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A long-wave estimation for the damping
coefficient at a flat water–water vapour interface

with a phase transition
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Gravitational–capillary waves, arising in a system of thick layers of two aggregate
states of a substance, are studied using the example of water and its vapour. Their
initially flat interface is in hydrostatic and thermodynamic equilibrium at atmospheric
pressure and the corresponding saturation temperature 100 ◦C, provided that a balance
is maintained for heat fluxes transported through immovable phases in the process
of heat conduction. From the problem of linear stability for small perturbations,
estimation relations for their damping coefficient and eigenfrequency shift are obtained,
including the factors of viscosities of the media and phase transition. The first two
contributions, proportional to the kinematic viscosity of the liquid and the square
root of the kinematic viscosity of its vapour, respectively, are consistent, accurate
to additionally accounted for capillary forces, with the result of Dore’s analysis,
which is a development of the weakly viscous Lamb theory for ‘deep water’.
Numerical calculations have shown that, with increasing wavelength, the accuracy
of the proposed approximation increases, especially for the wave damping coefficient,
and the contribution of the viscosity of the light phase increases in percentage
terms. As for the phase transition effect, which was previously overestimated using
the quasi-equilibrium approximation, it remains insignificant at the level of heat
fluxes acceptable in the model of thick layers of homogeneous media. The factor
of thermocapillarity is found to be very weak; it becomes qualitatively noticeable
only on the background of disappearing heating. Here, together with the factor of
dependence of the saturation temperature on the phase pressure, it determines a
non-zero correction to the wave damping coefficient.

Key words: capillary waves, condensation/evaporation, gas/liquid flow

1. Introduction

One of the promising methods for measuring the coefficients of viscosity and
surface tension of a liquid is the observation of gravity–capillary waves propagating
along its surface, which is plane in equilibrium. The perturbations of the surface
are excited in a non-contact manner by means of the electrocapillary effect and are
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recorded by a laser interfering system (see, for example, Sohl, Miyano & Ketterson
1978; Lee et al. 1993; Behroozi, Smith & Even 2010).

The theoretical basis for the contactless method presented here is a series of well-
known results. Thus, in the simplest situation of a thick layer of an inviscid fluid, the
frequency of undamped waves, ω0, is given by the formula (see Lamb 1895, pp. 545–
549)

ω0 =
√

gk+ γ k3/ρ1, (1.1)

which is a particular case of the result for the interface between two media,

ω0 =

√
gk(ρ1 − ρ2)+ γ k3

ρ1 + ρ2
. (1.2)

Here, g is the acceleration due to gravity; ρ1 is the density of a liquid; ρ2 is the
density of air or another light medium surrounding the surface of the liquid; γ is the
coefficient of surface tension; k is the wavenumber of perturbations.

For the case of ‘deep water’ considered above, the contribution of the kinematic
viscosity of the liquid, ν1, can be given in the dispersion relation for the eigenfrequency
ω obtained from (Lamb 1895, pp. 545–549),

(iω+ 2ν1k2)2 + gk+ γ k3/ρ1 = 4ν2
1 k3(k2

+ iων1)
1/2. (1.3)

Note that, in Martel & Knobloch (1997), the authors revealed a ‘viscous’ mode not
describable by expression (1.3). It corresponds to aperiodic damping of perturbations
and is absent in the case of inviscid fluids.

For low-viscosity liquids, such as water, the eigenfrequency shift 1ω=ω−ω0 turns
out to be relatively small. Its major value at ν1→ 0,

1ω= 2iν1k2, (1.4)

is determined in the framework of the Lamb approximation (see Lamb 1895, pp. 544–
545) from an integral for the rate of viscous dissipation in the fluid volume that is
calculated from the solution of an inviscid problem.

In the literature, one can find a number of estimates general with respect to (1.4),
which are associated with considering the subsequent orders of smallness in the
kinematic viscosity ν1 and also such liquid layers that have small or finite thickness
(see, for example, Hunt 1964; Jenkins & Jacobs 1997; Antuono & Colagrossi 2013).
In the model of potential flow (see Joseph & Wang 2004), the viscous term in the
condition of normal stress balance calculated from a potential flow in a liquid is
considered to be responsible for the principal part of the viscosity effect. However,
to make it consistent with limit (1.4) for the wave damping coefficient, the pressure
correction using a boundary layer solution is required.

The general dispersion relation for a two-layer system (see, for example, Jeng
et al. 1998), which, in addition to the kinematic viscosity of a liquid, ν1, contains
the viscosity of a light medium lying above it, ν2, turns out to be quite cumbersome
and difficult to analyse. The Lamb’s simplification, applied to this situation, leads to
a similar (Dore 1978) but incorrect estimate for the eigenfrequency shift 1ω, where
the kinematic viscosity coefficients enter in an additive manner as ν1 + ν2. In fact,
according to analysis (Dore 1978), performed for water and air surrounding its surface,
the viscosity effect of the latter is lower in order than the Lamb-type contribution for
water and, therefore, can be comparable to and even exceed it, despite a significant
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The wave damping coefficient at a water–water vapour interface 419

difference in the dynamic viscosities of the two media. For a liquid–liquid interface,
the major part of the correction 1ω is found as (see Harrison 1908; Johns 1968;
Jeng et al. 1998)

1ω= 2i3/2 ρ1ρ2
√
ν1ν2

(ρ1 + ρ2)(ρ1
√
ν1 + ρ2

√
ν2)

k
√
ω0, (1.5)

where the frequency of undamped waves, ω0, is taken from relationship (1.2).
Interestingly, the sum of the right-hand sides of expressions (1.4) and (1.5), where,
in the latter, the condition ρ1

√
ν1 � ρ2

√
ν2 is applied, just gives the result of Dore

(1978),

1ω= 2iν1k2
+ 2i3/2 ρ2

√
ν2

(ρ1 + ρ2)
k
√
ω0. (1.6)

Additional viscous dissipation occurs in boundary layers, where a flow is
characterized by a noticeable shear. This is also shown in the works on the Faraday
instability under vertical vibrations, where the viscosity mechanism determines the
threshold of the parametric resonance in a hydrodynamic system. So, as an example,
one should cite Nevolin (1977), where, like in Dore (1978), the influence of a viscous
gas on the dynamics of the surface of a liquid was considered. For the interface of
two liquids, the approximate analysis of Cherepanov (1984), pp. 12–53 (available
as a chapter in Lyubimov, Lyubimova & Cherepanov (2003), pp. 11–24) estimates
the parametric instability threshold and precedes numerical calculations in Kumar &
Tuckerman (1994).

