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The sound of a pulsating sphere in a rarefied gas:
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The pressure field of a pulsating sphere is a canonical problem in classical acoustics,
used to illustrate the acoustic efficiency of a monopole source at continuum conditions.
We consider the counterpart vibroacoustic and thermoacoustic problems in a rarefied
gas, to investigate the effect of continuum breakdown on monopole radiation. Focusing
on small-amplitude normal-to-boundary mechanical and heat-flux excitations, the
perturbation field is analysed in the entire range of gas rarefaction and input
frequencies. Numerical calculations are carried out via the direct simulation Monte
Carlo method, and are used to validate analytical predictions in the free-molecular and
near-continuum regimes. In the latter, the regularized thirteen moments model (R13)
is applied, to capture the system response at states where the Navier–Stokes–Fourier
(NSF) description breaks down. Comparing with the continuum inviscid solution, the
results quantitate the dampening effect of gas rarefaction on source point-wise strength
and acoustic power. At near-continuum conditions, the acoustic field is composed of
exponentially decaying ‘compression’, ‘thermal’ and ‘Knudsen-layer’ modes, reflecting
thermoviscous and higher-order rarefaction effects. With reducing rarefaction, the
contributions of the latter two modes vanish, and the former degenerates into the
ideal-flow inverse-to-distance decaying wave. Stronger attenuation is obtained with
increasing rarefaction, where boundary sphericity results in a ‘geometric reduction’
of the molecular layer affected by the source. Notably, while the R13 model at low
frequencies appears valid up to moderate gas rarefaction rates, both the NSF and
R13 descriptions break down at common low Knudsen numbers at higher frequencies.
Further study should therefore be carried out to extend the applicability of moment
models to unsteady flows with short time scales.

Key words: acoustics, rarefied gas flow

1. Introduction
The pressure far field of an object executing small-amplitude motions in a quiescent

fluid is a fundamental problem in acoustics, serving as a set-up for examining the
production and propagation of sound waves in a fluid. The problem has been studied

† Email address for correspondence: amanela@technion.ac.il
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The sound of a pulsating sphere in a rarefied gas 669

extensively in the context of continuum mechanics and in various set-ups (Morse
1948), characterizing the far-field radiation through the pressure point-wise amplitude
and directivity fields. Simplified calculations have been initially presented for an ideal
fluid (Morse 1948), and extended later on to account for the attenuating impacts of
fluid viscosity and heat conductivity (Landau & Lifshitz 1959). In a parallel set of
studies, the thermoacoustic sound generation by the unsteady heating of a stationary
surface has been examined (see, e.g. McDonald & Wetsel 1978; Yariv & Brenner
2004; Hu et al. 2012, and works cited therein). This type of acoustic excitation has
been applied to develop the thermophone (Arnold & Crandall 1917; Wente 1922;
Shinoda et al. 1999) as a means for sound generation with no moving parts.

A key outcome of the above investigations has been the determination of the
acoustic waves speed and decay rate. While these have shown to agree well with
measurements at low and intermediate frequencies, significant discrepancies have
appeared at high frequencies (Greenspan 1956; Hadjiconstantinou & Garcia 2001;
Struchtrup 2012). These revealed the inadequacy of the continuum description
to account for the phase speed and attenuation rate at non-continuum conditions,
invoking the study of rarefaction effects on sound wave propagation.

The propagation of sound waves in rarefied gases has been investigated in a
considerable number of works. These become relevant wherever the characteristic
length scale, or time scale, of the set-up involved is of the order of the molecular
mean free path, or time, respectively. In vibroacoustic applications, such scenarios
are common in micromechanical oscillators, where short length scales and high
frequencies occur (Tamayo 2005; Bargatin, Kozinsky & Roukes 2007; Iannacci et al.
2016). Focusing on a planar vibrating surface (see Sirovich & Thurber 1965; Loyalka
& Cheng 1979; Hadjiconstantinou 2002; Manela, Radtke & Pogorelyuk 2014 and
papers cited therein), existing studies have analysed the attenuating effect of gas
rarefaction, resulting in decay rates larger than at continuum conditions. Considering
a stationary plane, counterpart studies have examined the perturbation field generated
by time temperature variations of the boundary (Sone 1965; Wadsworth, Erwin &
Muntz 1993; Manela & Hadjiconstantinou 2007, 2010; Nassios, Yap & Sader 2016).
Later works have demonstrated that thermoacoustic sound, caused by boundary
heat-flux excitations, may be applied for monitoring the sound of a vibrating planar
object (Manela & Pogorelyuk 2014, 2015).

In difference from the above planar set-up investigations, sound wave generation
by non-planar objects at rarefied-flow conditions has been studied in only few works.
These include the acoustic field analyses of a pulsating cylindrical source carried
out by Kalempa & Sharipov (2014) and Ben Ami & Manela (2017), as well as the
hydrodynamic perturbations induced by small-amplitude translations of a rigid sphere,
considered by Yap & Sader (2016). Retaining a fixed volume, the sphere translations
in Yap & Sader (2016) were used to model a dipole source, which is of weaker
strength than its counterpart volume-varying monopole (Morse 1948). It is therefore
of interest to complement these studies and consider the vibro- and thermo-acoustic
efficiencies of a three-dimensional monopole at non-continuum conditions.

While acknowledging the fundamental interest in studying the canonical pulsating-
sphere set-up, the results of such a study may also be of practical value for the
analysis of the acoustic field of vibrating nanoscale particles, where both shape and
volume variations take form (Pelton et al. 2009; Juvé et al. 2010). In this context, the
past decade has evidenced growing interest in the investigation of small-scale micro
and nanoparticle vibrations (see Crut et al. (2015), and an abundance of references
cited therein). Due to the small size of the particles, quantitative assessment of their
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internal structural, morphological and mechanical properties requires the application
of non-conventional (indirect) measurement techniques. The method of time-resolved
spectroscopy is often used for this purpose. The method applies pulsed-laser signals
to trigger acoustic oscillations within the particles, through which their properties
of interest are captured. The particles response, characterized by their oscillation
frequencies and dampening time scales, depends strongly on their interaction with
the surrounding medium (Pelton et al. 2009; Marty et al. 2011). It is therefore of
evident importance to study the coupled gas response to acoustic vibrations at small
scales, where traditional continuum models break down.

The dynamics of rarefied gas flows is governed by the Boltzmann equation, valid
at length and times scales that are larger than the molecular diameter and collision
duration, respectively. However, due to the complexity of the kinetic equation,
analytical treatments are traditionally limited to the regimes of high (ballistic) and
low (continuum-limit) Knudsen (Kn) numbers, whereas the intermediate domain of
Kn ∼ O(1) is studied numerically via direct finite-difference-based solutions of the
equation or molecular simulations. Notably, the characteristically small excitation
amplitudes involved in acoustic problems make the latter approach computationally
expensive, and the advantage of obtaining analytical approximations is apparent.

Recent years have shown significant progress in the study of moment equations
and their application for the modelling of rarefied gas flows at low and intermediate
Knudsen numbers. Originally introduced by Grad (1949), these methods obtain
closed-form sets of hydrodynamic-type equations from the Boltzmann equation, in
an effort to capture non-small rarefaction effects. Recent progress has been initiated
by Struchtrup and Torrilhon (see Struchtrup & Torrilhon (2003), Struchtrup (2005)
and papers cited therein), who formulated the regularized set of thirteen moment
equations (R13). Gu & Emerson (2007) have complemented the model by deriving
the boundary conditions to be imposed at a solid diffuse or specular reflecting surface
for Maxwell-type molecules. These conditions have been reassessed by Torrilhon
& Struchtrup (2008), who overcame some inconsistencies prevailing at nonlinear
flow conditions. The R13 and higher-order models have been later on applied to
investigate a series of steady rarefied gas flows, recently reviewed by Torrilhon
(2016). Steady-state solutions for the R13 equations in a spherical geometry were
derived by Claydon et al. (2017).

