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Microstreaming generated by two acoustically
induced gas bubbles
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A theory is developed that describes microstreaming generated by two interacting gas
bubbles in an acoustic field. The theory is used in numerical simulations to compare
the characteristics of acoustic microstreaming at different frequencies, separation
distances between the bubbles and bubble sizes. It is shown that the interaction of
the bubbles leads to a considerable increase in the intensity of the velocity and
stress fields of acoustic microstreaming if the bubbles are driven near the resonance
frequencies that they have in the presence of each other. Patterns of streamlines for
different situations are presented.
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1. Introduction
Vortical microstreaming plays an important role in many technical and medical

applications based on the physico-chemical action of acoustically excited bubbles
on objects immersed in a liquid. Ultrasonic cleaning, intensification of heat and
mass exchange, stimulation of chemical reactions, haemolysis, sonothrombolysis and
sonoporation are examples. The history of these applications from the 1950s up to
the present can be traced through papers by Kolb & Nyborg (1956), Elder (1959),
Nyborg (1965, 1978), Rooney (1970, 1972), Lighthill (1978), Liu et al. (2002), Wu
(2002), Tho, Manasseh & Ooi (2007), Wu & Nyborg (2008), Collis et al. (2010)
and Wang, Jalikop & Hilgenfeldt (2012). Theoretical studies on bubble-induced
microstreaming were performed by Nyborg (1958), Davidson & Riley (1971), Wu
& Du (1997), Longuet-Higgins (1998), Maksimov (2007), Liu & Wu (2009) and
Doinikov & Bouakaz (2010a,b, 2014). The results of these studies are described
in our recent paper (Doinikov & Bouakaz 2014). All the studies consider a single
bubble, whereas in most practical situations one has to deal with bubble clusters. In
this connection, a question arises as to how bubble interactions affect the behaviour
of acoustic microstreaming.

The purpose of the present study is to develop a theory that describes acoustic
microstreaming in the case of two interacting bubbles and to reveal how the interaction
of the bubbles changes the characteristics of acoustic microstreaming. The proposed
theory is a generalization of the calculations made in our previous paper (Doinikov &
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FIGURE 1. Geometry of the problem.

Bouakaz 2014) where the interaction of a real bubble with a mirror bubble was used
to describe the effect of a distant rigid wall on microstreaming generated around the
real bubble. In the present paper, both bubbles are considered to be real, which means
that they can be of different sizes and their oscillations are not mirror-like.

2. Theory
Consider two spherical gas bubbles suspended in a viscous liquid and undergoing

radial and translational oscillations in response to an imposed acoustic pressure field
(see figure 1). In order to make the problem amenable to analytical solution, we
introduce simplifying assumptions. The distance d between the equilibrium centres of
the bubbles is assumed to be large compared to the equilibrium bubble radii R10 and
R20, which allows one to use R10/d and R20/d as small parameters. The translational
oscillation is assumed to be executed along the line connecting the equilibrium centres
of the bubbles, which makes the problem axisymmetric. The sound wavelength is
assumed to be much larger than the bubble radii and d, which allows one to consider
the liquid as incompressible and to describe its motion by the following equations:

∇ · v = 0, (2.1)

ρ
∂v

∂t
+ ρ(v · ∇)v = η1v −∇p, (2.2)

where v is the liquid velocity, ρ is the liquid density, η is the dynamic liquid viscosity
and p is the liquid pressure.

To describe the scattered fields produced by the bubbles, we introduce two spherical
coordinate systems (rj, θj, εj), j = 1, 2, originated at the equilibrium centres of the
bubbles.

