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We derive a theory for material surfaces that maximally inhibit the diffusive transport of
a dynamically active vector field, such as the linear momentum, the angular momentum
or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active
barriers) provide physics-based, observer-independent boundaries of dynamically active
coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces
of an associated steady and incompressible barrier equation, whose right-hand side is
the time-averaged pullback of the viscous stress terms in the evolution equation for the
dynamically active vector field. Instantaneous limits of these barriers mark objective
Eulerian active barriers to the short-term diffusive transport of the dynamically active
vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active
barriers coincide exactly with purely advective transport barriers bounding observed
coherent structures. In more general flows, active barriers can be identified by applying
Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov
exponent and the polar rotation angle, to the appropriate active barrier equation. In
comparison to their passive counterparts, these active LCS diagnostics require no
significant fluid particle separation and hence provide substantially higher-resolved LCS
and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We
illustrate these results and their physical interpretation on two-dimensional, homogeneous,
isotropic turbulence and on a three-dimensional turbulent channel flow.

Key words: general fluid mechanics, computational methods, turbulent mixing

1. Introduction

Fluid transport is often the simplest to describe through its barriers. Indeed, transport
barriers are routinely invoked in discussions of transport in classical fluid dynamics
(Ottino 1989), geophysics (Weiss & Provenzale 2008), reactive flows (Rosner 2000) and
plasma fusion (Dinklage et al. 2005).

Despite their broadly recognized significance, transport barriers have remained loosely
defined and little understood. The only generally agreed definition is the one of MacKay,
Meiss & Percival (1984), who define transport barriers in two-dimensional (2-D),

† Email address for correspondence: georgehaller@ethz.ch
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905 A17-2 G. Haller and others

time-periodic flows as invariant curves of the Poincaré (or stroboscopic) map for
fluid particle motions. This definition extends to three-dimensional (3-D) steady flows,
identifying advective transport barriers as 2-D material surfaces whose intersection with a
section transverse to the flow is an invariant curve for the first-return map defined for that
section (Ottino 1989; MacKay 1994). In many 3-D steady flows, however, trajectories may
rarely if ever return to the physically relevant Poincaré sections, such as the cross-stream
sections of pipe flows.

This lack of returns obliges one to look for barriers to advective transport among all
material surfaces – an ill-defined objective, given that all material surfaces are barriers to
advective transport. Indeed, none of them can be crossed by other material trajectories by
the uniqueness of trajectories through any point at a given time in a smooth velocity field.
Some material surfaces are nevertheless perceived as organizers of advective transport
because they preserve their coherence, i.e. do not develop smaller scales (filamentation)
in their evolution. These distinguished surfaces are generally referred to as Lagrangian
coherent structures (or LCS; see Haller 2015). In the absence of a universally accepted
notion of material coherence, however, different LCS definitions continue to coexist and
highlight different material surfaces as advective transport barriers (Hadjighasem et al.
2017). Beyond their diversity, most LCS criteria have also been criticized for being purely
kinematic with no regard to relevant physical quantities, such as the linear momentum
and the vorticity. The need for developing LCS methods for the transport of such physical
quantities has recently been stressed by Balasuriya, Ouellette & Rypina (2018).

Parallel to the development of different LCS criteria, several different Eulerian criteria
for coherent vortices have been put forward (see Epps (2017) and Günther & Theisel (2018)
for recent reviews). Most of these approaches also set out to find sustained (Lagrangian)
swirling motion of fluid particles, but hope to achieve this goal by studying local properties
of instantaneous (Eulerian) velocity snapshots. As this is a hopeless undertaking for
unsteady flows, these approaches invariably divert from their originally stated objective
and postulate coherence principles for the instantaneous velocity field, rather than for
particle motion. One can then a posteriori interpret the resulting velocity-dependent
inequalities (such as the Q-, Δ-, λ2- and λci-criteria reviewed recently in Pedergnana
et al. 2020) as physical, but their actual connection to flow physics is unclear due to the
conceptual gaps in their derivations and their dependence on the observer.

Unsurprisingly, therefore, the resulting vortex criteria often yield erroneous results even
for simple flows in which the coherent swirling regions can be identified unambiguously
from Poincaré maps (see Pedergnana et al. (2020) for recent demonstrations). This has
resulted in the practice of plotting a few level sets of Q,Δ, λ2 or λci, as opposed to verifying
the inequalities imposed on these quantities by the appropriate criteria (see, e.g., Dubief
& Delcayre 2000; McMullan & Page 2012; Anghan et al. 2014; Gao et al. 2015; Jantzen
et al. 2019). These level surfaces are selectively chosen to match expectations or produce
visually pleasing images. As a further ad hoc element in this procedure, the level surfaces
are not objective: they depend on the frame of reference, even though truly unsteady flows
have no distinguished frame of reference (Lugt 1979). The experimental detectability or
physical relevance of these surfaces is, therefore, unclear. Arguably, as long as this practice
continues, there is little hope for a commonly accepted definition for coherent vortices.

A way out of this conundrum is to identify coherent structures based on the transport
of physical quantities of interest to the fluid mechanics community, but use mathematical
deductions that are free from ad hoc assumptions, user-defined thresholds and tuneable
parameters. Specifically, one may seek the boundaries of coherent structures or vortices
based on their transport-extremizing properties. Unlike the notions of coherence and
swirling, the notion of transport through a surface is physically well understood,
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FIGURE 1. Vorticity and linear momentum, normalized by their maxima at an arbitrary time
instance in a decaying planar channel flow shown in figure 18: (a) normalized vorticity
and its observed transport barriers, (b) normalized momentum and its observed transport
barriers, (c) prior prediction for vorticity-transport barriers and (d) prior prediction for
momentum-transport barriers. These plots remain steady in time, with all horizontal lines
(some shown dotted) acting as barriers to the vertical redistribution of the vorticity and linear
momentum. Also shown are prior predictions for perfect barriers to vorticity transport in this
flow by Haller, Karrasch & Kogelbauer (2019) on the left and for perfect barriers to momentum
transport by Meyers & Meneveau (2013) on the right. The latter barrier trajectories are released
uniformly across the entry cross-section of the channel. See appendix A for details.

quantitative and frame-independent, when properly phrased. These features allow for
a systematic, quantitative comparison of all surfaces to find minimizers (barriers) of
transport among them. This in turn offers a way to quantify the general view in
fluid mechanics that coherent structures influence transport processes in turbulent flows
(Robinson 1991; Hutchins & Marusic 2007).

As a first step in this direction, Haller, Karrasch & Kogelbauer (2019, 2020) formalize
the definition of transport barriers for passively advected diffusive scalars. They then
locate transport barriers as material surfaces that inhibit the diffusive transport of a weakly
diffusive scalar more than neighbouring material surfaces do. Katsanoulis et al. (2020) use
these results to locate vortex boundaries in 2-D flows as outermost closed barriers to the
diffusive transport of the scalar vorticity. These results, however, do not cover barriers to
the transport of dynamically active vector fields, such as momentum and vorticity, in three
dimensions. There are also examples, such as the 2-D decaying channel flow shown in
figure 1, in which the passive-scalar-based approach to vorticity transport only captures
the walls as perfect transport barriers in a finite-time analysis. The remaining observed
barriers to the redistribution of the normalized vorticity (i.e. all horizontal lines) are only
captured by the approach over an infinitely long time interval.

More broadly speaking, there has been a lack of methods to identify barriers to
the transport of dynamically active quantities, i.e. scalar, vector or tensor fields whose
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905 A17-4 G. Haller and others

evolution impacts the evolution of the underlying fluid velocity field. A notable exception
is the work of Meyers & Meneveau (2013), who locate momentum- and energy-transport
barriers as tubes tangent to a flux vector field formally associated with these dynamically
active scalar fields. While insightful, this approach also has several heuristic elements. The
construct depends on the frame of reference and the choice of a transport direction.
The flow data are assumed statistically stationary with a well-defined mean velocity field.
The proposed flux vector introduced in this fashion is non-unique: any divergence-free
vector field could be added to it. Finally, the flux vector differs from the classic momentum
and energy flux that it purports to represent. All these features of the approach prevent
the detection of most observed barriers to momentum redistribution already in simple
2-D flows, such as our 2-D decaying channel-flow example in figure 1. Indeed, the only
horizontal barrier captured by this approach is the symmetry axis of the channel.

In the present work, we seek to fill the gaps in previous approaches by extending the
transport-barrier-detection approach of Haller et al. (2019, 2020) to active transport in 3-D
flows. In this extension, we seek material barriers to the diffusive (or viscosity-induced)
transport of an arbitrary dynamically active vector field, by which we mean a vector field
whose evolution impacts the evolution of the underlying fluid velocity field. We then seek
transport barriers as special material surfaces across which the net diffusive transport of
the active vector field pointwise vanishes. When applied to the 2-D channel flow example
shown in figure 1, the approach we develop here returns the observed material barriers (all
horizontal lines) as barriers to the spatial redistribution of vorticity and momentum (see
example 7.4 in § 7.1). This example and more complex examples discussed later illustrate
that material barriers to active transport can be used to define boundaries of dynamical
coherent structures (i.e. time-varying structures observed in dynamically active vector
fields) in a frame-independent fashion.

The outline of this paper is as follows. In § 2, we introduce our set-up and notation for a
dynamically active vector field. We then discuss in § 3 the shortcomings of available flux
definitions when applied to active transport through material surfaces, and introduce an
objective notion of diffusive transport for active vector fields. In § 4, we identify surfaces
blocking this diffusive transport and define active transport barriers more formally.
Section 5 describes the instantaneous, Eulerian limits of these active barriers, and § 6
derives the equations for both Lagrangian and Eulerian active barriers to the diffusive
transport of linear momentum, angular momentum and vorticity. In § 7, we work out
solutions of these barrier equations analytically for 2-D Navier–Stokes flows and 3-D
directionally steady Beltrami flows. Section 8 discusses computational aspects of active
transport barriers and introduces active versions of passive LCS-detection tools that
generally enable a higher-resolved identification of coherent structures from finite-time
flow data than their passive counterparts do. Section 9 shows such computations and
their physical implications for 2-D homogeneous, isotropic turbulence and for a 3-D
turbulent channel flow. We summarize our conclusions in § 10. Appendix A illustrates
on a simple example the challenges of defining active barriers with an observable
footprint. Appendix B motivates the need for a new definition for diffusive flux through
material surfaces. Finally, appendices C and D contain the detailed proofs of our technical
results.

2. Set-up

We consider a 3-D flow with velocity field u(x, t) and density ρ(x, t), known at spatial
locations x ∈ U ∈ R

3 in a bounded set U at times t ∈ [t1, t2]. The equation of motion for
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Objective barriers to active transport 905 A17-5

such a flow is of the general form

ρ
Du
Dt

= −∇p + ∇ · T vis + q, (2.1)

where D/Dt denotes the material derivative, p(x, t) is the (equilibrium) pressure,
T vis(x, t) = T T

vis(x, t) is the viscous stress tensor and q(x, t) denotes the external body
forces (see Gurtin, Fried & Anand 2013).

Material trajectories generated by the velocity field u are solutions of the differential
equation ẋ = u(x, t). We denote the time-t position of a trajectory starting from x0 at
time t0 by x(t; t0, x0). The flow map induced by u is defined as the mapping F t

t0 : x0 �→
x(t; t0, x0). A material surface M(t) ⊂ U is a time-dependent 2-D manifold transported
by the flow map from its initial position M0 := M(t0) as

M(t) = F t
t0 [M(t0)]. (2.2)

Let f (x, t) be another smooth vector field defined on the same spatiotemporal domain
U × [t0, t1]. We will be interested in f fields that are dynamically active vector fields,
i.e. their evolution impacts the evolution of the velocity field u. Such a vector field f is
typically defined as a function of u and its derivatives. The simplest physical examples of
active vector fields are the linear momentum f := ρu and the vorticity f := ω = ∇ × u.
Both of these examples of f are frame-dependent (non-objective) vector fields, because
they do not transform properly under general frame changes of the form

x = Q(t) y + b(t), QQT = I, Q(t) ∈ SO(3), b(t) ∈ R
3, (2.3)

where both Q(t) and b(t) are smooth in time. Indeed, evaluating the definition of these
vectors in the y-frame gives transformed vector fields f̃ ( y, t) for which (specifically, ρũ =
QT(ρu − Q̇ y − ḃ) and ω̃ = QT(ω − q̇), where the vorticity of the frame change, q̇, is
defined by the requirement that 1

2 q̇ × e = Q̇QTe for all vectors e ∈ R
3)

f̃ ( y, t) /= QT(t)f (x, t). (2.4)

It is, therefore, a challenge to describe the transport of f through a material surface in an
intrinsic, observer-independent fashion.

We assume that the evolution of f is governed by a partial differential equation of the
form

D
Dt

f = hvis + hnonvis, ∂T vis hvis /= 0, ∂T vis hnonvis = 0. (2.5)

The function hvis(x, t,u, f ,T vis) contains all the terms arising from diffusive forces
(i.e. viscous Cauchy stresses), while hnonvis(x, t,u, f ) has no explicit dependence on
those forces. Instead, hnonvis contains terms originating from the pressure, external forces
and possible inertial effects. For instance, as we will see in § 6, when f is the linear
momentum of an incompressible Navier–Stokes flow with kinematic viscosity ν, then we
have hvis := ρνΔu. Or if, for the same class of flows, f equals the vorticity ω = ∇ × u ,
then we have hvis := νΔω.

