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We construct a model to investigate the interfacial stability of film boiling, and
discover that instability of very thin vapour films and subsequent large interface
superheating is only possible if thermocapillary instabilities are present. The model
concerns horizontal saturated film boiling, and includes novel features such as
non-equilibrium evaporation based on kinetic theory, thermocapillary and vapour
thrust stresses and van der Waals interactions. From linear stability analysis applied
to this model, we are led to suggest that vapour film collapse depends on a
balance between thermocapillary instabilities and vapour thrust stabilization. This
yields a purely theoretical prediction of the Leidenfrost temperature. Given that the
evaporation coefficient is in the range 0.7–1.0, this model is consistent with the
average Leidenfrost temperature of every fluid for which data could be found. With
an evaporation coefficient of 0.85, the model can predict the Leidenfrost point within
10 % error for every fluid, including cryogens and liquid metals where existing models
and correlations fail.

Key words: lubrication theory, thermocapillarity, thin films

1. Introduction

When a liquid is poured on top of a solid surface whose temperature is significantly
above the liquid’s saturation temperature, the liquid will start to boil. If we plot the
resulting heat flux as a function of surface temperature, we obtain the well-known
boiling curve (Dhir 1998), which is illustrated in figure 1. At very high surface
temperatures, we get the phenomenon of film boiling, where direct liquid–solid
contact is prevented by a continuous sub-millimetre vapour film. This drastically
reduces heat transfer compared to the conventional nucleate boiling regime.

Of particular importance here is the Leidenfrost point (1TL), also called the
minimum film boiling temperature, which is the limiting 1T below which film
boiling turns unstable. When passing this point from the right, it is called film
boiling collapse. Predicting the location of the Leidenfrost point is important for a
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Nucleate boiling Film boiling

FIGURE 1. (Colour online) An illustration of the boiling curve: a plot of boiling heat flux
(q̇) against the difference between surface temperature and liquid saturation temperature
(1T). At moderate surface temperatures, conventional nucleate boiling occurs, and heat
flux is an increasing function of 1T . However, at large enough 1T , heat flux drops as
a transition into the film boiling regime occur. The lowest 1T in the film boiling regime
is called the Leidenfrost point, 1TL.

variety of industrial concerns such as high heat flux cooling applications (e.g. nuclear
reactors (Theofanous et al. 1997)) and high performance electronics (Agostini et al.
2007), where it is crucial to avoid the film boiling regime in order to keep the heat
flux large. Also, film boiling collapse is often believed to be the triggering cause of
vapour explosions (rapid phase transition) in nuclear fuel–coolant interactions (Fletcher
1995; Berthoud 2000) and liquefied natural gas (LNG) spill incidents (Luketa-Hanlin
2006; Cleaver, Johnson & Ho 2007). The supposed mechanism behind such vapour
explosions is liquid superheating, i.e. the heating of a liquid above its saturation
temperature. As we will show, significant superheating at the liquid–vapour interface
is only possible if the vapour film becomes very thin, and this is only possible if the
uniformly growing solution becomes unstable. Certainly, knowing the value of 1TL

can be very useful in a variety of applications.
What is known about the Leidenfrost temperature for a given fluid? A lower bound

is obviously the saturation temperature. For an upper bound, an empirically supported
and physically reasonable value is the liquid spinodal, the temperature beyond which it
is thermodynamically impossible for a liquid to be superheated. However, this is quite
a large range. For example, water at standard pressure has a saturation temperature of
373 K, while the spinodal can be calculated to be 550 K to 600 K. Measurements
of the Leidenfrost point for pools and large droplets of water commonly fall around
460 K (see table 1), but the relative position along the saturation–spinodal interval
varies from fluid to fluid.

There have been a large variety of efforts to pinpoint the Leidenfrost point for any
given fluid. Some are based on simplified fluid mechanical considerations, such as
the efforts of Zuber (1959) and Berenson (1961). Others estimate it by the supposed
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Fluid Ts (K) γ (N m−1 K−1) Avg. TL (K) Std. TL (K) NL

Water 373.15 0.000192 462.78 19.39 12
Nitrogen 77.36 0.000229 100.00 4.31 7
Freon113 320.74 0.000110 378.03 10.40 5
Freon11 296.92 0.000128 346.50 8.38 4
Acetone 329.30 0.000112 409.40 4.15 4
Methane 111.70 0.000250 163.33 12.47 3
Mercury 629.80 0.000220 862.67 62.10 3
Ethanol 351.50 0.000089 429.10 9.97 3
Pentane 309.21 0.000108 367.00 N/A 1
Cyclohexane 353.89 0.000114 438.15 N/A 1
Benzene 353.30 0.000124 448.15 N/A 1

TABLE 1. Fluids for which experimental data on the Leidenfrost temperature could be
found. Also shown are the saturation temperature Ts and the surface tension temperature
sensitivity γ , found from the NIST database (Linstrom & Mallard 2017; Dean 1998).
The fourth and fifth columns show the average and standard deviation of the Leidenfrost
temperature at atmospheric pressure, based on NL data points from the literature. The
Leidenfrost temperature data points were found in Berenson (1961), Gottfried & Bell
(1966), Baumeister & Simon (1973), Valencia-Chavez (1978), Yao & Henry (1978),
Sakurai, Shiotsu & Hata (1990), Nagai & Nishio (1996), Qiao & Chandra (1997),
Bernardin & Mudawar (1999), Vesovic (2007).

upper bounds of the spinodal (Spiegler et al. 1963) or the superheat limit from
nucleation theory (Yao & Henry 1978). However, as concluded by Bernardin &
Mudawar (1999) and in the present work, none of the older models appear to predict
in a satisfactory manner the Leidenfrost point for a wide variety of fluids. Also, the
ones that are reasonably accurate for conventional fluids are semi-empirical, which
provides less physical insight and is dubious for extrapolation to unconventional
fluids. Overall, it appears that the underlying mechanism behind film boiling collapse
has eluded discovery.

In the present work, we attempt to arrive at a prediction of the Leidenfrost point
from the hypothesis that the mechanism behind vapour film collapse is a fluid
dynamical instability. The approach is to describe vapour film dynamics through the
well-studied long-wave (lubrication) approximation of thin film flow. This approach
generally leads to a single scalar highly nonlinear equation for the film-thickness
function, and has been thoroughly reviewed by Oron, Davis & Bankoff (1997),
Myers (1998) and Craster & Matar (2009) for the case of liquid films. However, the
present model considers a thin vapour film beneath a liquid bulk and will differ from
these well-established models in several ways.

The present work is heavily inspired by two previous works, which both consider
thin film flow with phase transition: the model for evaporating liquid films by
Burelbach, Bankoff & Davis (1988), and the model for film boiling by Panzarella,
Davis & Bankoff (2000). However, while the former includes the thermocapillary
effect (Davis 1987), liquid films give qualitatively different dynamics than vapour
films. On the other hand, while the latter does consider a vapour film, it does not
include the thermocapillary effect. The present model is the first to include van der
Waals, thermocapillary, vapour thrust and non-equilibrium evaporation effects in the
context of film boiling. As will be shown later, the thermocapillary effect will turn
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out to be crucial, and including it in film boiling is dependent on two model novelties
being present:

(i) Non-equilibrium evaporation: in the quasi-equilibrium limit, the interface
temperature is locked at the saturation temperature, and no thermocapillary
effect is possible. Therefore, it is essential to use a non-equilibrium model, which
includes an evaporation-rate-dependent departure from saturation temperature at
the interface.

(ii) Non-trivial liquid dynamics: while the liquid velocity far away from the vapour
film is assumed to be zero, when there is a non-zero velocity in the vapour the
liquid close by will be pulled along to a small degree. However, as we shall show,
approximating this by assuming a completely stationary liquid will decouple the
model from the thermocapillary effect. It is crucial then to account for the small
but non-zero liquid velocity.

The procedure to arrive at the present Leidenfrost model is as follows. In § 2 we set
up a flow model for the vapour film, including a van der Waals disjoining pressure,
a (linearized) non-equilibrium evaporation model and interface stress conditions that
include both vapour thrust (normal stress) and thermocapillary effects (tangential
stress). We then apply the long-wave approximation while modelling the effect of
liquid pressure and drag to arrive at a single scalar highly nonlinear partial differential
equation (PDE) for the dimensionless film thickness.