Under certain conditions, the surface of a liquid may be in contact and balance with
its saturated vapour. So, if the liquid is permanently underheated from below, and
the vapour is permanently overheated from above, a stable base state without mass
transfer is possible. Here, the interphase surface is at the saturation temperature, which
depends on the total hydrostatic pressure established at this interface (see, for example,
Berberan-Santos, Bodunov & Pogliani 2002). Its position and the temperature field
in the phases are determined by solving a coupled problem of hydrostatics and
one-dimensional stationary thermal conductivity. It becomes possible to measure
material parameters of media taken in the state of thermodynamic equilibrium from
characteristics of gravity–capillary waves propagating along their interphase surface.
Here, it would be useful to adapt the previous methods without taking into account
the phase transition factor, but only if an error introduced in this way is small.

The previous investigations have focused on the stabilizing effect of phase
transition on the Rayleigh–Taylor instability taking place for the configuration when
an externally heated vapour layer is below. After changing the sign of gravity
acceleration, the dispersion relations obtained there describe gravity–capillary waves.
The linear stability analysis was performed in Hsieh (1978) for inviscid fluids. The
theory includes a phenomenological coefficient that relates the rate of phase transition
to perturbations of the interface position. Its value was estimated in Hsieh (1978) by
solving the problem of one-dimensional stationary thermal conductivity. The factor of
viscosity was considered in Ho (1980), Adham-Khodaparast, Kawaji & Antar (1995),
Kim & Kim (2016) on the basis of the first principles. The results of the method of
potential viscous flow (see Awasthi & Agrawal 2011), including the viscous correction
of pressure (see Awasthi 2013), are inconsistent with Dore (1978) in terms of the
magnitude of viscous dissipation in the vapour, obeying not a linear, but a square
root law.
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In Hsieh (1972), Ievlev & Son (1980), Hsieh (2003), the phase transition rate was
not specified phenomenologically as in Hsieh (1978), Ho (1980), Adham-Khodaparast
et al. (1995), Awasthi & Agrawal (2011), Awasthi (2013), Kim & Kim (2016) with
the subsequent use of the quasi-equilibrium approximation from Hsieh (1978) but
was associated with the solution of a non-stationary energy equation. In this case,
both the liquid and its vapour were considered as non-viscous media, and this is a
fundamental departure from the viscous approach in Ho (1980), Adham-Khodaparast
et al. (1995), Kim & Kim (2016). This excludes from consideration the mechanism
of convective heat exchange in the viscous boundary layers surrounding the interphase
boundary, where velocities of the phases undergo strong changes, that should lead to
a significant error. Nevertheless, the dispersion relations presented in Hsieh (1972),
Ievlev & Son (1980) (before their subsequent simplification there) indicate a limitation
of the strength of the phase transition effect in the limit of strong heating, which
does not reveal the quasi-equilibrium approximation in Hsieh (1978).

In studies of real two-phase systems, such as water and water vapour, it makes sense
to abandon the early assumptions and solve the full viscous and thermal problem, as
it was done in Badratinova et al. (1996), Konovalov, Lyubimov & Lyubimova (2016,
2017). The purpose of the present work is to obtain explicit estimates for the damping
coefficient and eigenfrequency shift of gravity–capillary waves in the presence of heat
and mass transfer and their numerical verification.

2. Statement of the problem

Let us consider a semi-bounded volume of a liquid and the same volume of its
vapour (see figure 1). The phases differ from each other by their densities ρj and
also by the coefficients of kinematic viscosity, νj, thermal conductivity, κj, and thermal
diffusivity, χj. Hereinafter, the index j refers to the liquid ( j= 1), its vapour ( j= 2),
or both the phases. The main case studied in the present paper is water and water
vapour at atmospheric pressure and the corresponding saturation temperature 100 ◦C
(see table 1). So, the ratio of the liquid density to that of its vapour is taken much
greater than the corresponding ratio of the coefficients of their kinematic viscosities,
which is also large. The ratio of the thermal conductivity coefficients of the liquid
and its vapour is much greater than unity. In addition to water, many substances, for
example ethanol and its vapour, possess similar properties far from their critical point
(see Vargaftik, Vinogradov & Yargin 1996).

The two-layer, two-phase system described above is subjected to a field of
gravity with the acceleration vector g, which is directed down towards the volume
occupied by the heavy liquid. The Rayleigh–Taylor instability is absent. Also, there is
permanent, homogeneous subcooling from the side of the liquid and the same heating
from the side of its vapour. As is well known, heating from above does not cause
thermogravity convection. The formulation of the problem allows a stationary base
state with a flat liquid–vapour interface under the pressure p0 and at the saturation
temperature Ts0, characterized by the coefficient of surface tension, γ , and the specific
heat of vapour formation, L. Further, as a control parameter, we will use the heat flux
q transferred in the process of thermal conductivity through the unperturbed layers of
the phases.

A two-dimensional formulation of the problem would suffice to perform the
linear analysis of stability of the base state, which is homogeneous in the horizontal
directions. The origin of the Cartesian coordinate system {x, z} is supposed to coincide
with some point O at the unperturbed surface of the liquid, aligned with the horizontal
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FIGURE 1. Configuration and parameters of the system.

axis x. The vertical axis z is oriented along the normal to the surface toward the
vapour volume.

