ( ) ( ) (15)

I p r h bm m p, & .( ) ≈ 0 (16)

Let us assume that the evidential support lent to hC by pm on background
b is approximately the same as the evidential support lent to hP by pm on
the same background (and, indeed, since pm merely tells us what the period
of Mars is, it would seem that the support lent to either hypothesis alone
by pm is nil), and similarly, that the degree of support lent to hC by rm on
background b is approximately the same as the evidential support lent to
hP by rm. Then the degree of support lent to hC by the conjunction of pm

and rm will be considerably greater than the degree of support lent to hP

by this conjunction—since hC unifies pm and rm in the sense of making them
informationally relevant to each other, they work together to support hC.

Now, of course, it doesn’t follow from this that every probability as-
signment will have Pr(hC | pm & rm & b) greater than Pr(hP | pm & rm & b).
What does follow is that any probability assignment satisfying the
conditions outlined above will have Pr(hC | pm & rm & b) greater than
Pr(hP | pm & rm & b) unless it also has the prior probability of hC consid-
erably less than that of hP. An agent who attaches low prior probability
to the Copernican hypothesis (perhaps on the basis of considerations of
terrestrial dynamics;10 see Ptolemy 1984, 44–45) should nevertheless ac-
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serious candidate for the truth; one who believes that it is a consequence of physical
law that, if the Copernican hypothesis were true, “neither clouds nor other flying or
thrown objects would ever be seen moving toward the east, since the earth’s motion
toward the east would always outrun and overtake them” (Ptolemy 1984, 45), ought to
regard the Copernican hypothesis as empirically untenable.

11. I am grateful to Sona Ghosh for raising this point.

knowledge that the ability of the Copernican hypothesis to explain the oth-
erwise puzzling correlation between the motions of the planets and that of
the Sun counts in favor of the hypothesis. Note that the procedure here is
to assess the reasonableness of probabilities conditional on pm & rm & b by
considering what sorts of probability assignments are reasonable on b
alone—which was the motivation for introducing b. Such considerations
should be available even to agents who already know pm and rm.

Since a parallel discussion can be applied as well to the other planets,
the degree of support lent to the Copernican hypothesis by planetary phe-
nomena becomes considerably stronger when the other planets are taken
into account.

So far we have contrasted a bare-bones Ptolemaic hypothesis with a
bare-bones Copernican hypothesis; in particular, no relation between the
motion of the planet on its epicycle and the Sun was built into the Ptole-
maic hypothesis hP. The system presented by Ptolemy in the Almagest,
however, does contain restrictions of just this sort: for the superior planets
Mars, Jupiter, and Saturn, the line drawn between the planet and the
center of its epicycle remains at all times parallel to the earth-sun radius,
whereas for the inferior planets Mercury and Venus, the line from the
Earth to the center of the planet’s epicycle passes through the Sun. Call
this set of restrictions the condition of sun-planet parallelism. Although it
is plausible that the bare-bones Ptolemaic hypothesis was considered by
some astronomer at some point, it must be admitted that we have no
historical record of such an episode. It seems only fair, therefore, that we
consider what happens when the Copernican hypothesis hC faces as a rival,
not the minimal Ptolemaic hypothesis hP, but a strengthened Ptolemaic
hypothesis that includes the sun-planet parallelism condition.11

Call the strengthened Ptolemaic hypothesis hSP. This hypothesis shares
with the Copernican hypothesis the feature of entailing that rm obtains if
and only pm does, and hence enjoys the same evidential boost from the
conjunction of rm and pm enjoyed by hC; the ratio of posterior to prior
should be equal, or at least approximately equal, for the two hypotheses.

Pr & & Pr

Pr & & Pr

h r p b h b

h r p b h b

SP m m SP

C m m C

( ) ( ) ≈

( ) ( )
/

/
(17)
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Suppose, now, that we have

Pr Pr ,h b h bC P( ) ≈ ( ) (18)

where hP is, as before, the minimal Ptolemaic hypothesis. Suppose, further,
that we also have

Pr Pr .h b h bSP P( ) ( )� (19)

This seems eminently reasonable; since hSP is a strengthening of hP, we
must have Pr(hSP | b) � Pr(hP | b), and to have Pr(hSP | b) equal to Pr(hP | b)
is to attach zero probability, on background b, to the possibility that some
Ptolemaic hypothesis not satisfying the sun-planet parallelism condition
is true. Moreover, it seems unreasonable to assume that the background
knowledge b suffices to permit one to expect the sun-planet parallelism
condition to be true; if this is right, we should take Pr(hSP | b) to be sub-
stantially less than Pr(hP | b).