In § 3 we apply linear stability analysis to the PDE, and arrive at a stability
condition for uniform base states. This condition depends on the scale of initial
film thickness. We pose the hypothesis that film boiling collapse occurs when the
film is unstable for any choice of film-thickness scale, and follow that to its logical
conclusion, which turns out to be a theoretical prediction for the Leidenfrost point.
This expression suggests that the mechanism for film boiling collapse is that the
thermocapillary instability becomes stronger than vapour thrust stabilization. This is
a claim that to our knowledge has not been stated previously.

In § 4 we compare with experimental Leidenfrost measurements for 11 different
fluids and find decent predictive capabilities for all of them. As we then show in
§ 5, the most common existing models/correlations are unable to perform as well,
especially for the more unusual fluids such as cryogens and liquid metals.

We go on in § 6 to discuss the benefits of this new model, as well as the problem
of the unknown evaporation coefficient from kinetic theory. We summarize in § 7, and
suggest how the validity of the hypothesis could be proved (or disproved) by further
experiments.

2. Model

We consider the case of two-dimensional saturated film boiling on a horizontal
solid plane, as illustrated in figure 2. The spatial coordinates x and z run parallel and
perpendicular to the plane, respectively. The purpose of the analysis is to predict the
dynamics of the film-thickness function, z= h(x, t), where t is the time.

2.1. Governing equations of vapour flow
The vapour has velocity components u and w, in the x and z directions, respectively.
Viscosity (µv), density (ρv), thermal conductivity (kv) and heat capacity (cp,v) are
all assumed constant. The governing equations for the vapour flow are the standard
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Liquid

Vapour

Wall

FIGURE 2. (Colour online) Illustration of the physical situation to be modelled. On one
side is a liquid whose bulk is held at its saturation temperature. On the other side is a
solid slab whose bulk is held at a considerably higher temperature. Tw0 and Ts are the
only given temperatures in this case, and the remaining temperature profile comes from
a solution to the problem. The overall temperature difference is 1T , and if it is large
enough, it will lead to film boiling, i.e. a continuous thin vapour film between the two
bulk phases. The general purpose of this model is to predict the dynamics of the liquid–
vapour interface, located at z= h(x, t).

continuity, momentum and energy equations for incompressible flow (Kundu, Cohen
& Dowling 2007),

ux +wz = 0, (2.1)
ρv(ut + uux +wuz)=−px +µv(uxx + uzz)− φx, (2.2)
ρv(wt + uwx +wwz)=−pz +µv(wxx +wzz)− φz, (2.3)

ρvcp,v(Tt + uTx +wTz)= kv(Txx + Tzz), (2.4)

where variable subscripts imply differentiation. Here p is the pressure and φ is the
body-force potential. The only difference from standard flow equations so far is that φ
includes not only the gravity contribution, but also a film-thickness-dependent addition
that represents van der Waals interactions between the liquid surface and the solid
surface. This is called a disjoining pressure (Oron et al. 1997), and gives a total
potential of the form

φ = φ0 + ρvgbz+
Ã

6πh3
. (2.5)

Here g is the gravitational acceleration, and Ã is the effective Hamaker constant from
van der Waals interaction theory. The constant b = ±1 is +1 for the liquid-above-
solid configuration and −1 for the solid-above-liquid configuration. The constant φ0
is an arbitrary reference potential. The van der Waals interaction will only become
significant on the sub-micrometre scale of film thickness. A derivation of the last term
in (2.5) for the case of thin liquid films can be found in the work of Ruckenstein &
Jain (1974), and here we assume that a term of the same form is valid for thin vapour
films. Generally, the interaction may be either attractive (Ã> 0) or repulsive (Ã< 0).

2.2. Evaporation model
Due to the high temperature of the solid, evaporation occurs at the liquid–vapour
interface, giving an evaporation heat flux j. The only given temperatures are the
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LiquidVapourWall

x

h

z

FIGURE 3. (Colour online) Illustration of the local temperature profile in film boiling, on
x-scales much shorter than the wavelength seen in figure 2, so that the interface appears
flat.

controlled temperature in the solid bulk, Tw0, and the saturation temperature known
from thermodynamics, Ts. The wall surface temperature, Tw, will generally be a bit
lower than Tw0 due to the finite thermal conductivity of the solid. Still, the temperature
will be continuous at the wall. The situation at the liquid–vapour interface is more
complicated. Classically, in the quasi-equilibrium limit, the interface temperature is
assumed to be continuous and equal to Ts. However, generally there is a temperature
discontinuity at the interface, and neither side is necessarily equal to Ts. However, they
will both approach Ts in the limit of weak evaporation. This situation is illustrated in
figure 3.

We label the vapour-side and liquid-side interface temperatures as Tiv and Til,
respectively. When evaporating, we always have that Til > Ts and Til > Tiv. The
interface vapour temperature Tiv may either be below Ts (supersaturated) or above
Ts (superheated), depending on conditions (Ytrehus 1997). For moderate evaporation
rates, we may neglect the effect of the discontinuity and consider a single interface
temperature, Ti = Til ≈ Tiv, which is superheated (Ti > Ts). In these cases we may
linearize the relationship between evaporation mass flux and Ti of the form

Ti − Ts = K̃j, (2.6)

as used by Burelbach et al. (1988). The interfacial thermal resistance can be estimated
from kinetic gas theory and typically has the form

K̃ =
√

2πRsT3/2
s

f (αe)ρv,sL
, (2.7)

where Rs is the specific gas constant, L is the latent heat of evaporation, ρv,s is the
vapour density at the saturation temperature and αe is the evaporation coefficient. The
function f (αe) depends on the specific model. In the moderate-evaporation limit of the
classical Hertz–Knudsen model, (Hertz 1882; Knudsen 1915), we get

f (αe)= αe, (2.8)
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which is what was used by Burelbach et al. (1988). A more recent refinement of this
model is the Schrage formula, whose moderate-evaporation limit yields (Mills 1995)

f (αe)=
αe

1− 1
2αe

. (2.9)

Some more advanced evaporation models do exist (Ytrehus 1997), but quantitatively
they reduce to something very similar to the Schrage formula for low-to-moderate
evaporation rates.

Usually these models are stated in terms of density differences, not temperature
differences like in the constitutive equation used here. Matching the form (2.6) may be
achieved by applying the ideal gas law, linearizing the saturation line by the Clausius–
Clapeyron relation and assuming that the differences between Til, Tiv and Ts are small.

The evaporation coefficient αe is the subject of much uncertainty, debate and
active research to this date. It is typically assumed equal to the related condensation
coefficient (Ytrehus 1997; Cheng et al. 2011). This unknown coefficient is introduced
through a boundary condition in kinetic theory, and cannot be determined from within
kinetic theory itself. It represents the probability of an incoming vapour molecule
sticking to the liquid, as opposed to reflecting back, and is thus by definition in the
range of zero to one. The exact nature of this coefficient appears to be far from settled.
Water is the only somewhat well-studied fluid, and even there the experiments show
a large scatter from 0.1 to 1.0, as seen in e.g. Tsuruta & Nagayama (2004, Table 1).
Besides experiments, a common way of estimating the coefficient is molecular
dynamics simulations (MD). These methods show somewhat more consistent results,
and generally give values quite close to unity. Overall, MD simulations from the last
decade seem to generally agree on the following trends (Tsuruta & Nagayama 2004;
Cao, Xie & Sazhin 2011; Cheng et al. 2011; Xie, Sazhin & Cao 2011; Ishiyama
et al. 2013; Iskrenova & Patnaik 2017; Liang, Biben & Keblinski 2017):

(i) For a given fluid, the evaporation/condensation coefficient decreases as liquid
temperature is increased.

(ii) As long as the liquid temperature is less than 0.7 times Tc (critical temperature),
we can expect αe ∈ (0.7, 1.0) for a considerable variety of fluids.

In the cases considered here the liquid surface temperatures are very close to the
saturation temperatures, and every liquid considered here has Ts< 0.7Tc. Thus we may
expect that αe ∈ (0.7, 1.0).