In light of the above, the objective of the present contribution is to analyse the effect
of gas rarefaction on the acoustic field of a mechanically actuated (through boundary
pulsations) and thermally excited (via normal heat-flux) solid sphere. The sphere
radius and excitation time scale are chosen so that non-continuum flow conditions
prevail, and the problem is investigated in the entire range of gas rarefaction rates.
Analytical investigations are carried out in the limits of low (continuum and early
transition) and high (free-molecular) Knudsen numbers, and are accompanied by
direct simulation Monte Carlo (DSMC) calculations. An analytical solution is derived
using the R13 equations, which is found valid at non-small Knudsen numbers (up
to Kn ≈ 0.6) for low enough excitation frequencies. The R13 predictions reveal
the appearance of a high-order Knudsen-layer mode, which is missing from the
Navier–Stokes description.

In the next section, the pulsating sphere problem is formulated. The analytical
treatments in the near-continuum and free-molecular limits are described in §§ 3
and 4, respectively, followed by an outline of the numerical DSMC scheme in § 5.
Our results are presented in § 6, where the domains of applicability of the limit-case
analyses are delineated, and the acoustic fields of a pulsating adiabatic sphere and a
stationary heated surface are described. Concluding remarks are given in § 7.
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2. Statement of the problem
Consider a semi-confined monoatomic gas layer of uniform density ρ∗0 and tempera-

ture T∗0 surrounding an impermeable sphere of radius r∗= r∗0 (hereafter asterisks denote
dimensional quantities). The gas is initially at rest and in thermodynamic equilibrium
with the sphere. At time t∗ > 0, radial surface pulsations are imposed with velocity

εU∗w(t
∗)= εU∗w(t

∗)r̂, (2.1)

together with normal heat-flux excitations

εQ∗w(t
∗)= εQ∗w(t

∗)r̂. (2.2)

In (2.1) and (2.2), r̂ marks a unit vector in the radial direction, and ε� 1, so that
the system description may be linearized about its initial equilibrium. In practice,
the monitoring of time-varying heat-flux excitations requires the determination of
the amount of energy that is transmitted to the gas. A similar issue, concerning
the evaluation of energy transmission efficiency, has been considered in the context
of the thermophone device (see Shinoda et al. (1999), Julius et al. (2018), and
works cited therein). Accordingly, a more comprehensive formulation would couple
the thermoacoustic gas state to a heat-conduction problem within the sphere. This
calculation would involve the replacement of the boundary condition (2.2) with
appropriate matching conditions of heat fluxes and temperatures between the solid
and fluid sides of the sphere. The solution of the coupled problem should yield a
transfer function relating the amount of invested energy and the heat flux transmitted
to the gas, affected by the thermal properties of the solid material. Such an analysis
is not followed in the present work, which focuses on the effect of gas rarefaction
on monopole sound radiation. In particular, a large portion of our discussion focuses
on the generation of sound by an adiabatic (thermally insulating) sphere, which may
be easily realized in experiments.

In what follows we analyse the gas response to sphere actuations in the entire
range of sphere radii and excitation time scales relative to their counterpart molecular
quantities. While the analysis is carried out in part for arbitrary small-amplitude
actuations (see § 4), our results are presented for harmonic wall excitations,

U∗w(t
∗)=U∗w cos(ω∗t∗) and Q∗w(t

∗)=Q
∗

w cos(ω∗t∗), (2.3a,b)

where ω∗ denotes the common mechanical and heat-flux actuation frequency, and we
focus on the final time-periodic state of the system. Here, ε has been omitted for
convenience, yet the numerical values of U∗w and Q

∗

w will be taken small in their
normalized form.

Further analysis requires the scaling of the problem. To this end we normalize the
length and velocity by the nominal sphere radius r∗0 and molecular mean thermal
speed U∗th =

√
2R∗T∗0 (where R∗ marks the specific gas constant), respectively. The

non-dimensional problem is then governed by the gas mean Knudsen number and
scaled frequency,

Kn= l∗0/r
∗

0 and ω=ω∗r∗0/U
∗

th, (2.4a,b)

respectively, where l∗0 marks the molecular mean free path, specified after (3.8). In
terms of the governing parameters, it is expected that free-molecular conditions should
prevail when Kn� 1 or ωKn� 1, for which either the length scale or time scale is
short compared with the mean free path or mean free time, respectively. In contrast,
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as will be discussed in § 6, continuum-limit conditions require that both Kn� 1 and
ω2Kn� 1. For later convenience we denote

Knω =ωKn=ω∗l∗0/U
∗

th, (2.5)

as the frequency-based Knudsen number, representing the ratio between the excitation
frequency and the molecular collision frequency. The following analysis will be
presented in terms of Kn and ω, while Knω will be used to facilitate the discussion
in § 6.

To better assess the effect of gas rarefaction on the acoustic efficiency of the
source, we recapitulate the known result for the acoustic field of a pulsating sphere
at continuum inviscid (Kn, ωKn→ 0) conditions (Morse 1948). Considering the case
of harmonic mechanical actuations only (Uw 6= 0, Qw = 0), the far-field acoustic
pressure and radial velocity are given by

pinviscid(r, t)=
Uwω

r(1+ω2/c2
0)

[
ω

c0
cos(ωtr)− sin(ωtr)

]
and

uinviscid(r, t)=
Uwω

rc0(1+ω2/c2
0)

[
ω

c0

(
c2

0

ω2r
+ 1
)

cos(ωtr)+

(
1
r
− 1
)

sin(ωtr)

]
,

 (2.6)

respectively, where tr= t− (r− 1)/c0 is the acoustic retarded time (with r denoting the
scaled radial distance from the sphere centre), and c0 marks the mean speed of sound
scaled by the mean thermal speed, c∗0/U

∗

th. For an ideal monatomic gas considered
hereafter, c∗0 =

√
γR∗T∗0 (where γ = 5/3 marks the ratio of gas specific heats), and

c0 =
√

5/6. The overall source strength is evaluated through its acoustic power

Π(r, t)≡
∮

r̃=r
p(r̃, t)u(r̃, t) dS, (2.7)

where the integration is carried out over a spherical surface S of radius r̃> 1 centred
at r̃ = 0. To obtain a time-independent result, we define the time-averaged acoustic
power,

Π̄(r)=
1
T

∫ T

0
Π(r, t) dt, (2.8)

obtained by integrating Π(r, t) over a period T = 2π/ω. Substituting (2.6) into (2.7)
and then into (2.8), we obtain for the inviscid far-field limit

Π̄inviscid(r� 1)≈ 2πU2
w

√
6
5

(
ω2

1+ 6ω2/5

)
. (2.9)

The result is independent of r� 1 due to the r−1 leading-order decay of pinviscid and
uinviscid, and thus remains unchanged at arbitrarily large distances from the source. As
will be shown in §§ 3 and 4, non-zero gas rarefaction results in stronger decay rates
which, in turn, lead to a decrease in (and far-field vanishing of) the acoustic power
with increasing r (see figure 7).
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3. Near-continuum conditions
To analyse the problem at relatively small Knudsen numbers, we make use of the

hydrodynamic R13 model mentioned in § 1 (Struchtrup & Torrilhon 2003; Struchtrup
2005). The scheme has been derived for a Maxwell-type model of molecular
interaction, where the three-dimensional formulation consists of balances for the
scalar density and pressure, the vectors of velocity and heat flux and the stress tensor.
Higher-order moments are coupled to the system through a Chapman–Enskog-type
expansion of the probability density function in the kinetic Boltzmann equation. In
this work, we apply the R13 model for an unsteady, one-dimensional (r-dependent)
and linearized set-up. Focusing on the case of sinusoidal excitation specified in (2.3),
we assume harmonic time dependence of all hydrodynamic perturbations,

