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A general formulation is proposed to control the integral amplification factor of
harmonic disturbances in weakly non-parallel amplifier flows. The sensitivity of
the local spatial stability spectrum to a base-flow modification is first determined,
generalizing the results of Bottaro et al. (J. Fluid Mech., vol. 476, 2003, pp. 293–302).
This result is then used to evaluate the sensitivity of the overall spatial growth to a
modification of the inlet flow condition. This formalism is applied to a non-parallel
Batchelor vortex, which is a well-known model for trailing vortices generated by a
lifting wing. The resulting sensitivity map indicates the optimal modification of the
inlet flow condition enabling the stabilization of the helical modes. It is shown that
the control, formulated using a single linearization of the flow dynamics carried out
on the uncontrolled configuration, successfully reduces the total spatial amplification
of all convectively unstable disturbances.
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1. Introduction
In the framework of linear stability analysis, open flows showing self-sustained

oscillations, such as spiral vortex breakdown (Ruith et al. 2003; Qadri, Mistry &
Juniper 2013), are globally unstable and are called oscillators. In contrast, stable
flows which exhibit a strong response to external disturbances are named amplifiers.
Trailing vortices generated by a lifting wing are a classical example of amplifier flows
in aeronautics (Spalart 1998) and are commonly modelled by using the self-similar
solution proposed by Batchelor (1964). In its parallel approximation, the stability
properties of the Batchelor vortex have been well characterized in the literature. For
instance, Lessen, Singh & Paillet (1974) and Mayer & Powell (1992) found that
inviscid helical modes are temporally unstable and higher-wavenumber modes are
destabilized when the swirl increases (Duck & Foster 1980). These helical modes
reach their maximum growth rate at a certain swirl number (Leibovich & Stewartson
1983) before becoming stable when the azimuthal velocity of the vortex further
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increases. The mechanism underlying this destabilization is a generalized centrifugal
instability unravelled by Ludwieg (1962), Leibovich & Stewartson (1983) and Eckhoff
(1984). On the other hand, viscous modes have been investigated numerically and
asymptotically by Khorrami (1991), Fabre & Jacquin (2004), Fabre, Sipp & Jacquin
(2006) and Heaton (2007), whereas Delbende, Chomaz & Huerre (1998), Olendraru
et al. (1999) and Olendraru & Sellier (2002) carried out a spatio-temporal analysis
showing that, in the case of strong advection and moderate wake deficit (less than
approximately 80 % of the external flow), the flow is convectively unstable. More
recently, Heaton, Nichols & Schmid (2009) carried out a global stability analysis
of a non-parallel Batchelor vortex with an inflow wake deficit of 90 % that is
locally absolutely unstable close to the inlet and globally unstable. In the framework
of amplifier flows, Viola, Arratia & Gallaire (2016) investigated the response to
harmonic inlet and body forcing of a globally stable non-parallel vortex by using a
local WKB (Wentzel–Kramers–Brillouin) approach and a global resolvent analysis.

These studies suggest that the stability properties of swirling flows depend in a
complex way on multiple factors, such as the advection rate, the swirl number, the
presence of localized forces, turbulence level, fluid properties, domain geometry and
boundary conditions. Thus, a modification of one of these factors yields a variation
of the linearized operators of the stability analysis, which turns into a modification of
the eigenvalues in the stability spectrum. The dependence of the stability properties on
one or more of these factors is commonly called sensitivity. Chomaz (2005) explained
that the sensitivity may become large when the linear stability operator is non-normal,
which is usually the case in hydrodynamics. For this reason, several studies have been
devoted over the years to sensitivity analyses. Giannetti & Luchini (2007) defined the
so-called structural sensitivity, which is the sensitivity to a spatially localized feedback,
and showed that the combined analysis of the global mode and its adjoint mode allows
the identification of the wavemaker of the stability, i.e. the core region where the
self-excited instability mechanism takes place. Bottaro, Corbett & Luchini (2003) were
the first to study the sensitivity to a base-flow modification, and they identified the
regions of the parallel Couette flow where a base-flow modification has the most
significative effect on temporal stability. Such base-flow variations can be the result
of a passive control acting on the flow. Using a variational technique, Marquet, Sipp
& Jacquin (2008) derived a general expression of the base-flow sensitivity valid for
oscillator flows.

In the case of amplifiers, the flow response to an external forcing is given by
the resolvent analysis (Chomaz 2005), and its sensitivity with respect to a base-flow
modification was derived analytically by Brandt et al. (2011). They focused on
the variation of the resolvent norm in the case of the Blasius boundary layer
subjected to a harmonic body force where both componentwise and convective
non-normalities are present. This analysis was applied by Boujo & Gallaire (2015)
to the backward-facing step flow and extended to the case of inlet forcing and
time-stochastic perturbation. However, when the base flow evolves slowly in the
advection direction, these global approaches do not exploit the physical amplification
mechanism, which is the convective growth of perturbation that can be related to the
local stability properties of the flow. Indeed, by using both a local WKB asymptotic
analysis (Crighton & Gaster 1976) and a global resolvent approach (Åkervik et al.
2008) for a non-parallel Batchelor vortex, Viola et al. (2016) showed that the linear
global amplification of perturbations in amplifier flows is well captured by the spatial
stability branches. This raises the question whether it is possible to determine a
systematic way to control the spatial amplification of a given mode, i.e. its global
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FIGURE 1. (Colour online) (a) Velocity components of the parallel Batchelor vortex with
wake and swirl parameters equal to α = 0.667 and S= 0.333, respectively. (b) Temporal
growth rate maximized over the streamwise wavenumber, maxk(ωi), for increasing swirl
number at Re= 100, α= 0.667 and azimuthal modes m= 1, 2, 3. The vertical dashed line
depicts the swirl number used in the paper (S=0.333). (c) Local spatial stability properties
of the flow, where the spatial growth rate, −ki, of the unstable helical perturbations m ∈
{−1, 1, 2, 3} is reported as a function of the frequency ω. The red circle refers to the
maximum −ki, which corresponds to m= 1 and ω= 0.6.

amplification, resulting from the integration of the local spatial growth along the
streamwise direction.