In practice, the outer boundaries of thick layers of a liquid and its vapour exert a
weak mechanical effect on perturbations of their interphase if their thicknesses hj h
κj1Tj/q (related by the Fourier thermal conductivity law to the temperature drops 1Tj
on the boundaries of the layers) are greater than or of the order of the wavelength λ.
This can be attributed to the fact that damping of perturbations inside the examined
media (see, for example, Lamb 1895, pp. 370–374) is of an exponential nature. As a
result, the following estimates are obtained:

1Tj &
qλ
κj
. (2.1)

Thermal inhomogeneity, maintained in our system, generates buoyancy forces,
on which, of course, characteristics of gravity–capillary waves depend. This was
demonstrated in Dore (1969) for a configuration of two layers of stratified fluids
located one above the other. The problem studied in the present paper is further
complicated by the fact that the changes in phase densities are determined by the
heat transfer process. It may require not the classical Boussinesq approximation, but
its modification for the case of a deformable interface (see Lobov, Lyubimov &
Lyubimova 1996), when the temperature dependence of density is preserved in the
gravity term in the condition of normal stress balance. Leaving consideration of the
buoyancy factor for the future, hereinafter the liquid and its vapour are considered to
be homogeneous media. This will simplify our analysis and make a more convenient
comparison with the results of Dore (1969). The temperature dependence of their
material parameters can affect effectively perturbations only at a characteristic space
scale of their damping equal to the wavelength λ. If the temperature drops calculated
for the indicated interval as 1Tj h qλ/κj are small in comparison with the reference
temperature Ts0 at the unperturbed liquid–vapour interface, then preference should be
given to the homogeneous model. Hence,

q�min
(
κjTs0

λ

)
. (2.2)

Requirements (2.1) and (2.2) are quite feasible in practice. Thus, from data for the
water–water vapour system of table 1, the permissible heat flux is estimated as q�9×
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g= 9.81 m s−2 χ1 = 1.7× 10−7 m2 s−1

p0 = 101.3× 103 Pa χ2 = 2× 10−5 m2 s−1

Ts0 = 373.15 K κ1 = 6.8× 10−1 W m−1 K−1

ρ1 = 9.6× 102 kg m−3 κ2 = 2.4× 10−2 W m−1 K−1

ρ2 = 6× 10−1 kg m−3 γ = 5.9× 10−2 N m−1

ν1 = 3× 10−7 m2 s−1 m= 1.8× 10−4 N m−1 K−1

ν2 = 2.1× 10−5 m2 s−1 L= 2.3× 106 J kg−1

TABLE 1. Parameters for water and its vapour.

102 W m−2 for perturbations with the wavelength λ = 1 cm. Given q = 102 W m−2,
the value of subcooling in water is 1T1 &1.5 K, and the value of overheating in water
vapour is 1T2 & 42 K.

3. Perturbation problem

Let the gravity–capillary length dγ g=
√
γ /(ρ1 − ρ2)g be taken as a length scale; the

gravity–capillary time tγ g=

√
(ρ1 + ρ2)d3

γ g/γ is the time scale; dγ g/tγ g is the scale for

flow velocity; (ρ1+ ρ2)d2
γ g/t

2
γ g is the pressure scale; qdγ g/(κ1+ κ2) is the temperature

scale, and (ρ1 + ρ2)dγ g/tγ g is the scale for the phase transition rate.
Our problem is characterized by the relative densities and coefficients of thermal

conductivity of the liquid and its vapour,

ρ̃j =
ρj

ρ1 + ρ2
, κ̃j =

κj

κ1 + κ2
, (3.1a,b)

by their Reynolds, Péclet and Prandtl numbers,

Rej =
1
νj

d2
γ g

tγ g
, Pej =

1
χj

d2
γ g

tγ g
, Prj =

νj

χj
, (3.2a−c)

and also by the dimensionless specific heat of phase transition,

Λ=
L(ρ1 + ρ2)

q
dγ g

tγ g
. (3.3)

For example, the values of the Reynolds, Péclet and Prandtl numbers for water
and its vapour, calculated from the data of table 1, are Re1 = 1307.1, Re2 = 18.6,
Pe1 = 2306.7, Pe2 = 19.6, Pr1 = 1.7 and Pr2 = 1.05, respectively. The relative density
and thermal conductivity of water vapour are ρ̃2 = 6.2 × 10−4 and κ̃2 = 3.4 × 10−2,
respectively. The corresponding values for water in the liquid state are found from the
following expressions: ρ̃1= 1− ρ̃2 and κ̃1= 1− κ̃2. The dimensionless specific heat of
vapour generation is Λ= 3.4× 108/q (W m−2), where the heat flux q is measured in
W m−2.

The base state is characterized by the vertical gradients of pressure and temperature,
−ρ̃jez/(ρ̃1 − ρ̃2) and ez/κ̃j, where ez is the unit vector of the vertical axis z. In what
follows, the gradients of hydrostatic pressure in the phases are taken into account
in normal stress balance equation (3.14). There, along with the capillary pressure,
they are included in the term proportional to the amplitude of shape perturbations
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of the surface, F. The base temperature gradients are responsible for the presence of
convective terms in the right-hand sides of energy equations (3.6).

The profiles Pj(z), Ujz(z) and Θj(z) specify the dependences of pressure, vertical
velocity component, and temperature perturbations on the vertical coordinate z,
respectively. The relations for these quantities (see Konovalov et al. 2016), which
were obtained from the linearized Navier–Stokes equations and also continuity and
energy equations for homogeneous incompressible media, are written as

DPj = 0, (3.4)(
iω−

1
Rej

D
)

Ujz =−
1
ρ̃j

dPj

dz
, (3.5)(

iω−
1

Pej
D
)
Θj =−

Ujz

κ̃j
. (3.6)

Here, ω and k are the eigenfrequency and wavenumber of perturbations, respectively.
The following notation is introduced:

D≡
d2

dz2
− k2. (3.7)

Velocity and temperature perturbations are damped in the layers of the liquid and
its vapour at z→±∞, respectively,

Ujz = 0, (3.8)
Θj = 0. (3.9)

Boundary conditions associated with the liquid–vapour interface are linearized and
transported to the coordinate surface z = 0. These are conditions (3.10) and (3.11)
below, which, when taken together, represent the mass balance of matter in the
phases and define the rate of phase transition. Then follow the boundary conditions
obtained from continuity of tangential velocity components (3.12), tangential stress
continuity (3.13), normal stress balance (3.14), temperature continuity (3.15) and heat
flux balance (3.16),

iωF=U1z −
Ξ

ρ̃1
, (3.10)[

Uz −
Ξ

ρ̃

]
= 0, (3.11)[

dUz

dz

]
= 0, (3.12)[

ρ̃

Re
(D+ 2k2)Uz

]
= 0, (3.13)[

P−
2ρ̃
Re

dUz

dz

]
− (1+ k2)F= 0, (3.14)[

Θ +
F
κ̃

]
= 0, (3.15)[

κ̃
dΘ
dz

]
=−ΛΞ. (3.16)
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Here, F and Ξ are the amplitudes of the deviation of the interphase surface from
the equilibrium position and rate of phase transition, respectively. The square brackets
denote a jump of the corresponding quantities across the interface from the vapour to
the liquid.