We finally assume that hvis is an objective vector field, i.e. under any observer change of
the form (2.3), we obtain the transformed vector field h̃vis in the form

h̃vis( y, t, ũ, f̃ , T̃ vis) = QT(t)hvis(x, t,u, f ,T vis). (2.6)

In all examples of f considered in this paper, this objectivity condition will hold, but one
can certainly define dynamically active vector fields (e.g., f := |u|u) that do not satisfy
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905 A17-6 G. Haller and others

condition (2.6). With its dependence on inertial effects, the vector field hnonvis is not
objective.

3. Active transport through material surfaces

We seek to quantity the diffusive transport of the active vector field f (x, t) through
a material surface M(t) with a smoothly oriented unit normal vector field n(x, t). While
there is broad agreement on the notion of the flux of a passive scalar field through a surface
(see, e.g., Batchelor 2000), different notions of the flux of an active vector field coexist.
For instance, the vorticity flux through M(t) (see, e.g., Childress 2009) is defined as

Fluxω(M(t)) =
∫
M(t)

ω · n dA, (3.1)

which measures the degree to which ω is transverse to M(t) on average, as opposed to the
rate at which vorticity is transported through M(t). Another broadly used quantity is the
linear momentum flux through M(t) (see, e.g., Bird, Stewart & Lightfoot 2007), defined
as

Fluxρu(M(t)) =
∫
M(t)

ρu(u · n) dA. (3.2)

This expression is originally conceived for non-material surfaces, formally measuring the
rate at which ρu is carried through M(t) by trajectories. However, no such convective
flux is possible when M(t) is a material surface, which can never be crossed by material
trajectories. As a consequence, Fluxρu(M(t)) does not capture the full flux through
material surfaces (see appendix B for a simple example).

Beyond the issues already mentioned for Fluxω and Fluxρu, these flux notions have
further common shortcomings for the purposes of defining an intrinsic flux through
material surfaces. First, one expects a flux of a quantity through a surface to have the
units of that quantity divided by time and multiplied by the surface area. This not the case
for either Fluxω or Fluxρu. Second, as the mass flux and the diffusive flux of a tracer
through a material surface are objective (Haller et al. 2019, 2020), one expects a truly
intrinsic flux of a vector field through a material surface to be objective as well: it should
remain unchanged under all observer changes of the form (2.3). A direct calculation shows
that neither Fluxω nor Fluxρu is objective, which is the result of the frame dependence of
ω and u (see, e.g., Haller 2015).

As a consequence of this frame dependence, specific values of Fluxω and Fluxρu
carry no intrinsic meaning in general unsteady fluid flows, because such flows have no
distinguished frames of reference (Lugt 1979). This prevents us from locating intrinsic
(and hence observer-independent) barriers to the transport of vorticity and momentum
using these fluxes. Specifically, the classic notion of a vortex tube (i.e. a cylindrical surface
A(t) with pointwise zero vorticity flux ω(x, t) · n(x, t), which implies Fluxω(A(t)) = 0),
defined via Fluxω, is not objective: observers rotating relative to each other will identify
different surfaces as vortex tubes. This holds even for inviscid flows, in which all vortex
tubes are material surfaces (see Batchelor 2000).

To address these shortcomings of commonly used vector-field-flux definitions, we
introduce the diffusive flux of f (x, t) through M(t) by integrating the diffusive
component of the surface-normal material derivative of f (x, t) over M(t)

Φ(M(t)) =
[∫

M(t)

Df
Dt

· n dA
]
vis

=
∫
M(t)

hvis · n dA. (3.3)
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Objective barriers to active transport 905 A17-7

Physically, the diffusive flux Φ measures the extent to which the diffusive component
of the rate of change of f along trajectories forming the surface M(t) is non-tangent to
M(t). Trajectories do not need to cross the material surface M(t) to generate diffusive
flux.

The diffusive flux Φ has the physical units expected for the flux of f : the units of f
multiplied by area and divided by time. Under an observer change of the form (2.3), the
transformation formula n = Qñ for unit normals and the assumption (2.6) on the active
vector field f imply that

Φ̃(M̃(t)) =
∫
M̃(t)

h̃vis · ñ dÃ =
∫
M(t)

(QThvis) · (QTn) dA =
∫
M(t)

hvis · n dA = Φ(M(t)),

(3.4)
and hence the diffusive flux of f is also objective, i.e. invariant under all observer changes.

With this dimensionally correct and objective notion of the flux at hand, we can now
define the diffusive transport of f (x, t) through M(t) over a time interval [t0, t1] as
the time-integral of Φ(M(t)) over [t0, t1]. To compare the overall ability of surfaces to
withstand the diffusive transport of f (x, t) over different time intervals, we will work with
the time-normalized total diffusive transport, given by the diffusive transport functional

ψ t1
t0 (M0) = 1

t1 − t0

∫ t1

t0

Φ(M(t)) dt

= 1
t1 − t0

∫ t1

t0

∫
M(t)

hvis · n dA dt. (3.5)

The time integration of this functional is carried out along trajectories forming the
evolving material surface M(t). We view ψ t1

t0 purely as a function of M0 ≡ M(t0),
because later positions of the material surface M(t) are fully determined by the initial
position M0 through the relationship (2.2). The functional ψ t1

t0 can also be viewed
as the time-averaged diffusive flux of the vector field f through M(t) over the time
interval [t0, t1]. As for any diffusion-induced transport, ψ t1

t0 (M0) is expected to be small
if the material surface M(t) remains coherent, i.e. does not develop smaller scales
(filamentation) during its evolution.

To obtain a more explicit formula for ψ t1
t0 (M0) while keeping our notation simple, we

now introduce some notation. For an arbitrary time-dependent Lagrangian vector field
v(x0, t), we let

v̄(x0) = 1
t1 − t0

∫ t1

t0

v(x0, t) dt, (3.6)

denote the temporal average of v(x0, t) over the time interval [t0, t1]. We will also denote
by (F t

t0)
∗w the pullback of an Eulerian vector field w(x, t) under the flow map F t

t0 to the
initial configuration at t0, defined as

(F t
t0)

∗w(x0) = [∇F t
t0(x0)]−1w(F t

t0(x0), t). (3.7)

With this notation, we obtain the following result.
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905 A17-8 G. Haller and others

THEOREM 3.1. Under the assumptions (2.5) and (2.6) on the dynamically active vector
field f , the diffusive transport functional ψ t1

t0 of f can be calculated as

ψ t1
t0 (M0) =

∫
M0

bt1
t0 · n0 dA0, (3.8)

with the objective Lagrangian vector field

bt1
t0 := det ∇F t

t0(F
t
t0)

∗hvis. (3.9)

As a consequence, the diffusive transport, ψ t1
t0 (M0), is objective.

Proof. Using the classic surface-element deformation formula

n dA = det ∇F t
t0 [∇F t

t0 ]
−Tn0 dA0, (3.10)

(see Gurtin et al. 2013) in (3.5), we obtain

ψ t1
t0 (M0) = 1

t1 − t0

∫ t1

t0

∫
M0

· hvis

∣∣∣∣
x=F t

t0
(x0)

· (det ∇F t
t0 [∇F t

t0 ]
−Tn0 dA0) dt

=
∫
M0

{
1

t1 − t0

∫ t1

t0

det ∇F t
t0 [∇F t

t0 ]
−1 · hvis|x=F t

t0
(x0) · n0 dA0

}
dt

=
∫
M0

bt1
t0 · n0 dA0, (3.11)

with bt1
t0(x0) defined in (3.9). The vector field bt1

t0(x0) is objective in the Lagrangian sense
(see Ogden 1984), because under assumption (2.6), an observer change of the form (2.3)
gives

bt1
t0 = det ∇F t

t0(F
t
t0)

∗hvis = det ∇F t
t0 [∇F t

t0 ]
−1Q(t)h̃vis

= det[Q(t)∇̃F̃
t
t0 Q

T(t0)][Q(t)∇̃F̃
t
t0 Q

T(t0)]−1Q(t)h̃vis

= det ∇̃F̃
t
t0 Q(t0)[∇̃F̃

t
t0 ]

−1h̃vis

= Q(t0)b̃
t1
t0 . (3.12)

As a result, we have

ψ̃ t1
t0 (M̃0) =

∫
M̃0

b̃
t1
t0 · ñ0 dÃ0 =

∫
M̃0

(QT(t0)bt1
t0) · (QT(t0)n0) dÃ0 =

∫
M0

bt1
t0 · n0 dA0

= ψ t1
t0 (M0), (3.13)

proving the objectivity of ψ t1
t0 (M0). �

Theorem 3.1 shows that ψ t1
t0 (M0) can be calculated as the (algebraic) flux

of the objective Lagrangian vector field bt1
t0(x0) through the initial surface M0.
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Objective barriers to active transport 905 A17-9

M0

x0

n0(x0)

b t0
t1(x0)

FIGURE 2. The normal vector field n0(x0) of any initial material barrier M0 must be
orthogonal to the barrier vector field bt1

t0(x0). Therefore, M0 must be a 2-D invariant manifold
of the vector field bt1

t0 = det ∇F t
t0(F

t
t0)

∗hvis.

Following MacKay (1994), we also define the geometric flux of bt1
t0 through M0 as

Ψ t1
t0 (M0) =

∫
M0

|bt1
t0 · n0| dA0. (3.14)

This geometric flux cannot vanish due to global cancellations, and hence is a better
measure of the overall permeability (non-invariance) of the surface M0 under the vector
field bt1

t0 than the algebraic flux ψ t1
t0 (M0).

4. Lagrangian active barriers

We seek diffusive transport barriers as material surfaces along which the integrand in
the diffusive transport functional ψ t1

t0 vanishes pointwise. Therefore, the net transport of f
due to viscous forces in the fluid is zero through any subset of such a barrier. Technically
speaking, such surfaces are global minimizers of the Lagrangian geometric flux Ψ t1

t0 .
We note from (3.8) that the integrand Ψ t1

t0 (M0) can only vanish pointwise if M0

is everywhere tangent to bt1
t0(x0). Therefore, diffusive transport barrier surfaces evolve

materially from initial surfaces to which the temporally averaged pullback of hvis is
everywhere tangent (see figure 2). We conclude that if s ∈ R parametrizes the streamlines
x0(s) of bt1

t0(x0) and differentiation with respect to s is denoted by a prime, then any 2-D
streamsurface (i.e. invariant manifold) of the 3-D autonomous differential equation,

x ′
0 = bt1

t0(x0), (4.1)

is a diffusive transport barrier candidate. For this reason, we refer to (4.1) as the barrier
equation, and to bt1

t0(x0) as the corresponding barrier vector field. By the objectivity of the
vector field bt1

t0(x0), the barrier equation (4.1) is objective. Indeed, after a frame change of
the form (2.3), we obtain the transformed barrier equation Q(t0) ỹ′

0 = Q(t0)b̃
t
t0( y0), which

gives ỹ′
0 = b̃

t
t0( y0).

Any smooth curve of initial conditions for the differential equation (4.1), however,
generates a 2-D streamsurface of trajectories for (2.3). Of these infinitely many barrier
candidates, we would like to find only the barrier surfaces with an observable impact on
the transport of f . To this end, we formally define active transport barriers as follows.

DEFINITION 4.1. A diffusive transport barrier for the vector field f over the time interval
[t0, t1] is a material surface B(t) ⊂ U whose initial position B0 = B(t0) is a structurally
stable (i.e. persistent under small, smooth perturbations of u), 2-D invariant manifold of
the autonomous dynamical system (4.1).
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905 A17-10 G. Haller and others

(a) (b) (c)

FIGURE 3. Possible geometries of material barriers to diffusive transport: (a) 2-D stable and
unstable manifolds of fixed points, (b) 2-D stable and unstable manifolds of periodic orbits and
(c) 2-D invariant tori. Curves with arrows indicate qualitative sketches of trajectories of the
barrier equation (4.1), for which these barriers are structurally stable, 2-D invariant manifolds.

The required dimensionality of B(t) ensures that it divides locally the space into two 3-D
regions with minimal diffusive transport between them. The required structural stability of
B(t) ensures that conclusions reached about transport barriers for one specific velocity
field u remain valid under small perturbations of u as well (see Guckenheimer & Holmes
1983).

While a general classification of structurally stable invariant manifolds in 3-D dynamical
systems is not available, structurally stable 2-D surfaces in three dimensions, steady
volume-preserving flows are known to be families of neutrally stable 2-D tori, 2-D stable
and unstable manifolds of structurally stable fixed points or of structurally stable periodic
orbits (see, e.g., MacKay 1994). Such structurally stable fixed points and periodic orbits
are either hyperbolic or are contained in no-slip boundaries and become hyperbolic after
a rescaling of time (Surana, Grunberg & Haller 2006). In view of these results, the
three possible active barrier geometries for volume-preserving barrier equations in three
dimensions are shown in figure 3.