2.1. Incident field
The incompressibility of the liquid implies that the velocity potential of the incident
acoustic wave can be taken as ϕI=A exp(−iωt), where A is the amplitude and ω is the
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320 A. A. Doinikov and A. Bouakaz

angular frequency. This means that the dominant factor is pressure pulsation created
by the incident wave in the liquid, whereas the translational motion of the liquid
generated by the incident wave is negligible. If, however, we neglect this motion, our
results will not be able to provide going to the limiting case of a single bubble in an
infinite liquid (Rj0/d→ 0) because, in this case, it is the liquid translation created by
the incident wave that causes the translation motion of the bubble. In order to include
this effect, we use the following approximation. The velocity potential of the incident
wave, which is assumed to propagate along the centreline of the bubbles, can be
written as ϕI=Aζ (z) exp(−iωt), where the function ζ (z) is a solution to the Helmholtz
equation. For example, in the case of a plane travelling wave, ζ (z)= exp(ikz), where
k = ω/c is the wavenumber and c is the speed of sound in the liquid. Since the
sizes of the bubbles are assumed to be much smaller than the wavelength, we can
restrict ourselves to the leading terms in the expansion of ζ (z) in a Taylor series at
the bubble centres. That is, for bubble 1, we take the expansion of ζ (z) at the point
z = 0 considering the value of z to be small compared to the wavelength; and for
bubble 2, we take the expansion of ζ (z) at the point z = d considering z − d to be
small compared to the wavelength. As a result, the incident velocity potentials for
bubbles 1 and 2 are written as

ϕI1 = Ae−iωt(1+ ξ1z), ϕI2 = Ae−iωt[1+ ξ2(z− d)], (2.3a,b)

where ξ1 and ξ2 are constants that are determined by the type of the incident wave.
In the case of a plane travelling wave, ξ1 = ξ2 = ik. The pressure and velocity fields
created by the incident wave at the positions of the bubbles are given by

pI1 =−ρ ∂ϕI1

∂t
= iωρAe−iωt(1+ ξ1z), pI2 =−ρ ∂ϕI2

∂t
= iωρAe−iωt[1+ ξ2(z− d)],

(2.4a,b)

vI1 =∇ϕI1 = ezξ1Ae−iωt, vI2 =∇ϕI2 = ezξ2Ae−iωt, (2.5a,b)

where ez is the unit vector along the axis z. Equations (2.3)–(2.5) allow for the velocity
field created by the incident wave in the ambient liquid.

2.2. Linear scattered field
Linearizing (2.1) and (2.2) yields

∇ · vL = 0, (2.6)

ρ
∂vL

∂t
= η1vL −∇pL, (2.7)

where the subscript L denotes that the quantities are taken in the linear approximation,
i.e. accurate to first order in the acoustic pressure amplitude. The velocity vL can be
represented as

vL =∇ϕ +∇×ψ, (2.8)

where ϕ and ψ are the linear scalar and vorticity velocity potentials. Substituting
(2.8) into (2.6) and (2.7) and taking into consideration that the time dependence is
exp(−iωt), one obtains the equations

1ϕ = 0, (2.9)
(1+ k2

v)ψ = 0, (2.10)
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Microstreaming generated by two acoustically induced gas bubbles 321

where kv = (1 + i)/δv is the viscous wavenumber, δv = √2ν/ω is the viscous
penetration depth and ν = η/ρ is the kinematic liquid viscosity.

Considering that we have two bubbles and that they execute radial and translational
motions, the scalar potential satisfying (2.9) can be written as

ϕ = ϕ1 + ϕ2, (2.11)

where ϕj, the scalar potential of the jth bubble, is given by

ϕj = Ae−iωt

[
ajRj0

rj
+ bj

(
Rj0

rj

)2

cos θj

]
, (2.12)

with Rj0 the equilibrium radius of the jth bubble and aj and bj dimensionless constants
to be determined by the boundary conditions at the surfaces of the bubbles. It should
be emphasized that, for each of the bubbles, both potentials ϕ1 and ϕ2, since they
appear in the total potential, are involved in enforcing the boundary condition at the
bubble surface.