To close the boundary value problem, it is necessary to prescribe one more
boundary condition, which will determine the thermodynamic state of the interface
between the phases. Here, we restrict ourselves to its simplest approximate form,
assuming that the temperature at the perturbed interface remains equal to the
equilibrium saturation temperature Ts0,

Θ2 +
F
κ̃2
= 0. (3.17)

This also allows us to ignore thermocapillary forces in condition (3.13). They will
be considered in the appendix A of this paper with an emphasis on the weak effect
produced by the relationship between the local saturation temperature and media
pressure.

It is important to note that the deviation of the interface temperature from the
equilibrium temperature occurs due to local temperature perturbations relative to the
base state and also due to the displacement of the surface into regions in which the
base temperature differs from the base temperature in the initial position. This is
reflected in boundary conditions (3.15) and (3.17) containing both the fields Θj and
amplitude F.

4. Modification of the problem
Before proceeding to derive an approximation relation for the eigenfrequency shift,

we will modify equations (3.4)–(3.6) and boundary conditions (3.8)–(3.17), based on
the approach proposed in Cerda & Tirapegui (1998), which is generalized here for
solving the problem with heat and mass transfer.

General solutions for Ujz can be represented in the form of the following sums:

Ujz =UI
jz +UII

jz . (4.1)

Here, UI
jz are particular solutions of equations (3.5) for the corresponding j, and UII

jz
are general solutions of the homogeneous equations corresponding to (3.5),(

iω−
1

Rej
D
)

UII
jz = 0 (4.2)

or, which is the same,
DUII

jz = iωRejUII
jz . (4.3)

It is quite possible to assume that each of the solutions UI
jz corresponds to a

potential viscous flow in an incompressible medium and

DUI
jz = 0. (4.4)

Then relations (3.5) for UI
jz are reduced to the projections of the Euler equations on

the vertical axis z,

UI
jz =

i
ωρ̃j

dPj

dz
. (4.5)
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Thus, it is possible not only to separate potential and rotational components of
velocity from each other, that, in general, the well-known Helmholtz theorem allows,
but also, in the framework of a linearized problem, we can associate the first with
pressure perturbations in a unique way.

We write down a series of the transformations of boundary condition (3.13),[
ρ̃

Re
(D+ 2k2)Uz

]
⇒

[
ρ̃

Re
(DUI

z +DUII
z )+ 2k2 ρ̃

Re
Uz

]
⇒

[
iωρ̃UII

z + 2k2 ρ̃

Re

(
iωF+

Ξ

ρ̃

)]
, (4.6)

associated with the sequential use of expressions (4.1), (4.3) and (4.4) as well as
condition (3.10) and its analogue for the vapour (it comes from the replacements
U1z → U2z and ρ̃1 → ρ̃2). As a result, it reduces to the following form, fulfilled at
z= 0 and free of derivatives with respect to the vertical coordinate z:

iω[ρ̃UII
z ] + 2iωk2

[
ρ̃

Re

]
F+ 2k2

[
1

Re

]
Ξ = 0. (4.7)

Using expressions (4.1) and condition (3.12), boundary condition (3.14), imposed at
z= 0, can be rewritten as

[P] − 2
[
ρ̃

Re

] (
dUI

1z

dz
+

dUII
1z

dz

)
− (1+ k2)F= 0. (4.8)

General solutions for Θj can be represented as the following sums:

Θj =Θ
I
j +Θ

II
j +Θ

III
j . (4.9)

Here, Θ I
j and Θ II

j are considered to be convective parts of temperature perturbations,
which, by virtue of linearity of the problem, are set separately from each other by the
corresponding velocity components, UI

jz and UII
jz , as(

iω−
1

Pej
D
)
Θ I

j =−
UI

jz

κ̃j
, (4.10)(

iω−
1

Pej
D
)
Θ II

j =−
UII

jz

κ̃j
. (4.11)

It is easy to verify that the sums Θ I
j +Θ

II
j are particular solutions of inhomogeneous

equations (3.6), for this, it is enough to fold the left and right sides of expressions
(4.10) and (4.11) and to use expressions (4.1). In turn, Θ III

j are general solutions of
the homogeneous equations corresponding to (3.6),(

iω−
1

Pej
D
)
Θ III

j = 0, (4.12)

and hereinafter are called the purely heat-conducting parts of temperature perturbations.
Owing to uniformity of the vertical temperature gradient in the base state, the

convective-type perturbations of temperature, Θ I
j and Θ II

j , must repeat the dependences
of the velocity components UI

jz and UII
jz on the vertical coordinate z, that means
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DΘ I
j = 0,(

iω−
1

Rej
D
)
Θ II

j = 0.

 (4.13)

As a result, from (4.10) and (4.11), the following relations are obtained:

Θ I
j =

iUI
jz

ωκ̃j
, (4.14)

Θ II
j =

i
ω

Prj

(Prj − 1)
UII

jz

κ̃j
. (4.15)

The non-potential flow in the boundary layers creates by convective heat transfer
the corresponding thermal inhomogeneity (see (4.15)). It is interesting that, depending
on values of the Prandtl number Prj=Pej/Rej, the thermal conductivity factor, leading
to smoothing of the temperature field, can both weaken and strengthen the solutions
of rotational type, Θ II

j , containing the combinations Prj/(Prj − 1), without affecting
the potential parts of temperature perturbations, Θ I

j . This mechanism introduces the
viscosities of the phases in the thermal subtask, from which the intensity of the phase
transition will be determined below.