As we shall see, the barrier equations for momentum, angular momentum and vorticity
are always volume preserving for incompressible flows and hence the possible active
barriers fall in the three categories shown in figure 3. For compressible flows, the barrier
equations are generally not volume preserving but the three barrier geometries shown in
figure 3 nevertheless frequently arise in such flows as well. Invariant tori in compressible
barrier equations, however, must necessarily be isolated attractors or repellers, as opposed
to members of neutrally stable torus families.

5. Eulerian active barriers

Our treatment of active barriers has so far been fundamentally Lagrangian, targeting
material surfaces that render the diffusive transport functional ψ t1

t0 zero. Taking the
t1 → t0 ≡ t limit in our arguments yields that instantaneous diffusive-flux-minimizing
surfaces (Eulerian active barriers) are structurally stable, 2-D invariant manifolds of the
instantaneous barrier equation

x ′ = bt
t(x) = hvis(x, t,u(x, t), f (x, t),T vis(x, t)), (5.1)

with t fixed and prime still denoting differentiation with respect to the dummy parameter s.
The active barriers extracted from (5.1) can be calculated from instantaneous velocity

data without Lagrangian advection, yet they inherit the objectivity of Lagrangian barriers.
These instantaneous barriers, therefore, extend the notion of objective Eulerian coherent
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Objective barriers to active transport 905 A17-11

structures (Serra & Haller 2016) and instantaneous passive diffusion barriers (Haller et al.
2019, 2020) to the transport of active vector fields.

6. Active barrier equations for momentum and vorticity

We now derive material barrier equations for different active vector fields. In each case,
the instantaneous limits of these equations can directly be obtained by replacing F t

t0 with
the identity map and omitting the averaging operation in time.

6.1. Barriers to linear momentum transport
Setting f := ρu, we can rewrite (2.1) as

Df
Dt

= ∇ · T vis − ∇p + q − Dρ
Dt

u, (6.1)

and hence obtain

hvis = ∇ · T vis, hnonvis = −∇p + q − Dρ
Dt

u, (6.2a,b)

for the viscous and non-viscous terms in (2.5). The viscous stress tensor and its divergence
are objective (Gurtin et al. 2013), and hence the hvis function in (6.2a,b) satisfies the
objectivity condition (2.6). Accordingly, the barrier equations (4.1) and (5.1) for the
diffusive transport of linear momentum become

x ′
0 = det ∇F t

t0(F
t
t0)

∗[∇ · T vis], (6.3)

x ′ = ∇ · T vis. (6.4)

Specifically, in the case of incompressible Navier–Stokes flows with kinematic viscosity
ν, we have the constitutive law ∇ · T vis = νρΔu in the general momentum equation (6.1);
we also observe that det ∇F t

t0 ≡ 1 holds by incompressibility. We then obtain the following
result.

THEOREM 6.1. For incompressible, uniform-density Navier–Stokes flows, the material
and instantaneous barrier equations (6.3) and (6.4) for linear momentum take the specific
forms

x ′
0 = νρ(F t

t0)
∗Δu, (6.5)

x ′ = νρΔu. (6.6)

Each of (6.5) and (6.6) defines a 3-D, autonomous (or steady) dynamical system with
respect to the time-like variable s ∈ R, and hence can be analysed via tools developed
for steady flows in the chaotic advection literature (Aref et al. 2017). For the purpose
of finding active transport barriers, all the relevant information about the unsteadiness
of u(x, t) over the time interval [t0, t1] is encoded into (6.5) through the pullback and
the temporal averaging operations. The instantaneous version (6.6) of these equations
only contains the physical time t as a parameter; it is, therefore, also a steady ordinary
differential equation (ODE) with respect to the variable s parametrizing its streamlines.
Both dynamical systems in (6.5) and (6.6) are volume preserving because Δu is divergence
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905 A17-12 G. Haller and others

free for incompressible flows. Therefore, the three possible active barrier geometries
arising from the analysis of these barrier equations are those shown in figure 3.

In order to solve for trajectories of (6.5) accurately over a domain U with boundary ∂U,
one must be aware of any special boundary condition that bt1

t0(x0)may have to satisfy along
∂U. We assume for simplicity that u(x, t) is incompressible and ∂U is a no-slip boundary.
Then, after projecting the Navier–Stokes equation (2.1) at a point x ∈ ∂U onto a local
orthogonal basis (e1, e2, e3), with e3 normal to the wall, we obtain

⎛
⎝0

0
0

⎞
⎠ = ν

⎛
⎝ 0

0
Δu · e3

⎞
⎠+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
q − 1

ρ
∇p
)

· e1(
q − 1

ρ
∇p
)

· e2(
q − 1

ρ
∇p
)

· e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.7)

Therefore, if the wall-normal pressure gradient balances out the external body forces
along ∂U (as is often assumed in computational fluid dynamics (CFD) simulations),
then Δu satisfies a no-penetration boundary condition along the no-slip boundary ∂U,
because Δu · e3 must vanish at each boundary point by (6.7). Given that such a boundary
∂U is invariant under the flow map F t

t0 , we obtain that the pullback of Δu under the
flow map must also be tangent to the boundary. Consequently, any no-slip boundary ∂U
with a vanishing boundary-normal resultant force is an invariant manifold for the barrier
equations (6.5) and (6.6).

6.2. Barriers to angular momentum transport
To analyse angular momentum barriers, we take the cross-product of eq. (2.1) with a
vector r = x − x̂, where x̂ ∈ U marks a fixed reference point. Setting then f := r × ρu,
we obtain an evolution equation for f in the form

Df
Dt

= (x − x̂)× Dρ
Dt

u − (x − x̂)× ∇p + (x − x̂)× q + (x − x̂)× ∇ · T vis, (6.8)

implying

hvis = (x − x̂)× ∇ · T vis, hnonvis = (x − x̂)×
[
−∇p + q + Dρ

Dt
u
]
, (6.9a,b)

for the viscous and non-viscous terms in (2.5). Under a frame change of the form (2.3),
this hvis satisfies

hvis = (x − x̂)× ∇ · T vis = Q(t)( y − ŷ)× Q(t)∇̃ · T̃ vis = ( y − ŷ)× ∇̃ · T̃ vis = h̃vis,

(6.10)

where we have used the objectivity of ∇ · T vis. We conclude from (6.10) that the
objectivity condition (2.6) is satisfied for this choice of f , and hence our formulation is
applicable. We, therefore, obtain, as in the case of linear momentum, the following result.

THEOREM 6.2. For incompressible, uniform-density Navier–Stokes flows, the material
and instantaneous barrier equations (4.1) and (5.1) for angular momentum take the
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Objective barriers to active transport 905 A17-13

specific form

x ′
0 = νρ (F t

t0)
∗[(x − x̂)× Δu], (6.11)

x ′ = νρ (x − x̂)× Δu. (6.12)

These equations again define 3-D, steady, volume-preserving dynamical systems with
respect to the time-like independent variable s ∈ R. As in the case of barriers to the
transport of linear momentum, we find that in the presence of zero boundary-normal
resultant force, (6.8) implies any no-slip boundary ∂U to be an invariant manifold for
the two dynamical systems in (6.11) and (6.12).

6.3. Barriers to vorticity transport
To obtain the evolution equation for the active vector field f := ω, we divide (2.1) by
ρ, take the curl of both sides and use the relation ∇ × ∇p = 0 to obtain the general
vorticity-transport equation

Df
Dt

= (∇u)f − (∇ · u)f + 1
ρ2

∇ρ × ∇p + ∇ ×
(

1
ρ

q
)

+ ν∇ ×
(

1
ρ

∇ · T vis

)
. (6.13)

Consequently, our general formulation (2.5) applies with

hvis = ν∇ ×
(

1
ρ

∇ · T vis

)
, hnonvis = (∇u)f − (∇ · u)f + 1

ρ2
∇ρ × ∇p + ∇ ×

(
1
ρ

q
)
.

(6.14a,b)

Following the derivation of the transformation formula for vorticity under an observer
change (2.3) (see, e.g., Truesdell & Rajagopal 2009), we obtain that hvis = Q(t)h̃vis.
Therefore, the objectivity condition (2.6) is satisfied for this choice of f , and hence our
formulation is applicable. The barrier equations (4.1) and (5.1) for diffusive vorticity
transport then become

x ′
0 = ν det ∇F t

t0(F
t
t0)

∗
[
∇ ×

(
1
ρ

∇ · T vis

)]
, (6.15)

x ′ = ν∇ ×
(∇ · T vis

ρ

)
. (6.16)

Specifically, as in the case of linear and angular momentum barriers, we obtain the
following result.

THEOREM 6.3. For incompressible, uniform-density Navier–Stokes flows, the material
and instantaneous barrier equations (6.3) and (6.16) for vorticity take the specific form

x ′
0 = ν (F t

t0)
∗Δω, (6.17)

x ′ = νΔω. (6.18)

As in the case of the linear and angular momenta, the active barrier equations (6.17)
and (6.5) define 3-D, autonomous, volume-preserving dynamical systems with respect to
the time-like, evolutionary variable s ∈ R, and hence can be analysed by adopting tools
available such equations (see § 8).
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905 A17-14 G. Haller and others

As for boundary conditions for trajectories of the (6.17) along a no-slip boundary ∂U
in the incompressible case with ρ0(x) ≡ 1, the vorticity-transport equation along the wall
∂U takes the form⎛

⎜⎜⎜⎜⎜⎝

(
D
Dt

ω

)
· e1(

D
Dt

ω

)
· e2

0

⎞
⎟⎟⎟⎟⎟⎠ = ν

⎛
⎝Δω · e1

Δω · e2
Δω · e3

⎞
⎠Δω +

⎛
⎝∇ × q · e1

∇ × q · e2
∇ × q · e3

⎞
⎠ , (6.19)

with the vectors ei defined as in formula (6.7). Consequently, whenever the curl of
non-potential body forces is normal to a no-slip boundary ∂U, the vector field Δω satisfies
a no-penetration boundary condition along ∂U, given that Δω · e3 must then vanish by
(6.19). As we have already noted in relation to formula (6.7), this in turn implies that ∂U
is an invariant manifold for the two flows in (6.17) and (6.18).

7. Active transport barriers in special classes of flows

In order to illustrate the feasibility of the active barriers we have constructed, we
now identify them in classes of explicit Navier–Stokes solutions, with the details of the
calculations relegated to appendices C and D.

7.1. Two-dimensional Navier–Stokes flows viewed as 3-D Navier–Stokes flows with
symmetry

We define the planar variable x̂ = (x1, x2) ∈ R
2 and assume that a solution of the 3-D

incompressible Navier–Stokes equation is of the form

u(x, t) = (û(x̂, t),w(x̂, t)), p(x, t) = p(x̂, t), x = (x̂, x3) ∈ R
3, (7.1a,b)

with the 2-D velocity field û(x̂, t) and the scalar functions w(x̂, t) and p(x̂, t) (see, e.g.,
Majda & Bertozzi 2002). Under this 2-D symmetry ansatz, substitution of u and p into the
3-D Navier–Stokes equation gives

∂tû + (∇ x̂û)û = − 1
ρ

∇ x̂p + νΔx̂û, (7.2)

∂tw + ∇ x̂w · û = νΔx̂w, (7.3)

with the subscript x̂ referring to the 2-D version of the differential operators involved.
Therefore, the symmetry ansatz (7.1a,b) for a 3-D Navier–Stokes solution is valid if
w(x̂, t) is chosen as a solution of the advection–diffusion equation appearing in (7.3).
This advection–diffusion equation, however, coincides with the 2-D vorticity-transport
equation, which is solved by

w(x̂, t) = ω̂(x̂, t), (7.4)

with ω̂(x̂, t) denoting the scalar vorticity field of the 2-D Navier–Stokes solution û(x̂, t).
In the following, we will choose the third component of u as in (7.4) and use the notation

J =
(

0 1
−1 0

)
, (7.5)
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Objective barriers to active transport 905 A17-15

for the 2-D canonical symplectic matrix J . With this notation, we obtain the following
results on active barriers to momentum transport in (7.1a,b).

THEOREM 7.1. For 2-D incompressible, uniform-density Navier–Stokes flows, the
material and instantaneous barrier equations (6.5) and (6.6) for linear momentum are
autonomous Hamiltonian systems of the form

x̂ ′
0 = νρJ∇0ω̂(F̂

t

t0(x̂0), t), (7.6)

x̂ ′ = νρJ∇ω̂(x̂, t), (7.7)

respectively. Therefore, time-t0 positions of material active barriers to linear momentum
transport in these flows are structurally stable level curves of the time-averaged

Lagrangian vorticity ω̂(F̂
t

t0(x̂0), t) viewed as a Hamiltonian. Similarly, instantaneous
active barriers to linear momentum transport at time t are structurally stable level curves
of the vorticity ω̂(x̂, t).

Proof. See appendix C. �

While streamlines in general are not objective, the streamlines of the vorticity ω̂(x̂, t) are

Eulerian objective and streamlines of the time-averaged Lagrangian vorticity ω̂(F̂
t

t0(x̂0), t)
are Lagrangian objective (see Ogden 1984). This is consistent with the more general result
established in (3.12) for the objectivity of all active barriers.

Active barriers to vorticity transport in (7.1a,b) also turn out to be trajectories of
autonomous Hamiltonian systems. To state this result, we will use the notation

δω̂(x̂0, t0, t1) := ω̂(F̂
t1
t0(x̂0), t1)− ω̂(x̂0, t0), (7.8)

for the Lagrangian vorticity-change function along trajectories over the time interval
[t0, t1].