2.3. Surface tension model
In order to capture the thermocapillary effect, it is essential to include the temperature
dependence of surface tension (σ ). We follow Davis (1987) and model the variation
as a linearization around its value at the saturation temperature, σ0,

σ(T)= σ0 − γ (T − Ts). (2.10)

Thus, the factor γ is

γ =−
∂σ

∂T
. (2.11)

For most liquids, γ is positive and often around 0.0002 N m−1 K−1. As we shall
demonstrate, γ will play a crucial role in the prediction of vapour film collapse.
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2.4. Boundary conditions
2.4.1. Solid wall

The solid wall at z = 0 is an impermeable no-slip surface. Also, as with any
interface, there must be a continuity of energy flux. We represent the heat transfer
inside the solid with a heat transfer coefficient αw. Since this is a solid, αw could
of course be found from the thermal conductivity and a thermal boundary layer
thickness, but for simplicity we keep the factor αw. Given the above, the wall surface
boundary conditions are

u|z=0 =w|z=0 = 0, (2.12)
αw(Tw0 − Tw)=−kvTz|z=0. (2.13)

2.4.2. Liquid–vapour interface
The liquid–vapour interface is also no-slip, in the sense that the tangential velocity

is continuous. In contrast to the solid surface, fluid may pass into this interface at a
rate governed by the evaporation mass flux. The relation between the flow velocity at
the interface, the velocity of the interface itself, and the evaporation rate is given by
the kinematic boundary condition. Additionally, we must have continuity of stress and
energy flux across the interface. Given the above, the interface boundary conditions
are

(v − vl) · t̂|z=h = 0, (2.14)

ρv
(ht + uhx −w)|z=h√

1+ h2
x

= j, (2.15)

[ j(vl,e − ve) · n̂− ([T − T l] · n̂) · n̂]z=h =−κσ , (2.16)
([T − T l]z=h · n̂) · t̂=∇σ |z=h · t̂, (2.17)
−kv∇T · n̂|z=h − αl(Ti − Ts)= jL. (2.18)

Here the vectors v=[u,w], n̂ and t̂ are the velocity, interface unit normal and interface
unit tangent, respectively. The latter two are defined as shown in figure 2. The symbol
κ is the interface curvature. The symbol T is the incompressible Newtonian flow stress
tensor, j is the evaporation mass flux, and L is the fluid’s latent heat of evaporation.
The efficiency of heat transfer from the interface to the liquid bulk is represented by a
heat transfer coefficient αl. Overall, the subscript l indicates the corresponding property
on the liquid side.

2.5. Comparison with some previous models
The inclusion of a disjoining-pressure term in § 2.1 is identical to the treatment
in Burelbach et al. (1988), though here presumably with a different value for the
Hamaker constant due to the nature of the thin film. Similarly, the constitutive
equation for evaporation in § 2.2 is similar, though here with a generalization allowing
for different factors f (αe). The model of Burelbach et al. (1988) only uses the older
Hertz–Knudsen model (2.8). The linearized surface tension model in § 2.3 is quite
standard.

The differences to previous works become more nuanced when it comes to the
boundary conditions in § 2.4. At the solid surface, the flow boundary conditions (2.12)
are standard. However, an energy flux balance like (2.13) is not included in Burelbach
et al. (1988), which simply assumes a constant given wall surface temperature.
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The interface boundary conditions (2.14)–(2.18) are essentially the same as the ones
initially presented in Burelbach et al. (1988, equations (2.6)–(2.12)), besides some
subtle sign changes due to the liquid–vapour role reversal. However, in Burelbach
et al. (1988), the full boundary conditions are considerably simplified due to the
negligible density, viscosity and conductivity of the bulk vapour phase outside the
film. This cannot be done here as the outside bulk is liquid, and thus, the boundary
conditions must remain in their complex form.

Some of the commonalities missing from Burelbach et al. (1988) are present in
Panzarella et al. (2000). The latter considers a vapour film and does allow the
solid surface temperature to vary. However, they include neither vapour thrust,
thermocapillary nor van der Waals effects. In fact, they take the infinite liquid
viscosity limit, which leads to setting the vapour interface velocity to zero. As we
shall show, this limit has an important qualitative consequence, as it causes the model
to decouple from the thermocapillary effect.

2.6. Scales and dimensionless numbers
We introduce a length scale h0 for z and h in order to define the dimensionless
equivalents Z and H. Similarly, we introduce a length scale x0 for x in order to
define the dimensionless distance X. The scales h0 and x0 are not arbitrary, and must
be set similar to the typical film-thickness and interface disturbance wavelength, in
order to ensure ∂/∂X∼ ∂/∂Z ∼O(1) in the dimensionless equations. Here we choose
x0 = λ/(2π), where λ is the wavelength of the disturbance. The ratio between the
two scales is defined as

ε =
h0

x0
= 2π

h0

λ
. (2.19)

We shall later take the long-wave approximation, which formally is the limit of small
ε, i.e. λ � h0. We use a velocity scale u0 to define the dimensionless tangential
velocity, U = u/u0. Similarly we define the dimensionless perpendicular velocity
W = w/w0, where continuity implies that w0 = εu0. The dimensionless time τ is
defined by the time scale x0/u0. We scale the temperature according to its position
on the scale between Tw0 and Ts,

θ =
T − Ts

1T
, (2.20)

where 1T = Tw0 − Ts. We scale the remaining variables as

p=
µvu0

εh0
P, φ =

µvu0

εh0
Φ, j=

kv1T
h0L

J, σ = σ0Σ, (2.21a−d)

where P, Φ, J and Σ are the dimensionless pressure, body-force potential, evaporation
mass flux and surface tension, respectively. We define the following dimensionless
numbers:

Re=
ρvu0h0

µv
, Pr=

µvcp,v

kv
, Ψ =

µv

µl
, D=

ρv

ρl
, E=

kv1T
ρvu0h0L

,

K =
K̃kv
h0L

, Ca=
µvu0

σ0
, M =

1Tγ
µvu0

, A=
Ã

6πµvu0h2
0
,

Gv =
ρvgh2

0

µvu0
, Gl =

ρlgh2
0

µvu0
, G=

1ρgh2
0

µvu0
, Biw =

αwh0

kv
, Bil =

αlh0

kv
.


(2.22)
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2.7. Long-wave approximation
2.7.1. Approximate equations

We introduce the scales and dimensionless numbers of § 2.6 and make the
assumptions of long waves and small Reynolds number, while retaining surface
tension effects to leading order,

ε� 1, εRe� 1, D� 1, Pr∼O(1), ε3Ca−1
∼O(1), εM ∼O(1).

(2.23a−f )
We also want to retain the vapour thrust, van der Waals and gravitational effects
to leading order, so we keep the terms εReE2J2, εA/H3 and εGv. Given this, the
governing equations of the vapour flow, equations (2.1)–(2.3) and (2.5) become

UX +WZ = 0, (2.24)
(P+Φ)X =UZZ, (2.25)
(P+Φ)Z = 0, (2.26)

Φ =Φ0 + εbGvZ +
εA
H3
, (2.27)

respectively. The boundary conditions of the vapour flow (2.12), (2.14), (2.15), (2.16)
and (2.17) become

[U]Z=0 = [W]Z=0 = 0, (2.28)
[U −Ul]Z=H = 0, (2.29)

E
ε

J = [Hτ +UHX −W]Z=H, (2.30)

[P− Pl]Z=H + εReE2J2
=−HXXε

3Ca−1, (2.31)
[UZ −Ψ

−1Ul,Z]Z=H =−εM(θi)X, (2.32)

respectively. Similarly, the energy equation (2.4) becomes

θZZ = 0, (2.33)

and the temperature boundary conditions (2.6), (2.13) and (2.18) become

KJ = θi, (2.34)
−θZ|Z=0 = Biw(1− θw), (2.35)

J =−θZ|Z=H − Bilθi, (2.36)

respectively. The van der Waals effect is included in (2.27) (∼A), the vapour thrust
effect is included in (2.31) (∼ReE2), and the thermocapillary effect is included in
(2.32) (∼M). These long-wave approximation equations have many similarities to
the ones presented in Burelbach et al. (1988, equations (5.5)–(5.10)). However, there
are significant differences. Besides some sign changes, these differences all relate
to the fact that the bulk phase outside the thin film is different. In Burelbach et al.
(1988), the normal-stress condition (here (2.31)) does not include a term for the
outside pressure as it could be conveniently set constant and equal to zero. In the
tangential-stress condition (here (2.32)), the bulk phase shear rate was set to zero,
as the interface could be treated as a free surface. Neither simplification is possible
in the present work, as the liquid and vapour have switched places. The equations
for the temperature profile are also somewhat more complicated in the present work,
since the wall surface temperature is allowed to vary (giving (2.35)) and since the
bulk phase conductivity cannot be neglected (giving the final term of (2.36)). Overall,
the main difference is that with this problem we cannot make a purely ‘one-sided’
model like in Burelbach et al. (1988).
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2.7.2. Solution to temperature equations
We note how (2.33)–(2.36) for the temperature profile have no explicit time

dependence, only implicitly through the variables J(X, τ ) and H(X, τ ). Since J is
determined directly from the temperature profile through (2.34), the instantaneous
value of H determines the current temperature profile θ as well as the evaporation
mass flux J. The solution is