From (17), (18), and (19) it follows that

Pr & & Pr & & .h p r b h p r bSP m m C m m( ) ( )� (20)

It seems, therefore, that the only way that a reasonable agent can avoid
having Pr(hC | pm & rm & b) be much larger than Pr(hSP | pm & rm & b) is to
have the prior probability of the Copernican hypothesis hC be much smaller
than the prior probability of the bare-bones Ptolemaic hypothesis hP.

Now, what Ptolemy presented in the Almagest, and Copernicus in De
Revolutionibus, were fully specified models of the heavens, with all param-
eters filled in. From such models precise predictions can be deduced. If we
let HP and HC be these fully specified Ptolemaic and Copernican hypoth-
eses, respectively, then these hypotheses actually entail the observed phe-
nomena, and the likelihoods that appear in Bayes’ theorem will be equal
to unity. But any two items of evidence e1 and e2, if entailed by a hypothesis
H, are probabilistically independent conditional on H, and hence not in-
formationally relevant to each other, conditional on H.

Considerations similar to those discussed above will apply. Since the unsat-
urated Copernican hypothesis hC has a greater ability to unify the celestial
phenomena than does the unsaturated Ptolemaic hypothesis hP, then, if e is
a body of evidence containing facts about the mean motions of planets and
their retrogressions, we will have Pr(HC |e & b) k Pr(HP | e & b) unless
Pr(hC | b) K Pr(hP | b).

The analysis of our second example is similar. It is not as clear in this
case what rival hypotheses are to be considered, but let us contrast, by

https://doi.org/10.1086/375475 Published online by Cambridge University Press

https://doi.org/10.1086/375475


        417

way of example, a theory (call it h1) that posits a single power-law force
affecting all the planets, with a theory (call it h2) that posits independent
power-law forces acting on each of the planets. Let b be a body of knowl-
edge containing qualitative facts about the motion of the planets but not
containing numerical information sufficient to fix the values of the param-
eters appearing in h1 and h2 corresponding to the exponents of the power
laws and the strengths of the force fields. According to h1, measurement
of the rate of precession of any planet furnishes information about the
precession rates of the other planets and also about the relation between
the periods and distances of the planets. On the assumption of a single
power-law force, once we have obtained the exponent of the power-law
from a measurement of precession rates, measurement of the period and
orbital radius of one planet permits the orbital radii of the others to be
predicted from their periods (or vice versa).

On h2, these quantities could be regarded as informationally indepen-
dent, but they need not be—it is, after all, compatible with h2 that the
exponents of the separate power laws for each of the planets be all equal,
or approximately so, and one might even attach high prior probability to
this being the case. However, one who takes h2 as a serious rival to h1

ought to attach non-negligible probability to the possibility that the sev-
eral distinct forces do not perfectly mimic a single acceleration field—if
one regards it as inevitable that these distinct forces perfectly mimic the
action of a single force, it is hard to understand what is meant by calling
them “distinct.” Suppose, then, that one does assign a non-negligible prob-
ability to the several force laws having different values of their parameters,
either in the exponent of the power law or in the strength of the force. On
such a probability assignment, h1 will do a better job of unifying the phe-
nomena than h2, and will have a correspondingly higher degree of support.

The inference that results from an application of Newton’s Rule 1, that
“No more causes of natural things should be admitted than are both true
and sufficient to explain their phenomena,” is justified in this case without
any commitment to a principle that “Nature does nothing in vain” (New-
ton [1726] 1999, 784). What counts, instead, is the fact that the supposition
that these forces are the same makes inevitable a relation that would be a
puzzling coincidence on the supposition of independent forces.

5. Relation to Some Other Views.
5.1. Whewell on Consilience. The sorts of cases considered in this paper

as examples of unification, are, at the very least, reminiscent of what
Whewell called consilience of inductions:

the evidence in favour of our induction is of a much higher and forc-
ible character when it enables us to explain and determine cases of a
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12. I am grateful to an anonymous referee for raising this concern.

kind different from those which were contemplated in the formation
of our hypothesis. The instances in which this has occurred, indeed,
impress us with a conviction that the truth of our hypothesis is certain.
No accident could give rise to such an extraordinary coincidence. No
false supposition could, after being adjusted to one class of phenom-
ena, exactly represent a different class, when the agreement was un-
foreseen and uncontemplated. That rules springing from remote and
unconnected quarters should thus leap to the same point, can only
arise from that being the point where truth resides.