Φ(r, t)= Re{Φ(r) exp[iωt]}. (3.1)

Using spherical coordinates, the macroscopic balances of continuity, r-momentum and
energy are given by

iωρ +
1
r2

d
dr
(r2u)= 0, (3.2)

iωu=−
dp
dr
−

1
r3

d
dr
(r3σ), (3.3)

and
iωT =−

2
3r2

d
dr
[r2(u+ 2q)], (3.4)

respectively, and are supplemented by the linearized form of the equation of state,

p= (ρ + T)/2. (3.5)

Appearing in (3.2)–(3.5) are the amplitudes of the density perturbation ρ(r), radial
velocity u(r), pressure p(r) and temperature T(r). Also appearing in (3.3)–(3.4) are
the amplitudes of the radial normal stress σ(r), and the radial heat flux q(r), which
satisfy the additional equations

iωσ +
1
r4

d
dr
(r4m)=−

σ

2Kn
−

2r
3

d
dr

[
r−1

(
u+

4
5

q
)]

(3.6)

and

iωq+
1

2r3

d
dr
(r3R)=−

q
3Kn
−

1
2r3

d
dr
(r3σ)−

5
8

dT
dr
−

1
6

d∆
dr
. (3.7)

Equations (3.6) and (3.7) couple the higher-order moments’ amplitude functions m(r),
R(r) and ∆(r), which are fixed through a linearized form of the closure relations
derived by Struchtrup & Torrilhon (2003),

m=−
6Kn

5
r2 d

dr
(r−2σ), R=−

16Kn
5

r
d
dr
(r−1q) and ∆=−

12Kn
r2

d
dr
(r2q).

(3.8a−c)
The Knudsen number appearing in (3.6)–(3.8) is given by

Kn= ν∗0/r
∗

0U∗th, (3.9)
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where l∗0 = ν
∗

0/U
∗

th in accordance with (2.4). At continuum-limit conditions, ν∗0 marks
the coefficient of kinematic viscosity. Equations (3.2)–(3.8) are supplemented by
the conditions of impermeability and normal heat flux at the sphere surface (see
(2.1)–(2.2)),

u(1)=Uw and q(1)=Qw, (3.10a,b)

together with a high-order moment condition obtained from Gu & Emerson (2007),

−
6
√

π
σ(1)−

6
7
√

π
R(1)− 4m(1)=Uw +

4
5

Qw, (3.11)

and far-field decay conditions. As expected, a temperature jump condition is missing
from the present formulation, and is replaced by the heat-flux condition in (3.10).
The condition (3.11) is derived by eliminating the unknown wall temperature from
the linearized version of conditions (30) and (31) in Gu & Emerson (2007) (or,
alternatively, equations (35) and (36) in Torrilhon & Struchtrup (2008)). Note that
in both Gu & Emerson (2007) and Torrilhon & Struchtrup (2008), the boundary
considered is not shifted in the normal direction, different from the present set-up.
Hence, the wall normal velocity contribution should be added, similarly to Rana,
Lockerby & Sprittles (2018) and Beckmann et al. (2018), in the context of
evaporation-driven flows.

The system of equations may be recast to form a single triharmonic equation
for T(r),

Kn3
[
1+ 36

5 iωKn
]
∇

6
r T − 5

12 Kn
[
1+ 62

5 iωKn− 888
25 (ωKn)2 − 2592

125 i(ωKn)3
]
∇

4
r T

+
5
18 iω

[
1+ 48

5 iωKn− 864
25 (ωKn)2 − 864

25 i(ωKn)3
]
∇

2
r T

+
1
3 iω3
[1+ 5iωKn− 6(ωKn)2]T = 0, (3.12)

where ∇2
r = r−2(d/dr)(r2(d/dr)) denotes the r-dependent part of the Laplace operator.

The equation is subject to the solution

T(r)=
6∑

n=1

αnΘn(r), (3.13)

where αn are constants and Θn(r) satisfy the Helmholtz equation

∇
2
rΘn = λ

2
nΘn. (3.14)

In (3.14), λn are the roots of the characteristic polynomial of (3.12). Expanding in
Kn� 1, the leading-order expressions for λn are

λ1± ≈±

√
6
5

(
7
5
ω2Kn+ iω

)
, λ2± ≈±

√
1
3
ω

Kn
(1+ i) and

λ3± ≈±
√

15
(

1
6

Kn−1
+

3
10

iω
)
,

 (3.15)

and the general solution for T(r) may be put in the form

T(r)=
3∑

n=1

{
an

sin(iλnr)
iλnr

+ bn
cos(iλnr)

iλnr

}
. (3.16)
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Expecting a casual outward radiating signal, we set an = ibn, which ensures that no
incoming propagating wave is contained, to yield

T(r)=
3∑

n=1

Cn
exp[−λnr]

r
. (3.17)

For later reference, we denote the λ1, λ2 and λ3 components of the solution the
‘compression’, ‘thermal’ and ‘Knudsen-layer’ modes, respectively. The compression
mode is characterized by the slowest decay rate at low Kn, and therefore dominates
the far-field response, whereas the thermal and Knudsen-layer components decay much
stronger. In particular, the Knudsen-layer mode decays at rate ∼ exp[−

√
15Kn−1r/6],

and is therefore significant only in an O(Kn) (Knudsen-layer) vicinity of the wall. Yet,
apart from its direct effect on the gas behaviour inside the layer, it affects the values
of the constants C1 and C2 multiplying the λ1,2 modes, which then modify the gas
behaviour in the entire domain. For later discussion we note that the leading-order
decay rate of λ3 is independent of the excitation frequency, and is therefore not
affected by a change in the system time scale.

Having solved for T(r), expressions for all other hydrodynamic fields follow
by substitutions of (3.17) into the above set of balance equations, as specified in
appendix A. Importantly, all fields combine the three decaying components contained
in (3.17). The constants Cn are fixed using the conditions in (3.10) and (3.11).

3.1. The Navier–Stokes–Fourier limit
To assess the differences between the R13 and continuum-limit solutions, it is
instructive to derive the Navier–Stokes–Fourier (NSF) description of the system. Either
by replacing (3.6) and (3.7) with the Newtonian and Fourier constitutive relations for
σ(r) and q(r), respectively, or by taking the consistent Kn� 1 leading-order limit
of (3.12), the problem for T(r) reduces to the biharmonic equation

5
4

Kn∇4
r T +

ω

6
(−5i+ 23ωKn)∇2

r T − iω3T = 0. (3.18)

Different from the R13 result, the reduction in the equation order leads to the solution

T(r)=
2∑

n=1

Dn
exp[−λNSF

n r]
r

, (3.19)

where

λNSF
1± ≈±

√
6
5

(
7
5
ω2Kn+ iω

)
and λNSF

2± ≈±

√
1
3
ω

Kn
(1+ i) (3.20a,b)

are the roots of the characteristic polynomial corresponding to (3.18).
Inspecting the similarities between the NSF and R13 results, we observe that the

leading orders of λ1,2 in (3.15) and λNSF
1,2 in (3.20) are identical. The higher-order

corrections, not specified here for brevity, differ in some quantitative details. Yet
more importantly, the reduction in problem order in the NSF model results in the
omission of the λ3 mode from the NSF description. At small enough Kn, these
differences have only a minor effect on the results, as the Knudsen layer (and its
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associated outer-layer impact) diminishes. At non-vanishing Kn, however, the effect
of the Knudsen layer becomes significant, contributing to the breakdown of the NSF
description. As demonstrated by the results in § 6, the R13 model remains valid in
part of these parameter combinations, yielding predictions that are in agreement with
DSMC computations.