The objective of this paper is to provide a general framework so as to solve the
above-mentioned control problem. The method proposed here generalizes to the case
of weakly non-parallel amplifier flows the adjoint-based strategies usually employed
for controlling oscillators (see Camarri (2015) for a review). Noise amplifiers comprise
many fundamental flows, such as boundary layers, convectively unstable wakes and
trailing vortices, and thus the proposed method is general and has many direct
engineering applications. In this paper we present only a particular prototypical
application, which consists in controlling the spatial instability of the non-parallel
Batchelor vortex using a perturbation of the velocity profile generating the vortex.

The particular selected test case, which is aimed at showing an example of flow
control, is loosely applicable to disturbance suppression in trailing vortices (Spalart
1998) and in wind turbine wakes (Iungo et al. 2013). To this end, we need first to
address in § 2 the sensitivity of the local spatial stability problem in the parallel-flow
framework. The non-parallel Batchelor vortex flow and its local stability properties
are presented in § 3. Successively, on the basis of the previous result, the sensitivity
of the integral amplification factor of a single helical disturbance to a modification
of the inflow vortex velocity is derived in § 4. Furthermore, a strategy to design the
passive inlet control to stabilize all helical modes amplified over the vortex flow is
proposed in § 5. Lastly, conclusions and possible applications are discussed in § 6.

2. Sensitivity of the local spatial stability spectrum
2.1. Parallel flow and spatial stability analysis

Although the formalism used here applies to all kinds of convectively unstable
shear flows, we consider now a Batchelor vortex profile with dimensionless velocity
components

Ur = 0, Uθ = S(1− e−r2
)/r, Ux = 1− αe−r2

, (2.1a−c)
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which are shown in figure 1(a). Here, r, θ and x are the cylindrical coordinates, α and
S are the wake and swirl parameters, and Re designates the Reynolds number, which
is based on the vortex core radius and on the free-stream axial velocity. The behaviour
of infinitesimal three-dimensional disturbances, q(x, r, θ; t)= (u, p), superimposed on
top of the base flow is described by the linearized Navier–Stokes equations

∂u
∂t
+U · ∇u+ u · ∇U=−∇p+

1
Re
1u, ∇ · u= 0, (2.2a,b)

where u and p are the disturbance velocity and pressure. In the case of parallel
axisymmetric base flow, these perturbations can be decomposed in the standard form

q(x, r, θ; t)= q̂(r)ei(kx+mθ−ωt), (2.3)

where m is the azimuthal wavenumber and q̂(r)= (û, p̂).
The wake parameter and Reynolds number are here set to α = 0.667 and Re= 100

respectively, and the swirl parameter S is chosen in such a way as to ensure the
simultaneous amplification of different helical modes in the swirling wake. By
recalling that in the temporal analysis framework k is real and ω is taken complex,
figure 1(b) displays the temporal growth rate, ωi, maximized over the streamwise
wavenumber, k, for m = 1, 2, 3 and increasing swirl parameter. It shows strong
competition between the first and second helical modes at S= 0.333, which is further
considered in this study. Such a competition is representative of several swirling
jet/wake experiments (Gallaire & Chomaz 2003; Iungo et al. 2013). The considered
test-case vortex was shown to be convectively unstable by Viola et al. (2016), calling
for a spatial stability analysis, where the frequency ω is real and wavenumber k
complex. The real part of k, kr, corresponds to the streamwise wavenumber of the
travelling perturbation and the imaginary part of k, in particular −ki, is the spatial
amplification rate. The equations governing the linearized dynamics of q̂, obtained
by substituting the normal-mode expansion (2.3) in (2.2), are reported in appendix A.
They can be recast in a quadratic eigenvalue problem of the type

k2C2(U, ω)q̂+ kC1(U, ω)q̂+ C0(U, ω)q̂= 0, (2.4)

where the linear operators C0, C1, C2, together with boundary conditions are also
reported in appendix A. The discretization is ensured through a Chebyshev spectral
collocation method including an algebraic mapping of the domain, as detailed in
Viola et al. (2014), where the influence of the radial extension of the domain is
discussed in appendix B. In figure 1(c) the spatial growth rates are shown as a
function of the frequency ω, and the integer numbers at the curve peaks depict
their azimuthal wavenumber mode, m. In particular, four helical modes are seen to
be amplified in space, and m = 1 at a frequency approximately equal to 0.6 is the
dominant mode. For this particular case (m = 1, ω = 0.6), the eigenvalue spectrum
that is obtained by solving (2.4) numerically is reported in figure 2(a): unstable
perturbations propagating downstream are characterized by a positive phase velocity,
ω/kr, and a negative growth rate, ki. Thus, the eigenvalues of interest are located in
the fourth quadrant, i.e. kr > 0 and ki < 0. The red circle depicts the non-spurious
eigenvalue associated with the largest spatial growth rate and whose imaginary part
corresponds to the red circle in figure 1(c). This eigenvalue was distinguished among
many spurious eigenvalues (outside of the figure’s visualization axis) by using the
Gaster transformation of the temporal analysis, which has been used to obtain a
target for the complex k+ spatial branches as explained in more detail in Iungo et al.
(2013).
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FIGURE 2. (Colour online) (a) The spatial stability spectrum (circles) of the parallel
Batchelor vortex with α= 0.667, S= 0.333, Re= 100, m= 1 and ω= 0.6. The red circle
indicates the most unstable physically meaningful eigenvalue. The blue asterisks mark the
variation of the dominant eigenvalue (red circle) due to a modification of the base-flow
velocity components (see text). The red dashed line in (a) is the linear prediction of the
eigenvalue variation based on the sensitivity map, whose components are reported in (b).