The vorticity potential satisfying (2.10) can be written as

ψ =ψ1 +ψ2, (2.13)

where ψj, the vorticity potential of the jth bubble, is given by the following equation
(Doinikov & Bouakaz 2014):

ψj = Ae−iωtcjh
(1)
1 (kvrj) sin θj eεj. (2.14)

In the latter, cj is a dimensionless constant, h(1)1 (z) = −exp(iz)(1/z + i/z2) is the
spherical Hankel function of the first kind (Abramowitz & Stegun 1972) and eεj is
the unit azimuth vector of the spherical coordinate system related to the jth bubble.

From (2.12) and (2.14), one finds the components of (2.8) to be

∇ϕj =−Ae−iωt

[
erj

(
ajRj0

r2
j
+ 2bjR2

j0

r3
j

cos θj

)
+ eθ j

bjR2
j0

r3
j

sin θj

]
, (2.15)

∇×ψj = Ae−iωt cj

rj
[2erjh

(1)
1 (kvrj) cos θj − eθ j(h

(1)
1 (kvrj)+ kvrjh

(1)′
1 (kvrj)) sin θj], (2.16)

where h(1)′1 (z)= dh(1)1 (z)/dz.
To calculate the unknown constants in (2.15) and (2.16), the boundary conditions for

normal velocity, normal stress and tangential stress at the bubble surface are applied.
The boundary condition for the normal velocity at the surface of the jth bubble is
given by

erj · (vIj + vL)= Ṙj + uj cos θj at rj = Rj0, (2.17)

where Rj and uj are the instantaneous radius and the translational velocity of the jth
bubble (see figure 1) and Ṙj= dRj/dt. Substituting (2.5), (2.15) and (2.16) into (2.17)
and keeping terms up to second order in the small parameter Rj0/d, one obtains

ajAe−iωt =−Rj0Ṙj, (2.18)
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322 A. A. Doinikov and A. Bouakaz

uj = A exp(−iωt)
Rj0

(
Rj0ξj + (−1)j+1 R10R20

d2
a3−j − 2bj + 2cjh

(1)
1 (αj)

)
, (2.19)

where αj= kvRj0. Note that these equations were calculated assuming aj to be of zeroth
order in Rj0/d, and bj and cj to be of second order in Rj0/d. We will see below that
this is so indeed; see also Doinikov & Bouakaz (2014).

The boundary condition for the normal stress at the surface of the jth bubble is
given by

Pgj

(
Rj0

Rj

)3γ

= pIj + pL + P0 + 2σ
Rj
− 2η

∂vrj

∂rj
at rj = Rj0, (2.20)

where Pgj is the equilibrium pressure of the gas inside the jth bubble, γ is the
ratio of specific heats of the gas, P0 is the hydrostatic pressure in the liquid, σ is
the surface tension, vrj = erj · (vIj + vL) and the scattered pressure pL is equal to
−ρ∂ϕ/∂t. Linearizing (2.20) and using (2.4), (2.5), (2.12), (2.15), (2.16) and (2.18),
with accuracy up to (Rj0/d)2, one obtains the following equations:

Pgj = P0 + 2σ
Rj0
, (2.21)(

ω2
j

ω2
− 1− iδj

)
aj − R3−j0

d
a3−j = 1, (2.22)

(12− α2
j )bj + 4(αjh

(1)′
1 (αj)− h(1)1 (αj))cj = α2

j

(
(−1)j+1 R10R20

d2
a3−j + Rj0ξj

)
, (2.23)

where ωj is the angular resonance frequency of the jth bubble in the absence of the
other bubble, given by

ωj = 1
Rj0

(
3γPgj

ρ
− 2σ
ρRj0

)1/2

, (2.24)

and δj is the viscous damping constant, defined as

δj = 4ν
ωR2

j0
. (2.25)

From (2.22) it follows that

aj = 1
D

(
ω2

3−j

ω2
− 1− iδ3−j + R3−j0

d

)
, (2.26)

where

D=
(
ω2

1

ω2
− 1− iδ1

)(
ω2

2

ω2
− 1− iδ2

)
− R10R20

d2
. (2.27)