4. Free-molecular limit

Free-molecular conditions should prevail wherever Kn� 1 or Knω = ωKn� 1, for
which either the length scale or time scale is short compared with the mean free
path or mean free time, respectively. For the spherically symmetric set-up considered,
the gas state is governed by the probability density function f = f (r, t, ξ) of finding
a gas molecule with velocity and radial position about ξ and r, respectively, at
time t. Expanding f (r, t, ξ) about its initial non-dimensional Maxwellian distribution
F=π−3/2 exp[−ξ 2

], we write

f (r, t, ξ)= F[1+ h(r, t, ξ)], (4.1)

where h(r, t, ξ) denotes the unknown small (|h| � 1) perturbation function due to
sphere excitations. At free-molecular conditions, h(r, t, ξ) satisfies the collisionless
one-dimensional (r-dependent) Boltzmann equation in spherical coordinates (r, θ, ϕ)
(Kogan 1969),

∂h
∂t
+ ξr

∂h
∂r
+
ξ 2
θ + ξ

2
ϕ

r
∂h
∂ξr
+

1
r

(
ξ 2
ϕ

tan θ
− ξrξθ

)
∂h
∂ξϕ
−
ξϕ

r

(
ξθ

tan θ
+ ξr

)
∂h
∂ξϕ
= 0, (4.2)

where the system parametrization is specified in figure 1. Performing the variable
transformation

ξ =

√
ξ 2

r + ξ
2
θ + ξ

2
ϕ , cos ϑξ =

ξr

ξ
and tan φξ =

ξθ

ξϕ
, (4.3a−c)

equation (4.2) assumes the form

∂h
∂t
+ ξ cos ϑξ

∂h
∂r
−
ξ sin ϑξ

r
∂h
∂ϑξ
+ tan θ

ξ sin ϑξ cos φξ
r

∂h
∂φξ
= 0. (4.4)

The equation is supplemented by the initial condition

h(r, t= 0−, ξ , ϑξ , φξ )= 0, (4.5)

together with a linearized form of the diffuse boundary condition at the spherical
surface,

h(r= 1, 0 6 ϑξ 6π/2)= ρw(t)+ 2ξ cos ϑξUw(t)+ (ξ 2
− 3/2)Tw(t), (4.6)

applied to the reflected ξr > 0 molecules at r = 1. Here, ρw(t) and Tw(t) are treated
as unknown, with the latter denoting the time perturbation of the sphere temperature
about T0 = 1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.329


The sound of a pulsating sphere in a rarefied gas 677

r
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Ç̂

r̂

œ̂

FIGURE 1. (Colour online) Schematic of the system parametrization in the free-molecular
limit. The bold point marks the position of an arbitrary particle, and the outer-sphere
volume confined by the blue lines and the spherical cap denotes the ϑξ -interval acquired
by the particle when reflected from the spherical surface.

Inspecting (4.6), it is noted that the boundary condition is independent of φξ . Since
boundary excitation is the only cause for system deviation from equilibrium in the
present problem, we assume that h 6= h(φξ ), and (4.4) reduces to

∂h
∂t
+ ξ cos ϑξ

∂h
∂r
−
ξ sin ϑξ

r
∂h
∂ϑξ
= 0. (4.7)

Equation (4.7) is amenable to the closed-form solution

h(r, t, ξ , ϑξ , φξ )

=

{
ρw(tw)+ 2ξUw(tw)

√
1− r2 sin2 ϑξ + Tw(tw)(ξ

2
− 3/2), ϑξ 6 η

0 η < ϑξ 6π,
(4.8)

where

tw = t−
(

r cos ϑξ −
√

1− r2 sin2 ϑξ

)/
ξ ≡ t− xw(r, ϑξ )/ξ (4.9)

is the molecular-level retarded time in the ballistic limit. In addition,

η= sin−1(1/r), (4.10)

also indicated in figure 1.
To determine ρw(t) and Tw(t), the macroscopic conditions of impermeability,

1
√

π

∫ π

0
dϑξ

∫
∞

0
h(r= 1)ξ 3 sin 2ϑξ exp[−ξ 2

] dξ =Uw(t), (4.11)
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and heat flux,

1
2
√

π

∫ π

0
dϑξ

∫
∞

0
h(r= 1)ξ 5 sin 2ϑξ exp[−ξ 2

] dξ −
5
4

Uw(t)=Qw(t), (4.12)

are imposed at the walls, yielding

ρw(t)=
7
√

π

8
Uw(t)−

√
πQw(t) and Tw(t)=

√
π

4
Uw(t)+ 2

√
πQw(t). (4.13a,b)

Substituting (4.13) into (4.8) and then into (4.1), the density, radial velocity, pressure
and radial heat-flux perturbations may be computed via velocity-space quadratures
over the probability density function. Specifically,

ρ(r, t)=
2
√

π

∫ π

0
dϑξ

∫
∞

0
h(r, t, ξ , ϑξ )ξ 2 sin ϑξ exp[−ξ 2

] dξ,

u(r, t)=
1
√

π

∫ π

0
dϑξ

∫
∞

0
h(r, t, ξ , ϑξ )ξ 3 sin 2ϑξ exp[−ξ 2

] dξ,

p(r, t)=
2

3
√

π

∫ π

0
dϑξ

∫
∞

0
h(r, t, ξ , ϑξ )ξ 4 sin ϑξ exp[−ξ 2

] dξ and

q(r, t)=
1

2
√

π

∫ π

0
dϑξ

∫
∞

0
h(r, t, ξ , ϑξ )ξ 5 sin 2ϑξ exp[−ξ 2

] dξ −
5
4

u(r, t),


(4.14)

whereas the temperature perturbation is given by the linearized form of the equation
of state,

T(r, t)= 2p(r, t)− ρ(r, t). (4.15)

Evaluation of the integrals in (4.14) is facilitated by carrying out a change in variables
τ = t− xw(r, ϑξ )/ξ , to yield

ρ(r, t)=
2
√

π

∫ π

0
dϑξ

∫ t

0
ĥ(r, t, τ , ϑξ )

x3
w

(t− τ)4
sin ϑξ exp

[
−

(
xw

t− τ

)2
]

dτ ,

u(r, t)=
1
√

π

∫ π

0
dϑξ

∫ t

0
ĥ(r, t, τ , ϑξ )

x4
w

(t− τ)5
sin 2ϑξ exp

[
−

(
xw

t− τ

)2
]

dτ ,

p(r, t)=
2

3
√

π

∫ π

0
dϑξ

∫ t

0
ĥ(r, t, τ , ϑξ )

x5
w

(t− τ)6
sin ϑξ exp

[
−

(
xw

t− τ

)2
]

dτ and

q(r, t)=
1

2
√

π

∫ π

0
dϑξ

∫ t

0
ĥ(r, t, τ , ϑξ )

x6
w

(t− τ)7
sin 2ϑξ exp

[
−

(
xw

t− τ

)2
]

dτ −
5
4

u(r, t),


(4.16)

where

ĥ(r, t, τ , ϑξ )

=

ρw(τ )−
3
2

Tw(τ )+
2xw

t− τ
Uw(τ )

√
1− r2 sin2 ϑξ +

(
xw

t− τ

)2

Tw(τ ), ϑξ 6 η

0 η < ϑξ 6π.