J(H)=
1

K + (Bi−1
w +H)C

, (2.37)

θi(H)=
K

K + (Bi−1
w +H)C

, (2.38)

θw(H)=
K +HC

K + (Bi−1
w +H)C

, (2.39)

where we have defined the new constant

C= 1+C′. (2.40)

Here C′ = BilK = αlK̃/L and represents the effect of heat lost into the liquid bulk.
Interestingly, C′ is independent of h0, even though the interface temperature θi is not.
It is instructive to look at a few special cases of this solution. In the quasi-equilibrium
limit (K→ 0), we get

J(K→ 0)=
1

Bi−1
w +H

, (2.41)

θi(K→ 0)= 0, (2.42)

θw(K→ 0)=
H

Bi−1
w +H

. (2.43)

As expected, the interface temperature is locked to Ts. The evaporation rate is
somewhat limited by the finite conductivity of the solid. If H → 0, J does not
diverge, due to the finite solid heat transfer efficiency. In the limit of a perfectly
conducting solid (Biw→∞) we get

J(Biw→∞)=
1

K +HC
, (2.44)

θi(Biw→∞)=
K

K +HC
, (2.45)

θw(Biw→∞)= 1. (2.46)

As expected, the wall surface temperature is locked to the bulk temperature, Tw0.
The evaporation rate is somewhat limited by the non-equilibrium effect (K 6= 0) and
liquid conduction (C> 1). If H→ 0, J does not diverge, due to the interface thermal
resistance (K 6= 0). Generally, if H→ 0, we get

J(H→ 0)=
1

K + Bi−1
w C

, (2.47)

θi(H→ 0)= θw(H = 0)=
K

K + Bi−1
w C

, (2.48)
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i.e. the evaporation rate stays finite and the interface/surface temperature approaches
an intermediate value between Ts and Tw0. However, note that in the H→ 0 limit, it
is likely that the linearized relation in (2.6) for moderate evaporation rates becomes
inaccurate.

We proceed by using the general solution in (2.37)–(2.39) in order to include both
the non-equilibrium effect and the potential effects of heat transfer on both sides of
the vapour film. Note that the non-equilibrium (K 6= 0) effect is absolutely necessary
for capturing the thermocapillary effect. If K = 0, θi becomes a constant, and the
thermocapillary term in the tangential-stress condition (2.32) disappears.

2.7.3. Velocity profile
We define the reduced dimensionless pressure as P̄=P+Φ. From (2.26) we know

that P̄ is constant across the film, and thus, we may choose to evaluate it at Z = H
in (2.25), so that it reduces to

UZZ = P̄(X,H)X. (2.49)

If we combine (2.31) and (2.27), we find that the gradient of reduced pressure is

P̄(X,H)X = Pl(X,H)X + εbGvHX − 2εReE2JJX − ε
3Ca−1HXXX − 3εA

HX

H4
. (2.50)

The right-hand side of (2.49) is independent of Z, and thus we may integrate the
equation twice and use the no-slip wall boundary condition (2.28) to get the velocity
profile

U = 1
2 P̄X(Z2

− 2HZ)+UZ|Z=HZ, (2.51)

=
1
2 P̄X(Z2

−HZ)+U|Z=H
Z
H
, (2.52)

expressed in two different ways depending on whether one wants to use the interface
shear rate or the interface velocity to define the Z =H boundary. From this, we find
the total flow rate to be ∫ H

0
U dZ = − 1

3 H3P̄X +
1
2 H2UZ|Z=H, (2.53)

= −
1
12 H3P̄X +

1
2 HU|Z=H. (2.54)

The two extremes of behaviour can be found by either setting the liquid velocity to
zero at the boundary (corresponding to infinite liquid viscosity) or setting the liquid
shear rate to zero at the boundary (treating the interface like a free surface). Thus,
regardless of the specific liquid properties, we know that the flow rate must be within
the range ∫ H

0
U dZ =

{
−

1
12 H3P̄X, U|Z=H = 0,

−
1
3 H3P̄X −

1
2 H2εMθi,X, Ul,Z|Z=H = 0,

(2.55)

where we in the latter case have used the tangential-stress condition (2.32) to find the
vapour shear rate. Generally, the interface velocity Ui =U|Z=H =Ul|Z=H is

Ui =−
1
2 H2P̄X +Ψ

−1HUl,Z|Z=H − εMHθi,X, (2.56)
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and if we evaluate (2.51) at Z=H, we get the following constraint on the boundary:

[U −HUZ]Z=H =−
1
2 H2P̄X. (2.57)

Note that if we take the zero interface-velocity limit, the flow rate is fully determined
by the first case of (2.55). Then there is no way to involve the tangential-stress
condition (2.32), and therefore, any coupling to the thermocapillary effect is lost.
Thus, the choice of velocity boundary condition made by Panzarella et al. (2000) is
not an option here.

2.7.4. Liquid dynamics
So far we have made no assumptions regarding the liquid flow outside the vapour

film. However, in order to find the final vapour velocity profile we require a liquid
pressure (as seen in (2.50)) and information regarding the liquid–vapour boundary (as
seen in (2.51) and (2.52)).

First, we assume that the liquid pressure is purely hydrostatic,

Pl =−εbGlZ, (2.58)

similar to Panzarella et al. (2000). Note that the liquid layer is much thicker than the
vapour layer, so the former does not have any disjoining-pressure contribution.

Second, we need to make an assumption regarding the liquid flow in order to find
the interface velocity. The liquid is assumed to be stationary far away in the bulk, but
close to the interface it will be pulled along with the vapour. From the perspective of
the vapour film, the liquid slows down the vapour flow due to viscous drag. Generally,
we expect the liquid velocity profile to monotonically decay from Ui at Z=H to zero
at Z = ∞. Regardless of the details of the liquid flow, we know that the interface
velocity Ui must be between the following two hypothetical extreme cases:

(i) Minimum interface velocity: Umin
i = 0 (interface acts like a wall).

(ii) Maximum interface velocity: Ui =Umax
i (interface acts like a free surface).

The second case corresponds to the case of zero liquid shear, i.e. when the liquid
does not resist the vapour flow at all. If we set Ul,Z|Z=H = 0 in (2.56) we find that

Umax
i =−

1
2 H2P̄X − εMHθi,X. (2.59)

We then interpolate between the two known extreme cases by introducing the
interpolation parameter η ∈ [0, 1],

Ui = ηUmax
i + (1− η)U

min
i

= η
(
−

1
2 H2P̄X − εMHθi,X

)
, (2.60)

which satisfies the constraint (2.57) for any value of η. While the value of η is
unknown for now, we make the crucial assumption that it is independent of position
X, and thus only depends on constant fluid properties. Specifically, we expect η to
increase monotonically with the viscosity ratio Ψ , with the limits

lim
Ψ→0
[η(Ψ )] = 0, lim

Ψ→∞
[η(Ψ )] = 1 (2.61a,b)

since the two extreme cases correspond to the theoretical limits Ψ → 0 and Ψ →∞,
respectively. Since the driving force for flow is the vapour film pressure gradient
and the almost stationary liquid just passively applies drag to this flow, we expect
the average vapour velocity to be significantly larger than the interface velocity. This
means that we can expect η to be much closer to zero than one.
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More detailed information on the value of η requires more bold assumptions
regarding the liquid velocity profile. One such assumption is shown in appendix A,
which leads to the convenient approximation

η=
1

1+Ψ −1
=Ψ +O(Ψ 2). (2.62)

For common values of Ψ this means that η is in the range of 0.025–0.050. Note that
while this is quite close to zero, taking the actual η→ 0 approximation is not an
option as it would eliminate the thermocapillary effect.

No matter the specific model used to find a value for η, we may insert (2.60) into
(2.54) and find the mass flow rate to be∫ H

0
U dZ =−

1
12
(1+ 3η)H3P̄X −

1
2
ηεMH2θi,X, (2.63)

which as intended matches (2.55) in the limiting cases of η = 0 and η = 1. The
following derivation of a film thickness PDE, and the stability analysis thereof, is
performed with a general unknown η.

The problems addressed in this section represent a central modelling complication
compared to the related works of Burelbach et al. (1988) and Panzarella et al.
(2000). The former was able to ignore all bulk phase dynamics because it considered
a liquid film with a free surface (η = 1). The latter made stationary liquid (η = 0)
approximation, which eliminates the thermocapillary effect. Here it is necessary to
have an actual intermediate value for the interface velocity in order to arrive at a
one-sided model. The assumptions made for the effect of liquid shear in this section
are admittedly somewhat bold. Ultimately their validity rests on the success of the
resulting model for the Leidenfrost point.