To complete the calculation of the constants, the boundary condition for the
tangential stress σrθ is used:

σrθ = η
(

1
rj

∂vrj

∂θj
+ ∂vθ j

∂rj
− vθ j

rj

)
= 0 at rj = Rj0, (2.28)
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Microstreaming generated by two acoustically induced gas bubbles 323

where vθ j = eθ j · (vIj + vL). On substitution of (2.5), (2.15) and (2.16), equation (2.28)
gives

6bj = α2
j h(1)′′1 (αj)cj. (2.29)

Solving (2.23) and (2.29) for bj and cj, one obtains

bj =
α3

j + 3iα2
j − 6αj − 6i

18i+ 18αj − 3iα2
j − α3

j

(
(−1)j+1 R10R20

d2
a3−j + Rj0ξj

)
, (2.30)

cj =
6α2

j exp(−iαj)

18i+ 18αj − 3iα2
j − α3

j

(
(−1)j+1 R10R20

d2
a3−j + Rj0ξj

)
. (2.31)

Substitution of (2.30) and (2.31) into (2.19) yields

uj = 3A exp(−iωt)
Rj0

6i+ 6αj − 3iα2
j − α3

j

18i+ 18αj − 3iα2
j − α3

j

(
(−1)j+1 R10R20

d2
a3−j + Rj0ξj

)
. (2.32)

2.3. Acoustic streaming
By averaging (2.1) and (2.2) over time and keeping up to the second order in the
acoustic pressure amplitude, one obtains the equations of acoustic streaming:

∇ ·V = 0, (2.33)
η1V −∇P= ρ〈(vL · ∇)vL〉. (2.34)

Here 〈 〉 means the time average, and V and P are the velocity and the pressure fields
of acoustic streaming. To satisfy (2.33), V is taken as

V =∇×Ψ . (2.35)

Substituting (2.35) into (2.34), applying the curl operator, using (2.8) and (2.10) and
keeping up to (Rj0/d)2, one has

12Ψ =−1
ν
∇× 〈(vL · ∇)vL〉 = 1

2ν
Re{k2

v∇× (∇ϕ∗ ×ψ)}, (2.36)

where Re means ‘the real part of’ and the asterisk indicates the complex conjugate.
The potential Ψ can be written as

Ψ =Ψ1 +Ψ2, (2.37)

where Ψj, with accuracy up to (Rj0/d)2, is calculated by

12Ψj = 1
2ν

Re{k2
v∇× (∇ϕ∗j ×ψj)}. (2.38)

Substitution of (2.14), (2.15) and h(1)1 (kvrj) into (2.38) yields

12Ψj = |A|
2Rj0

2ν
sin θj

r5
j

eεj Re{a∗j cj exp(ikvrj)(3i+ 3kvrj − ik2
vr

2
j )}. (2.39)
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FIGURE 2. Magnitude of the streaming velocity versus driving frequency for different
values of the separation distance at two representative spatial points shown in figure 1:
(a) point A and (b) point B. Calculations were made for bubbles of equal size, R10 =
R20 = 5 µm, subjected to a plane travelling wave.

It has been shown by Doinikov & Bouakaz (2014) that the solution to (2.39) can be
written as

Ψj = |A|
2Rj0

2ν
sin θj eεj Re{a∗j cjGj(rj)}, (2.40)

where Gj(rj) is given by

Gj(rj)= A1j(rj)r−2
j + A2j(rj)+ A3j(rj)rj + A4j(r1)r3

j , (2.41)
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FIGURE 3. Magnitude of the tangential stress versus driving frequency for different values
of the separation distance. The stress is calculated at point A. Parameters are as in
figure 2.
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FIGURE 4. Streamlines in the case shown in figure 2 at d= 10R10 and ω= 0.95ω1.
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in which the functions Anj(rj) are calculated by

A1j(rj)= B1j −
8− 5ikvrj − k2

vr
2
j

30kv
exp(ikvrj), (2.42)