2.2. Generic sensitivity analysis of the local stability problem
The sensitivity of a given eigenvalue k to generic perturbations of the linear operators
in (2.4) is here derived by a standard expansion procedure. A small variation of the
linear operators C ′0=C0+ δC0, C ′1=C1+ δC1, C ′2=C2+ δC2 yields a small variation of
the eigenvector q̂′∼ q̂+ δq̂ together with a small variation in the eigenvalue k′∼ k+ δk.
At first order we have

δk=−
〈q†, [δC0 + kδC1 + k2δC2]q̂〉p
〈q†, [C1 + 2kC2]q̂〉p

, (2.5)

where 〈·〉p designates a suitable scalar product in the framework of parallel flows and
q†
= (u†, p†) is the adjoint vector of the stability eigenproblem (2.4) associated with

the defined scalar product. From now on we will use the Hermitian inner product
defined as

〈qA, qB〉p =

∫
∞

0
qH

A qBr dr, (2.6)

where the symbol H indicates the trans-conjugate and qA and qB are two complex
vector fields. In this case, the adjoint vector satisfies the following adjoint eigenvalue
problem:

k∗ 2C†
2 q†
+ k∗C†

1 q†
+ C†

0 q†
= 0, (2.7)

where the superscript ∗ designates the complex conjugate and the adjoint operators
C†

0 , C†
1 and C†

2 are reported in appendix A. The adjoint vector q† is defined up
to a multiplicative factor and from now the chosen normalization is such that the
denominator of the expression (2.5) is equal to 1. Equation (2.5) is the generalization
of the sensitivity of a standard eigenvalue problem described in Chomaz (2005),
which would correspond to the case C2 = 0.
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2.3. Sensitivity of the local spatial stability properties to base-flow modifications
We are now interested in determining the sensitivity of k to a generic base-flow
modification δU = (δUr = 0, δUθ , δUx), where the restriction δUr = 0 is dictated
by the local analysis setting. A perturbation at the base-flow level in the linearized
equation (2.2) yields a perturbation of the linear operators δC0, δC1, δC2 such that
δC2 = 0 and

[δC0 + kδC1]q̂=


imûrδUθ/r+ ikûrδUx − 2ûθδUθ/r

ûr∂δUθ/∂r+ imûθδUθ/r+ ikûrδUx + ûrδUθ/r
ûr∂δUx/∂r+ imûxδUθ/r+ ikûxδUx

0

 . (2.8)

Substituting (2.8) in (2.5) and integrating by parts, we can transfer the differential
operators from the vector δU to the adjoint vector u†. If the base-flow modification
does not occur at the domain boundaries, the boundary terms coming from the
integration by parts are null and (2.5) reads

δk= {∇Uk, δU}, (2.9)

where the complex vector

∇Uk=

 0
im(u†

x ûH
x + u†

r ûH
r + u†

θ ûH
θ )+ ∂u†

θ/∂rûH
r + u†

θ∂ ûH
r /∂r+ 2u†

r ûH
θ /r

ik(u†
x ûH

x + u†
r ûH

r + u†
θ ûH
θ )+ ∂u†

x/∂rûH
r + u†

x∂ ûH
r /∂r+ u†

x ûH
r /r

 (2.10)

is the sensitivity of the considered spatial eigenvalue, k, to a base-flow modification.
The azimuthal and streamwise components of ∇Uk are the sensitivities of the complex
eigenvalue k to an azimuthal and streamwise base-flow modification. Their real
(dashed line) and imaginary (full line) parts are reported in figure 2(b) for the most
unstable spatial eigenvalue of the parallel Batchelor vortex in the case of α = 0.667
and S = 0.333, i.e. m= 1 and ω = 0.6. Since ∇Uk is a complex vector and δU is a
real quantity, the real parts of ∇Uθ k and ∇Ux k are the sensitivities of kr to a generic
base-flow modification. On the other hand, the sensitivity of the spatial growth rate
is given by the imaginary part of expression (2.10). The radial component of the
sensitivity to base flow is null consistently within the parallel-flow assumption of the
local analysis.

From the sensitivity maps in figure 2(b), it is seen that a base-flow modification
with positive azimuthal and streamwise components superimposed onto the reference
base flow (2.1) leads kr to increase. Moreover, a swirl increase and a decrease
of the wake deficit yield a lower spatial growth rate, −ki. Hence, (2.9) allows
us to determine the direction of displacement of the spatial eigenvalues in the
complex k-plane corresponding to a given base-flow modification. In order to verify
the sensitivity maps, we study the effect of a specific base-flow modification, i.e.
δUx = ce−r2 , on the most unstable spatial eigenvalue in figure 2(a). The considered
base-flow modification mimics a variation or uncertainty on the wake parameter α
in (2.1), and its effect on the spatial stability is determined by solving the spatial
stability analysis equation (2.4) with the modified base-flow component Ux + ce−r2 .
Results are shown in figure 2(a) for c ranging from 3 % to 30 % of α. The true path
followed by the selected eigenvalue in the complex plane as the parameter c is varied
is indicated with blue asterisks. The same path is approximated by the red straight
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FIGURE 3. (Colour online) (a) Radial, (b) azimuthal and (c) streamwise velocity
components of the non-parallel Batchelor vortex at Re = 100 with inlet condition given
by the velocity profile in (2.1).

line using the sensitivity analysis carried out on the unperturbed flow. It is seen that
the perturbed eigenvalue positions, which migrate towards the stability region as c is
increased, are well aligned with the linear prediction provided by sensitivity analysis,
especially when c is small, thus validating the method and its implementation. For
larger base-flow modifications, nonlinearities neglected in the linearized relation (2.5)
become more important and lead to a progressively increasing discrepancy between
the predicted and the true eigenvalue trajectories.

Equation (2.10) is an extension to the spatial analysis of a concept that was
originally developed by Bottaro et al. (2003) for temporal analysis. It should also be
noted that the two non-null components of ∇Uk are equal to the azimuthal and axial
components of the vector

−u†
· (∇û)H + û∗ · ∇u†, (2.11)

which is formally similar to the sensitivity to base-flow modifications of a global
mode found by Marquet et al. (2008). The use of (2.11) in the framework of a
local stability analysis requires û to be the direct spatial mode, while u† is the
spatial adjoint vector, which satisfies the spatial adjoint problem (2.7). Moreover, the
streamwise and azimuthal derivatives have to be replaced by the Fourier derivatives,
according to the modal expansion (2.3). Finally, the radial component of (2.11), which
would give the sensitivity to a radial velocity modification in a global framework,
does not bear any meaning in the local spatial analysis.