(4.17)
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The hydrodynamic fields can now be calculated via numerical integration. Towards
this end, introduce

I(m)n =
1
√

π

∫ η

0
dϑξ

∫
∞

0
Uw(tw)

√
1− r2 sin2 ϑξ f (m)(ϑξ )ξ n exp[−ξ 2

] dξ,

J(m)n =
1
√

π

∫ η

0
dϑξ

∫
∞

0
ρw(tw)f (m)(ϑξ )ξ n exp[−ξ 2

] dξ and

K(m)
n =

1
√

π

∫ η

0
dϑξ

∫
∞

0
Tw(tw)f (m)(ϑξ ) exp[−ξ 2

] dξ,


(4.18)

with m= 1, 2 and

f (m) =

{
sin ϑξ , m= 1
sin 2ϑξ , m= 2,

(4.19)

to cast (4.16) in the form

ρ(r, t)= 4I(1)3 + 2J(1)2 − 3K(1)
2 + 2K(1)

4 ,

u(r, t)= 2I(2)4 + J(2)3 −
3
2 K(2)

3 +K(2)
5 ,

p(r, t)= 1
3(4I(1)5 + 2J(1)4 − 3K(1)

4 + 2K(1)
6 ),

T(r, t)= 1
3(−12I(1)3 + 8I(1)5 − 6J(1)2 + 4J(1)4 + 9K(1)

2 − 9K(1)
4 + 4K(1)

6 ) and

q(r, t)= 1
8(−20I(2)4 + 8I(2)6 − 10J(2)3 + 4J(2)5 + 15K(2)

3 − 16K(2)
5 + 4K(2)

7 ).


(4.20)

Different from the analysis in § 3, the solution in the free-molecular regime, involving
the numerical evaluation of I(m)n , J(m)n and K(m)

n , is valid for any small-amplitude Uw(t)
and Qw(t) input signals. Focusing on the case of harmonic excitation specified in (2.3),
explicit approximations for the hydrodynamic fields may be obtained for ω(r− 1)� 1.
The approximation, presented in appendix B, applies the method of steepest descent
to evaluate the ξ -integrals, together with the method of stationary phase to estimate
the ϑξ -integrals. These yield

I(1)n ≈ J(1)n ≈K(1)
n ≈ Re

 1
2r

√
zn−2

0

3n−1
[1− e−(z0r/3)η2

]

(
1+

a1

z0
+

a2

z2
0

)
exp[iωt− z0]


and (I(2)n , J(2)n ,K(2)

n )≈ 2(I(1)n , J(1)n ,K(1)
n ),


(4.21)

where z0 = 3[ω(r − 1)/2]2/3 exp[iπ/3] � 1, and the expressions for the constants a1

and a2 are detailed in appendix B. Substituting (4.21) into (4.20), we find that the
decay rate of all hydrodynamic perturbations is

D=DplanarDcurv, (4.22)

where Dplanar marks the perturbations decay in the planar case (Manela & Pogorelyuk
2015),

Dplanar ≈

√
zn−2

0

3n−1

(
1+

a1

z0
+

a2

z2
0

)
exp[−z0], (4.23)
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and Dcurv denotes the additional decay caused by source sphericity,

Dcurv ≈
1
2r

{
1− exp

[
−

z0r
3
(sin−1(1/r))2

]}
. (4.24)

While Dplanar reflects the dampening effect of gas rarefaction in the absence of
boundary curvature, Dcurv combines the impacts of gas rarefaction and geometric
reduction on the signal decay. As specified by (4.24), Dcurv is the product of an
r−1 decay rate (characteristic of continuum flow conditions; cf. (2.6)) with the
{1− exp[−(z0r/3)(sin−1(1/r))2]} component, caused by the narrowing in the volume
occupied by the ballistically reflected molecules (see figure 1). Indeed, the number
of emitted particles that reach a certain distance from the boundary (and therefore
contribute to the far acoustic field) is reduced with r, resulting in a stronger decay
rate compared with the planar free-molecular and sphere inviscid set-ups combined.

The above approximation should be valid at distances (r − 1) from the source for
which ω(r − 1)� 1. Since the signal at free-molecular conditions vanishes at short
distances from r = 1, this requires that the actuation frequency is relatively large.
Comparison between our asymptotic and full numerical solutions indicates that the
present estimate holds for ω(r− 1)& 5.

5. Numerical scheme: DSMC method
The DSMC method proposed by Bird (1994) is a stochastic particle method

commonly applied for the analysis of rarefied gas flows. In the present work,
the method is used to compute the system acoustic field at arbitrary rarefied-flow
conditions, and to validate our analytical ballistic- and continuum-limit solutions. We
adopt Bird’s algorithm in one-dimensional spherical coordinates, together with the
variable hard sphere (VHS) model of molecular interaction (Bird 1994), to simulate
the gas response. To enable comparison between the DSMC and R13 model for
Maxwell molecules, the molecular collisional cross-section should to be accordingly
defined. Towards this end, the Chapman–Enskog value for the dimensional dynamic
viscosity of a VHS gas is given by (Bird 1994)

µ∗0 =
15(πm∗k∗B)

1/2(4k∗/m∗)$−1/2T∗$0

8Γ (9/2−$)Σ∗u∗2$−1
rel

, (5.1)

where k∗B is the Boltzmann constant, m∗ and Σ∗ are the molecular mass and collisional
cross-section, respectively, u∗rel denotes the relative velocity of the molecules, $ marks
the viscosity temperature index and Γ (·) is the gamma function. Substituting $ = 1
for a Maxwell gas, and using the relation l∗0 =µ

∗

0/ρ
∗

0 U∗th for the mean free path of a
Maxwell molecule, we obtain

Σ∗ =
m∗U∗th
ρ∗0 u∗rell

∗

0
, (5.2)

exhibiting the required inverse proportion between the collisional cross-section and the
molecular relative velocity. The number of molecular collisions within a DSMC cell
occurring during a timestep 1t∗ is then given by the no-time-counter (NTC) scheme
(Bird 1994),

Nc − 1
2

n∗cU∗th1t∗

n∗s r∗0Kn
, (5.3)

where it is assumed that the collision probability of all particles in the cell is uniform.
Here, Nc marks the number of molecules in a cell, and n∗s and n∗c denote the mass
densities of simulated and cell molecules, respectively.
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In line with the problem statement in § 2, the spherical boundary in the simulation is
modelled as fully diffuse, with prescribed radial velocity and heat flux. Thus, different
from traditional realizations of gas–wall interactions, the wall temperature is treated
as unknown, and application of the heat-flux condition requires modification of the
conventional algorithm. In a recent contribution by the authors (Ben Ami & Manela
2017), a non-iterative procedure for the imposition of a heat-flux condition in a DSMC
calculation has been presented. The algorithm has been assigned to analyse a one-
dimensional cylindrical set-up, and is similarly applied in the present work.

To simulate the gas behaviour in the semi-confined gas expanse described while
restricting a finite computational domain, we placed a stationary and adiabatic
spherical boundary in the far field, so that it does not affect the system response. A
known problem in DSMC simulations of spherical domains is in the increase in the
number of particles with increasing r, where, for a uniform cell width, Nc ∝ r∗2c 1r∗.
In cases where the acoustic signal decays slowly with the distance from the source,
this causes a vast non-uniformity in the number of particles in each cell, which leads
to inaccuracies in DSMC predictions. To overcome this difficulty, the computational
domain was divided into non-uniform cell sizes distributed in a geometric series,
with a prescribed ratio between the farthest and closest cell size, denoted by Rfc
(Bird 1994). The value of Rfc was chosen such that the ratio between the largest and
smallest number of molecules within a cell did not exceed 20. In each simulation, the
one-dimensional computational grid was divided into Ncell = 100–200 cells of radial
dimension

1r∗m = L∗am−1

(
1− a

1− aNcell

)
, (5.4)

where m = 1, 2, . . . , Ncell, L∗ is the distance between the spherical source and the
‘fictitious’ outer sphere and

a=R1/(Ncell−1)
fc . (5.5)

A timestep of 1t∗=0.31r∗min/U
∗

th was assigned, where 1r∗min is the size of the smallest
cell.