THEOREM 7.2. For 2-D incompressible, uniform-density Navier–Stokes flows, the
material and instantaneous barrier equations (6.17) and (6.18) for linear momentum are
autonomous Hamiltonian systems of the form

x̂ ′
0 = ν

t1 − t0
J∇0 δω̂(x̂0, t0, t1), (7.9)

x̂ ′ = ν J∇ D
Dt
ω̂(x̂, t), (7.10)

respectively. Therefore, time-t0 positions of material active barriers to linear momentum
transport in these flows are structurally stable level curves of the Lagrangian
vorticity-change function δω̂(x̂0, t0, t1) viewed as a Hamiltonian. Similarly, instantaneous
active barriers to linear momentum transport at time t are structurally stable level
curves of the material derivative (D/Dt)ω̂(x̂, t), or equivalently, of the vorticity Laplacian
Δω̂(x̂, t).

Proof. See appendix C. �

While vorticity is not objective, the level curves of the Lagrangian vorticity change
δω̂(x̂0, t0, t1) is objective. This follows directly from the objectivity of the barrier
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905 A17-16 G. Haller and others

equations that we have generally established, but can also be verified directly using the
definition of objectivity.

Remark 7.3. By Theorems 7.1 and 7.2, outermost members of nested families of closed

level curves of ω̂(F̂
t

t0(x̂0), t) or δω̂(x̂0, t0, t1) can be used to define coherent material
vortex boundaries. These are constructed as maximal barriers to momentum or vorticity
transport, depending on whether one isolates coherent vortices based on their role
in momentum or vorticity transport, respectively. Similarly, to locate instantaneous
Eulerian vortex boundaries, one identifies outermost members of nested families of closed
level curves of ω̂(x̂, t) or (D/Dt)ω̂(x̂, t), respectively. These outermost contours give
a clear conceptual meaning to vortex boundaries from an active transport perspective,
but their identification from numerical data tends to be a sensitive process. Instead,
active-transport-minimizing material and instantaneous vortex boundaries can simply
be visualized via LCS detection tools adopted to their appropriate 2-D, steady barrier
equations (7.6) and (7.7) and (7.9) and (7.10) (see § 8).

Example 7.4. We consider the spatially doubly periodic Navier–Stokes flow family
described by Majda & Bertozzi (2002) in the form

û(x̂, t) = e−4π2�νtû0(x̂), p(x̂, t) = e−4π2�νtp0(x̂), (7.11a,b)

û0(x̂) =
∑
|k|2=�

(
akk2 sin(2πk · x̂)− bkk2 cos(2πk · x̂)

−akk1 sin(2πk · x̂)+ bkk1 cos(2πk · x̂)

)
, (7.12a,b)

where û0(x̂) and p0(x̂) solve the steady planar Euler equation for some positive integer �
(this flow family contains our motivating example (A 1a,b) in appendix A with the choice
k1 = 0, � = k2 = 1, a(1,0) = b(1,0) = a(0,1) = 0 and b(0,1) = a if we let x2 → −x2). In that
case, we have

Δu =
(

Δx̂û
Δx̂ω̂

)
=
(−4π2� e−4π2�νtû0(x̂)

Δx̂ω̂(x̂, t)

)
. (7.13)

One can verify by direct substitution that e−4π2�νtû0(F̂
t

t0(x̂0)) is a solution of the equation

of variations ξ̇ = e−4π2�νt∇ x̂û0(x̂(t))ξ (whose fundamental matrix solution is ∇x̂0 F̂
t

t0(x0))
for the differential equation ẋ = e−4π2�νtû0(x̂). As a consequence, we have

[∇ x̂0 F̂
t

t0(x̂0)]−1e−4π2�νtû0(F̂
t

t0(x̂0)) = e−4π2�νt0 û0(x̂0), (7.14)

and hence, by Theorem 7.1, the material and instantaneous barrier equations for linear
momentum take the specific form

x̂ ′
0 = νρ e−4π2�νt0 û0(x̂0),

x ′
03 = νρA(x̂0, t1, t0),

x̂ ′ = νρ e−4π2�νtû0(x̂),

x ′
3 = νρA(x̂, t, t),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.15)

for an appropriate function A(x̂0, t1, t0). Therefore, both material and instantaneous
barriers to linear momentum transport in the 2-D Navier–Stokes flow family in (7.11a,b)
are structurally stable streamlines of the steady velocity field û0(x̂0).
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As for vorticity barriers in this example, note that

ω̂ = ∂x1 u2 − ∂x2 u1 = −2π� e−4π2�νtω̂0, (7.16)

ω̂0(x̂) =
∑
|k|2=�

ak cos(2πk · x̂)+ bk sin(2πk · x̂). (7.17)

As the steady part of the vorticity field solves the steady planar Euler equation, trajectories
of û(x̂, t) remain confined to the steady streamlines of û0(x̂0). Since these trajectories also
conserve the vorticity ω̂0 of the inviscid limit of the flow, the change in vorticity ω̂(x̂, t)
along trajectories of û(x̂, t) can be written as

δω̂(x̂0, t0, t1) = −2π�(e−4π2�νt1 − e−4π2�νt0)ω̂0(x̂0). (7.18)

Therefore, level curves of the vorticity change along trajectories coincide with those of the
inviscid vorticity ω̂0(x̂0), which are in turn just the streamlines of û0(x̂0). Finally, we have

Δω̂(x̂, t) = 8π3�2e−4π2�νtω̂0(x̂), (7.19)

and hence the level curves of Δω̂(x̂, t) also coincide with those of û0(x̂).
We conclude that both material and instantaneous active barriers to vorticity and

linear momentum transport coincide with the streamlines of û0(x̂0). In particular, we
obtain the correct active barrier distributions that we inferred for our motivational 2-D
channel-flow example in figure 1 (see (A 1a,b) in appendix A), which is part of the solution
family (7.11a,b). Importantly, we obtain the same frame-indifferent conclusion about
active barriers from any finite-time (or even instantaneous) analysis of the velocity field
(7.11a,b).

7.2. Directionally steady Beltrami flows
Virtually all explicitly known, unsteady solutions of the 3-D incompressible
Navier–Stokes equations satisfy the strong Beltrami property

ω(x, t) = k(t)u(x, t) (7.20)

for some scalar function k(t) (see Majda & Bertozzi 2002). By definition, for any such
incompressible strong Beltrami flow, we obtain

Δω = ∇(∇ · ω)− ∇ × (∇ × ω) = −k3u,

Δu = 1
k
Δω = −k2u.

⎫⎬
⎭ (7.21)

Recall that if a steady Euler flow is non-Beltrami, then it is integrable (Arnold &
Keshin 1998). Therefore, only velocity fields satisfying the Beltrami property can generate
complicated particle dynamics in steady, inviscid flows.

We call an unsteady strong Beltrami flow with velocity field u(x, t) a directionally
steady Beltrami flow if

u(x, t) = α(t)u0(x), ω(x, t) = ∇ × u(x, t) = k(t)α(t)u0(x), (7.22a,b)

hold for some continuously differentiable scalar function α(t). Note that any steady
strong Beltrami flow u0(x) (which necessarily admits k(t) ≡ k = const.) solves the
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steady Euler equation and generates a directionally steady Beltrami solution u(x, t) =
exp(−νk2t)u0(x) for the unsteady Navier–Stokes equation under conservative forcing
(Majda & Bertozzi 2002).

For all directionally steady Beltrami flows, we obtain the following simple result on
active transport barriers.

THEOREM 7.5. Both material and instantaneous active barriers to the diffusive transport
of linear momentum and vorticity in directionally steady Beltrami flows coincide exactly
with structurally stable, 2-D invariant manifolds of the steady component u0(x) of the
velocity field. These in turn coincide with 2-D invariant manifolds of u(x, t) defined in
(D 1a,b).

Proof. See appendix D. �

Theorem 7.5 shows that invariant manifolds for the Lagrangian particle motion in
directionally steady Beltrami flows coincide with material and instantaneous active
barriers to linear momentum and vorticity transport. This agrees with one’s intuition:
observed mass-transport barriers in these flows are expected to coincide with barriers to
vorticity and momentum transport, given that momentum and vorticity are scalar multiples
of each other. Remarkably, as in the case of 2-D flows analysed in the previous section,
the exact barriers emerge from our analysis independently of the choice of the finite-time
interval [t0, t1], including the case of instantaneous extraction with t0 = t1.

Remark 7.6. In view of Theorem 7.5, when viewed as transport barriers to momentum
and vorticity, both Lagrangian and Eulerian coherent vortex boundaries in directionally
steady Beltrami flows coincide with outermost members of nested families of invariant tori
identified from purely advective mixing studies (see, e.g., Dombre et al. 1986 and Haller
2001). This is in line with the expectation we stated earlier that the outermost members
of a family of non-filamenting, closed material surfaces will also be outermost barriers to
diffusive transport.

Example 7.7. Examples of directionally steady Beltrami flows include the Navier–Stokes
flow family (Ethier & Steinman 1994)

u(x, t) = e−νd2tu0(x), u0(x) = −a

⎛
⎜⎝

eax1 sin(ax2 ± dx3)+ eax3 cos(ax1 ± dx2)

eax2 sin(ax3 ± dx1)+ eax1 cos(ax2 ± dx3)

eax3 sin(ax1 ± dx2)+ eax2 cos(ax3 ± dx1)

⎞
⎟⎠ ,

(7.23a,b)

and the viscous, unsteady version of the classic Arnold–Beltrami–Childress (ABC) flow
u0(x) (Dombre et al. 1986), given by

u(x, t) = e−νtu0(x), u0(x) =
⎛
⎝A sin x3 + C cos x2

B sin x1 + A cos x3

C sin x2 + B cos x1

⎞
⎠ . (7.24a,b)

All lengths in these examples are non-dimensional. Further examples of 3-D, unsteady but
directionally steady Beltrami solutions are derived by Barbato, Berselli & Grisanti (2007)
and Antuono (2020).
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FIGURE 4. Three non-objective diagnostics ((a) sectional streamline plots, (b) the vorticity
norm and (c) the Q-parameter) for the unsteady ABC flow (7.24a,b) with A = √

3, B = √
2

and C = 1, at time t = 0. All three plots remain the same for all times, because the velocity field
is directionally steady. Also shown in (d) are three objective, active Poincaré maps computed
for the associated barrier equations. The Lagrangian and Eulerian barrier equations for this flow
are given by x′

0 = u0(x0) by Theorem 7.5, both for momentum and vorticity. Black dots on
the active Poincaré sections indicate repeated return locations of barrier trajectories launched
from the same section. Intersections of 2-D, toroidal transport barriers with the three Poincaré
sections are visible as invariant curves of these Poincaré maps. Outermost members of these
torus families define objective coherent vortex boundaries.

For all these flows, Theorem 7.5 guarantees that all material and instantaneous active
barriers to diffusive momentum and vorticity transport coincide with structurally stable,
2-D invariant manifolds of the flow generated by the steady velocity field u0(x). Such
manifolds can be captured via their intersections with Poincaré sections, with these
intersections appearing as invariant curves of the associated Poincaré map, as first
illustrated by Dombre et al. (1986) for one cross-section of the ABC flow. A more complete
set of Poincaré maps along three orthogonal planes is shown in the figure 4(d), which
reveals several families of 2-D invariant tori, appearing as spatially periodic cylinders.

As discussed in Remark 7.6, these torus families form objectively defined coherent
vortices, with each torus acting as an internal barriers to both momentum and vorticity
transport within the vortex. Outermost members of these torus families provide objective,
active-transport-based coherent vortex boundaries. By their invariance under the flow
map, they remain perfectly coherent under advection. For comparison, we also show in
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905 A17-20 G. Haller and others

figure 4 other common Eulerian diagnostics applied to this flow: sectional streamlines
(computed from velocities projected onto the three faces of the cube at time t = 0);
vorticity levels for u(x, t) at t = 0; and levels of the parameter Q = |W |2 − |S|2 at t = 0,
with the spin tensor W and the rate-of-strain tensor S defined as

W = 1
2 [∇u − (∇u)T], S = 1

2 [∇u + (∇u)T]. (7.25a,b)

The Q > 0 region is often used to define vortices, and hence the white level sets are
considered vortex boundaries by the Q-criterion of Hunt, Wray & Moin (1988). The
structures appearing in the latter three plots change under an observer change and do not
remain invariant under advection by the flow map.

Further studies revealing the same invariant manifolds in the steady ABC flow using
finite-time Lyapunov exponents (FTLE) and the polar rotation angle (PRA) were given
by Haller (2001) and Farazmand & Haller (2016), each emphasizing different classes of
barriers from the complete collection revealed in figure 4. The FTLE and the PRA are
generally usable structure detection tools along any cross-section of an unsteady flow,
whereas Poincaré maps are only defined for trajectories returning to the same cross-section
of a steady or time-periodic flow. In the next section, we will also show the passive FTLE
and PRA plots computed for the ABC flow (7.24a,b), as well as active versions of the
FTLE and PRA applied to the barrier equations of the ABC flow over the same time
interval.