3. Uncontrolled trailing vortex prototype
Rather than parallel flows, we now consider weakly non-parallel amplifier flows

which slowly evolve in the streamwise direction, resulting in variations of the local
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FIGURE 4. Contours of the spatial growth rate −ki in the (ω, x) plane for the convectively
unstable helical modes, namely (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = −1. Each
colour bar ranges from 0 (neutral amplification) to max(−ki(ω, x, m)). The horizontal
dashed line in (a) corresponds to the spatial branch examined in § 4.

stability properties. The non-parallel Batchelor vortex represents a suitable prototype
flow, where its parallel approximation (2.1) considered in the previous section is here
used as inlet condition together with free-stress condition at the outlet and radial far-
field boundaries. Its velocity components and pressure Q= (U,P) depend on both the
radius r and the streamwise distance x from the inlet and are found by solving the
discretized Navier–Stokes equation (3.1) in cylindrical coordinates:

N(Q,U0)=

(
U · ∇U+∇P−

1
Re
1U

∇ ·U

)
= 0, (3.1)

where the dependence on the inlet condition U0 is emphasized in the notation. For
the numerical solution of (3.1), we have used a Newton–Raphson method based on
a staggered pseudospectral Chebyshev–Chebyshev collocation method (Viola et al.
2016). The computational domain is 0 < x < 20 and 0 < r < 10 and it has been
discretized by using 80 and 40 nodes in the streamwise and radial directions. The
resulting velocity field at Re=100 is reported in figure 3(a–c). Note that in figure 3(a)
the radial velocity is significantly smaller than the other two velocity components,
thus validating the assumption of weakly non-parallel flow. Proceeding downstream
the vortex core gets slightly diffused, as shown in figure 3(b), and the axial velocity
deficit in figure 3(c) gradually recovers. The flow is seen to be locally convectively
unstable and the resulting spatial growth rates, −ki, are reported in figure 4 as a
function of the frequency, ω, and the streamwise position, x. Consistently with the
spatial stability properties of the inlet section (see figure 1c), four helical modes are
amplified in the trailing vortex, namely m ∈ {−1, 1, 2, 3}. The largest amplification is
observed in the inlet region where the wake deficit is more pronounced. In particular,
the single helical mode, m = 1, has the largest spatial growth rate and is intense
in the low-frequency band, whereas the double helical mode, m = 2, dominates for
0.8< ω < 1.3. In addition, m= 3 is the most amplified mode at high frequency and
m=−1 is weakly amplified at low frequency.
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Asymptotic theory for a weakly non-parallel base flow (Huerre & Rossi 1998)
prescribes that the global disturbance with frequency ω and azimuthal wavenumber
mode m takes the following modulated wave form at leading order:

q(r, θ, x; t)∼ q̂(r, x) exp
[

i
(∫ x

0
k(x′, ω) dx′ +mθ −ωt

)]
, (3.2)

where k(x, ω) is the local spatial eigenvalue at the flow location x and q̂(r, x) =
(û, p̂) is the corresponding spatial eigenvector. In particular, the perturbation (3.2) is
amplified or damped in space according to the local spatial growth rate −ki(x), and
the integral amplification factor

G(ω,m)= exp
(∫ xf

0
−ki(x′, ω,m) dx′

)
, (3.3)

is a measure of the ratio between the final, xf , and the initial, x = 0, disturbance
amplitudes, where xf has been set equal to xf = 10. The factor G(ω, m), which
is obtained by integrating in x the spatial growth rates in figure 4, is reported in
figure 9(b) by a black line: the azimuthal geometry of the most amplified mode
depends on the disturbance frequency, with m = 1 well resonating around ω = 0.6
and m= 2 around ω= 1.1.

Furthermore, we define the total amplification factor as

Γ =
∑
m∈M

∫ ωmax

ωmin

G(ω,m) dω, (3.4)

where [ωmin, ωmax] is the frequency band of noise amplification (here equal to [0, 2.1];
see figure 9b) and M is the set of convectively unstable helical modes, namely
M= {−1, 1, 2, 3}. The factor Γ represents the overall amplification of all modes at
all frequencies after they have undergone their entire amplification process in space
between 0 and xf .

In what follows, the sensitivity of the integral (3.3) and total (3.4) amplification
factors to an inflow modification is derived by using the results presented in § 2.3,
thus providing information for their control.

4. Sensitivity of the integral amplification factor in weakly non-parallel flows
4.1. Lagrangian formulation

In this section, specifically for control purposes, we are interested in determining the
sensitivity of the integral amplification factor (3.3) of a specific spatial mode. As a
reference case, we consider the streamwise evolution of the single helical mode m= 1
at frequency ω = 0.6 in the evolving Batchelor vortex (see § 3), which is the most
amplified mode in the domain and which corresponds to the horizontal dashed line in
figure 4(a). By carrying out the local spatial analysis at different positions in the x
direction, it is seen that both the axial wavenumber, kr, and the spatial growth rate,
−ki, decrease while moving downstream due to the reduction of the wake deficit; see
figure 5.

This control problem can be formulated as an optimization problem where the
objective function is the integral amplification itself. Rather than a continuous
approach where the continuous optimization problem is defined and then discretized,
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FIGURE 5. Streamwise evolution of (a) the axial wavenumber, kr, and (b) the spatial
growth rate, −ki, for the single-helix spatial branch at ω= 0.6.

we directly apply the Lagrangian variational technique to the discretized governing
equations:

LG(Q,U0)=G(Q)+ λTN(Q,U0), (4.1)

where the superscript T stands for the transpose. The constraint is given by the
discretized steady Navier–Stokes equations, N(Q,U0), and λ is the vector of Lagrange
multipliers or discrete adjoint vector. Thus, the integral amplification factor (3.3) is
written in discretized form as follows:

G(ω,m)= exp

(
−

Nx∑
n=1

wnki(xn, ω,m)

)
. (4.2)

In (4.2) the coefficients wn are the integration weights of the standard trapezoidal
formula and Nx is the number of locations used to discretize the streamwise direction.

The gradient of the integral amplification factor G with respect to a base-flow inlet
modification is derived by considering variations of the Lagrangian LG. Imposing
the stationarity of LG with respect to λ reduces to the discrete state (3.1), which is
satisfied by the uncontrolled base flow Q. Then, the stationarity of the Lagrangian
with respect to the state variable, Q, yields an equation that has to be satisfied by the
adjoint variable λ:

−λT
∇QN =∇QG, (4.3)

where ∇QN is the Jacobian matrix of the discrete Navier–Stokes operator. Recalling
that the local growth rates −ki(xn) depend only on the streamwise and azimuthal
velocity at the location xn, the right-hand side of (4.3) can be rewritten as

∇QG=−G
Nx∑

n=1

wn[∇Ux ki(xn)∇QUx(xn)+∇Uθ ki(xn)∇QUθ(xn)], (4.4)

where the terms ∇Ux ki(xn) and ∇Uθ ki(xn) are the local spatial sensitivities of ki to a
local base-flow modification and the related expressions have already been derived in
§ 2.3. Specifically, ∇Ux ki(xn) and ∇Uθ ki(xn) have to be evaluated by injecting the local
direct û(xn) and adjoint u†(xn) modes in (2.10). The terms ∇QUx(xn) and ∇QUθ(xn)
are the interpolation matrices which extract from a vector Q the streamwise and
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azimuthal velocity components at the streamwise position xn. Hence, given the local
spatial sensitivity analyses, the adjoint vector λ can be determined by solving the
linear system (4.3).