A2j(rj) = B2j − kv
6

exp(ikvrj)+ i
2

∫ rj

Rj0

r−2 exp(ikvr)(1− ikvr) dr

= B2j + i
2Rj0

exp(iαj)− 3i+ kvrj

6rj
exp(ikvrj), (2.43)

A3j(rj)= B3j − i
6

∫ rj

Rj0

r−3 exp(ikvr)(3− 3ikvr− k2
vr

2) dr, (2.44)

A4j(rj)= B4j + i
30

∫ rj

Rj0

r−5 exp(ikvr)(3− 3ikvr− k2
vr

2) dr, (2.45)

where Bnj are constants. From the condition that V→ 0 as rj→∞, one has

B3j = i
6

∫ ∞
Rj0

r−3 exp(ikvr)(3− 3ikvr− k2
vr

2) dr

= i
12R2

j0
[3(1− iαj) exp(iαj)+ α2

j E1(−iαj)], (2.46)

B4j = − i
30

∫ ∞
Rj0

r−5 exp(ikvr)(3− 3ikvr− k2
vr

2) dr

= − i
240R4

j0
[(6− 6iαj − α2

j − iα3
j ) exp(iαj)+ α4

j E1(−iαj)], (2.47)

where E1(z) is the exponential integral of the first order (Abramowitz & Stegun 1972).
Substitution of (2.46) and (2.47) into (2.44) and (2.45) gives

A3j(rj)= i
12r2

j
[3(1− ikvrj) exp(ikvrj)+ k2

vr
2
j E1(−ikvrj)], (2.48)

A4j(rj)=− i
240r4

j
[(6− 6ikvrj − k2

vr
2
j − ik3

vr
3
j ) exp(ikvrj)+ k4

vr
4
j E1(−ikvrj)]. (2.49)

To find B1j, the boundary condition for the tangential stress produced by the acoustic
streaming at the bubble surface is applied (Doinikov & Bouakaz 2014). For the jth
bubble, this condition is given by

Trθ + 〈(zjez + Rjerj) · ∇σrθ 〉 = 0 at rj = Rj0, (2.50)

where zj is the displacement of the centre of the jth bubble along the axis z, defined
as dzj/dt = uj, σrθ is the linear tangential stress given by (2.28) and Trθ denotes the
tangential stress produced by the acoustic streaming, which is calculated by

Trθ = η
(

1
rj

∂Vrj

∂θj
+ ∂Vθ j

∂rj
− Vθ j

rj

)
, (2.51)
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where Vrj = erj · V and Vθ j = eθ j · V are the radial and tangential components of V
in the coordinates of the jth bubble. As follows from (2.35), (2.37) and (2.40), V is
given by

V =V1 +V2, (2.52)

where

Vj =∇×Ψj = |A|
2Rj0

2νrj
Re{a∗j cj[2Gj(rj) cos θj erj − (Gj(rj)+ rjG′j(rj)) sin θj eθ j]}, (2.53)

with G′j(rj)= dGj/drj. Accordingly, Trθ can be represented as

Trθ = T1 + T2, (2.54)

where Tj is calculated by substituting Vj into (2.51), which results in

Tj =− 1
2ρ|A|2Rj0 sin θj Re{a∗j cjG′′j (rj)}. (2.55)

Substituting (2.54) and (2.55) into (2.50) and using (2.18), (2.28), (2.32) and (2.41),
with accuracy up to (Rj0/d)2, one gets

B1j =
8− α2

j

30kv
exp(iαj)− R5

j0B4j. (2.56)

The constant B2j is found from the boundary condition for the normal velocity of
the acoustic streaming, which is given by

Vrj + erj · 〈[(zjez + Rjerj) · ∇]vL〉 = 0 at rj = Rj0. (2.57)

Calculating Vrj by (2.52) and (2.53), substituting it along with the linear solutions into
(2.57) and using (2.41), one finds, with accuracy up to (Rj0/d)2,