Accordingly the cases in which inductions from classes of facts al-
together different have thus jumped together, belong only to the best
established theories which the history of science contains. And as I shall
have occasion to refer to this particular feature in their evidence, I will
take the liberty of describing it by a particular phrase; and will term it
the Consilience of Inductions. (Whewell 1847, 65; Butts (ed.), 153)

On a common reading of Whewell’s account of consilience, the unifying
hypothesis is a fully specified hypothesis that entails evidence from dis-
parate domains. If this were the whole story according to Whewell, there
would little room for a close parallel between our account and Whewell’s,
as two evidence statements that are both entailed by a hypothesis h are
informationally irrelevant to each other, conditional upon h.12 We should
bear in mind, however, that for Whewell induction is a multi-stage process.
The three steps of induction, according to Whewell, are the selection of
the idea, the construction of the conception, and the determination of the
magnitudes (Whewell 1847, 380; Butts (ed.), 211). For scientific theories
formulated mathematically, these steps become the selection of the inde-
pendent variable, the construction of the formula, and the determination
of the coefficients (382; 213). Thus, according to Whewell, the induction
that leads to a law such as Newton’s law of gravitation includes a stage
in which one is considering a formula containing parameters, called by
Whewell “coefficients,” to be filled in empirically. In such a case, a con-
silience of inductions would occur when the values of certain parameters
can be determined from two different sorts of phenomena, and the values
determined from one class of phenomena agree with those determined
from another. Note that Whewell speaks of a hypothesis being “adjusted
to one class of phenomena” and then found to represent another class; he
is clearly contemplating situations in which initially unsaturated hypoth-
eses are considered, and the values of their parameters filled in empirically.
Malcolm Forster’s interpretation of Whewell’s views on consilience seems
to be correct, at least where mathematically formulated theories are con-
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cerned: “the essential part of the consilience of inductions is the demon-
stration of a law-like connection between magnitudes determined by dif-
ferent colligations of facts—the ‘over-determination’ of the coefficients”
(Forster 1988, 76). A hypothesis that entails such a law-like connection
will render the facts in the disparate domains connected by the law infor-
mationally relevant to each other. The account of unification offered in
this paper, therefore, seems to mesh nicely with Whewell’s conception of
consilience.

5.2. Forster and Sober. Much of what has been said in this paper is also
reminiscent of Forster and Sober’s (1994) account of the epistemic virtue
of simpler, more unified theories. Here, however, the resemblance goes
less deep. According to Forster and Sober, the virtue of simplicity and
unification is to be found in the resistance of such theories to the phenom-
enon of overfitting, which is the tendency for the best-fit curve from an
overly capacious family of functions to track observational errors instead
of the systematic dependencies one is trying to capture. Provided that the
statistical distribution of the parameters estimated from the data around
their optimal values is at least approximately normal, the tendency to-
wards overfitting will be roughly linear in the number of degrees of free-
dom of the family of functions considered, and this is why a best-fit curve
from a family of functions with fewer degrees of freedom may yield a better
fit to future data than the best-fit curve from a family with more. For a
fixed family of functions, overfitting is diminished if observational errors
are diminished, or if the body of data is enlarged. Therefore, the weight
to be attached to simplicity and unification, according to Forster and So-
ber, should decrease as observations are made more precise or more data
points are added.

Let us consider two hypotheses h1 and h2, which assert that the force
law for the influence of the Sun on the planets is to be found in families
of functions F1 and F2, respectively. It may happen that, if F1 is a family
of fewer degrees of freedom, then h1 makes the quiescence of the apsides
yield more information about the harmonic law than does h2. This may
seem to provide an important point of connection between the account of
the virtue of unification offered in this paper and that given by Forster
and Sober. There is an important difference, however; on the account
given here, what counts is not the number of degrees of freedom of a family
of functions, but the extent to which a hypothesis makes one set of phe-
nomena constrain another, which in our example consists of the extent to
which the rate of change of the force over the distances explored by a
single planet constrains the relative strength of the force at other planetary
distances. On Forster and Sober’s account, the virtue of “simpler, more
unified” theories lies solely in the ability of such theories to resist overfit-
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ting the data, and hence is diminished when the data are made more ac-
curate or when the number of data points is increased. On the account
given here, the ability of a theory to unify a body of phenomena lends
support to the theory that goes well beyond such resistance to overfitting
and persists when random errors in the data are diminished. This is not
to say that the statistical considerations invoked by Forster and Sober will
play no role—they will, in estimation of parameters from the data, and in
error analysis. But the chief importance of theoretical unification is not to
be found in such considerations.