Finally, the derivative of the Lagrangian LG with respect to the control variable
gives the variation of the integral amplification factor with respect to a small-
amplitude generic inlet modification δU0:

δG=
dG(Q)

dU0
δU0 = λ

T
∇U0 NδU0, (4.5)

where ∇U0 N is a restriction matrix, which extracts the velocity components at the inlet
x= 0 from a velocity–pressure vector Q. Equation (4.5) can be formally rewritten as

δG= 〈∇U0G, δU0〉, (4.6)

where 〈uA, uB〉 = uT
AMuB is the inner product in the discrete setting, and M is

the integration matrix containing the integration weights on its diagonal. The real
vector ∇U0G is the integral amplification factor sensitivity with respect to an inlet
modification, and is defined as

∇U0G=M−1(∇U0 N)Tλ. (4.7)

For the reference case of ω = 0.6 and m= 1, the three components of ∇U0G, which
correspond to the sensitivity maps to a radial, azimuthal and axial inlet velocity
modification, are reported in figure 6(a). The sensitivity with respect to Uθ0 reveals
that, in order to increase the amplification, the azimuthal velocity, and therefore the
swirl parameter, has to be decreased. Similarly, ∇Ux0

G shows that an increase of
the wake deficit and a higher streamwise velocity at the vortex periphery lead to a
more intense response to noise. Owing to the non-parallelism of the base flow U,
the spatial amplification is also sensitive to a variation of the radial velocity. This
velocity component acts on the local spatial stability properties of the flow solely
through the coupling with the streamwise and azimuthal velocity components in the
base-flow governing equations (3.1). In particular, it is seen that a positive inlet radial
velocity, which increases the vortex core diameter and consequently favours the axial
deceleration, has a destabilizing effect.

Similar results on the sensitivity with respect to radial and axial velocity
components are observed for m = 2 and m = 3 at the frequency corresponding to
the largest amplification factor, ω = 1.1 and ω = 1.6 respectively; see figure 7. In
contrast to m = 1 (figure 6a), however, the sensitivity with respect to the azimuthal
velocity is positive in the core region for both m= 2 and m= 3. This signifies that an
increase of the swirl has a destabilizing effect on the double and triple helical modes.
This result can be rationalized by recalling that, starting from a pure axial flow,
helical modes are first progressively destabilized by an increasing amount of swirl till
S exceeds S∗(m), beyond which a further increase of swirl starts to have a damping
effect, until complete stabilization of the flow for S ≈ 1.5α (Mayer & Powell 1992;
Delbende et al. 1998). As illustrated in figure 1(b) for the flow pertaining at the inlet
section, the swirl value corresponding to the maximum growth rate, S∗(m), depends
on the helical mode and it is seen to increase with m for the chosen flow parameters,
thus yielding a different sensitivity to a modification in the inlet azimuthal velocity.
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FIGURE 6. (Colour online) (a) The sensitivity maps of G(ω= 0.6,m= 1) to radial (green),
azimuthal (red) and axial (black) inlet velocity modifications. (b) The true amplification
factor modification (blue asterisks) as a function of the magnitude of the inlet control
c. The red dashed line shows the linear amplification modification according to the inlet
sensitivity map.
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FIGURE 7. (Colour online) Sensitivity maps of (a) G(ω = 1.1, m = 2) and (b)
G(ω = 1.6, m = 3) to a radial (green), azimuthal (red) and axial (black) inlet velocity
modifications.

4.2. Optimal inlet control
The sensitivity ∇U0G not only predicts the linear modification of the integral
amplification factor due to an inlet modification through (4.6), but also corresponds to
the most destabilizing infinitesimal inlet modification (Camarri 2015). For this reason,
∇U0G can be used to design an inlet control which stabilizes the global spatial branch.
Figure 6(b) shows the amplification variation of the single-helix spatial branch at
frequency ω= 0.6 due to an inlet modification of the type δU0=−c∇U0G, with c the
magnitude of the control. The blue line in figure 6(b) represents the real amplification
variation with respect to the uncontrolled condition. More precisely, at a given c, the
real amplification variation (blue asterisk) is computed by (i) solving the nonlinear
base flow equation (3.1) with the inlet condition U0 − c∇U0G, and (ii) carrying out
the spatial stability analysis on the obtained base flow. Then, (iii) the associated
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FIGURE 8. (Colour online) (a) The velocity components of the uncontrolled inlet
condition (full lines), which correspond to the Batchelor vortex profile (2.1) with α=0.667
and S= 0.333. The velocity components perturbed by the application of the control δU0=

7 × 10−4∇U0 G(ω = 0.6, m = 1) are shown with dashed lines. (b,c) Isosurfaces of ±95 %
of the maximum axial vorticity of the global spatial mode (3.2) in the (b) uncontrolled
and (c) controlled cases.

integral amplification factor G(c) is computed according to the definition (4.2) and
its variation 1G= 1−G(c)/G(c= 0) is obtained, where G(c= 0) is the amplification
factor of the uncontrolled condition. It is seen that the linear amplification variation
predicted by (4.6), which is depicted by a red line in figure 6(b), correctly captures
the amplification variation for small values of c. In contrast, owing to the nonlinear
dependence of the amplification factor on the magnitude of the perturbation, the
error increases as c is progressively increased. Still, the linearization leading to the
sensitivity analysis allows the prediction of even large variations of amplification with
reasonable accuracy.