B2j =
18i+ 18αj − 6iα2

j − iα4
j + α5

j

6α4
j Rj0

exp(iαj)− Rj0B3j. (2.58)

It is also useful to calculate expressions for the derivatives G′j(rj) and G′′j (rj) which
appear in (2.53) and (2.55). The result is

G′j(rj)=−2r−3
j A1j(rj)+ A3j(rj)+ 3r2

j A4j(rj), (2.59)

G′′j (rj)= 6r−4
j A1j(rj)+ 6rjA4j(rj). (2.60)

To sum up, the velocity and stress fields generated by the acoustic streaming are
given by (2.52)–(2.55). The quantities appearing in these equations are calculated by
(2.41)–(2.43), (2.46)–(2.49), (2.56) and (2.58)–(2.60).
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FIGURE 5. Streaming velocity for R10= 5 µm and R20= 4 µm: (a) point A and (b) point
B. The other parameters are as in figure 2.

2.4. Lagrangian streaming
The Lagrangian streaming velocity is calculated by

VL =V +VS, (2.61)

where VS is the Stokes drift velocity defined as (Longuet-Higgins 1998)

VS =
〈∫

vL dt · ∇vL

〉
= 1

2ω
Re{i(vL · ∇)v

∗
L}. (2.62)
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FIGURE 6. Tangential stress for R10 = 5 µm and R20 = 4 µm. The other parameters are
as in figure 3.

Substituting (2.8) into (2.62) and using (2.15) and (2.16), one finds the radial and
tangential components of VS to be

VSr = VSr1 + VSr2, VSθ = VSθ1 + VSθ1, (2.63a,b)

where

VSrj = |A|
2Rj0 cos θj

2ωr4
j

Re

{
ia∗j

[
2bjR2

j0

r2
j
+ 2cj(kvrjh

(1)
0 (kvrj)− h(1)1 (kvrj))

]}
, (2.64)

VSθ j = |A|
2Rj0 sin θj

2ωr4
j

Re

{
ia∗j

[
4bjR2

j0

r2
j
+ cj(2kvrjh

(1)
0 (kvrj)+ (k2

vr
2
j − 4)h(1)1 (kvrj))

]}
.

(2.65)

3. Numerical examples

This section illustrates data that can be obtained using the theory developed in § 2.
Simulations were made for air bubbles in water with the use of the following physical
parameters: P0 = 101.3 kPa, ρ = 1000 kg m−3, η = 0.001 Pa s, σ = 0.072 N m−1,
c= 1500 m s−1 and γ = 1.4. It should be mentioned that the experimental verification
of the simulated results is presently difficult because necessary experimental data are
not available in the literature. We hope that our results will motivate researchers to
carry out such experimental measurements.

Figure 2 shows the velocity field of acoustic microstreaming. The calculations were
made for bubbles of equal size, R10 = R20 = 5 µm (ω1/2π= 724 kHz), subjected to
a plane travelling wave propagating in the positive direction of the axis z. The size
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FIGURE 7. Streamlines in the case shown in figure 5. The calculations were made at
d= 10R10 and the resonance frequencies of the bubbles: (a) 0.99ω1 and (b) 1.29ω1.

of the bubbles was chosen to be comparable to the size of microbubbles used as
contrast agent for echography. The magnitude of the streaming velocity, calculated
by (2.52) and (2.53), is shown as a function of the driving frequency ω for different
values of the separation distance d at two spatial points, A and B (see figure 1). The
coordinates of point A are z= 0 and x = R10 + 2δv, and the coordinates of point B
are z= R10 + 2δv and x= 0. The positions of these points make them representative
points for evaluating the tangential and radial components of the velocity field
generated by bubble 1. The velocity values are normalized by |A|2/(νR10). In a
number of applications, such as ultrasonic cleaning and sonoporation, tangential
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FIGURE 8. Streaming velocity for R10= 5 µm and R20= 6 µm: (a) point A and (b) point
B. The other parameters are as in figure 2.