2.7.5. Film-thickness PDE
If we integrate the continuity equation (2.24) across the film from Z=0 to Z=H(τ ),

and apply the Leibniz integral rule, the kinematic boundary condition (2.30) and the
wall boundary condition (2.28), we get the basic mass-conservation PDE

Hτ +

(∫ H

0
U dZ

)
X

=
E
ε

J, (2.64)

with a flux term and a source term. We find the reduced pressure gradient by inserting
(2.37) and (2.58) into (2.50):

P̄(X,H)X =−εbGHX +
2εReE2C

[K + (Bi−1
w +H)C]3

HX − ε
3Ca−1HXXX − 3εA

HX

H4
. (2.65)

We can then insert P̄X into (2.63) while using (2.38) for θi, in order to yield the flow
rate. When we insert this flow rate into (2.64) and use (2.37) for J in the source term,
we get the final PDE for the film thickness H:

Hτ̃ +
bξG
12E

ε2
[H3HX]X︸ ︷︷ ︸

gravity

−
ξReEC

6
ε2
[F3(H)HX]X︸ ︷︷ ︸

vapour thrust

+
ξ

12CaE
ε4
[H3HXXX]X︸ ︷︷ ︸

capillary

+
ξA
4E
ε2

[
HX

H

]
X︸ ︷︷ ︸

vdW

+
M̃KC

2E
ε2
[F2(H)HX]X︸ ︷︷ ︸

thermocapillary

=
F(H)

H︸ ︷︷ ︸
evaporation

. (2.66)
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Here we have changed to the evaporative time scale,

t̃0 =
h0

( j0/ρv)
=
ρvh2

0L
kv1T

, (2.67)

with the corresponding dimensionless time τ̃ , and we have defined the shorthands

ξ = 1+ 3η, (2.68)
M̃ = ηM, (2.69)

F(H)=
H

C(H + Bi−1
w )+K

. (2.70)

The function F(H) will in most cases stay close to unity, since K� 1, Bi−1
w � 1 and

C≈ 1. The constants C, G/E, ReE, CaE, A/E and M̃K/E, as well as the function F,
are all independent of the unknown scale u0, and thus (2.66) is also independent of it.

3. Linear stability analysis
We now seek to examine the linear stability of a uniform film according to (2.66).

This means finding under which conditions small perturbations of uniform solutions
will grow, and under which conditions the uniform solutions will remain stable. In
§ 3.1 we find the form of the uniform basic solution and we examine its stability in
§ 3.2. Finally, in § 3.4, we propose how these results may be used to predict vapour
film collapse.

3.1. Basic solution

We consider a spatially uniform time-dependent base solution to (2.66), H̄(τ̃ ). We
define the scale h0 as the initial film thickness so that H̄(0) = 1. The analytical
solution is

H̄(τ̃ )=

√
2Cτ̃ + (Bi−1

w C+K +C)2 − (Bi−1
w C+K)

C
. (3.1)

The initial growth rate of this basic solution is reduced by every non-ideal effect,
K > 0, Bi−1

w > 0 and C> 1. If all these effects are negligible, we get the upper-bound
ideal solution H̄ =

√
1+ 2τ̃ . In any case, we see that the basic solution will grow

monotonically, and thus, any vapour film collapse must be initiated by instabilities of
this uniform solution.

3.2. Linear stability of basic solution
We now propose a solution which is a sum of the base solution and a spatially
periodic perturbation with a small time-dependent amplitude,

H(X, τ̃ )= H̄(τ̃ )+ Ĥ(τ̃ ) exp
(

i
k
ε

X
)
. (3.2)

Here k/ε is the dimensionless wavenumber on the scale x0, and thus k is the
dimensionless wavenumber on the scale h0. If we insert (3.2) into (2.66) and reduce

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.545


298 E. Aursand, S. H. Davis and T. Ytrehus

to first order in the perturbation, we get the following ordinary differential equation
for the perturbation amplitude,

∂

∂τ̃
Ĥ

Ĥ
=
ξGbH̄3k2

12E
+
ξAk2

4EH̄
+

CF̄2KM̃k2

2E
−
ξCF̄3ERek2

6
−
ξ H̄3k4

12ECa
−

CF̄2

H̄2
. (3.3)

The recurring factor F̄, which appears in every term directly related to the temperature
profile, is simply F(H) from (2.70) with H̄ substituted for H. The last k-independent
term in (3.3) will only have an algebraic contribution to the exponential instability
for the same reasons as the ones stated by Burelbach et al. (1988), and may thus
be disregarded in the following analysis. All the remaining terms are O(k2) except
the capillary term, which is O(k4). The latter will simply provide a cutoff in k and
stabilize the shorter wavelengths. We may then consider the stability of long waves
by only comparing the O(k2) terms.

If we have initial stability, the film will grow according to (3.1). If it later turns
unstable after growing somewhat, we might re-scale h0 and reset the time parameter,
and consider it a new stability problem from H̄ = 1. Thus we simply consider initial
stability at τ̃ = 0, and investigate the terms’ dependence on film thickness h0. Stability
of long waves may then be analysed by considering the sign of

S=
ξGb
12E︸︷︷︸
gravity

+
CF2

0KM̃
2E︸ ︷︷ ︸

thermocap.

−
ξCF3

0ERe
6︸ ︷︷ ︸

vapour thrust

+
ξA
4E
,︸︷︷︸

vdW

(3.4)

where F0 is F̄ evaluated at H̄ = 1. Here S > 0 indicates a growing perturbation
(instability). We can make the following observations about the terms in (3.4):

(i) Gravity: this term is destabilizing (if b> 0).
(ii) Thermocapillary: this term is destabilizing, which is also the case for evaporating

liquid films (Burelbach et al. 1988).
(iii) Vapour thrust: this term is stabilizing, in contrast to its destabilizing influence in

evaporating liquid films (Burelbach et al. 1988).
(iv) Van der Waals: this term is destabilizing (if A> 0).

The main qualitative difference compared to the stability analysis of evaporating
liquid films lies in the vapour thrust term, which here is found to be stabilizing. In the
analysis of Burelbach et al. (1988), every O(k2) term is found to have a destabilizing
influence, which means that an evaporating liquid film is always unstable if sufficiently
large wavelengths are allowed. Film boiling appears to be different in that it has a
stabilizing O(k2) term, which means that the stability of long waves depend on specific
conditions. This is the key to the vapour film collapse prediction in the following
section.

3.3. Influence of non-ideal effects
We now briefly investigate the influence on stability by the following non-ideal effects:

(i) Non-equilibrium evaporation: K 6= 0.
(ii) Heat transfer to liquid bulk: C 6= 1.

(iii) Imperfect wall temperature control: Bi−1
w 6= 0.
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Among the terms in (3.4), only the thermocapillary and vapour thrust terms are
influenced by these effects. Besides the thermocapillary factor KM̃, all dependencies
on these non-idealities are collected into the factor

F0 =
1

(1+C′)(1+ Bi−1
w )+K

. (3.5)

Out of the three factors, K and Bi−1
w are dependent on film-thickness scale. They both

decrease towards zero as h0 increases (∼h−1
0 ). Generally we will have K ≪ 1 and

Bi−1
w � 1 when h0 > 1 µm. The third factor C′ is actually independent of h0, but as

explained in appendix B it can be expected to be very close to zero. In other words,
the energy transferred into the liquid bulk is negligible compared to the energy spent
on evaporation, no matter the film thickness.

Overall, this means that for moderate to large film thicknesses (h0 > 1 µm) the
influence of these non-ideal effects are negligible, and we have F0≈ 1. For very thin
films, F0< 1. For such films, the reduction in F0 reduces the vapour thrust term (∼F3

0)
more than it reduces the thermocapillary term (∼F2

0), which means that the non-ideal
effects have a destabilizing influence, if any.

3.4. Predicting vapour film collapse
In (3.4) we have three destabilizing terms (assuming b> 0 and A> 0) working against
the sole stabilizing vapour thrust term. Their typical dependencies on film-thickness
scale are illustrated in figure 4. We note the following features:

(i) For large h0, the destabilizing influence of gravity will dominate.
(ii) For h0 < 100 nm, the destabilizing influence of van der Waals forces will

dominate
(iii) For intermediate h0, there is a remarkably even struggle between the destabilizing

influence of the thermocapillary effect and the stabilizing influence of the vapour
thrust effect.