For the harmonic wall excitation studied hereafter, the computation was followed in
time until the system had reached its final periodic state. A single run consisted of
5 × 107 particles, and 16 realizations were carried out simultaneously to sufficiently
reduce the numerical noise in the calculated fields. Each simulation lasted between 12
and 48 h (depending on the system Knudsen number and excitation frequency) using
a ten core Intel i7-6950 machine.

6. Results
Focusing on the case of harmonic wall excitations (see (2.3)), the system response

to vibroacoustic (Uw = 0.02, Qw = 0) and thermoacoustic (Uw = 0, Qw = 0.02) input
signals is discussed in §§ 6.1 and 6.2, respectively. The small values of Uw and Qw are
chosen to comply with problem linearization assumed at the outset. In each case we
study the long-time periodic system behaviour, where the results are presented at half-
period time, t= T/2=π/ω, as a representative time. A comparison is made between
the vibroacoustic and thermoacoustic responses, to examine the effectiveness of the
latter in reducing vibroacoustic sound.

6.1. Adiabatic pulsating sphere

Setting Uw = 0.02 and Qw = 0, we start by examining the effect of slight rarefaction
on the deviation from the continuum Kn→ 0 inviscid limit given in (2.6). Towards
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FIGURE 2. (Colour online) Breakdown of the continuum inviscid solution with increasing
Kn for an adiabatic pulsating sphere with ω = 4: variation of the pressure fluctuation
at (a) Kn = 0.0015 and (b) Kn = 0.015. The dashed black, solid blue and dash-dotted
red curves show the continuum inviscid (Kn→ 0), NSF and R13 results, respectively.
The crosses mark DSMC predictions. The results are presented at half-period time,
t= T/2=π/ω.

this end, figure 2 presents the vibroacoustic pressure signal obtained at ω = 4 and
small values of Kn = 0.0015 (figure 2a) and Kn = 0.015 (figure 2b). The inviscid
solution is shown by the dashed lines for reference. Due to the exceedingly small
value of Kn in figure 2(a), DSMC results are not presented. In this case, the NSF
and R13 solutions coincide, and nearly match with the inviscid result. The effect
of gas rarefaction becomes more visible in figure 2(b), where Kn is increased by
an order of magnitude. While there are still no discrepancies between the NSF and
R13 predictions, considerable deviations are observed from the inviscid signal. These
are attributed to the added effect of viscosity, which causes a stronger decay rate
of the far-field dominating compression wave (see λ1 and λNSF

1 in (3.15) and (3.20),
respectively). The R13 and NSF fields, showing the vanishing of the pressure signal
at nearly six radii away from the source, fully agree with the DSMC results depicted
by the crosses. This suggests the continuum-limit solution as a viable means for
predicting the system behaviour at slightly rarefied conditions, which is particularly
useful in view of the relatively slow decay rate of the signal at small Kn, and
associated exceedingly time consuming DSMC runs.

The applicability of the NSF and R13 models at higher Knudsen numbers is
inspected in figure 3, where both acoustic pressure and radial velocity fields are
compared with DSMC computations. The (Kn, ω) combinations are chosen so that
ω2Kn, the leading-order decay rate of the compression wave, is fixed (see λ1 and
λNSF

1 in (3.15) and (3.20), respectively). This is supported by the results, showing
that all fields decay at a similar rate away from the source. Recalling that the plots
are presented at half-period time, the value of u = −0.02 at r = 1 agrees with the
impermeability condition at the wall, requiring that u=Uw at t= T/2.

Comparing the NSF and R13 results, we observe considerable discrepancies in the
higher Kn= 0.5 case in figures 3(c) and 3(d). At this relatively large Kn, the effect
of the Knudsen-layer mode λ3, missing from the NSF description, becomes dominant,
and affects both near- and far-field behaviours. Remarkably, the R13 predictions are
in good agreement with DSMC results even at Kn = 0.5, where the NSF model is
ineffective. Our findings therefore establish that, at relatively non-large excitation
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FIGURE 3. (Colour online) Applicability of NSF (dashed red lines) and R13 (solid black
curves) solutions at non-small (>0.1) Knudsen numbers and non-large (61) actuation
frequencies for an adiabatic pulsating sphere: comparison with DSMC results (crosses) of
the (a,c) acoustic pressure and (b,d) radial velocity fields at (a,b) (Kn, ω)= (0.125, 1) and
(c,d) (Kn, ω)= (0.5, 0.5). The results are presented at half-period time, t= T/2=π/ω.

frequencies (ω. 1), the R13 model provides results that are applicable at Kn values
significantly larger than in the NSF scheme. Specifically, for ω . 1, the calculations
indicate that the R13 model is valid up to Kn ≈ 0.6, while NSF predictions break
down already at Kn≈ 0.1.

Different from the extended applicability of the R13 model at ω . 1, the scheme
does not improve considerably over the NSF description at higher frequencies. In this
case, the problem time scale becomes more restrictive in determining the flow regime,
and the transition between the near-continuum and intermediate states occurs at lower
values of Kn. To rationalize the differences between the low- and high-frequency
responses, we expand the near-continuum solution obtained in § 3 in Kn and ω for
r� 1. Each of the hydrodynamic fields then takes the form

a0O
(

ω

[1+ω2/c2
0]

1/2

)
+ a1O(ω2Kn)+ · · ·, (6.1)

where a0 and a1 are independent of Kn and ω. The leading-order term represents the
inviscid solution (see (2.6)), and the correction originates from the far-field decay of
the compression wave (see the λ1 component in (3.17)). At ω� 1, the leading order
is O(ω), which is ∼O(Knω) larger than the O(ω2Kn) correction. Since Kn� Knω at
ω� 1, the breakdown of the continuum solution is determined by the value of Kn.
In contrast, for ω � 1, the inviscid solution becomes O(1), thus ∼O(ω2Kn) larger
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FIGURE 4. (Colour online) Applicability of NSF (dashed red lines) and R13 (solid black
curves) solutions for an adiabatic pulsating sphere with ω= 2: comparison of the acoustic
pressure with DSMC results (crosses) at (a) Kn = 0.06 and (b) Kn = 0.125. The results
are presented at half-period time, t= T/2=π/ω.

than the correction term. For the near-continuum scheme to be effective it is therefore
required that ω2Kn= ωKnω� 1, which restricts the upper limit of Knudsen numbers
to decrease as ω−2.

To illustrate the breakdown of the near-continuum scheme at non-small frequencies,
figure 4 presents a comparison of the acoustic pressure between the NSF, R13 and
DSMC calculations at a fixed ω= 2 and different values of Kn= 0.06 and Kn= 0.125.
While the NSF and R13 results agree with DSMC data at Kn= 0.06 (corresponding
to ωKnω = 0.24), they only partially approximate the pressure field at Kn = 0.125
(ωKnω = 0.5), with each matching with a different part of the DSMC signal. In line
with the above discussion, the results at this and higher values of ω indicate that both
the NSF and R13 models break down at an approximately constant value of ωKnω ≈
0.3, with the R13 approximation not providing improvement over the NSF model.
This result may be rationalized by recalling that the differences between the schemes
are primarily attributed to the Knudsen-layer mode λ3 obtained in (3.15), and noting
that its decay rate is independent of the excitation frequency (although an increase
in ω should inevitably lead to the narrowing of the layer). The apparent deficiency
in capturing the system high-frequency behaviour may be resolved by reformulating
the R13 equations with account taken of the short characteristic time scales. As most
of the existing works on moment equations have focused on steady-flow problems
(Torrilhon 2016), such an extension has not been followed hitherto, and may be a
topic for future investigation.