stresses produced by acoustic microstreaming are supposed to play an important
part. For this reason, we have included figure 3, which depicts the magnitude of the
tangential stress at point A and thus illustrates how the interaction of the bubbles
affects this characteristic. The stress values are normalized by ρ|A|2/(2R2

10). As
follows from figures 2 and 3, the intensity of the acoustic microstreaming increases
considerably with decreasing d when the bubbles are driven near the resonance
frequency that they have in the presence of each other (≈0.95ω1). The streamlines
of the acoustic microstreaming in the case shown in figure 2 are exemplified by
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FIGURE 9. Tangential stress for R10 = 5 µm and R20 = 6 µm. The other parameters are
as in figure 3.

figure 4 at d = 10R10 and ω = 0.95ω1. As one can see, the streaming pattern is not
symmetrical about the x plane midway between the bubbles. This occurs because the
liquid translation generated by the incident wave breaks the symmetry of the bubble
translational oscillations. Indeed, let us consider (2.32), which gives the translational
velocities of the bubbles. This equation shows that the translational velocity of each
bubble consists of two contributions. One contribution comes from the scattered field
of the neighbouring bubble. It is described by the first term in brackets in (2.32).
The bubble velocities caused by this contribution are mirror symmetric in the case
of identical bubbles. The second contribution comes from the incident wave. It is
described by the second term in brackets in (2.32). The bubble velocities caused
by this contribution are equal and therefore the total translational oscillations of the
bubbles do not possess mirror symmetry. The symmetry of the streaming pattern
appears if the term Rj0ξj in (2.30)–(2.32) is omitted.

Figures 5–7 demonstrate the case where bubble 1 is bigger than bubble 2:
R10 = 5 µm, R20 = 4 µm (ω2/2π = 925 kHz). The two main peaks in figure 5
correspond to the resonance frequencies of the bubbles. It is seen that at both
frequencies the intensity of the microstreaming is increased considerably with
decreasing d. It should be noted, however, that the streaming velocity at point B
is shown by figure 5(b) to increase more strongly if the bubbles are driven near the
resonance frequency of the smaller bubble (bubble 2). Figure 6 shows the behaviour
of the tangential stress at point A, which is seen to be similar to the behaviour of
the streaming velocity (cf. figure 5a). Figure 7 displays the pattern of streamlines
in the case shown in figure 5. The calculations were made at d = 10R10 and the
resonance frequencies of the bubbles: (a) 0.99ω1 and (b) 1.29ω1. As one can see, the
streaming pattern in figure 7 is considerably different from that in figure 4, despite
the relatively small change in parameters. We suppose that this distinction is related
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FIGURE 10. Streamlines in the case shown in figure 8. The calculations were made at
d= 10R10 and the resonance frequencies of the bubbles: (a) 0.81ω1 and (b) 1.02ω1.

to changes in the phases of the radial and translational oscillations of the bubbles.
It has been shown by Longuet-Higgins (1998) and more recently by Doinikov &
Bouakaz (2014) that acoustic microstreaming is sensitive to the phase difference
between the bubble radial oscillation and the bubble translational velocity. Note also
the difference between panels (a) and (b) in figure 7, which were calculated at
different driving frequencies. This difference is explained by the fact that the change
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FIGURE 11. Streaming characteristics for R10 = 5 µm and R20 = 2 µm: (a) point A,
(b) point B and (c) point A. The other parameters are as in figures 2 and 3.
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FIGURE 12. Streamlines in the case shown in figure 11 at d= 10R10 and ω=ω1.

of the frequency leads to changes in both the amplitude and the phase of the bubble
radial and translational oscillations (Doinikov & Bouakaz 2014).