We see that the vapour film is always predicted to be unstable at very small or
very large thickness scales due to the van der Waals and gravity terms, respectively.
However, at the intermediate thickness scales the vapour thrust and thermocapillary
terms are of similar magnitude but approximately two orders of magnitude larger than
the other two. This means that the thermocapillary effect is the only destabilizing
effect that is capable of cancelling out the stabilizing vapour thrust in the intermediate
thickness range. While the gravity and van der Waals (vdW) terms also work against
vapour thrust, their effect is negligible in comparison. In summary, the model suggests
the following:

(i) The very small and very large thickness scales are always unstable.
(ii) The intermediate thickness scale can only be unstable if the thermocapillary term

overpowers the vapour thrust term.

We may combine these two observations with the following hypothesis:

(i) Hypothesis: observed vapour film collapse (Leidenfrost transition) occurs when
there is instability on every thickness scale.

The hypothesis implies that a necessary condition for film boiling collapse is that
all three regions indicated in figure 4 are unstable. As stated above, the very small
and very large scales are always unstable. This leaves the intermediate scales, which
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FIGURE 4. (Colour online) Sample values for the terms in (3.4) in the case of water film
boiling with 1T = 225 K (above the Leidenfrost point), as a function of film-thickness
scale h0. The different shaded parts have labels indicating the dominant influence(s) in
the given region.

are dominated by the thermocapillary and vapour thrust terms. To be even more
specific, film boiling collapse would require instability in the h0 > 1 µm part of the
intermediate region. On these scales F0 approaches unity, as discussed in § 3.3.

In summary, the above hypothesis together with the behaviour of the terms in (3.4)
implies that a theoretical predictor for the Leidenfrost point may be found from the
balance between the thermocapillary and vapour thrust terms in the F0 → 1 limit.
Based on this we find the following h0-independent criterion for vapour film collapse:

KM̃
2E

>
ξERe

6
. (3.6)

The above condition depends on fluid properties as well as the superheat 1T . We
interpret the 1T that satisfies (3.6) as an equality as the Leidenfrost point, 1TL. This
is the superheat below which film boiling collapse is observed.

Note that the vapour density and conductivity contained in K, E, and Re are
supposed to be evaluated at the average film temperature, Tf = Ts +1T/2, which is
initially unknown. We seek an explicit expression for 1TL that depends on known
saturation properties only. When we insert expressions for the dimensionless constants
in (3.6), we get

1TL

Ts
=

(
3η

1+ 3η

) √
2πRsTs

f (αe)kv,s
γ

[
ρv

ρv,s

kv,s
kv

]
. (3.7)

The left-hand side is a convenient dimensionless quantity which we call the ‘relative
Leidenfrost temperature’. We see that (3.7) is an implicit equation for the relative
Leidenfrost temperature, since the square bracket also depends on it. For ideal gases
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at constant pressure we know that ρv ∼ 1/T and kv ∼
√

T , and thus, we may collect
all 1TL dependence on the left-hand side, giving(

1+
1
2
1TL

Ts

)3/2
1TL

Ts
=

(
3η

1+ 3η

)(√
2π

f (αe)

)(√
RsTs

kv,s

)
γ ≡Θ. (3.8)

Here the right-hand side, labelled Θ for short, may be evaluated solely from known
saturation properties. Its value is usually considerably less than unity. For small
1TL/Ts, we may make (3.8) explicit, as

1TL

Ts
≈

2
3
[
√

1+ 3Θ − 1]. (3.9)

It turns out that the third parenthesis in Θ is essentially fluid independent because we
generally have that kv ∼

√
RsT , as known from ideal kinetic theory. When we define

the (almost constant) variable

ck =

√
RT
kv

, (3.10)

the expression for Θ becomes

Θ ≈

(
3η

1+ 3η

)(
ck

√
2π

f (αe)

)
γ . (3.11)

If we apply the expression (2.62) for η(Ψ ), we find that 3η/(1+ 3η)= 3/(4+Ψ −1),
which gives

Θ ≈

(
3

4+Ψ −1

)(
ck

√
2π

f (αe)

)
γ . (3.12)

Equation (3.9) with (3.12) constitute the final and relatively simple practical result
which may be used to predict the relative Leidenfrost temperature. Given that fluids
generally have the same values for Ψ , ck and αe, this model predicts that the relative
Leidenfrost temperature depends almost solely on γ and that this relationship is
approximately linear.

4. Experimental validation
We now seek to evaluate the predictive power of the present model by comparing

it to experimental observations of 1TL. From now on, when we refer to the ‘present
model’, we mean (3.9) with (3.12) while using the constant values

ck = 14 000 K m N−1, (4.1)
Ψ = 1/30, (4.2)

which are simply rounded-off averages from the fluids studies here. Constant values
for these parameters are used since ck and Ψ are very similar for most fluids,
compared to the variations in γ . Making this choice significantly simplifies the
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FIGURE 5. (Colour online) Comparison of the present model with the experimental data
shown in table 1. The shaded regions indicate model predictions for different ranges of
αe. Error bars indicate the standard deviation of the different data points found in the
literature. The lack of an error bar indicates that only a single data point could be found.

application of the model, and serves to illustrate the point that the model mostly
depends on two parameters only: γ and αe ∈ [0, 1]. We look up γ directly from
surface tension data, and use the Schrage form of the kinetic theory evaporation
models, equation (2.9).

For each fluid, we look for a single experimentally measured property: the
Leidenfrost temperature (TL) found at atmospheric pressure. This number is then made
dimensionless by considering its relative distance from the saturation temperature Ts,
thus matching the left-hand side of (3.9). The data are shown in table 1.

We compare the model with the experimental data in figure 5, where model
predictions are shown for the various possible ranges of the evaporation coefficient
αe. The figure shows that all data points are at least consistent with the model, in the
sense that none of them would imply the impossible value αe > 1. The data points all
fall within the predictions corresponding to αe ∈ (0.7, 1.0), but the unknown nature
of the evaporation coefficient prevents any accurate confirmation of the dependence
on γ . The implications of figure 5 are further discussed in § 6.1.

5. Comparison with previous Leidenfrost point models
We now seek to evaluate the predictive capabilities of the present model compared

to some existing models and correlations for the Leidenfrost point. The models
considered here are either based on semi-empirical fluid mechanical considerations or
based on the hypothesis that the Leidenfrost point corresponds to the superheat limit.
The latter comes in two different versions, depending on how the superheat limit is
represented.

5.1. Simplified fluid mechanical models
A semi-empirical model for the Leidenfrost point was developed by Berenson (1961,
equation (40)), who developed a model for the film boiling heat transfer coefficient
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based on classical Rayleigh–Taylor stability analysis and conservation equations in
a simplified geometry. When he combined this with the minimum heat flux model
by Zuber (1959), which also employs simplified fluid mechanical considerations, this
resulted in an expression for 1TL,

1TL

Ts
= 0.127

ρvL
kvTs

(
g1ρ
ρl + ρv

)2/3 (
σ0

g1ρ

)1/2 (
µv

g1ρ

)1/3

. (5.1)

Note that (5.1) is semi-empirical. The exponents are theoretically derived, but the pre-
factor 0.127 stems from an experimental fit to film boiling data.

5.2. Leidenfrost point from superheat limit
A different class of models is based on the simple hypothesis that the Leidenfrost
point corresponds to the liquid superheat limit, also called the homogeneous nucleation
temperature. The superheat limit is commonly estimated in two different ways. The
first method is by calculating the spinodal temperature from an equation of state.
The spinodal is the theoretical absolute maximum superheat temperature, where the
vapour nucleation barrier goes to zero. However, homogeneous nucleation will usually
proceed spontaneously before the barrier reaches zero, and the temperature where
this happens may be approximated by classical nucleation theory (CNT). This is
the second method. Both methods are purely theoretical and do not have any fitted
empirical parameters. See Aursand et al. (2017) for further discussion on nucleation
theory and the spinodal.

Superheat limit from spinodal. Using the spinodal to estimate the Leidenfrost
point was first suggested by Spiegler et al. (1963). They used the van der Waals
equation of state to analytically relate the spinodal (Tsp) to the critical temperature,
Tsp = (27/32)Tc. This implies that the relative Leidenfrost temperature is simply

1TL

Ts
=

27
32

Tc

Ts
− 1. (5.2)

Superheat limit from nucleation theory. Alternatively, one may use classical
nucleation theory to predict the vapour nucleation rate at a given degree of liquid
superheating. In combination with high accuracy equations of state, using this to
predict the experimental superheat limit has been found to be quite accurate (Aursand
et al. 2017). Going one step further and using this to represent the Leidenfrost point
is less established but has been suggested by authors such as Yao & Henry (1978)
and Sakurai et al. (1990). In classical nucleation theory (Aursand et al. 2017) the
nucleation rate Λ (s−1 m−3) is expressed as an Arrhenius rate law,

Λ=Λ0 exp
(
−
1G
kBT

)
, (5.3)

with the activation energy being

1G=
16πσ 3(T)

3(ps(T)− p)2
, (5.4)
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and the rate at zero activation barrier being

Λ0 =
ρl

m3/2

√
2σ
π
. (5.5)

Here, m is the mass of a single molecule and ps is the thermodynamic saturation
pressure. The specific expression for Λ0 may vary a little between authors, but this
has a negligible effect on the final result for the superheat limit.