By virtue of expressions (4.9), (4.14) and (4.15), boundary conditions (3.15)–(3.17),
satisfied at z = 0, allow writing in the form that includes both the potential and
rotational velocity components, UI

jz and UII
jz , and heat-conducting parts of temperature

perturbations, Θ III
j , as well as their derivatives in the vertical coordinate z. However,

values of UI
jz and dUI

jz/dz can be expressed from the fields UII
jz and amplitudes F and

Ξ , using expressions (4.1) and conditions (3.10)–(3.12). The resulting relations

[Θ III
] +

i
ω

[
1
ρ̃κ̃

]
Ξ =−

i
ω

[
1

Pr− 1
UII

z

κ̃

]
, (4.16)[

κ̃
dΘ III

dz

]
+ΛΞ =−

i
ω

[
1

Pr− 1
dUII

z

dz

]
, (4.17)

Θ III
2 +

i
ω

1
ρ̃2κ̃2

Ξ =−
i
ω

1
Pr2 − 1

UII
2z

κ̃2
(4.18)

indicate a close relationship of the phase transition amplitude Ξ with the rotational
solutions UII

jz and Θ III
j taken at z = 0. The heat flux imbalance at the interphase

boundary is created by the process of non-stationary heat transfer in the viscous
boundary layers. As was stated in Konovalov et al. (2017), the heat conduction factor
plays an important role here. Indeed, in its absence, if we set Pej →∞ in energy
equations (3.6), temperature and velocity perturbations are related as Θj = iUjz/ωκ̃j.
Hence, from conditions of continuity of horizontal velocity component (3.12) and
heat flux balance (3.16), it follows that the phase transition rate is Ξ = 0.

The solutions of (3.4), (4.2), (4.5) and (4.12) for perturbations in the liquid,
which are damped at z→−∞ according to boundary conditions (3.8) and (3.9) and
expressions (4.1), (4.9), (4.14) and (4.15), can be written as

P1 =−a1
iωρ̃1

k
exp(kz), (4.19)

UI
1z = a1 exp(kz), (4.20)
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UII
1z = a2 exp

(√
k2 + iωRe1 × z

)
, (4.21)

Θ III
1 = a3 exp

(√
k2 + iωPe1 × z

)
. (4.22)

For the vapour, it is necessary to use the following solutions, which go to zero at
z→∞:

P2 = b1
iωρ̃2

k
exp(−kz), (4.23)

UI
2z = b1 exp(−kz), (4.24)

UII
2z = b2 exp

(
−

√
k2 + iωRe2 × z

)
, (4.25)

Θ III
2 = b3 exp

(
−

√
k2 + iωPe2 × z

)
. (4.26)

Substituting solutions (4.19)–(4.26) into boundary conditions (3.10)–(3.12), (4.7),
(4.8) and (4.16)–(4.18), where, in the first three, expressions (4.1) are applied, we
arrive at a system of homogeneous linear algebraic equations for the perturbation
amplitudes a1, a2, a3, b1, b2, b3, F and Ξ :

iωF= a1 + a2 −
Ξ

ρ̃1
, (4.27)

a1 + a2 − b1 − b2 −

[
1
ρ̃

]
Ξ = 0, (4.28)

ka1 +
√

k2 + iωRe1 × a2 + kb1 +
√

k2 + iωRe2 × b2 = 0, (4.29)

iω(ρ̃1a2 − ρ̃2b2)+ 2iωk2

[
ρ̃

Re

]
F+ 2k2

[
1

Re

]
Ξ = 0, (4.30)

−
iω
k
(ρ̃1a1 + ρ̃2b1)− 2

[
ρ̃

Re

] (
ka1 +

√
k2 + iωRe1 × a2

)
− (1+ k2)F= 0, (4.31)

a3 − b3 +
i
ω

[
1
ρ̃κ̃

]
Ξ =

i
ω

(
1

Pr2 − 1
b2

κ̃2
−

1
Pr1 − 1

a2

κ̃1

)
, (4.32)

√
k2 + iωPe1 × κ̃1a3 +

√
k2 + iωPe2 × κ̃2b3 +ΛΞ

=−
i
ω

(√
k2 + iωRe2

Pr2 − 1
b2 +

√
k2 + iωRe1

Pr1 − 1
a2

)
, (4.33)

b3 −
i
ω

[
1
ρ̃κ̃

]
Ξ =−

i
ω

1
Pr2 − 1

b2

κ̃2
. (4.34)

5. A long-wave correction to the eigenfrequency
In order to obtain necessary estimates from the system of (4.27)–(4.34), it is

proposed to divide it into a number of subsystems. The perturbation theory developed
below corresponds to the case of a light vapour, weak viscous dissipation in a
liquid and its vapour, and same phase transition. The first two requirements are
quite obvious, and the last condition is satisfied in the range of heat flux values
where the homogeneous model is correct (see (2.2)). This follows from the results of
numerical calculations in Konovalov et al. (2017), considering the similar problem of
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the Rayleigh–Taylor instability for a configuration of thick layers of phases. Also, we
imposed the additional requirement associated with small values of the wavenumber
of perturbations.

The eigenfrequency is represented as

ω=ω0 +1ωRe +1ωΛ. (5.1)

Here ω0 is its principal value in the absence of dissipation; 1ωRe and 1ωΛ are small
corrections related to the influence of viscosity and phase transition, respectively.

Next, we introduce a phenomenological coefficient α expressing the linear amplitude
coupling

Ξ =−αF, (5.2)

which is a simple mathematical consequence of the existence of the base state of
the system with a flat interphase boundary (F = 0) without phase transition (Ξ = 0).
This seems to be convenient if it is possible to separate solutions of the dynamic
and thermal subtasks, as for example in the framework of the quasi-equilibrium
approximation in Hsieh (1978). Generally speaking, the coefficient α depends on all
processes that take place in a perturbed two-layer, two-phase system (see Konovalov
et al. 2017), namely the mechanisms of thermal conductivity, convective heat transfer,
viscosity and phase transition.