Appendix

The conditions that our measure of information relevance, I(q, p | b),
will be assumed to satisfy are the following:

i) Continuous definability in terms of probability. I(q, p | b) is a contin-
uous real-valued function of the values that Pr( • | b) takes on Bool-
ean combinations of p and q.

ii) Zero point. If q is probabilistically independent of p (that is, if
Pr(q | p & b) � Pr(q | b)), then I(q, p | b) � 0.

iii) Additivity of independent information. If p1 and p2 are probabilist-
ically independent of each other, and remain so under conditional-
ization on q (that is, if Pr( p1 & p2 | b) � Pr(p1 | b) Pr( p2 | b)
and Pr(p1 & p2 | q & b) � Pr( p1 | q & b) Pr(p2 | q & b)), then
I(q, p1 & p2 | b) � I(q, p1 | b) � I(q, p2 | b).

iv) Normalization. If p & b entails q, then I(q, p | b) � –Log2(Pr(q | b)).

Theorem. The conditions (i)–(iv) entail that I(q, p | b) � Log2(Pr(q | p & b)/
Pr(q | b)).

Proof. I(q, p | b) is to be determined by the values Pr( • | b) takes on Boolean
combinations of p and q, and these values will, in turn, be determined by
Pr(p | b), Pr(q | b), and Pr(q | p & b). There will, therefore, be a continuous
function F, such that

I q p b F p b q b q p b, Pr( ), Pr( ), Pr( & ) .( ) = ( ) (A1)

We will assume that this function is well-defined whenever its arguments
are all nonzero. The condition (ii) becomes the condition

ii�) If z � y then F(x, y, z) � 0.

Since Pr(p | q & b) � Pr(q | p & b) Pr(p)/Pr(q), condition (iii) entails that,
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iii�) If x3 � x1 x2 and z3 � z1 z2 / y, then F(x3, y, z3) � F(x1, y, z1) �
F(x2, y, z2).

The first step of the proof is to show that conditions (ii�) and (iii�) entail
that F(x, y, z) is independent of x. By (iii�), for all x, x�, y, z � (0, 1] such
that x � x�,

F x y x F x y z F x x y y( , , ) ( , , ) ( , , ).= ′ + ′/ (A2)

By (ii�), F(x/x�, y, y) � 0, and so

F x y z F x y z( , , ) ( , , ).= ′ (A3)

F is, therefore, independent of its first argument. We can therefore write
F as a function of y and z, or, alternatively (and this will turn out to be
more convenient), as a function of y and the new variable u � z/y:

F x y z H y z y( , , ) ( , ).= / (A4)

Condition (iii�) now becomes

H y u u H y u H y u( , ) ( , ) ( , ).1 2 1 2= + (A5)

By mathematical induction, we can show that, for any integers n, m, m � 0,

H y n m H yn m( , ) ( , ).2 2/
/= (A6)

Therefore, whenever u is a rational power of 2,

H y u H y u( , ) ( , ) ( ).= 2 2Log (A7)

By continuity, this must hold for all u � 0, and hence

H y u K y u( , ) ( ) ( ).= Log2 (A8)

for all y � (0,1] and u � 0, where K(y) � H(y, 2). The normalization
condition (iv) fixes the function K(y). If p & b entails q, Pr(q | p & b) �
1, and so we must have

H y y K y y y( , ) ( ) ( ) ( ).1 12 2/ = = −Log Log (A9)
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This gives us K(y) � 1, and so

H y u u( , ) ( ).= Log2 (A10)

F x y z z y( , , ) ( ).= Log2 / (A11)

Thus we have the desired result,

I q p b q p q( , ) ) Pr( ) .= ( )Log Pr(2 / (A12)

In conclusion, it should be pointed out that the requirement that the func-
tion F be continuous can be replaced by the considerably weaker require-
ment that it be a measurable function. The present treatment, however,
seems conceptually simpler.
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