The expression in (5.3) simply gives the nucleation rate as a function of fluid
properties and temperature. In order to find the superheat limit, one must define a
critical nucleation rate Λc < Λ0, which corresponds to sudden macroscopic phase
change. It turns out that due to the rapid growth of the exponential in (5.3), the
result is quite insensitive to the specific choice of Λc. Here, we use the value of
Λc = 1 × 1012 s−1 m−3, as seen in previous works (Bernardin & Mudawar 1999;
Aursand et al. 2017). Thus, in order to predict the superheat limit, we simply have
to solve the implicit equation

Λ(T)=Λc (5.6)

for T . Note that it is absolutely essential to include the temperature dependence of σ
in (5.4), as it is one of the major sources of temperature dependence in 1G. In order
to obtain a model of comparable simplicity and avoid having to iteratively solve for
the saturation line using an equation of state, we use the Clausius–Clapeyron relation
to estimate the saturation pressure as

ps(T)= p exp
[

L
Rs

(
1

Ts(p)
−

1
T

)]
. (5.7)

5.3. Performance comparison
We now seek to compare the predictive performance of the present model with the
three alternative models presented in § 5.1 (Berenson model) and § 5.2 (Spiegler model
and CNT model). Since αe can generally be anywhere in the range of (0, 1), well-
defined prediction by the present model requires the choice of a specific value. Here,
we choose αe = 0.85, which is the centre point of the expected range identified in
§ 2.2. The fluid properties necessary to evaluate the other models were mainly found
from the NIST database (Linstrom & Mallard 2017; Dean 1998). Missing mercury
properties were found in Skapski (1948), Epstein & Powers (1953), Vinogradov (1981)
and Huber, Laesecke & Friend (2006).

The evaluation of predictive performance is shown in figure 6, where we see that
only the present model can accurately predict the relative Leidenfrost point within an
error of 10 % for every fluid. This is further discussed in § 6.2.

6. Discussion
6.1. Model validity and predictive power

The present model for the Leidenfrost point depends on the somewhat unknown
evaporation coefficient αe, which is generally unknown but always lies within the
range (0, 1). The model predicts that 1TL→∞ when αe→ 0, and thus, generally the
model merely provides a lower bound on 1TL given by the αe= 1 result. In terms of
figure 5, this means that any data point above the bottom line (αe = 1) is consistent
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FIGURE 6. (Colour online) Comparison of model predictions with experimental data for
the relative Leidenfrost point for (a) the present model (with αe= 0.85), (b) the Berenson
model (5.1), (c) the Spiegler model (5.2) and (d) the CNT model (5.6). See figure 5
for data point legend. Grey bands show the range of a ±10 % error in prediction of TL,
relative to Ts. Data points that fall outside this band are marked with red circles.

with the model. As discussed in § 2.2, molecular dynamics simulations indicate that
αe should be within the range 0.7–1.0. This is consistent with every data point seen
in figure 5. Note that data points falling above the bottom line in figure 5 may also
be explained by imperfect wall temperature control (Bi−1

w > 0). On the other hand, if
any data points were to fall significantly below the bottom line, that would count as
evidence against the model. In this sense, the model is still falsifiable.

Qualitatively, the present model predicts that to a good approximation 1TL/Ts only
depends on γ and αe. Whereas all the data found are quantitatively consistent with the
model, the γ dependence is not satisfactorily tested since all the fluids with available
Leidenfrost data have γ -values within the same order of magnitude. Given this limited
range of γ , we see in figure 5 that any good confirmation of the γ dependence is
muddled by uncertainty in αe. However, just as important as the prediction of
γ -dependence is the predicted independence on very variable fluid properties such as
Ts, σ0 or L. While the fluids studied here have very variable values of these three
parameters (even different orders of magnitude), they have values of 1TL/Ts within
the same order of magnitude. This is correctly predicted by the present model.

Despite the fact that every data point is consistent with the model, the relatively
uncertain nature of the evaporation coefficient may pose a problem for the predictive
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power of the model. Without any additional information on αe for a specific fluid,
we have little choice but to assume a value. Thankfully, as we saw in figure 6(a),
choosing the centre of the expected interval (αe= 0.85) yields a correct prediction for
every data point within 10 % error. Additionally, the prediction of a lower bound on
1TL appears to be without flaw, as seen in figure 5.

Finally, an interesting observation can be made by looking at the effect of
uncertainty in αe on the predicted Leidenfrost temperature. The review in § 2.2
implies that the uncertainty in αe is of the order of 10 %. Around the presumed
average point αe= 0.85, a change of ±10 % in αe implies a change of approximately
∓20 % in the quantity 1TL/Ts, as we may also see from the width of the shaded
bands in figure 5. As an approximate general rule, this means that the uncertainty
in absolute TL (K) due to αe is about 5 % of the fluid’s saturation temperature. For
the fluids where we have a sufficient number of data points to know the underlying
variance with decent confidence, this 5 % rule corresponds remarkably well with the
experimental standard deviation numbers in table 1. For water the model predicts an
uncertainty of 18.7 K while the data have a standard deviation of 19.4 K. For nitrogen
the model predicts an uncertainty of 3.87 K while the data have a standard deviation
of 4.31 K. This may suggest that the reason for the relatively large variability in TL

measurements is that αe varies between experiments, not because of any flaws in the
Leidenfrost measurements. The fact that the present model can seemingly predict this
variation gives it some additional credibility.

Overall, there are compelling pieces of evidence for the hypothesis that the
thermocapillary instability is the governing effect behind film boiling collapse.
However, there is insufficient available data to be certain.

6.2. Benefits over existing models/correlations
As shown in § 5 and especially in figure 6, the quantitative predictive power for the
Leidenfrost point seems to be stronger in the present model compared to the three
alternative models considered here. While the alternative models work reasonably
well for conventional fluids, they are vastly erroneous for some of the more unusual
fluids. Specifically, the Berenson model underpredicts the value for mercury and vastly
overpredicts the value for the cryogens nitrogen and methane. The superheat limit
based models moderately overpredict the conventional fluids and vastly overpredict the
value for mercury. These problems are likely due to these fluids having unconventional
values for saturation temperature and/or surface tension. Among the previous models,
the semi-empirical Berenson model appears to quantitatively perform the best for
conventional fluids, as seen in figure 6(b). However, the data do not appear to
correlate in the suggested way. The model simply cuts through the group of data
points from conventional fluids, while completely missing the fluids such as mercury
and the cryogens, which were likely not part of the original parameter fitting.

Overall, we may claim that the present model for the Leidenfrost point has the
following benefits:

(i) Simplicity: there is no need to know a large variety of fluid properties in order
to make a prediction. Only a measured value for γ and an assumption regarding
αe is needed.

(ii) Accuracy: given only the value of γ , the present model is able to predict 1TL

within an error of 10 % for every fluid considered here, including the cryogen
and the liquid metal.
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(iii) Insight: the model is purely theoretical, i.e. it involves no empirical parameters
fitted to film boiling experiments. Such models are not only expected to have
greater predictive capabilities, but are also more likely to provide insight into the
physical mechanisms behind film boiling collapse. Specifically, the present model
suggests that the mechanism of collapse is that the thermocapillary instability
overpowers vapour thrust stabilization. To our knowledge, this has not been
suggested before.

6.3. Prediction in the absence of thermocapillary effect
Note that this model’s prediction of the Leidenfrost point is completely dependent
on two complicating effects: non-equilibrium evaporation model and non-trivial liquid
shear rate. Making either the approximation of quasi-equilibrium or zero liquid
velocity would eliminate the thermocapillary effect from the model.