As an application, figure 8(a) shows the uncontrolled and the controlled velocity
profiles at the inlet for c=7×10−4 (see figure 6a). Although the inlet condition differs
very slightly from the uncontrolled case, the effect of this variation on the considered
instability is substantial, as shown in figure 8(b,c), where the axial vorticity of the
spatial branch given by (3.2) with ω= 0.6 and m= 1 is reported. In the first case the
helical perturbation is convectively unstable in all the flow domain and is continuously
amplified while propagating. When the control is applied, the spatial branch is damped
for x> 7 and the integral amplification factor experiences a significative reduction of
35 % with respect to the uncontrolled flow.

5. Sensitivity of the total growth factor in weakly non-parallel flows
5.1. Lagrangian formulation

The control strategy illustrated in the previous section is based on the inlet sensitivity
of the integral amplification factor of a single helical mode at a given frequency.
Hence, a control is designed to reduce the amplification of the single spatial branch
considered, but it could dangerously increase the spatial growth of other helical modes
and of other frequencies. Therefore, we now turn to assess the sensitivity of the total
amplification factor Γ (see (3.4)) to a modification of the inflow conditions. Indeed,
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the control of Γ requires one to account for the local growth rates of all helical modes
in their entire frequency band of amplification.

Similarly to the analysis in § 4.1, the problem can be tackled by considering the
following Lagrangian:

LΓ (Q,U0)= Γ (Q)+ ξ TN(Q,U0). (5.1)

The steady Navier–Stokes equations N(Q, U0) are the constraint, the Lagrange
multiplier ξ is the adjoint vector and the quantity to minimize is now the total
amplification factor Γ (Q), which in discrete form reads:

Γ =
∑
m∈M

Nω∑
l=1

αlG(ωl,m)=
∑
m∈M

Nω∑
l=1

αl exp

(
−

Nx∑
n=1

wnki(xn, ωl,m)

)
. (5.2)

As in (4.2), the coefficients wn are the integration weights of the standard trapezoidal
formula and Nx is the number of locations used to discretize the control window in
the streamwise direction. In addition, the coefficients αl are the integration weights
corresponding to the integral in the frequency domain, which is discretized using Nω

points, and M= {−1, 1, 2, 3} is the set of convectively unstable helical modes.
When imposing the stationarity of LΓ with respect to ξ , the problem reduces to

the discrete state (3.1), which is satisfied by the uncontrolled base flow Q that we
have determined previously. Then, the stationarity of the Lagrangian with respect to
the state variable, Q, yields a governing equation for the adjoint variable ξ :

−ξ T
∇QN =∇QΓ , (5.3)

which is now forced at the right-hand side by the variation of the total amplification
factor, Γ , with respect to a variation of the base flow, Q. This term can be rewritten
as a function of the sensitivities to a base-flow variation of the helical modes’
amplification factors at different frequencies,

∇QΓ =
∑
m∈M

Nω∑
l=1

αl∇QG(ω,m), (5.4)

which reduces, by using (4.4), to a weighted sum of the local spatial sensitivities to
a generic local base-flow modification (see § 2.3):

∇QΓ =
∑
m∈M

Nω∑
l=1

−αlG(ω,m)
Nx∑

n=1

wn[∇Ux ki(xn)∇QUx(xn)+∇Uθ ki(xn)∇QUθ(xn)]. (5.5)

Note that the local sensitivities ∇Uθ ki(xn) and ∇Ux ki(xn) in (5.5) are multiplied by
the integral amplification factor of the given spatial branch G(ω, m). Hence, as
reasonable, most amplified helical modes correspond to a higher contribution to the
forcing term ∇QΓ . Then, by solving the linear system (5.3) for the adjoint field
ξ , the sensitivity of the total amplification factor with respect to a small-amplitude
generic inlet modification δU0 reads:

∇U0Γ =M−1(∇U0 N)Tξ . (5.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

28
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.281


356 F. Viola, E. Pezzica, G. V. Iungo, F. Gallaire and S. Camarri

0 1

1

2 3

3

21

2 3 0

c

0.5 1.0 1.5 2.0

–10

–1 –1

0

10

20

30

–20

–30 1.0

1.2

1.4

1.6

1.8

2.0

2.2
T

ot
al

 a
m

pl
if

ic
at

io
n

fa
ct

or
 s

en
si

tiv
ity

r

(a) (b)

FIGURE 9. (Colour online) (a) Sensitivity maps (full lines) of the total amplification
factor Γ (see (5.6)) to radial (green), azimuthal (red) and streamwise (black) inlet velocity
modifications. The + symbols correspond to the sensitivity maps computed with a finer
mesh (see appendix B), showing convergence with respect to grid resolution. (b) The
variation of the integral amplification factor G(ω, m) obtained by using the sensitivity
map as inlet control δU0= c∇U0Γ . Grey lines correspond to several forcing amplitudes c
ranging from c= 0 (uncontrolled condition, black line) to c= 2× 10−3 (red line) in equal
intervals.

The three components of the sensitivity ∇U0Γ are shown in figure 9(a) and they
correspond to the sensitivity maps to a radial (green line), azimuthal (red line) and
axial (black line) inlet velocity modification.

Similarly to the sensitivity maps in figures 6(a) and 7, where only one helical mode
at a given frequency was considered, an increase of the wake deficit and a higher
streamwise velocity at the vortex periphery lead to a more intense amplification of
disturbances. Moreover, a positive inlet radial velocity is positively correlated with δΓ .
In contrast, the sensitivity with respect to a modification of the azimuthal velocity does
not have a monotonic behaviour since it is the result of a compromise between the
sensitivities of different helical modes. As previously discussed in § 4.1, double and
triple helical modes are destabilized by an increase of the azimuthal velocity close
to the centreline; see figure 7. On the other hand, the single helical mode requires a
decrease in swirl to enhance the amplitude of the response, as depicted in figure 6(a).

5.2. Optimal inlet control
The sensitivity map (5.6) is now used as an inlet control to reduce the integral
amplification factor G(ω,m) of all helical modes over the base flow. Figure 9(b) shows
the variation of G(ω, m) due to an inlet modification of the type δU0 = −c∇U0Γ ,
with c the magnitude of the control. Grey lines depict the dependence of G(ω, m)
on the control amplitude, ranging from the uncontrolled condition c= 0 (black line)
to c = 2 × 10−3 in equal intervals. At a given c, the integral amplification factor is
obtained by (i) solving the nonlinear base flow equation (3.1) with the inlet condition
U0 − c∇U0Γ , and (ii) carrying out the spatial stability analysis on the obtained base
flow.