Either by increasing Kn above ≈0.6 for ω . 1, or by taking ωKnω over ≈0.3 for
ω& 1, the effect of gas rarefaction turns sufficiently strong so that the R13 description
breaks down, and the system transits to its intermediate, and, later on, free-molecular
regimes. These trends are illustrated in figure 5. As mentioned in the beginning of § 4,
free-molecular conditions should prevail wherever the set-up length scale or time scale
is short compared with the molecular mean free path or mean free time – or, in
terms of the problem non-dimensional parameters, Kn� 1 or Knω � 1, respectively.
These conditions are clearly satisfied by the (Kn, ω) combinations in figures 5(b)
and 5(d), where the free-molecular results agree with DSMC predictions. Intermediate
conditions are observed in figures 5(a) and 5(c), where neither the R13, nor ballistic
solutions, match with DSMC data. In both figures, the ballistic description provides
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FIGURE 5. (Colour online) Transition between near-continuum and free-molecular flow
regimes for an adiabatic pulsating sphere: comparison between DSMC (crosses), NSF
(dashed red lines), R13 (solid black curves) and free-molecular (dash-dotted green lines)
solutions for the acoustic pressure at (Kn, ω) combinations of (a) (0.5, 2), (b) (0.5, 15),
(c) (2, 0.5) and (d) (6, 0.5). The results are presented at half-period time, t= T/2=π/ω.

satisfactory results in the vicinity of the wall (where the effect of molecular collisions
is minor), while breaking down at larger r.

Our discussion on the domains of validity of the approximate solutions is
summarized in figure 6, showing a schematic division of the (Kn, ω) plane into
zones where the inviscid, NSF, R13 and free-molecular descriptions prevail. For
ω . 1, corresponding to cases where Kn & Knω & ωKnω, the acoustic flow regime is
governed by Kn. Here, the inviscid description breaks down at Kn≈ 0.006, whereas
the NSF model holds up to Kn ≈ 0.1. The R13 equations remain effective for
Kn . 0.6, above which intermediate flow conditions prevail. The free-molecular limit
takes place for Kn & 5. Considering cases where ω & 1 (Kn . Knω . ωKnω), system
rarefaction is governed by the time-scale-based parameters Knω and ωKnω. Here, our
calculations indicate that the inviscid approximation breaks down above ωKnω ≈ 0.03
(see figure 2), while the NSF and R13 models turn invalid at a common ωKnω ≈ 0.3.
The free-molecular regime becomes effective for Knω & 5.

To measure the impact of gas rarefaction on the total source strength, figure 7
presents the effect of the Knudsen number on the time-averaged acoustic power
Π̄ introduced in (2.8). The figure shows the variation of Π̄ with r for ω = 1 and
the indicated values of Kn. The asymptotic inviscid (Kn → 0) and free-molecular
(Kn→∞) limits are depicted by the dashed lines.
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FIGURE 6. (Colour online) Schematic division of the (Kn, ω) plane into domains
of validity of the inviscid, NSF, R13 and free-molecular descriptions for an adiabatic
pulsating sphere. The Knω = 1 line marks the locus of points where the excitation
frequency is equal to the collision frequency, and the circles denote the parameter
combinations considered in figures 2–5 and 7.
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FIGURE 7. Variation with r of the time-averaged acoustic power Π̄ for an adiabatic
pulsating sphere with ω = 1 and the indicated values of Kn. The dashed lines show the
continuum inviscid (Kn→ 0) and free-molecular (Kn→∞) limits, whereas the Kn= 0.01
and Kn= 0.1 curves are obtained from the R13 solution.

Starting with the inviscid limit, the upper dashed horizontal line in figure 7 shows
the far-field r-independent result obtained in (2.9). Any viscous effects, manifested
by an increase in gas rarefaction, then result in a decrease in the source strength,
and in the vanishing of Π̄(r) in the far field. At relatively small Kn, this stems
from the stronger than 1/r decay rate of both acoustic pressure and radial velocity,
formulated by the exponential λ1 decline of the compression wave in (3.17). With
further increasing Kn, the acoustic power reduces at a stronger rate away from the
source, until in the free-molecular limit it essentially vanishes at r≈ 7. At a given Kn,
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FIGURE 8. (Colour online) Applicability of NSF (dashed red line), R13 (solid black
curve) and free-molecular (dash-dotted green line) solutions for a heated stationary sphere:
comparison of the acoustic pressure with DSMC predictions (crosses) at ω = 0.5 and
(a) Kn= 0.2, (b) Kn= 6. The results are presented at half-period time, t= T/2=π/ω.

the effective distance where Π̄(r)→ 0 diminishes with ω. The results for Π̄(r) may
be useful in estimating the impact of gas rarefaction on the layer affected by a
three-dimensional monopole source.

6.2. Heated stationary sphere
We now consider the thermoacoustic problem of a heated stationary surface. Setting
Uw= 0 and Qw= 0.02, we first validate the applicability of our approximate solutions
by comparison with DSMC data. We then examine the possibility of applying
boundary heating to cancel out the vibroacoustic sound caused by wall pulsations.
Since most of the results are qualitatively similar to those presented in § 6.1, we
focus our presentation on findings that have not been previously discussed.

Figure 8 studies the validity of the NSF, R13 and free-molecular approximations
through comparison of the acoustic pressure with DSMC-calculated data. Fixing
ω = 0.5, different values of Kn = 0.2 and Kn = 6 are presented. In line with the
schematic map presented in figure 6, the R13 and free-molecular approximations are
effective at the low and high values of Kn presented, respectively. The NSF solution
is invalid in figure 8(a), as the Knudsen number is too high.

Identifying the qualitatively similar waveforms and decay rates of the vibroacoustic
and thermoacoustic signals, it appears of interest to examine the effectiveness of
using heating-generated sound to reduce the noise caused by mechanical pulsations.
Ideally, a linear combination of boundary heating and vibration would result in a
moving boundary that generates no sound. Such an approach was followed in the
theoretical investigation of a vibrating plane set-up (Manela & Pogorelyuk 2015),
which was recently tested in a dedicated experiment combining a thermophone
device to generate low-frequency thermoacoustic sound (Julius et al. 2018). Applying
first-law thermodynamic considerations, it was shown that complete far-field sound
cancellation may be achieved at continuum conditions if boundary pulsations and
heating are applied at opposite phases and an amplitude ratio of

Roptimal =

∣∣∣∣Qw

Uw

∣∣∣∣
optimal

=
γ

2(γ − 1)
=

5
4
, (6.2)
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FIGURE 9. (Colour online) Comparison between the vibroacoustic (black solid lines and
crosses) and thermoacoustic (red dashed curves and circles) pressure signals for ω= 4 and
(a) Kn=0.015, (b) Kn=2. The crosses and circles mark DSMC data, the solid and dashed
lines in figure 9(a) present R13 results and the solid and dashed curves in figure 9(b)
depict free-molecular approximations. The blue dash-dotted line in figure 9(a) shows the
difference between the vibroacoustic and thermoacoustic signals with the latter multiplied
by γ /2(γ − 1)= 5/4. The results are presented at half-period time, t= T/2=π/ω.

where γ = 5/3 (Manela & Pogorelyuk 2015). At non-continuum conditions, only
partial cancellation could be achieved due to the more complex nature of the acoustic
signal.

Applying the same approach, figure 9 seeks to test the conditions at which
vibroacoustic sound cancellation may be obtained. Since the thermodynamic
considerations made in the planar set-up investigation remain unchanged in the
spherical configuration, the optimal γ /2(γ − 1) ratio should hold for Kn→ 0. This
is confirmed by the results in figure 9(a), indicating that nearly complete sound
cancellation is obtained in the far field at Kn= 0.015 with the above choice of Roptimal.
The non-zero values observed in the vicinity of the boundary (see the dash-dotted
blue line in figure 9a near r = 1) are mainly attributed to the thermal mode (λ2),
which contributes to the near-wall pressure at Kn 6= 0. These deviations vanish with
further decreasing Kn. In contrast, in the limit of large gas rarefaction presented in
figure 9(b), the vibroacoustic and thermoacoustic signals appear of different forms,
and no single factor multiplication may result in uniform sound cancellation. This
is since, at these and other finite Knudsen number conditions, the far-field sound is
composed of several acoustic modes, each of which requires different conditions for
its cancellation.