8. Practical implementation of active barrier identification

Here we discuss the computation of the barrier equations for momentum and vorticity
from velocity data sets. In addition, we introduce dynamically active versions of three
simple LCS techniques that can be used to extract active transport barrier surfaces. While
these LCS diagnostics enable a quick visualization of active barriers in an objective
fashion, the more advanced LCS methods we cited in the Introduction are also directly
applicable to the barrier equations.

8.1. Computation from highly resolved numerical data
All applications of our main results in Theorems 6.1–6.3 require the analysis of the
associated 3-D autonomous, divergence-free dynamical systems that depend on the
Laplacian of u(x, t) for momentum-transport barriers, or on the Laplacian of ω(x, t) for
vorticity-transport barriers. In direct numerical simulations (DNS) of the Navier–Stokes
equation, the required Laplacians can be computed spectrally with high accuracy, as our
numerical results in § 9.2 will illustrate. With these Laplacians at hand, one proceeds to
find invariant manifolds of the barrier equations in Theorems 6.1–6.3, which invariably
involves computing trajectories of these equations. In generating these trajectories
numerically, it is usually helpful to omit the (small) viscosity ν from the right-hand sides
of the barrier equations to speed up the simulation. This omission of ν is equivalent to
a rescaling of the time-like variable s in the barrier equations, which does not alter the
trajectories of these autonomous differential equations.

For 2-D incompressible Navier–Stokes flows, Theorems 7.1 and 7.2 show the relevant
barrier equations to be computed. The right-hand sides of these equations are autonomous
Hamiltonian vector fields whose trajectories coincide with the level curves of the
corresponding Hamiltonians. Strictly speaking, therefore, the numerical solution of these
barrier equations can be avoided by simply plotting the level curves of their Hamiltonians,
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Objective barriers to active transport 905 A17-21

which can be computed by finite differencing the velocity field (but see also Remark 7.3
in § 7.1).

8.2. Computation from experimental or lower-resolved numerical data
Taking second and third spatial derivatives of a velocity field obtained from an already
finalized numerical simulation or experiment is challenging. An alternative is to work with
the original material derivatives arising in our definition of active transport, rather than
with the Laplacians of the velocity and the vorticity. More specifically, if we let a(x, t) =
(Du/Dt)(x, t) denote the Lagrangian particle acceleration along fluid trajectories, then
using the general momentum equation (2.1), the active barrier equations (6.3) and (6.4)
for the linear momentum can be rewritten as

x ′
0 = det ∇F t

t0(F
t
t0)

∗[ρa + ∇p − q], (8.1)

x ′ = ρa + ∇p − q. (8.2)

These equations involve the Lagrangian acceleration, a(x, t), which can be obtained from
high-resolution numerical or experimental data via the temporal differentiation of the
velocity vector along trajectories.

Similarly, the most general active barrier equations (6.15) and (6.16) for vorticity can be
rewritten as

x ′
0 = det ∇F t

t0(F
t
t0)

∗∇ ×
[

a + 1
ρ
(∇p − q)

]
, (8.3)

x ′ = ∇ ×
[

a + 1
ρ
(∇p − q)

]
. (8.4)

In particular, for incompressible, constant-density, Newtonian fluids subject only to
potential body forces, the material and instantaneous barrier equations for vorticity in
(8.3) and (8.4) simplify to

x ′
0 = (F t

t0)
∗∇ × a, (8.5)

x ′ = ∇ × a, (8.6)

given that ∇ × [(1/ρ)(∇p − q)] = (1/ρ)∇ × [∇p − q] ≡ 0 holds for such flows.

8.3. Passive vs. active Poincaré maps
Passive Poincaré maps for 3-D steady flows map initial conditions of trajectories launched
from a selected 2-D section to their first return to the section, if such a return exists.
We refer to a Poincaré map computed for the 3-D steady barrier equations (4.1) or (5.1)
as active Poincaré map (see figure 4 for an example). This 2-D mapping generally does
not preserve the standard 2-D area, but preserves a general area form, which makes the
active Poincaré map a 2-D symplectic map (Meiss 1992). One-dimensional invariant
curves of 2-D symplectic maps satisfy the only available formal definition of advective
transport barriers by MacKay et al. (1984), as we noted in the Introduction. Structurally
stable invariant curves of 2-D symplectic maps include stable and unstable manifolds
of hyperbolic fixed points and Kolmogorov–Arnold-Moser curves, i.e. nested families of
closed curves satisfying non-resonance and twist conditions (Arnold 1978).
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In contrast to active Poincaré maps, the mapping relating subsequent returns of
trajectories to a selected section in the general unsteady velocity field u(x, t) is not well
defined as a single Poincaré map. Rather, this map will be different for different initial
times t0. Therefore, passive Poincaré maps are generally inapplicable to LCS detection
in u(x, t), whereas active Poincaré maps are well defined on barrier-equation trajectories
that return to a cross-section. In case they do not, the active versions of the FTLE and
PRA fields introduced next provide alternative tools to uncover structurally stable invariant
manifolds in the barrier equations.

8.4. Passive FTLE vs. active FTLE (aFTLE)
We fix a time interval [t0, t1] over which we would like to identify LCSs as coherent
material surfaces in the advective transport induced by the unsteady velocity field u(x, t).
With the notation of § 2, the right Cauchy–Green strain tensor C t1

t0(x0) is defined as

C t1
t0(x0) := [∇F t1

t0(x0)]T∇F t1
t0(x0), (8.7)

with the superscript T referring to the transpose. Then, if λmax(C t1
t0) denotes the maximal

eigenvalues of the symmetric, positive definite tensor C t1
t0 , then the (passive) FTLE field

of u(x, t) over the [t0, t1] time interval is defined as

FTLEt1
t0(x0) = 1

2(t1 − t0)
log λmax(C t1

t0(x0)). (8.8)

Two-dimensional ridges of FTLEt1
t0(x0) are quick indicators of the time t0 locations

of hyperbolic LCS. They signal locally most repelling material surfaces when t1 > t0
and locally most attracting material surfaces when t1 < t0. Valleys of FTLEt1

t0(x0) tend
to indicate elliptic (vortical) LCSs, whereas trenches of FTLEt1

t0(x0) signal parabolic
(jet-type) LCSs. The minimal and maximal value of t0 and t1 are governed by the length
of the available data and the scales relative to which we wish to determine the LCSs in the
flow. The flow-map gradient involved in the definition of λmax(C t1

t0(x0)) can be computed
by finite differencing a set of trajectories, launched from a regular grid of initial conditions,
with respect to those initial conditions. The FTLEt1

t0(x0) is a simple but objective LCS
diagnostic, with its strengths and limitations reviewed in Haller (2015).

For t1 = t0 ≡ t, the instantaneous of limit of the FTLE field is the maximal rate-of-strain
eigenvalue

FTLEt
t(x) = λmax(S(x, t)), (8.9)

with the rate-of-strain tensor S(x, t) defined in (7.25a,b), as noted by Serra & Haller (2016)
and Nolan, Serra & Ross (2020). This eigenvalue field can, in principle, be used to detect
objective Eulerian coherent structures (OECS) as instantaneous limits of LCS. In practice,
the field FTLEt

t(x) often provides insufficient spatial detail, but the eigenvector field of
S(x, t) can be used to define and extract OECS (see Serra & Haller 2016).

In contrast to passive FTLE, by active FTLE (aFTLE) we mean here the implementation
of the FTLE diagnostic on the steady material barrier equation (4.1), including its steady
instantaneous version (5.1). We again select a physical time interval [t0, t1] over which we
would like to locate barriers to the active transport of the vector field f (x, t) in the velocity
field u(x, t). Let x̃0(s; 0, x0) denote the trajectory of the barrier ODE (4.1) starting at the
dummy time s = 0 from the initial location x0. The corresponding autonomous flow map
for this barrier ODE will be denoted by the active flow map F s

t0,t1 : x0 �→ x̃0(s; 0, x0).
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The associated active Cauchy–Green strain tensor for the barrier equation (4.1) can then
be defined as

Cs
t0,t1(x0) := [∇F s

t0,t1(x0)]T∇F s
t0,t1(x0). (8.10)

Again, if λmax(Cs
t0,t1) denotes the maximal eigenvalue of the symmetric, positive definite

tensor Cs
t0,t1 , then the aFTLE field of u(x, t) over the [t0, t1] time interval, with respect to

the vector field f (x, t), is defined as

aFTLEs
t0,t1(x0; f ) = 1

2s
log λmax(Cs

t0,t1(x0)). (8.11)

Here the time-like parameter s governs the level of accuracy and spatial resolution in the
visualization of active transport barriers. The only limitation to the choice of s is that the
trajectories of the barrier equation (4.1) may ultimately leave the spatial domain U over
which the barrier equation is known. This is, however, unrelated to the physical time that
the trajectories of u(x, t) spend in the domain U.

For instance, in our 2-D turbulence simulation to be analysed in § 9.1, the maximal
possible spatial detail for LCS from FTLEt1

t0(x0) is limited by the length of the time
interval [t0, t1] = [0, 50], given that this is the temporal length of the available data set.
In contrast, on the same data set, aFTLEs

t0,t1(x0; f ) can be computed for arbitrarily large
|s|, because the barrier vector field is known globally for U = R

2. Similarly, in our 3-D
turbulent channel-flow example in § 9.2, trajectories of the barrier equation tend to stay
in the finite channel domain for much longer (non-dimensional) dummy times than the
non-dimensional residence time of fluid trajectories in the same channel.

As a consequence, aFTLE has the potential to provide much finer spatial detail for
active barriers than one is able to obtain for LCSs in the same data set from the passive
FTLE. Figure 5 shows this substantial refinement obtained from the vorticity-based aFTLE
relative to the passive FTLE computed over the same time interval [t0, t1] = [0, 5] for
the unsteady ABC flow (7.24a,b). (For this particular flow, the linear-momentum-based
aFTLE and aPRA would give identical results by Theorem 7.5.) In addition, aFTLE
is always guaranteed to converge under increasing s, as illustrated in figure 5, while
the convergence of FTLEt1

t0(x0) is generally not guaranteed in an unsteady flow with
time-varying structures.

The t1 = t0 ≡ t limit of the aFTLE field in (8.11) is

aFTLEs
t,t(x; f ) = 1

2s
log λmax(Cs

t,t(x)). (8.12)

Here, Cs
t,t(x) is simply computed from the autonomous flow map F s

t,t(x) of the
instantaneous barrier equation (5.1), with the instantaneous time t playing the role of a
constant parameter in the computation. Again, the time-like evolutionary variable s in
this computation can be arbitrarily large in norm, as long as the trajectories generated
by the barrier flow map F s

t,t(x) stay in the domain U over which the barrier vector field
bt

t(x) is known. This guarantees convergence and higher resolution in the detection of
instantaneous objective barriers from aFTLEs

t,t(x; f ) when compared with FTLEt
t(x). The

only practical limitation to resolving the details of active barriers via aFTLE is the spatial
resolution of the available data.
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FIGURE 5. Passive and vorticity-based active versions of the FTLE and PRA diagnostics for
the unsteady ABC flow (7.24a,b), computed over the same time interval ([t0, t1] = [0, 5])
and with the same spatial resolution (3003 grid points in the spatial domain [0, 2π]3):
(a) FTLE5

0(x0), (b) aFTLE10
0,5(x0; ω), (c) aFTLE15

0,5(x0; ω), (d) PRA5
0(x0), (e) aPRA15

0,5(x0; ω)

and ( f ) aPRA50
0,5(x0; ω). Two values for the barrier time s were selected to illustrate the

increasing spatial resolution and convergence of hyperbolic barriers by the aFTLE and of elliptic
barriers by the aPRA under increasing s-times. With the exception of the passive PRA, all
diagnostics shown here are objective.

8.5. Passive PRA vs. active PRA (aPRA)
By the polar decomposition theorem Gurtin et al. (2013), the deformation gradient
∇F t1

t0(x0) can be uniquely decomposed as

∇F t1
t0 = Rt1

t0 U
t1
t0, (8.13)

with the proper orthogonal rotation tensor Rt1
t0, the symmetric and the positive definite

right stretch tensor U t1
t0 . The decomposition (8.13) means that a general deformation can

locally always be viewed as triaxial stretching and compression followed by a rigid-body
rotation. One can verify by direct substitution into (8.13) that Rt1

t0 and U t1
t0 must be of the

form

U t1
t0 = [C t1

t0 ]
1/2, Rt1

t0 = ∇F t1
t0 [U

t1
t0 ]

−1, (8.14a,b)

with C t
t0 defined in (8.7). The first equation in (8.14a,b) shows that U t

t0 can be computed
using the singular-value-decomposition of C t

t0 . With U t1
t0 at hand, one can compute the

rotation tensor Rt1
t0 from the second equation of (8.14a,b).
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Farazmand & Haller (2016) show that Rt1
t0(x0) rotates material elements around an axis

of rotation by the polar rotation angle satisfying

PRAt1
t0(x0) = cos−1 [ 1

2(tr Rt1
t0(x0)− 1)

] = cos−1

[
1
2

(
3∑

i=1

〈ξ i(x0), ηi(x0)〉 − 1

)]
, (8.15)

with ξ i(x0) and ηi(x0) denoting the right and left singular vectors of ∇F t
t0(x0). For 2-D

flows viewed as 3-D flows with a symmetry, the intermediate eigenvalue of C t
t0 is always

one, which simplifies PRAt1
t0(x0) to

PRAt1
t0(x0) = cos−1〈ξ 1(x0), η1(x0)〉 = cos−1〈ξ 2(x0), η2(x0)〉, x0 ∈ R

2. (8.16)

Farazmand & Haller (2016) propose PRAt1
t0(x0) as a diagnostic tool for elliptic

(rotational) LCS. They find that nested circular or toroidal level sets of PRAt1
t0(x0)

indeed highlight elliptic LCS significantly sharper than FTLE valleys do. They also
show, however, that these level sets are only objective for 2-D flows. Similarly to FTLE
calculations for u(x, t), the spatial scales resolved by the passive PRA in 2-D flows are
limited by the length of the time interval [t0, t1]. For 3-D flows, an additional limitation of
the PRA is the non-objectivity of its level surfaces. The instantaneous limit t0 = t1 ≡ t of
the PRA gives PRAt

t(x) ≡ 0, and hence this diagnostic is unable to detect instantaneous
limits of elliptic OECS.