Figure 9 demonstrates how, with a single linearization of the governing equation, it
is possible to design a control strategy able to reduce the spatial amplification of all
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convectively unstable disturbances. In particular, with an amplitude of the control of
c= 2× 10−3 (red line) the integral amplification factor is reduced by 50 % for m= 1
and by 40 % for m= 2, and higher azimuthal wavenumber modes are seen not to be
destabilized by the control. Moreover, the high-frequency mode m= 3 is completely
stabilized and m=−1, which was already weakly amplified, is slightly stabilized.

Note that the control is more effective on m = 1 rather than m = 2, which
progressively becomes the most amplified mode while the control amplitude c is
increased. This behaviour can be explained by recalling that the control is designed
on the uncontrolled base state where m = 1 has the largest G(ω, m) and therefore
has the highest contribution to the forcing term (5.5) and on the sensitivity map.
However, the sensitivity maps defined here can be used in an iterative shaping of the
control as proposed by Camarri & Iollo (2010). This technique, which is based on
successive linearizations of the governing equations, allows one to properly modify
the control according to the new stability property of the controlled base flow.

6. Conclusions
In this work a general formulation is proposed which allows the application of

systematic adjoint-based techniques for the control of the integral amplification
factor in weakly non-parallel amplifier flows. The method is based on the sensitivity
analysis of the local stability properties of the flow, which was here derived by
adjoint methods.

Firstly, the sensitivity of the spatial stability spectrum of a locally parallel flow to
a generic modification of the stability operators and to a base-flow modification is
found. In the case of a parallel Batchelor vortex, the local sensitivity map is seen to
correctly predict the displacement of the spatial eigenvalues in the complex k-plane
due to a specific base-flow modification.

Then, for the purpose of control in slowly evolving amplifier flows, these local
results are used to determine the sensitivity of the spatial growth of disturbances to a
modification of the inflow conditions. Although the method can be easily extended to
cover very general cases, here we presented its application to the control of the spatial
instability in an evolving Batchelor vortex, which is traditionally used to model trailing
vortices in aeronautics. The base flow is obtained by axisymmetric direct numerical
simulation starting from the velocity profile of a parallel Batchelor vortex as inflow
boundary condition, and is seen to be locally convectively unstable to four helical
modes, m ∈ {−1, 1, 2, 3}. The largest amplification is observed in the inlet region
where the wake deficit is more pronounced and the single- and double-helical modes
are the most amplified modes.

The sensitivity of the integral amplification factor, G(ω, m), of a single spatial
branch is formulated as an optimization problem, where G(ω, m) is the objective
function and the Navier–Stokes equations are included in the Lagrangian formulation
as a constraint. Rather than a continuous approach where the continuous optimization
problem is defined and then discretized, we directly apply the Lagrangian variational
technique to the discretized governing equations. In this framework, we show that
the local spatial sensitivities are the building blocks of the sensitivity of the integral
amplification factor to generic modifications of the inlet velocity profile. The resulting
sensitivity map indicates the optimal modification of the inlet velocity profile so as to
stabilize the considered helical spatial mode of a non-parallel Batchelor vortex, which
is locally convectively unstable. It is shown that the control, formulated using only
one linearization of the flow dynamics carried out on the uncontrolled configuration,
successfully reduces the global spatial amplification of a given spatial branch.
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This analysis is then extended to determine the sensitivity to an inflow modification
of the total amplification factor, which is a measure of the overall amplification of all
the convectively unstable spatial branches. Hence, the corresponding sensitivity map
accounts for all the amplified helical modes in the frequency band of amplification. It
is seen that, in order to increase the total amplification factor, the streamwise velocity
has to decrease close to the centre of the wake and to increase at the vortex periphery,
thus enhancing the wake deficit. A positive variation of the azimuthal velocity has a
destabilizing effect close to the vortex centreline whereas it stabilizes the flow in the
outer region. This non-monotonic behaviour is seen to be the result of the different
sensitivities to the base-flow swirl of different helical modes. Furthermore, owing to
the non-parallelism of the base flow, also the radial velocity has an effect on the
spatial amplification: a positive inlet radial velocity increases the vortex core diameter,
favouring the axial deceleration and destabilizing the flow. This map is subsequently
used as an inlet control to effectively reduce the integral amplification factor of all
helical modes over the base flow. We observe that with a control of size c= 2 h the
spatial amplification of all modes is significantly reduced, and the amplification factor
of m= 1 and m= 2 is almost halved.

The information provided by the control map is valid only for small control
amplitudes perturbing the uncontrolled configuration. However, the control design
method proposed here can be easily extended to include larger control amplitudes,
by employing the sensitivity map in a standard iterative gradient method, as done for
instance by Bottaro et al. (2003) for temporal analysis on parallel flow. We conclude
by underlining that the systematic framework proposed here to control the integral
amplification factor in amplifier flows has potential impact in many cases of interest,
such as the control of the hub vortex in wind turbines (Iungo et al. 2013), which has
inspired this work. As a final note, in the spirit of weakly non-parallel flows, the full
Navier–Stokes equations in the Lagrangian formulation (4.1) can be replaced by the
parabolized equations in the streamwise direction, allowing a marching technique for
their numerical solution as for the boundary layer equations (see Zuccher, Bottaro &
Luchini 2006). In this case, both the base-flow and stability problems are carried out
in a weakly non-parallel setting.

Appendix A. Local stability analysis of swirling flows

The linear evolution of helical disturbances of the type (û, p̂)ei(kx+mθ−ωt) over a
parallel swirling flow Ux(r),Uθ(r) is governed by

−iωûr +Λm,kûr − 2
Uθ ûθ

r
=−
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∂r
+
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Re
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−iωûθ +Λm,kûθ +
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+ k2)ûθ + 2im
ûr

r2

]
,

−iωûx +Λm,kûx + ûr
∂Ux

∂r
=−ikp̂+

1
Re

[
1
r
∂

∂r

(
r
∂ ûx

∂r

)
− (m2/r2

+ k2)ûx

]
,

1
r
∂rûr

∂r
+

im
r

ûθ + ikûx = 0,


(A 1)

where Λm,k = Uθ im/r + Uxik is the base-flow advection operator. Homogeneous
Neumann boundary conditions are imposed at the lateral boundary rmax together with
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the regularity conditions on the axis proposed by Batchelor & Gill (1962):

ûr = ûθ =
∂ ûx

∂r
= 0 for m= 0,

∂ ûr

∂r
=
∂ ûθ
∂r
= ûx = 0 for |m| = 1,

ûr = ûθ = ûx = 0 for |m|> 1.