The phase transition through its velocity Ξ , entering boundary conditions of mass
balance (3.10) and (3.11), tends to smooth out the perturbed interface (see Hsieh
1972, 1978; Ievlev & Son 1980), regardless of the viscosities of the liquid and its
vapour, which act through the viscous terms in normal stress balance (3.14) and the
viscous correction to pressure (see Joseph & Wang 2004). This allows us to calculate
the contribution of the phase transition for a given value of the phenomenological
coefficient α through solving the inviscid problem (see Hsieh 1978). In doing so,
we neglect the secondary effect of redistribution of matter in the phases on the
pressure changes produced by viscous flow. According to Adham-Khodaparast et al.
(1995), it just causes the cut-off wavenumber shift for the Rayleigh–Taylor instability
towards the long-wave range, that is controlled in our case by the product of two
small quantities, namely the sum of the kinematic viscosities, Re−1

1 + Re−1
2 , and the

coefficient α.
Taking into account the remarks of the previous paragraph, we temporarily exclude

from consideration the effect of viscosities of the liquid and its vapour, solving the
problem of an irrotational flow of inviscid media. The condition that the determinant
of system (4.27), (4.28) and (4.31) is equal to zero, taking into account a2 = b2 = 0
and ρ̃1 + ρ̃2 = 1, gives us the dispersion relation

ω2
+ 2αiω− k(1+ k2)= 0. (5.3)

At α=0, the frequency of undamped waves in the absence of phase transition is found
as

ω0 =
√

k(1+ k2). (5.4)

Under the condition α� 1, the small contribution of the latter to the eigenfrequency
ω=ω0 +1ωΛ is

1ωΛ ≈−iα. (5.5)

Let us return to consideration of the viscosities of the phases. The value 1ωRe
should be determined from system (4.27)–(4.31) in the absence of phase transition,
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when, in (4.27), (4.28) and (4.30), the amplitude Ξ is taken to be zero. Owing to the
insignificance of the vapour density, the liquid–vapour interface is practically free. In
the limit ρ̃2→ 0 and ρ̃1→ 1, this allows us to estimate from (4.27) and (4.30) the
amplitudes of velocity perturbations in the liquid as

a1 ≈

(
iω+

2k2

Re1

)
F, (5.6)

a2 ≈−
2k2

Re1
F. (5.7)

Equations (4.28) and (4.29), where substitutions (5.6) and (5.7) are made, give the
possibility to express the amplitudes of velocity perturbations in the vapour as

b1 =

{√
k2 + iωRe2 + k
√

k2 + iωRe2 − k

(
iω+

2k2

Re1

)
−

√
k2 + iωRe1 +

√
k2 + iωRe2

√
k2 + iωRe2 − k

2k2

Re1

}
F,

b2 =

{√
k2 + iωRe1 + k
√

k2 + iωRe2 − k
2k2

Re1
−

2k
√

k2 + iωRe2 − k

(
iω+

2k2

Re1

)}
F.


(5.8)

These relationships can be simplified by considering k�1, Re2�1 and
√

Re1�
√

Re2.
Recall that, for water and its vapour, Re1 = 1307.1 and Re2 = 18.6. Then

b1 ≈ iωF (5.9)

and

b2 ≈−2i1/2k
√

ω

Re2
F. (5.10)

Let us substitute expressions (5.9) and (5.10) in (4.27), (4.30) and (4.31), where the
following simplifications are applied:

ρ̃1 ≈ 1,
[
ρ̃

Re

]
≈

1
Re1

, (5.11a,b)

arising from the requirements for the properties of the liquid and its vapour when
formulating the problem at the beginning of § 2. As a result, we obtain a system of
homogeneous linear algebraic equations for the amplitudes a1, a2 and F. The condition
that the determinant of this system is zero will lead us to the following dispersion
relation (in which the first neglected term was of order Re−3/2

1 ):

ω2
− 4iω

(
k2

Re1
+ i1/2ρ̃2k

√
ω

Re2

)
− k(1+ k2)+ · · · = 0. (5.12)

Taking into account the principal eigenfrequency value ω0 (see (5.4)), we obtain its
‘viscous’ correction

1ωRe =
2ik2

Re1
+ 2i3/2ρ̃2k

√
ω0

Re2
. (5.13)

This represents in a dimensionless form the result of Dore (1978) (accurate to capillary
forces additionally taken into account) for the effects of viscosities of a liquid and gas
(vapour) in the absence of phase transformation.
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Let us calculate an approximate value of the phenomenological coefficient α. To
do this, we focus on (4.32)–(4.34), in which the viscous solution of the problem
expressed by the amplitudes a2 and b2 is used (see (5.7) and (5.10)). In fact, it
should itself depend on the phase transition. In neglecting this, we introduce an
error of the second order of smallness in the coefficient α. We arrive at a system
of inhomogeneous linear algebraic equations for the amplitudes a3, b3 and Ξ . Their
inhomogeneous parts are proportional to the amplitude F. Solving the system with
respect to the amplitude Ξ , the approximate value of the phenomenological coefficient
α =−Ξ/F is found as

α ≈−
2ρ̃2k(√

Pr2 + 1
) (

i−1/2
√

Pe2/ω0 + ρ̃2Λ
) . (5.14)

Here, final expression (5.14) is simplified taking into account that ρ̃2� ρ̃1 ≈ 1, κ̃2�

κ̃1 ≈ 1, k� 1, Re2� 1,
√

Re1�
√

Re2, Pe1� 1 and Pe2� 1 (see table 1).
Substituting relation (5.14) into (5.5) gives the following approximation for the

correction to the principal eigenfrequency value, ω0=
√

k(1+ k2), associated with the
phase transition:

1ωΛ =
2iρ̃2k(√

Pr2 + 1
) (

i−1/2
√

Pe2/ω0 + ρ̃2Λ
) . (5.15)

The quantity 1ωΛ, or rather its real and imaginary parts, monotonically approach
saturation in the limit of strong heating,

1ωΛ(Λ→ 0)=

√
2(i− 1)ρ̃2k
√

Pr2 + 1

√
ω0

Pe2
. (5.16)

Estimate (5.16), like the increment due to the vapour viscosity (the second term
in expression (5.13)), corresponds to an increase in the damping coefficient of
gravity–capillary waves, Imω, and equivalent decrease in their real frequency Reω.
In compliance with (5.16), taking into account Pe2=Pr2Re2, the changes in the wave
characteristics caused by the phase transition are limited to the (Pr2 +

√
Pr2)-th parts

of the corresponding contributions of the vapour viscosity.
The part of the dependence 1ωΛ(Λ) far from the limiting value (5.16) is

approximated by the inverse proportionality of the parameter Λ, provided that
Λ � ρ̃−1

2
√

Pe2/ω0. This implies an increment to the damping coefficient of
perturbations,

1ωΛ

(
Λ�

√
Pe2/ω0

ρ̃2

)
=

2ik(√
Pr2 + 1

)
Λ
, (5.17)

at a slight variation in their real frequency. Note that, in contrast with (5.16), this
result is more reliable in practice, since it can be approached not running the risk of
violating homogeneity criterion (2.2).