In contrast, using the active rotation tensor

Rs
t0,t1 = ∇F s

t0,t1 [Cs
t0,t1 ]

−1/2, (8.17)

the corresponding active PRA (aPRA) is obtained in three dimensions as

aPRAs
t0,t1(x0; f ) = cos−1

[
1
2(tr Rs

t0,t1(x0)− 1)
]
=cos−1

[
1
2

(
3∑

i=1

〈ξ a
i (x0), η

a
i (x0)〉 − 1

)]
,

(8.18)
with ξ a

i (x0) and ηa
i (x0) denoting the right and left singular vectors of the active

deformation gradient ∇F s
t0,t1 . For 2-D flows, the corresponding formula is

aPRAs
t0,t1(x0; f ) = cos−1〈ξ a

1(x0), η
a
1(x0)〉 = cos−1〈ξ a

2(x0), η
a
2(x0)〉, x0 ∈ R

2. (8.19)

Unlike for the passive PRA defined in (8.15), the spatial scales resolved by the aPRA
can be gradually refined by increasing the time-like parameter s in aPRAs

t0,t1 . As in the case
of the aFTLE, this increase is possible as long as the underlying trajectories x̃0(s; 0, x0)
of the barrier equation for f stay in the spatial domain U where u(x, t) is known. As for
aFTLE, the spatial resolution of the active barriers discoverable by aPRA is only limited by
the resolution of the available velocity data. Figure 5 illustrates the substantial refinement
and convergence for increasing s-values obtained from aPRA relative to the passive PRA
computed over the same time interval [t0, t1] = [0, 5] for the unsteady ABC flow (7.24a,b).

Another major advantage of aPRAs
t0,t1 over PRAt1

t0 is the objectivity of aPRAs
t0,t1 , which

follows from the objectivity of the barrier vector field bt1
t0(x0). Additionally, structures

revealed by aPRAs
t0,t1 always converge as s is increased, because aPRAs

t0,t1 operates on
a steady flow, even though u(x, t) is unsteady. Finally, unlike PRAt1

t0(x0), its active
version, aPRAs

t0,t1 , has a non-degenerate instantaneous limit, aPRAs
t,t(x; f ), which is just
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905 A17-26 G. Haller and others

the PRA computed for the Eulerian barrier equation (5.1) over the barrier time interval
[0, s]. This limit enables the detection of instantaneous limits of active elliptic LCSs as
active elliptic OECSs.

8.6. Relationship between active and passive LCS diagnostics
Active LCS diagnostics are applied to barrier vector fields, whereas passive LCS
diagnostics are applied to the underlying velocity field. As a consequence, active barriers
highlighted by active LCS methods generally differ from passive barriers (coherent
structures) detected by passive LCS methods. This is no surprise, given that these two
types of barriers are constructed from different principles.

As an extreme case, all Eulerian and Lagrangian active barriers coincide with their
passive counterparts in directionally steady Beltrami flows (see § 7.2). Therefore, the
closer a generic flow is to a Beltrami flow in a given region, the closer its active and passive
barriers will be to each other in that region. More broadly, the more correlated the velocity
field is with its Laplacian (i.e. with the diffusive force field), the closer the Lagrangian and
Eulerian momentum barriers are expected to be to their passive counterparts. Similarly, the
more correlated the velocity field is with the vorticity Laplacian (i.e. with the curl of the
diffusive force field), the closer the Lagrangian and Eulerian vorticity barriers will be to
their passive counterparts.

As another extreme case, inviscid flows have barrier equations with identically
vanishing right-hand sides. This is because there is no viscous transport in such flows
and hence active barriers are not well defined. As a consequence, aFTLE and aPRA will
identically vanish for such flows, while passive FTLE and PRA will only vanish if the
inviscid flow has a spatially independent velocity field. Therefore, the more inviscid the
flow is in a region, the more its active and passive barriers will differ from each other in
that region.

A notable case between Beltrami and inviscid flows is a Lamb–Oseen velocity field
modelling a vortex decaying due to viscosity (Saffman et al. 1992). Along each cylindrical
streamsurface surrounding the origin in this flow, the viscous force is a constant negative
multiple of the velocity at any given time. This immediately implies that all Eulerian active
and passive barriers to momentum transport coincide with the cylindrical streamsurfaces
of Lamb–Oseen vortices, even though their velocity field is not Beltrami. Indeed, we
do find in our upcoming 2-D and 3-D turbulence examples that strong enough vortices
have very similar overall signatures in the active and the passive LCS diagnostic fields,
with the former field providing more detail. This stands in contrast to hyperbolic mixing
regions outside those vortices, in which active and passive LCS diagnostics may differ
substantially.

9. Active barriers in specific unsteady flows

In this section, we illustrate the numerical implementation of our results and the use
of active LCS diagnostics (see § 8) on 2-D homogeneous, isotropic turbulence and a
3-D turbulent channel flow. The scripts we have used to compute active barriers in these
examples can be downloaded from https://github.com/LCSETH?tab=repositories.

9.1. Two-dimensional homogeneous, isotropic turbulence
Here we evaluate our 2-D results from § 7.1 on active barriers in a 2-D turbulence
simulation over a spatially periodic domain U = [0, 2π] × [0, 2π]. Since all computations
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will be 2-D in this section, we drop the hat from the notation we used in § 7.1 for 2-D
variables.

Obtained from a pseudo-spectral code applied to the 2-D, incompressible Navier–Stokes
equation (see Farazmand, Kevlahan & Protas 2011), the spatial coordinates are resolved
using 10242 Fourier modes with 2/3 dealiasing. The viscosity is ν = 2 × 10−5. This
data set comprises 251 equally spaced velocity field snapshots spanning the time interval
[0, 50]. Whenever a numerical integration scheme is required, i.e. advection of particles
and integration of the barrier fields, the Runge–Kutta 4 algorithm is employed. The same
data set was already analysed by Katsanoulis et al. (2020), who located vortex boundaries
as barriers to the diffusive transport of vorticity using the theory of constrained diffusion
barriers from Haller et al. (2019). In contrast, here we use appropriate 2-D, steady barrier
equations (7.6) and (7.7) and (7.9) and (7.10) (see also Remark 7.3) to visualize Lagrangian
and objective Eulerian coherent vortices as regions bounded by maximal barriers to active
transport.

9.1.1. Eulerian active barriers
For the instantaneous barrier calculations, we use the first snapshot of the data set at time

t = 0 and we compute the right-hand sides of (7.7) and (7.10) using a grid of 1024 × 1024
points. In our experience, this grid spacing is much smaller than the size of the coherent
vortices in this flow. As a consequence, the results do not change appreciably under further
grid refinements, as long as one targets structurally stable objects in the Lagrangian
particle dynamics, as we do (see Definition 4.1). For vorticity barriers, we use the 2-D
version of (8.6) to illustrate the computational procedure for barriers in lower-resolved
data. We then proceed to compute the aFTLE and aPRA for both the momentum and
vorticity barrier fields from (8.12) and (8.19) using a central finite-differencing scheme for
the active flow-map gradient required in (8.10).

We focus on the region [2.8, 4.9] × [1, 3] of the full computational domain to illustrate
the level of spatial detail we obtain from instantaneous velocity data (see figure 6).
We note the striking differences in the quality of the delineated structures between the
instantaneous limit of the passive FTLE and the momentum-based aFTLE of figure 6.
Advective LCSs tend to have relatively weak signatures in the instantaneous limit
of the FTLE field (see formula (8.9)) which is given by the dominant rate-of-strain
eigenvalue field. In contrast, active barriers remain sharply defined in the aFTLE
fields, which offer increasing refinement of the flow features under increasing s-times.
The only limitation to this refinement is the resolution of the available data. This is
apparent in the vorticity-based aFTLE in figure 6(c), where the improvement is more
modest, given that higher-order spatial derivatives need to be computed from the same
data set.

Figure 7 focuses on momentum-based active barriers in one of the vortical regions
revealed by figure 6. The aFTLE provides a clear demarcation of the main vortex, which
becomes even more pronounced for longer s-times, revealing secondary vortices around
its neighbourhood. In contrast, none of these vortices are present in the passive FTLE
in figure 7. A similar result emerges when the same region is analysed using the aPRA
field in the same figure. Specifically, the effect of progressive refinement with increasing
s-times is more prominent here as a number of elliptic structures become visible in the
main vortical region. In contrast, the instantaneous limit of the passive PRA returns
identically zero values, as the instantaneous limit of all polar rotation angles is zero by
definition.
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FIGURE 6. Comparison of the t = 0 instantaneous limits of the passive FTLE, the aFTLE with
respect to ρu with s = 0.05 and the aFTLE with respect to ω with s = 0.15 in our 2-D turbulence
example: (a) FTLE0

0(x), (b) aFTLE0.05
0,0 (x; ρu) and (c) aFTLE0.15

0,0 (x; ω).
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FIGURE 7. Comparison between the instantaneous limit of the passive FTLE (PRA) and
the instantaneous limit of the momentum-based aFTLE (PRA) fields for s = 0.05 and
for s = 0.15 in one of the vortical regions of our 2-D turbulence example at t = 0:
(a) FTLE0

0(x), (b) aFTLE0.05
0,0 (x; ρu), (c) aFTLE0.15

0,0 (x; ρu), (d) PRA0
0(x), (e) aPRA0.1

0,0(x; ρu)
and ( f ) aPRA0.15

0,0 (x; ρu).

9.1.2. Lagrangian active barriers
For the Lagrangian computations in this example, we use the same, slightly oversampled

grid of Katsanoulis et al. (2020) with 1100 × 1100 equally spaced initial conditions and
we advect them over the time interval [0, 25] using all the available velocity snapshots.
To compute the required Lagrangian averages along trajectories, we use 25 snapshots of
the appropriate quantities as using more snapshots does not bring any noticeable changes
to the resulting barrier fields. Based on that, we compute the expressions for the active
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FIGURE 8. Comparison between the passive FTLE (PRA) and the momentum- and
vorticity-based aFTLE (aPRA): (a) FTLE25

0 (x0), (b) aFTLE0.35
0,25(x0; ρu), (c) aFTLE0.05

0,25(x0; ω),
(d) PRA25

0 (x0), (e) aPRA0.35
0,25(x0; ρu) and ( f ) aPRA0.05

0,25(x0; ω). All computations were
performed over the time interval [t0, t1] = [0, 25] on the domain [2.8, 4.9] × [1, 3].

barrier fields from (7.6) and (7.9), which we then use for the evaluation of the aFTLE and
aPRA.

Comparisons between these scalar diagnostic fields and the passive FTLE and PRA
are shown in figure 8. We observe that the momentum-based aFTLE and aPRA reveal
structures inside the vortical regions in much finer detail, as they do not rely on substantial
fluid particle separation. In agreement with our arguments in § 8.6, aFTLE and aPRA
consistently refine the same coherent vortices indicated by FTLE and PRA. In the mixing
regions surrounding those vortices, however, active and passive LCS diagnostics tend to
identify different barriers. As in the case of our Eulerian barrier calculations in § 9.1.1, the
vorticity-based aFTLE and aPRA provide a more moderate enhancement, because they
rely on second derivatives of the velocity data.

Next, we illustrate the extraction of active barriers to the transport of momentum and
vorticity as parametric curves. This is possible in 2-D incompressible flows because the
active barrier equations are Hamiltonian, and hence the barriers are level curves of a scalar
function (see Theorems 7.1 and 7.2, as well as Remark 7.3). To perform this extraction,
we follow the method presented in Haller et al. (2016) for the extraction of coherent
Lagrangian vortex boundaries as outermost level sets of the Lagrangian-averaged vorticity
deviation. We will use the notation Ht1

t0 (x0) to denote the relevant Hamiltonian from § 7.1.
The algorithm is the same for all those Hamiltonians, but we will restrict our computations
here to the Hamiltonian governing Lagrangian momentum barriers in two dimensions,
given by Ht1

t0 (x0) = νρ ω(F t
t0(x0), t) (see (7.6)).

In all our computations, we focus on finding almost convex structurally stable level sets
of Ht1

t0 (x0) that encircle a single local maximum of |Ht1
t0 (x0)|. The need for relaxation of

the strict convexity requirement in discrete data sets is discussed extensively in Haller
et al. (2016), so we will skip it here. Along these lines, we introduce the convexity
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Algorithm 1 Coherent Lagrangian and Eulerian vortex boundaries for two-dimensional
flows
Input: A time-resolved two-dimensional velocity field (or a snapshot thereof in the
Eulerian case).