 (A 2)

Temporal stability analysis allows the investigation of the temporal evolution of
the helical disturbances (see Schmid & Henningson 2012). In this framework, the
axial wavenumber k is real and ω is complex. Its real part, ωr, is the frequency
of the perturbation and its imaginary part, ωi, is the temporal growth rate. Given
the azimuthal, m, and streamwise, k, wavenumbers, equations (A 1) reduce to a
generalized eigenvalue problem,

Aq̂=ωBq̂, (A 3)

where ω is the eigenvalue and the linear operators are defined as follows:

A=



Λm,k −
1

Re
∆∗m,rθx

−2Uθ/r+
1

Re
2im
r2

0
∂

∂r
∂Uθ

∂r
+Uθ/r−

1
Re

2im
r2

Λm,k −
1

Re
∆∗m,rθx

0
im
r

∂Ux

∂r
0 Λm,k −

1
Re
∆m,rθx ik

1
r
+
∂

∂r
im
r

ik 0


, (A 4)

B=

 i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

, (A 5)

with ∆m,rθx = ((1/r)(∂/∂r)+ ∂2/∂r2
− k2
−m2/r2) and ∆∗m,rθ x =∆m,rθ − 1/r2.

On the other hand, the spatial stability analysis allows the investigation of the
spatial evolution of the helical disturbances (Schmid & Henningson 2012) and the
frequency ω is a real number whereas the wavenumber k is complex. In particular,
its real part, kr, corresponds to the axial wavenumber and its imaginary part, −ki,
is the spatial growth rate. Therefore equations (A 1) can be recast as the quadratic
eigenvalue problem (2.4), where the linear operators are defined as follows:

C0 =



imUθ/r−
1

Re
∆∗m,rθ − iω −2Uθ/r+

1
Re

2im
r2

0
∂

∂r

∂Uθ

∂r
+Uθ/r−

1
Re

2im
r2

imUθ/r−
1

Re
∆∗m,rθ − iω 0

im
r

∂Ux

∂r
0 imUθ/r−

1
Re
∆m,rθ − iω 0

1
r
+
∂

∂r
im
r

0 0


,

(A 6)
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C1 =

iUx 0 0 0
0 iUx 0 0
0 0 iUx i
0 0 i 0

 , C2 =



1
Re

0 0 0

0
1

Re
0 0

0 0
1

Re
0

0 0 0 0


, (A 7a,b)

with ∆m,rθ = ((1/r)(∂/∂r)+ ∂2/∂r2
−m2/r2) and ∆∗m,rθ =∆m,rθ − 1/r2.

Integration by parts of the spatial stability problem using the hermitian scalar
product (2.6) yields the adjoint spatial stability problem (2.7), where

C†
0 =



−imUθ/r−
1

Re
∆∗m,rθ + iω

∂Uθ

∂r
+Uθ/r+

1
Re

2im
r2

∂Ux

∂r
∂

∂r

−2Uθ/r−
1

Re
2im
r2

−imUθ/r−
1

Re
∆∗m,rθ + iω 0

im
r

0 0 −imUθ/r−
1

Re
∆m + iω 0

1
r
+
∂

∂r
im
r

0 0


,

(A 8)

C†
1 =

−iUx 0 0 0
0 −iUx 0 0
0 0 −iUx i
0 0 i 0

 , C†
2 = C2, (A 9a,b)

which satisfies the same boundary conditions as the direct problem.

Appendix B. Convergence of the results to grid and computational domain

We show here the numerical independence of the results from the size of the
domain and grid refinement.

B.1. Local stability analysis
Figure 10 shows the insensitivity of the (a) temporal and (b) spatial stability analysis
of the parallel Batchelor vortex (2.1) on the radial extension of the domain, rmax, and
on the number of Gauss–Lobatto–Chebyshev (GLC) nodes, N. Black line stands for
rmax = 10,N = 40 whereas red line indicates rmax = 15,N = 60.

B.2. Direct numerical simulations (DNS)
Similarly to figure 3(c), figure 11(a) reports the streamwise velocity obtained by using
the domain D1 in the DNS, which consists of: rmax=10, axial extension of the domain
xmax = 20 and 80 × 40 GLC nodes for the velocity components. In figure 11(b) the
same quantity is obtained by using the larger domain D2 (rmax= 15, xmax= 25, 100×
60 GLC nodes), thus revealing the lack of influence of the radial and axial extents of
the domain and of the free-stress constraint on the base flow in the region of interest
for this study.
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FIGURE 10. (Colour online) (a) Temporal and (b) spatial growth rates computed with
radial extension of the domain equal to rmax = 10 and N = 40 (black line) and rmax = 15
and N = 60 (red line).
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FIGURE 11. (Colour online) Streamwise velocity field Ux computed using the
computational domain (a) D1 and (b) D2 (see text). The corresponding integral
amplification factor G(ω,m) is shown in (c) by black line for D1 and red line for D2.

B.3. Amplification factor and sensitivity map

Similar independence of the radial and streamwise extents of the domain is found for
the integral amplification factor that is shown in figure 11(c) by a black line in the
case of rmax = 10, N = 40 GLC nodes, Nx = 30 and using the D1 base flow (in the
range x ∈ [0, 10]). There the red line stands for G(ω, m) computed with rmax = 15,
N = 60 GLC nodes, Nx = 40 and using the D2 base flow (for x ∈ [0, 10]).

In addition, the sensitivity map of the total amplification factor with respect to an
inflow base-flow modification is shown in figure 9(a) by a full line when using rmax=

10, N = 40 GLC nodes, Nx = 30, D1 base flow and Nω = 210, and by symbols in the
case of rmax= 15, N = 60 GLC nodes, Nx= 40, D2 base flow and Nω = 420. The very
good agreement between the sensitivity maps computed with different domain sizes
and grids represents a significant convergence test because all the numerical tools of
the analysis are involved: the local spatial analysis, the DNS, integration in x and ω.
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