6. Numerical results
For numerical verification of the estimates written above, one should return

to amplitude system (4.27)–(4.34). It is worthwhile to evaluate its determinant
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FIGURE 2. The real (graphs on the left) and imaginary (graphs on the right) parts of
the correction to the eigenfrequency of perturbations due to viscosity as a function of the
wavenumber. The graphs are constructed in linear (a,b) and logarithmic (c,d) scales. Solid
lines demonstrate numerical data for the general case. Dashed lines show the results of
approximation (5.13). Long-dashed lines describe numerical data for the case of inviscid
vapour.

numerically, for example by the method of Gaussian elimination with selection of a
leading element. A requirement of equality to zero, applied to the real and imaginary
parts of the complex determinant, yields a system of two dispersion relations. Its
solutions for the real (real frequency) and imaginary (damping coefficient) parts of
the eigenfrequency ω were also determined numerically by the coordinate descent
method with the iteration starting point given by the sum of (5.4), (5.13) and (5.15).
The particular cases without heat and mass transfer or vapour viscosity are considered
in a similar way through a truncation of system (4.27)–(4.34).

Calculations were carried out on the basis of the data of table 1 in § 2 for water and
water vapour. This should be considered as a supplement to the approximate analysis
in § 5, which is a generalization of Dore (1978), including capillarity and transfer of
matter between the phases. Expression (5.13) (dashed lines in figure 2a,c) estimates

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

20
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.201


432 V. V. Konovalov and T. P. Lyubimova

The perturbation The damping coefficient not taking The damping coefficient taking
wavelength into account vapour viscosity into account vapour viscosity

1 mm 22.7 s−1 24.2 s−1

1 cm 2.3× 10−1 s−1 2.6× 10−1 s−1

10 cm 2.3× 10−3 s−1 3.6× 10−3 s−1

TABLE 2. Viscous damping in the water–water vapour system.

The perturbation The permissible heat flux The increment to
wavelength obtained from (2.2) the damping coefficient

1 mm < 103 W m−2 <4.6× 10−3 s−1

1 cm <102 W m−2 <3.7× 10−5 s−1

10 cm <101 W m−2 <3.1× 10−7 s−1

TABLE 3. The effect of phase transition in the water–water vapour system.

well the imaginary part of the correction 1ωRe in a wide range of the wavenumber
k. Thus, at k = 10, the relative error is less than 4 % and decreases with increasing
the perturbation wavelength. As for its real part Re1ωRe (see figure 2a,c), this error
already exceeds 7 % for k= 1 but is also found to be much smaller in the long-wave
range.

In full accordance with the conclusions of Dore (1978), the numerical calculations
confirm the importance of considering the viscosity of the light vapour. The
corresponding changes in the real and imaginary parts of the correction 1ωRe as
well as those related to the viscosity of the liquid (see solid and long-dashed lines in
figure 2a–d) increase with a growth of the wavenumber k. But, the factor of vapour
viscosity becomes of principal importance for sufficiently long waves.

Move on to the effect of phase transition. There is a horizontal asymptote in the
graph Re1ωΛ(Λ) in figure 3(a), associated with the upper bound on the intensity of
the phase transition (see Konovalov et al. 2016, 2017). A passage to the asymptote
begins at Λ. 103 k−1 (here the contributions of the phase transition and viscosity of
the media differ at most by an order of magnitude). It should be emphasized once
more that we use the model of homogeneous media, which is in reality correct only
at Λ� 6× 105 k−1 (see (2.2)).

The smaller the wavenumber k is, the closer to each other are the numerical and
estimated (see (5.15)) data for the imaginary part of the correction 1ωΛ (compare
solid and dashed lines in figure 3a,b). In general, we can observe a growth of Im1ωΛ
with increasing k. In figure 4, it is convenient to demonstrate the ratio of the real
and imaginary parts, Re1ωΛ/Im1ωΛ, which is also more accurately described by
approximation (5.15) for the case of small k. Note that the denominator Im1ωΛ
is always positive. However, the quantity Re1ωΛ in the numerator can change its
sign. By the way, this is not evident from the graphs corresponding to approximation
(5.15). Estimate (5.17), which apparently requires smallness of |Re1ωΛ/Im1ωΛ|, is
not always correct.

Tables 2 and 3 represent examples of computations, which comply with possible
experimental conditions. From these tables, it is clear that the phase transition as a
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FIGURE 3. The imaginary part of the correction to the eigenfrequency of perturbations
due to the phase transition as a function of the parameter Λ (graphs on (a)) and
wavenumber (graphs on (b)). The graphs on the left are plotted for the following
values of the wavenumber k: 0.1 (1), 1 (2) and 10 (3). The graphs on the right
are plotted for the following values of the parameter Λ: 104 (1), 106 (2) and 108

(3). Solid lines demonstrate numerical data. Dashed lines correspond to the results of
approximation (5.15). Long-dashed lines describe the numerically calculated contribution
of media viscosities, Im1ωRe.
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eigenfrequency of perturbations due to the phase transition as a function of the parameter
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and 10 (3), based on the results of numerical calculations (solid lines) and approximation
(5.15) (dashed lines).
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factor of stability can be easily neglected at least for the interface between thick layers
of a liquid and its vapour.

7. Conclusion

We have considered a two-layer system of a subcooled liquid, like water, lying
beneath a layer of its vapour heated from above. The problem of linear stability of
a stationary base state of the two phases in a field of gravity has been formulated.
In this state, the phases are in mechanical equilibrium. Moreover, heat fluxes are
balanced on the flat liquid–vapour interface that is kept at the saturation temperature,
thus excluding the possibility of a phase transition in the absence of perturbations.

The theory developed has a potential significance in determining material parameters
of a liquid that is in thermodynamic equilibrium with its vapour according to
characteristics of waves propagating along the interface.

The model of thick layers of homogeneous media has been validated. The validity
criteria for the above-mentioned assumption place an upper bound on the heat
flux and, in the case when its value is specified, determine the required minimal
temperature drops the in liquid and its vapour.

Dissipative and non-dissipative components of the problem solution have been
separated. This allows us to relate in boundary conditions the rate of phase transition
to heat-conducting parts of temperature perturbations and rotational parts of velocity
perturbations.

The damping coefficient and correction to the eigenfrequency of undamped
gravity–capillary waves have been estimated. The obtained approximations have
been compared with the results of numerical calculations. It has been found that the
lower the wavenumber is, the smaller the produced error is.