(i) For a grid of initial conditions x0, compute the Ht1
t0 (x0).

(ii) Find local maxima of |Ht1
t0 (x0)|.

(iii) Detect initial vortex boundaries as outermost closed contours of Ht1
t0 (x0) satisfying

the following:
(a) The boundary encircles a local maximum of |Ht1

t0 (x0)|.
(b) The boundary has convexity deficiency less than a bound dmax .
(c) The boundary has arclength exceeding a threshold lmin .

Output: Initial positions of coherent Lagrangian or Eulerian vortex boundaries.

deficiency of a closed curve in the plane as the ratio of the area between the curve and its
convex hull to the area enclosed by the curve, which we denote with dmax . The maximum
dmax we used for the different extracted barriers was 5 × 10−2.

Small-scale local maxima of |Ht1
t0 (x0)| may appear either due to non-accurate resolution

of these scales or because of computational noise. To address this issue, we only
considered boundaries with arclength larger than a threshold lmin . This threshold was set
to 0.4 for all our computations because below this limit, boundaries contain too few grid
points to be considered well resolved.

The main steps of the extraction procedure are delineated in Algorithm 1. All the
MATLAB codes used for the extraction of the barriers of this section can be found at
https://github.com/LCSETH?tab=repositories.

We apply this algorithm to extract an active material barrier to the transport of
momentum with high precision as a parametrized curve. This closed active barrier is
shown in red in figure 9. We also show the impact of this barrier on the momentum
landscape in Eulerian and Lagrangian coordinates, respectively, for the initial and final
times in [0, 25]. Furthermore, for reference, we show an elliptic LCS (black) extracted
as a closed level curve of the passive PRA through a selected point of the active barrier.
As expected from our discussion in § 8.6, these active and passive elliptic barriers are
very close to each other at the initial time and remain equally close during their material
evolution. In the Eulerian frame, we observe that the extracted active and passive barriers
show no sign of filamentation throughout their whole extraction time. This is in agreement
with the general expectation we stated earlier for diffusion-minimizing material curves.
Furthermore, when viewed in the Lagrangian frame, we note the organizing role of the
extracted barrier in the momentum landscape. Indeed, the barrier keeps encapsulating
small values of the momentum norm for the entire extraction time.

Figure 9 also shows the instantaneous viscous force (normalized by ρν) along the
extracted active momentum barrier. Note that this force remains almost tangent to the
barrier for the most part. There are, however, some notable exceptions, illustrating that
these barriers are not constructed to be tangent to the viscous forces at every time instance.
Rather, the viscous forces are tangent to the barriers in a time-averaged sense after being
pulled back under the flow map to the initial configuration.

9.2. Three-dimensional turbulent channel flow
We consider now the 3-D incompressible, turbulent flow of a Newtonian fluid in a doubly
periodic channel, a well-studied physical setting for 3-D coherent structure studies.
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FIGURE 9. Evolution of an extracted active material barrier (red) to the diffusive transport of
momentum in (a) the Eulerian and (b) the Lagrangian frame, superimposed on the distribution of
the norm of the linear momentum. This barrier was identified as a level curve of the Hamiltonian
Ht1

t0 (x0) = νρ ω(F t
t0(x0), t). Black curve indicates an elliptic LCS extracted as a level curve of

the passive PRA, launched from the highlighted point of the active barrier. (c) The instantaneous
viscous forces (normalized by ρν) acting on the evolving barrier.

Our analysis relies on velocity snapshots from a mixed-discretization parallel solver
of the incompressible Navier–Stokes equations in the wall-normal velocity and vorticity
formulation, developed by Luchini & Quadrio (2006). The equations of motion are
discretized via a Fourier–Galerkin approach along the two statistically homogeneous
streamwise (x) and spanwise (z) directions. Fourth-order compact finite differences
(Lele 1992) based on a five-point computational stencil are adopted in the wall-normal
direction ( y).

The governing equations are integrated forward in time at constant power input
(Hasegawa, Quadrio & Frohnapfel 2014) with a partially implicit approach, combining the
three-step, low-storage Runge–Kutta scheme with the implicit Crank–Nicolson scheme
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for the viscous terms. The friction Reynolds number is Reτ = uτh/ν = 200, based on
the friction velocity uτ , the channel half-height h and the kinematic viscosity ν, which
corresponds to a bulk Reynolds number Reb = Ubh/ν = 3177, where Ub is the bulk
velocity. The computational domain is Lx = 4πh long and Lz = 2πh wide. The number
of Fourier modes is 256 both in the streamwise and spanwise direction; the number of
points in the wall-normal direction is 256, unevenly spaced in order to decrease the grid
size near the walls. The corresponding spatial resolution in the homogeneous directions
is Δx+ = 9.8 and Δz+ = 4.9 (without accounting for the additional modes required for
dealiasing according to the 3/2 rule); the wall-normal resolution increases from Δy+ =
0.4 near the walls to Δy+ = 2.6 at the centreline, while the temporal resolution is kept
constant at Δt = 0.005h/Ub, corresponding to Δt+ = 0.063. The superscript + denotes
non-dimensionalization in viscous units, i.e. with uτ and ν. At each DNS time step and
thus with the same temporal resolution, a 3-D flow snapshot is stored for a total of 1500
snapshots. The 750th snapshot in the series is stored at time t = 0. This is the instant
at which we compute the Eulerian barriers to active transport. The last 750 snapshots
are utilized for the computation of the active barriers and passive forward FTLE, while
the first 750 ones are used for calculating the passive backward FTLE. The integration
time for the Lagrangian calculations has been chosen based on pair-dispersion statistics of
Lagrangian tracers (see, for instance, Pitton et al. 2012). The averaging time for the bulk
flow statistics is 8100 Ub/h. In the following, all quantities are non-dimensionalized using
Ub and h unless stated otherwise.

The active barriers are computed in a two-step procedure. First, the active barrier field
bt1

t0(x0), appearing at the right-hand side of the barrier equation (4.1), is computed. Then,
the barrier ODE is solved and visualized via the FTLE and PRA diagnostics. For Eulerian
barriers, the barrier vector field appearing in the instantaneous (or Eulerian) barrier
equation (5.1) is readily computed from the velocity field data as bt

t = hvis. Differentiation
of the velocity field is performed with the same discrete operators used during DNS. For
material barriers, bt1

t0(x0) is simply obtained as the temporal average of (F t1
t0)

∗hvis, because
det ∇F t1

t0(x0) ≡ 1 by incompressibility. In this case, the vector field bt1
t0(x0) is discretized

on a Cartesian grid similar to the one used for the velocity field; the only difference is
that the number of collocation points along the x- and z-directions is increased to 384 via
Fourier interpolation.

At time t0, a set of tracers is seeded in the neighbourhood of each point x0 at which
bt1

t0(x0) needs to be computed. Each set (see figure 10) is composed by 7 tracers. The
central tracer is exactly located at x0 and is the only one along which the vector field hvis is
also computed. The other tracers are shifted by εi along the positive and negative ith spatial
direction and are utilized to compute ∇F t1

t0(x0)with second-order central finite differences.
The shift εi is defined as 1/100 of the minimum grid spacing along the ith spatial direction.
A total of 2.64 × 108 particles are seeded into the flow. The evolving positions of these
tracers, which are images of their initial positions under the flow map F t1

t0 , are advanced
in time by integrating the u field with a third-order, four-stage Runge–Kutta algorithm.
The vector fields u and hvis required at the intermediate stages are obtained via linear
interpolation of two consecutive flow snapshots and are evaluated at the particle position
through a sixth-order, 3-D Lagrangian interpolation (van Hinsberg et al. 2012; Pitton et al.
2012) of the underlying vector field, which reduces to fourth order only between the wall
and the first grid point above it.

Once the (Lagrangian or Eulerian) barrier equation is available, its active flow map
F s

t0,t1 is computed by solving the steady barrier ODE up to s = 31.0 and s = 0.62 for
the momentum and vorticity barriers, respectively. We have chosen these s-times large
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x

z

x0

hvis (x0,t)

hvis (F tt0 (x0),t)

F tt10 (x0)

Tracers utilised to compute 

�

(F tt0 ) at x0 

Tracers at which the barrier field btt0  
is computed

FIGURE 10. Sketch of the computational molecule utilized for the computation of the active
barrier field bt1

t0 . The large circle denotes the Lagrangian tracer at the centre of the molecule,
where the vector field hvis is computed. The cross denotes the further six tracers utilized to
compute ∇F t1

t0 .

enough for the computed barrier trajectories to reveal enough detail in the underlying
barrier vector field but small enough to avoid accumulation of the integration error. The
effect of changing the parameter smax is shown in the additional material Movie 1.mp4 and
Movie 2.mp4 for Eulerian momentum and vorticity barriers, respectively. The seeds for
the flow map are arranged in a Cartesian grid identical to the one of the active barrier
field for 3-D computations of aFTLE/aPRA diagnostics, while the spatial resolution is
increased by a factor 6 when only 2-D slices are computed. The comparison between the
two resolutions has been utilized to verify the grid independence of the results. The aFTLE
and aPRA diagnostics are then computed according to (8.11) and (8.18), respectively.

9.2.1. Eulerian active barriers
Instantaneous aFTLE and aPRA are presented for t = 0 in figures 11 and 12,

respectively, and compared against their passive variants. Even though the results are
computed for the complete 3-D field, only 2-D cross-sections are presented in the
following. In figures 11 and 12, a ( y − z) cross-section located at x = 2πh is shown.
The 3-D visualization of the FTLE and PRA fields poses challenges in its own, which are
subjects of ongoing research in computer visualization (see, e.g., Sadlo & Pikert 2009;
Schindler et al. 2012) and are outside the scope of the present study. The 2-D visualization
in different cross-sections results in different local flow structures which are, nevertheless,
all reminiscent of classically known structures in channel flows. These include low-speed
streaks, quasi-streamwise and hairpin vortices and packets thereof (Robinson 1991). The
supplementary movies 3 and 4 show how figure 11(b,c) change throughout the channel
length.

As already seen for 2-D turbulence in § 9.1, the aFTLE and aPRA highlight a broader
range of structures in more detail from the same velocity data when compared to
their passive variants. (Recall that the instantaneous limit of the passive PRA, in fact,
vanishes identically, and hence reveals no elliptic coherent structures from a single
velocity snapshot.) The Eulerian active barriers revealed by aFTLE and aPRA appear
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FIGURE 11. Comparison between the instantaneous limit of (a,d) the passive FTLE, (b,e) the
aFTLE with respect to ρu and (c, f ) the aFTLE with respect to ω at t = 0 in a cross-sectional
plane at x/h = 2π. The panels (d–f ) magnify the region denoted with a rectangle in panels
(a–c). All computations in the figure were performed on the same snapshot of the velocity field
at t = 0.

in figures 11 and 12 as an abundance of intersections of 2-D surfaces with the selected
cross-section. Limiting to visual inspection, we recognize several open (or hyperbolic)
barriers as ridges of the aFTLE fields. Given the quasi-streamwise nature of turbulent
structures in wall-bounded flows, vortical (or elliptic) barriers to transport are often
observed in cross-sectional planes as aFTLE ridges wrapping around closed regions,
which are also captured as level sets of the corresponding aPRA fields. Example of such
regions are shown in the magnifications of panels (d–f ) in figures 11 and 12.

The results also reveal that large prominent aFTLE ridges penetrate into and span the
bulk flow region, sometimes connecting the channel halves, as visible in 11(b) between
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FIGURE 12. Comparison between the instantaneous limit of (a,d) the passive PRA (which is
identically zero), (b,e) the aPRA with respect to ρu and (c, f ) the aPRA with respect to ω at
t = 0 in a cross-sectional plane at x/h = 2π. The panels (d–f ) magnify the region denoted with
a rectangle in panels (a–c). All computations in the figure were performed on the same snapshot
of the velocity field at t = 0.

3 ≤ z/h ≤ 3.5 and 0.3 ≤ y/h ≤ 1.5. Other regions, such as between 2 ≤ z/h ≤ 3 and
0.5 ≤ y/h ≤ 1.5 in the same figure, display practically no discernible barriers and are
bounded by the envelopes of filamented open (hyperbolic) transport barriers, which are
finite-time generalizations of infinite-time classic stable and unstable manifolds. Unlike in
previous approaches, however, these finite-time invariant manifolds are constructed here
as perfect material barriers to active transport, rather than as LCS acting as backbones of
advected fluid-mass patterns (Haller 2015).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.737


905 A17-36 G. Haller and others

2.8 3.0 3.2 3.4
0

0.2

0.4

0.6

0 2 4

2.8 3.0 3.2 3.4

0 2 4

aFTLE31
0,0

(x;ρu) aFTLE0.62
0,0  

(x;ω)

z/h z/h

y/h

(a) (b)

FIGURE 13. Eulerian active barriers of (a) ρu and (b) ω at t = 0 in a cross-sectional plane
located at x/h = 2π. The colour map shows the respective aFTLE fields, the vectors show the
cross-sectional components of the underlying active barrier field, while the red lines are level-set
curves λ+2 (x, t) = −0.015 of the Eulerian vortex identification criterion proposed by Jeong et al.
(1997).