We may ask what the model would predict for the relative Leidenfrost temperature
if the thermocapillary effect is absent, such as in the quasi-equilibrium limit (K→ 0).
First of all, as discussed and made explicit in (3.4), this will completely remove the
thermocapillary effect. If we go back to figure 4 and make the same kind of arguments
as before, we see that film boiling collapse would necessitate that the gravity term is
stronger than the vapour thrust in the intermediate region. This requirement leads to
the criterion

G
12E

>
ERe

6(1+ Bi−1
w )

3
, (6.1)

which leads to the following prediction for the relative Leidenfrost point:

1TL

Ts
=

√
ρv1ρg

2
L

kvTs
[(1+ Bi−1

w )h0]
3/2. (6.2)

Qualitatively, equation (6.2) predicts that the relative Leidenfrost temperature is
dependent on both Ts and L. As mentioned previously, this is not supported by the
data. Note that (6.2) is dependent on the film-thickness scale h0. If we make the
assumption that we only need gravity to overpower vapour thrust down to the 1 µm
scale before van der Waals forces take over, we still find that 1TL/Ts≈ 0.02 for H2O
and 1TL/Ts ≈ 0.05 for N2, both of which are approximately an order of magnitude
below the experimental values in figure 5. Thus, the quasi-equilibrium limit of this
model appears useless for predicting vapour film collapse.

6.4. Modifying the Leidenfrost point
It has been reported by authors such as Qiao & Chandra (1997) that adding surfactant
(reducing σ0) reduces the Leidenfrost temperature, i.e. it makes film boiling more
stable. Without considering the thermocapillary instability, this seems counter-intuitive,
since reducing surface tension would be expected to have a destabilizing effect, if any.

The present model can explain this qualitative effect. Since surface tension must
reach zero at the fluid’s critical point, if we can assume that γ is close to temperature
independent it must be given by

γ ≈
σ0

Tc − Ts
, (6.3)

where Tc is the critical temperature of the fluid and σ0 is the surface tension at
the saturation temperature. Note that (6.3) does not imply that fluids with large
surface tension necessarily will have a large γ . Water and especially mercury have
large surface tensions but still quite ordinary γ values. Given this the present model

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.545


308 E. Aursand, S. H. Davis and T. Ytrehus

provides a new explanation for this observation: reducing σ0 for a given fluid will
reduce γ through (6.3) and thus weaken the thermocapillary instability relative to the
vapour thrust.

A commonly suggested method of modifying the Leidenfrost point is through the
solid surface topography, such as addition of micro- or nanostructures (Auliano et al.
2017). This cannot be predicted by this model in its present form, as a flat and smooth
solid surface has been assumed from the beginning.

7. Conclusions
In summary:

(i) We presented governing equations for vapour flow in film boiling. Of particular
importance and novelty was the use of a non-equilibrium evaporation model
based on kinetic theory, which allowed for the inclusion of thermocapillary
effects along the evaporating liquid–vapour interface.

(ii) We used the long-wave approximation and simplified liquid dynamics to derive
a single highly nonlinear scalar PDE for the film thickness function: (2.66).

(iii) We applied linear stability analysis to the above mentioned PDE and identified
four terms which govern the long-wave stability of a uniform vapour film: (3.4).
Analysis of their dependence on film-thickness scale revealed that the question of
stability at the intermediate (micrometre) scale is primarily a struggle between
destabilizing thermocapillary effects and stabilizing vapour thrust. The scales
above and below are always unstable.

(iv) We posed the hypothesis that film boiling collapse occurs when the film is
unstable for any film-thickness scale. According to the present stability analysis,
this would necessitate that thermocapillary instabilities overpower vapour thrust.

(v) Based on the above hypothesis we derived a relatively simple model for the
Leidenfrost temperature, equations (3.9) with (3.12), which mainly depends on
γ , the temperature dependence of surface tension.

(vi) We gathered experimental data for 11 different fluids and showed how the model
is consistent with the average Leidenfrost temperature for every one of them
given that the evaporation coefficient is in the range 0.7–1.0. As mentioned in
§ 2.2, this range for αe is consistent with recent evaporation/condensation studies
using molecular dynamics simulations.

(vii) We showed how the assumption of evaporation coefficient equal to 0.85 can
successfully predict the Leidenfrost point for each of the fluids within 10 %
error, a feat that commonly cited models/correlations could not perform.

The present model is a completely theoretical prediction and involves no empirical
parameters fitted to film boiling experiments. This allows us to draw conclusions
regarding the underlying phenomena. We have found compelling but preliminary
evidence to support the following statements:

(i) The governing mechanism behind film boiling collapse (Leidenfrost transition)
may be the thermocapillary instability at the liquid–vapour interface. The
thermocapillary instability at an evaporating interface is closely connected to
non-equilibrium evaporation effects.

(ii) The relative Leidenfrost point, 1TL/Ts, depends almost linearly on γ , the
temperature dependence of surface tension.

(iii) The relative Leidenfrost point also depends on the evaporation coefficient αe
from kinetic theory. Its value is generally unknown but the range 0.7–1.0 gives
consistency with all the data. The maximum value of 1.0 gives a reliable lower
bound, and the central value 0.85 gives overall good prediction.
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Additional research is needed to further validate or disprove these conclusions.
Efforts should be made to identify fluids with uncommon (high or low) values of
γ and then measure their Leidenfrost point. While any data points in the shaded
regions of figure 5 is consistent with the model, any new points below would count
as evidence against it. Finally, it would be very helpful to resolve some of the
uncertainty regarding the evaporation coefficient, as it would sharpen the prediction
of the model and put it to a stronger test. This could be resolved with a combination
of theory and experiments.
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Appendix A. Liquid velocity profile and the value of η
In § 2.7.4 the issue of the unknown liquid velocity profile was handled by

interpolating the interface velocity between the two calculable theoretical extremes:
the case of zero interface velocity, and the case of zero liquid shear. The specific
point on the interpolation was set by the unknown parameter η ∈ [0, 1].

In this section we explore what a specific assumption regarding the liquid velocity
profile implies for the value of η. We follow the method proposed in Aursand (2018),
and assume a liquid velocity profile of the form

Ul ∼
1
Z
. (A 1)

While (A 1) is arguably quite ad hoc, it has the desirable property of monotonically
and smoothly decreasing to zero value (and zero derivatives) as Z→∞. If we now
combine the velocity profiles (2.52) and (A 1) with the boundary conditions (2.29)
and (2.32), we may solve explicitly for the vapour velocity profile,

U =
1
2

P̄X

(
Z2
−

2+Ψ −1

1+Ψ −1
HZ
)
−

1
1+Ψ −1

εM(θi)XZ, (A 2)

and the interface velocity,

Ui =
1

1+Ψ −1

(
−

1
2

H2P̄X − εMH(θi)X

)
. (A 3)

If we compare (A 3) with its generic version (2.60), we see that

η=
1

1+Ψ −1
=Ψ +O(Ψ 2). (A 4)

Appendix B. Liquid heat transfer
In § 2.7.2, the shorthand C = 1+ C′ was introduced to express the solution to the

energy equation, with the small deviation from unity being

C′ ≡ BilK =
K̃αl

L
. (B 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.545


310 E. Aursand, S. H. Davis and T. Ytrehus

Note that while Bil and K individually are dependent on h0, C is not. Since Bil does
not appear outside of C in the model, all influence of liquid heat transfer in the
dimensionless equations turns out to be independent of film-thickness scale.

The present model assumes that the liquid bulk is held at the saturation temperature.
To be more precise, one could state that the temperature is regulated to Ts a constant
distance z=1zl�h0 from the solid wall. The heat transfer coefficient in the liquid, αl,
may then be expressed as a conductive contribution multiplied by a Nusselt number
(Nu) to account for possible convective enhancement,

αl =Nu
kl

1z
. (B 2)

If we use water as an example,

K̃ ≈ 0.14 K m2 s kg−1, (B 3)
L≈ 2× 106 J kg−1, (B 4)

kl ≈ 0.7 W m−1 K−1, (B 5)

and assume that the liquid temperature control happens on the scale of 1z ∼ 1 cm,
the small parameter becomes

C′ =Nu
K̃kl

L1z
≈Nu× 10−6. (B 6)

Due to the small velocities and temperature differences in the liquid, we may likely
assume that the convective enhancement is laminar and weak, i.e. Nu ∼ O(1). Thus,
we get C′≪ 1, and we may assume

C≈ 1 (B 7)

for the remaining analysis.
This means that the energy transferred from the interface to the liquid bulk is

negligible compared to the energy spent on evaporation, no matter the film thickness
h0. This can be explained by the fact that the interface temperature is only slightly
different from the saturation temperature (θi ∼ K). While the interface temperature
increases if the film becomes thinner, so does the evaporation rate, so the former
remains negligible.

Note that if one considers subcooled film boiling instead, i.e. a bulk liquid
temperature considerably below saturation, the liquid heat transfer is no longer
negligible.
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