The part of our study that is devoted to the effect of media viscosity is an extension
to the investigation made in Dore (1978), which offers an approximation for the case
of gravity waves in the absence of heat and mass transfer. The calculations show that
the given approximate theory adequately estimates the damping coefficient but is not
as accurate regarding the eigenfrequency shift. With an increase of the wavelength, the
contributions of the viscosities of the liquid and its vapour decrease, but the relative
role of the latter increases. Hence, the numerical data obtained in this paper confirm
the conclusions of Dore (1978).

It should not be supposed that the contribution of phase transformation can be
comparable with the contribution associated with viscous dissipation. Even in the
limit of strong heating, the effects of heat and mass transfer and viscosity of the
vapour differ in magnitude by several times in favour of the latter. For heat fluxes
acceptable in the model of thick layers of homogeneous media, this difference is as
large as three orders of magnitude.

The effects of thermocapillarity and the relationship between the saturation
temperature and media pressures are found to be rather small. They determine a
non-zero increment to the coefficient of perturbation damping in the limit of very
weak heating.

Appendix A. The role of media pressure and thermocapillarity

In the base part of this investigation, we neglected the thermocapillary forces
generated by a difference between the temperature at the perturbed interface and
equilibrium saturation temperature Ts0. Their consideration results in the following
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condition for balance of tangential stresses, which should replace the condition of
their continuity (3.13), prescribed at z= 0:[

ρ̃

Re

(
d2

dz2
+ k2

)
Uz

]
= k

M
Λ

(
Θ2 +

F
κ̃2

)
. (A 1)

Here, the dimensionless thermocapillarity parameter

M =
Lm

(κ1 + κ2)

tγ g

dγ g
(A 2)

contains the corresponding dimensional parameter m and is estimated from the data
of table 1 in § 2 for the water–water vapour system as M = 3.7× 103.

It is quite reasonable to assume that the liquid–vapour interface is in the state of
local thermodynamic equilibrium, which implies that its temperature directly depends
on the pressure of the media. Under the crudest approximation, the above-mentioned
dependence can be ignored, which leads to constant temperature condition (3.17) set
at z= 0.

Another approximate approach (see, for example, Ievlev & Son 1980; Hsieh 2003)
is based on the use of the famous Clausius–Clapeyron equation relating temperature
and pressure perturbations of a saturated vapour at z= 0 as

Θ2 +
F
κ̃2
=ΛΠ

(
1
ρ̃2
−

1
ρ̃1

)(
P2 −

ρ̃2

ρ̃1 − ρ̃2
F
)
. (A 3)

Here, the dimensionless parameter

Π =
(κ1 + κ2)Ts0

(ρ1 + ρ2)L2

1
tγ g

(A 4)

is calculated from the data of table 1 for the water–water vapour system as Π = 3.2×
10−12. Expression (A 3) does not take into account the fact that the pressures of the
liquid and its vapour in the vicinity of their perturbed interface differ in values of the
normal viscous stresses and capillary forces (see (3.14)).

Substitution of boundary condition (A 3) into condition (A 1) indicates that the
thermocapillary effect depends on the total vapour pressure (taking into account the
hydrostatic component) with the factor MΠ ∼ 10−8 and must remain finite in the
limit of strong heating at Λ→ 0 owing to the above-mentioned limitation on the
rate of phase transition, Ξ . Clearly, the mechanism of thermocapillarity does not
manifest itself in the inviscid approximation, when the condition of tangential stress
balance (A 1) is not imposed. In the limit of weak heating, the perturbations of
temperature, Θj, should be considered as first-order quantities with respect to the
parameter Λ→∞. But, the terms with the amplitude of the interface deformation, F,
are smaller in order and must be dropped. Then, through boundary conditions (3.15),
(3.16) and (A 3), the phase transition rate Ξ is determined by the vapour pressure
with the factor Π ∼ 10−12.

A generalization of the Clausius–Clapeyron law to the case of a pressure jump was
derived in Badratinova et al. (1996) from the requirement of equality of the chemical
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FIGURE 5. The imaginary part of the correction to the eigenfrequency of perturbations due
to the phase transition as a function of the parameter Λ for the wavenumber k= 0.1. The
graphs are plotted for the following choice of boundary condition: the Clausius–Clapeyron
law (solid line) and its modifications from Badratinova et al. (1996) (dashed line) and
(Delhaye, Giot & Riethmuller 1981, pp. 132–139) (long-dashed line).

potentials of the media at their interface (both in the base and perturbed states) and
an application of the Gibbs–Duhem equation to their small variations. Hence, at z= 0,
the following relation holds true:

Θ2 +
F
κ̃2
=ΛΠ

(
P2

ρ̃2
−

P1

ρ̃1

)
. (A 5)

In the case of equality of the liquid and vapour pressures, when P1 − ρ̃1F/(ρ̃1 −

ρ̃2) = P2 − ρ̃2F/(ρ̃1 − ρ̃2), boundary condition (A 5) is transformed to (A 3), which
does not hold for the frequently applied (see, for example, Nikolaev 2010) variant
proposed in (Delhaye et al. 1981, pp. 132–139) and written here as

Θ2 +
F
κ̃2
=
ΛΠ

ρ̃1
(P2 − P1 + F). (A 6)

There is no need to decide which of boundary conditions (A 3), (A 5) and
(A 6) is more correct. In any case, the choice between these three versions of
the thermodynamic boundary condition cannot produce a qualitative change of the
situation. This is evident from the curves in figure 5. The effect of media pressures
on the phase transition is responsible for the appearance of the lower horizontal
asymptote on the plot of the damping coefficient, the passage to which takes place
at very weak heating. The position of the asymptote is determined by the presence
of viscosity and thermocapillarity (see figure 6), and this allows us to interpret the
result of Hsieh (2003) without considering the above factors as an idealization.
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FIGURE 6. The imaginary part of the correction to the eigenfrequency of perturbations due
to the phase transition as a function of the parameter Λ for the wavenumber k= 0.1. The
modification of the Clausius–Clapeyron law from Badratinova et al. (1996) is applied. The
graphs are plotted with account of viscosity and thermocapillarity (solid line) and without
the latter (dashed line) and in the inviscid assumption (long-dashed line).
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