7. Conclusion
We studied the vibroacoustic and thermoacoustic responses of a gas to small-

amplitude normal-to-boundary mechanical and heat-flux excitations of a sphere
at rarefied-flow conditions. The problem was analysed in the entire range of gas
rarefaction and input frequencies, to characterize the effect of continuum breakdown
on monopole radiation in a three-dimensional set-up. Numerical calculations were
carried out via the direct simulation Monte Carlo method, and were used to validate
analytical predictions in the free-molecular and near-continuum regimes. In the latter,
the regularized thirteen moment (R13) equations were applied, to capture the system
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response at states where the Navier–Stokes–Fourier (NSF) description breaks down.
Comparing with the continuum inviscid solution, the results revealed the dampening
effect of gas rarefaction on source point-wise strength and acoustic power. At
near-continuum conditions, the acoustic field is composed of exponentially decaying
‘compression’, ‘thermal’ and ‘Knudsen-layer’ modes, reflecting thermoviscous and
rarefaction effects. With reducing rarefaction, the contributions of the latter two
vanish, and the former mode degenerates into the ideal-flow inverse-to-distance
decaying wave. Stronger attenuation was observed with increasing rarefaction, where
boundary sphericity results in a ‘geometric reduction’ of the molecular layer affected
by the source. Notably, while the R13 model at low frequencies improves over the
NSF description at moderate rarefaction levels, both approximations become invalid
at common low Knudsen numbers for high frequencies.

While our results have focused on the gas response to harmonic surface excitations,
the free-molecular solution in § 4 may be applied for arbitrary small-amplitude input
profiles. In addition, the periodic response analysed in the continuum limit may be
considered as a generalized Fourier component forming the gas reaction to any time-
dependent input. In this context, the frequency-independent value of Roptimal for sound
cancellation, stated in (6.2) and confirmed by figure 9(a), may be of practical value
to reduce the vibroacoustic noise generated by any input signal at small Knudsen
numbers.

Considering the common breakdown of the NSF and R13 descriptions at high
frequencies, it may have been argued that a higher-order moment model (e.g. the
regularized twenty-six moment equations, R26 (Gu & Emerson 2009)) would yield
superior results. While this may be true at low frequencies, counterpart improvement
is not anticipated at high frequencies. In view of the analysis in § 3, this result
may be attributed to the Knudsen-layer mode λ3 contained in the R13 solution
(see (3.15)), and missing from the NSF description. Here, although an increase in ω
should inevitably lead to the narrowing of the layer, the leading order of the mode
decay rate is independent of the excitation frequency. Observing that most of the
works on moment equations have focused on steady-flow problems, it may therefore
be worthwhile to reassess these models in set-ups where short time scales prevail.
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Appendix A. Expressions for the hydrodynamic fields in the R13 solution

In terms of T(r), the density amplitude function ρ(r) is given by

ρ(r) =
1

iωKn
[
1+ 61

5 iωKn− 678
25 (ωKn)2 + 2016

25 i(ωKn)3 − 2592
25 (ωKn)4

]
×

{
9Kn4

[
1+ 36

5 iωKn
]2
∇

4
r T

−
15
4 Kn2

[
1+ 18iωKn− 2592

25 (ωKn)2 − 5184
25 i(ωKn)3 + 93 312

625 (ωKn)4
]
∇

2
r T

+
3
2 iωKn

[
1+ 61

5 iωKn− 1218
25 (ωKn)2 − 2448

25 i(ωKn)3 + 2592
25 (ωKn)4

]
T
}
. (A 1)
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Assigning T(r) from (3.17), we find

ρ(r)=
3∑

n=1

FnCn
exp[−λnr]

r
, (A 2)

where

Fn =
1

iωKn
[
1+ 61

5 iωKn− 678
25 (ωKn)2 + 2016

25 i(ωKn)3 − 2592
25 (ωKn)4

]
×

{
9(λnKn)4

[
1+ 36

5 iωKn
]2

−
15
4 (λnKn)2

[
1+ 18iωKn− 2592

25 (ωKn)2 − 5184
25 i(ωKn)3 + 93 312

625 (ωKn)4
]

+
3
2 iωKn

[
1+ 61

5 iωKn− 1218
25 (ωKn)2 − 2448

25 i(ωKn)3 + 2592
25 (ωKn)4

]}
(A 3)

for n= 1, 2, 3. Substituting ρ(r) into the continuity equation (3.2), we obtain

u(r)= iω
3∑

n=1

FnCn

[
1

rλn
+

1
(rλn)2

]
exp[−λnr]. (A 4)

The radial stress amplitude σ(r) is then obtained by substitution of (A 4), together
with the linearized form of the equation of state in (3.5), into the r-momentum
equation (3.3). This yields

σ(r)=−
1
2

3∑
n=1

Cn

[
1+

(
1+

2ω2

λ2
n

)
Fn

] [
1
r
+

3
r2λn
+

3
r3λ2

n

]
exp[−λnr]. (A 5)

The heat-flux amplitude q(r) is calculated from the energy balance (3.4), giving

q(r)=−
1
2

iω
3∑

n=1

Cn

(
Fn −

3
2

) [
1

rλn
+

1
(rλn)2

]
exp[−λnr]. (A 6)

The constants C1,2,3 are determined through the boundary conditions (3.10) and (3.11).

Appendix B. Evaluation of I(m)n , J(m)n and K(m)n in (4.18)

Substituting (4.13) together with (2.1)–(2.2) in their scaled forms into (4.18), J(1)n
and K(1)

n contain a double integral of the form

J(1)n ,K(1)
n = Re

{
1
√

π
exp[iωt]

∫ η

0
dϑξ

∫
∞

0
ξ n sin ϑξ exp[−iωxw(r, ϑξ )/ξ − ξ 2

] dξ
}
.

(B 1)
Focusing on a high-frequency ω(r − 1) � 1 limit and considering the final
time-periodic state of the system, the method of steepest descent may be applied
to evaluate the ξ -integral (Abramowitz 1953). This yields

J(1)n ,K
(1)
n ≈Re

{
3−(1+n)/2 exp[iωt]

∫ η

0
zn/2

(
1+

a1

z
+

a2

z2
+O(z−3)

)
sin ϑξ exp[−z] dϑξ

}
,

(B 2)
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where z= 3[ωxw(r, ϑξ )/2]2/3 exp[iπ/3] ∝ [ω(r− 1)]2/3� 1, and

a1 = (3n2
+ 3n− 1)/12 and a2 = (9n4

+ 6n3
− 51n2

− 24n+ 25)/288. (B 3a,b)

Applying the method of stationary phase to estimate the ϑξ -integral about the
stationary phase point ϑξ = 0, we find∫ η

0
zn/2

(
1+

a1

z
+

a2

z2

)
sin ϑξ exp[−z] dϑξ

≈ zn/2
0

(
1+

a1

z0
+

a2

z2
0

){
3

2rz0

[
1− e−(z0r/3)η2

(1+O(η2))
]}

exp[−z0], (B 4)

with z0 = 3[ω(r − 1)/2]2/3 exp[iπ/3] � 1, which completes the evaluation of J(1)n and
K(1)

n in (B 2). It is easily verified that

(J(2)n ,K(2)
n )≈ 2(J(1)n ,K(1)

n ), (B 5)

and that the term
√

1− r2 sin2 ϑξ appearing in I(m)n may be approximated by unity for
the leading-order evaluation, to yield

I(m)n ≈ J(m)n ≈K(m)
n . (B 6)

The approximate expressions in (4.21) for I(m)n , J(m)n and K(m)
n then follow.
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