Figures 8 and 9 illustrate the case where bubble 1 is smaller than bubble 2:
R10 = 5 µm, R20 = 6 µm (ω2/2π= 594 kHz). We show this case because the liquid
translation generated by the incident wave breaks the symmetry with respect to
interchanging bubbles 1 and 2, so this case cannot be obtained from the previous
one. As one can see, the streaming velocity at point A increases more strongly if
the bubbles are driven near the resonance frequency of the smaller bubble (bubble
1), while the velocity at point B and the tangential stress are increased more strongly
near the resonance frequency of the bigger bubble. The pattern of streamlines is
presented in figure 10. The calculations were made at d = 10R10 and the resonance
frequencies of the bubbles: (a) 0.81ω1 and (b) 1.02ω1.

Figures 11 and 12 illustrate the case where there is a considerable difference in
bubble sizes: R10= 5 µm, R20= 2 µm (ω2/2π= 2.038 MHz). The streamlines shown
in figure 12 were calculated at d = 10R10 and ω = ω1. Comparison with the results
obtained by Longuet-Higgins (1998) for a single bubble in an infinite liquid shows
that, despite the great difference in bubble sizes, the influence of the bubble interaction
on acoustic microstreaming remains significant on condition that d is not large.

The developed theory can also be applied to the case of a bubble near a rigid
wall. In our previous paper (Doinikov & Bouakaz 2014), the effect of a rigid wall
on microstreaming in the immediate vicinity of the bubble surface was studied.
Microstreaming in the bulk liquid between the bubble and the boundary layer at the
wall was not considered and the liquid velocity caused by the primary incident wave
was neglected. These shortcomings are overcome in the present theory. To describe
the presence of a wall, bubble 2 should be treated as a mirror bubble, assuming the
wall to be at the distance d/2 from bubble 1. In this case, the velocity potential of the
standing wave caused by the wall can be written as ϕI = A exp(−iωt) cos(k(z− d/2)),
assuming bubble 1 to be at z = 0. It follows that ξ1 = k sin(kd/2) and ξ2 should be
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FIGURE 13. Streaming characteristics for a bubble with R10 = 5 µm in the presence of
a rigid wall: (a) velocity at point A, (b) velocity at point B, and (c) tangential stress at
point A.
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FIGURE 14. Streamlines in the case shown in figure 13 at dw= 5R10 and ω= 0.95ω1. The
wall is to the right of the bubble.

set to be equal to – ξ1 to provide mirror symmetry. The behaviour of microstreaming
is exemplified by figure 13, where R10 = 5 µm and dw = d/2 is the distance between
the bubble and the wall. As one would expect, the intensity of the microstreaming is
increased considerably with decreasing dw if the bubble is driven near the resonance
frequency that it has in the presence of the wall. Figure 14 shows the pattern of
streamlines at dw = 5R10 and ω= 0.95ω1, the wall being to the right of the bubble.

There is one point to be made. Our theory does not impose explicit limitations
on the amplitude of the bubble translational velocity and hence on the amplitude
of the bubble translational displacement. However, it has been pointed out by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.270


338 A. A. Doinikov and A. Bouakaz

Longuet-Higgins (1998) that the approximation approach that he used to calculate
streaming, and whose principles we follow in our study, is valid only if the
translational displacement is small compared to the bubble radius, although it does
not need to be small compared to the thickness of the viscous layer at the bubble
surface. As mentioned in his work, this condition is met in many applications. In
our previous paper (Doinikov & Bouakaz 2014), we also demonstrate by particular
examples that this condition is satisfied in many cases of interest.

4. Conclusion
Analytical equations have been derived that describe acoustic microstreaming

generated by two interacting gas bubbles undergoing small radial and translational
oscillations in an acoustic field. Numerical simulations were performed to compare
the characteristics of acoustic microstreaming at different frequencies, separation
distances between the bubbles and bubble sizes. It was shown that the interaction
of the bubbles leads to a considerable increase in the intensity of the velocity and
stress fields of acoustic microstreaming if the bubbles are driven near the resonance
frequencies that they have in the presence of each other. Examples of streamlines
for different situations were presented. It was also demonstrated that the developed
theory could be applied to the case of a bubble near a rigid wall.
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