Figure 13 shows the Eulerian active barrier vector field of (a) ρu and (b) ω superimposed
to the respective aFTLEs already shown in figure 11(e, f ). Level-set curves of the
λ2(x, t) = −0.015 field (Jeong & Hussain 1995), a common visualization tool for coherent
vortical structures in wall-bounded turbulence, are also shown. The scalar field λ2(x, t)
is defined as the instantaneous intermediate eigenvalue of the tensor field S2(x, t)+
W 2(x, t), with S and W defined in (7.25a,b). This choice follows the heuristic convention
to select a λ+

2 value slightly below the negative of the root-mean-square peak of λ2(x, t)
across the channel (Jeong et al. 1997), which is approximately 0.0125 in our case.

Compared to the passive material barriers shown in figure 11(d), we observe that the
active barriers not only yield a remarkably more complex flow structure but also carry a
completely different physical meaning. Since the active barriers minimize the diffusive
transport of, in this case, linear momentum or vorticity, we find that the cross-sectional
components of the active barrier vector field bt

t are parallel to the aFTLE ridges. This
indicates that the resultant force of the viscous stresses is tangential to Eulerian active
barriers of momentum transport. As noted previously, momentum barriers in ( y − z)
cross-sections can roll-up into spiral patterns or form closed surfaces. In regions where this
occurs, figure 13(a) shows that closed level-set curves of λ2, typically used as indicators for
the presence of quasi-streamwise vortices, tend to be found. This suggests that boundaries
of quasi-streamwise vortices act as Eulerian active barriers to the transport of linear
momentum. Interestingly, we find that the circulation of the active momentum barrier
field in such areas is of opposite sign than the one of the velocity field. This indicates that
viscous forces oppose the vortical motion that is observed in the analysed snapshots. In
addition, Eulerian active barriers of vorticity tend to enter regions of closed momentum
barriers or level-set curves of λ2, thus highlighting regions in which vorticity diffuses into
the vortex or is dissipated by viscosity.

Despite some similarities, it is important to note the practical and fundamental
differences between the Eulerian momentum barriers and level-set surfaces of λ2.
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FIGURE 14. Passive backward FTLE−3.75
0 (x0) in a cross-sectional plane at x/h = 2π. The

right panel magnifies the region denoted with a rectangle in the left panel.

On the fundamental side, we mention that the active barriers are objective, they have clear
implications for the viscous transport of the active vector field and, most importantly, that
they are extensible by definition to material barriers, thus accounting for the Lagrangian
coherence of the barriers themselves. On the practical side, Eulerian active barriers do not
require the convenient but arbitrary choice of a threshold and deliver information on the
full active transport geometry, rather than just providing a few isolated curves.

9.2.2. Lagrangian active barriers
Figure 14 shows attracting material surfaces as passive backward FTLE−3.75

0 (x0) at
the same ( y − z) cross-section located at x = 2πh discussed in § 9.2.1. These attracting
material surfaces, forming the cores of experimentally observed fluid trajectory patterns at
time t = 0, show a striking resemblance to the Eulerian active barriers to linear momentum
indicated in figure 11(b,e) by the aFTLE31

0,0(x0, ρu) field. The close similarity between
the two is not fully surprising. At the present low value of Reynolds number viscous
effects dominate throughout a significant portion of the channel, and thus determine both
the characteristics of the Eulerian momentum barriers and the finite-time dynamics of
particle motion. The temporal horizon, over which the analogy between FTLE−3.75

0 (x0)
and aFTLE31

0,0(x0, ρu) is observed, is expected to decrease with increasing Reynolds
number, as the viscosity-dominated inner layer shrinks compared to the channel height.
Whether the observed similarity holds at higher values of Re is to be verified in later
studies with high-Re data. However, it is remarkable that the Eulerian momentum barriers,
which are computed utilizing a single flow snapshot, reproduce the same features of
material surfaces obtained from a Lagrangian computation, which requires storing the
temporal evolution of the flow. Figures 15 and 16 show aFTLE and aPRA computed
for momentum- and vorticity-based material barriers in a ( y − z) cross-section located
at x = 2πh and compare them against their passive variants. The integration interval is
for all cases between t0 = 0 and t1 = 3.75 which corresponds to a time interval of 750
viscous units. The figures clearly show that some features of the Eulerian active barriers
discussed in § 9.2.1, such as the spiralling or closed patterns of aFTLE31

0,0(x, ρu), do have
a material character, since they persist almost unchanged over the temporal interval which
we have considered. Examples are shown in the magnification of figures 15(e) and 16(e),
showing promise for active LCS diagnostics in studying the lifetime of vortical structures
in wall-bounded turbulence (Quadrio & Luchini 2003). In the vicinity of the wall,
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FIGURE 15. Comparison between (a,d) the passive FTLE, (b,e) the aFTLE with respect to ρu
and (c, f ) the aFTLE with respect to ω in a cross-sectional plane at x/h = 2π. The integration
interval is for all cases between t0 = 0 and t1 = 3.75. The panels (d–f ) magnify the region
denoted with a rectangle in panels (a–c).

characterized by the strong intermittent turbulent events rapidly evolving with the viscous
time scale, less detail is visible in the barriers, due to the lack of material coherence
for the considered time frame. Consistent with the general principle discussed in § 8.6,
passive and active LCS diagnostics tend to highlight the same vortical regions, but tend to
differ in the mixing regions surrounding the vortices. As in our 2-D turbulence example,
while the vorticity-based aFTLE and aPRA plots show a major enhancement over passive
FTLE and PRA, some of their details are less clearly defined in comparison to their
momentum-based counterparts. Again, this is due to the additional spatial differentiation
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FIGURE 16. Comparison between (a,d) the passive PRA, (b,e) the aPRA with respect to ρu and
(c, f ) the aPRA with respect to ω in a cross-sectional plane at x/h = 2π. The integration interval
is for all cases between t0 = 0 and t1 = 3.75. The panels (d–f ) magnify the region denoted with
a rectangle in panels (a–c).

involved in computing active LCS diagnostics for the vorticity compared to the same
computation for the linear momentum. Figure 17 shows the material active barrier vector
field of (a) ρu and (b) ω superimposed to the respective aFTLEs already shown in
figure 15(e, f ). Level-set curves of the λ2(x, t) = −0.015 field at the temporal instant
t = t0 = 0 are also shown. It is confirmed that with the present definition of active barriers,
the active vector field is tangent to the detected barriers visualized here as aFTLE ridges,
in a temporally averaged sense. Figure 17(a) shows that closed aFTLEs

t0,t1(x0, ρu) ridges
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FIGURE 17. Material active barriers of (a) ρu and (b) ω at t = 0 in a cross-sectional plane
located at x/h = 2π and for an integration interval between t0 = 0 and t1 = 3.75. The colormap
shows the respective aFTLE fields, the vectors show the cross-sectional components of the
underlying active barrier field, while the red lines are level-set curves λ+2 (x, t) = −0.015 of
the Eulerian vortex identification criterion proposed by Jeong et al. (1997) at the instant t0 = 0.

can be in some instances close to level-set curves of the λ2 criterion, as for instance at
( y/h, z/h) ≈ (0.15, 2.9) and (0.55, 3.3). In this sense, the material momentum barriers
can be utilized as means to objectively identify vortical structures which play a role in
inhibiting momentum transport and preserve material coherence over the considered time
frame, without resorting to arbitrary choices of level-sets of λ2. In the present example, we
find streamwise vortices that are bounded by active momentum barriers for a time period
of 750 viscous units.

10. Conclusions

We have developed an approach to identify coherent structure boundaries as material
surfaces that minimize the diffusive transport of active physical quantities intrinsic to the
flow. We have also argued that instantaneous limits of these active Lagrangian transport
barriers provide objective Eulerian barriers to the short-term redistribution of active vector
fields.

Our analysis shows that in incompressible Navier–Stokes flows, active material barriers
to transport evolve from structurally stable 2-D streamsurfaces of an associated steady
vector field, the barrier vector field bt1

t0(x0). This vector field is the time-averaged pullback
of the viscous terms in the evolution equation of the active vector field. For t0 = t1,
instantaneous limits of these material barriers to linear momentum are surfaces to which
the viscous forces acting on the fluid are tangent. Similarly, instantaneous limits to active
barriers to vorticity are surfaces tangent to the curl of viscous forces.

We have obtained that material and Eulerian active barriers in 3D unsteady Beltrami
flows coincide exactly with invariant manifolds of the Lagrangian particle motion. This is
noteworthy because all prior LCS methods applied to Beltrami flows would locate these
barriers, at best, approximately for large enough extraction times, rather than exactly from
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arbitrary short extraction times, as the present approach does. The reason is that the present
approach to material barriers does not rely on quantifying fluid particle separation or lack
thereof, as purely advective LCS approaches do. Instead, this approach seeks material
surfaces that are most resistant to the diffusive transport of intrinsic physical quantities,
such as momentum and vorticity. This dynamical extremum problem can be solved without
the need for fluid particles to show large separation.

We have argued and numerically verified that, in comparison to their purely advective
versions, active LCS reveal coherent vortices in much larger detail. Indeed, we have found
the momentum-based aFTLE and the aPRA to outperform the purely advective FTLE and
PRA significantly on vortices of the same finite-time velocity data set. In contrast, active
and passive barriers are expected to differ significantly in mixing regions surrounding
those vortices, as we have indeed found in our 2-D and 3-D turbulence examples. The
refinement of vortical regions from vorticity-based aFTLE and aPRA is also tangible but
more modest, as that computation involves one more spatial derivative and hence is more
prone to numerical error. In addition, aFTLEs

t0,t1 and aPRAs
t0,t1 converge as the barrier

time s increases, whereas FTLEt
t0 and PRAt

t0 generally do not converge in unsteady flows
as the physical time t increases. The convergence of aFTLEs

t0,t1 and aPRAs
t0,t1 enables

a scale-dependent exploration of active barriers, with smaller spatial scales gradually
revealed under increasing barrier times s.

A further advantage of the dynamically active approach to transport barrier analysis
is that an active Poincaré map (i.e. Poincaré map applied to the barrier equations x ′

0 =
bt1

t0(x0)) is a well-defined, time-independent map that can be iterated for visualization if
barrier trajectories return to the Poincaré section. In contrast, no time-independent return
map can be defined and iterated for the unsteady fluid particle equation of motion ẋ =
u(x, t), because each subsequent return to a Poincaré section is governed by a different
map.

The 2-D versions of our results provide the simplest available objective LCS criteria,
identifying barriers to active transport as level curves of appropriate Hamiltonians that
are functions of the scalar vorticity. This follows from the fact that the 2-D barrier
equations turn out to be autonomous, planar Hamiltonian systems, and hence are, in
principle, integrable. We have found, however, that active LCS diagnostics applied to
these autonomous but highly complex planar Hamiltonian systems give a more robust
and detailed localization of coherent vortex boundaries than level-curve identification of
their numerically generated Hamiltonians.

Eulerian active barriers (identified from the steady dynamical system x ′ = bt
t(x))

provide an objective and parameter-free alternative to currently used, observer-dependent
flow visualization tools, such as level surfaces of the velocity norm, of the velocity
components and of the Q-, Δ- and λ2-fields. Undoubtedly, the implementation of the
latter tools is appealingly simple via automated level-surface visualization packages.
Yet such evolving surfaces are observer dependent and non-material, thereby lacking
any experimental verifiability. In addition, beyond the simplicity of generating coherent
structure boundaries as level sets of these scalar fields, the physical meaning of such level
sets remains unclear.

The objectivity of the barrier vector field bt1
t0 implies that any Galilean-invariant vortex

criterion mentioned in the Introduction becomes automatically objective when applied to
bt1

t0 , as opposed to the velocity field u. This fact does not eliminate the heuristic nature of
these criteria but at least makes the structures they return independent of the observer. The
physical rationale for applying vortex or LCS criteria to the barrier vector field instead of
the velocity field is that active barriers have a well-defined and readily quantifiable role in
the viscous force field due to their transport-minimizing property, even over infinitesimally
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short times. In contrast, coherence structures in the velocity field can be approached
from a multitude of different principles, most of which are qualitative (i.e. lack a
well-defined optimization argument) and require substantial fluid particle separation to be
effective.

A physical take-away message from our 3-D channel-flow example is that Eulerian
active barriers for momentum (or vorticity) visualize the instantaneous landscape of
the viscous forces, which are everywhere tangent to those barriers and hence induce
zero instantaneous diffusive transport of momentum (or vorticity) across them. Several
Lagrangian active barriers are small perturbations of their Eulerian counterparts,
suggesting that those Eulerian barriers have a strong material character over a significant
period of time. As a second notable finding, several (but not all) momentum barriers
are well approximated by quasi-streamwise tubular λ2 level surfaces (often called
streamwise vortices), which are considered crucial elements in the regeneration cycle
of near-wall turbulence (Hamilton, Kim & Waleffe 1995; Jiménez & Pinelli 1999).
Active momentum barriers, therefore, offer a threshold-independent identification of the
intrinsic, observer-independent subset of λ2-vortices. Such objective streamwise vortices
are bounded by material surfaces across which viscous momentum transport is minimal,
while vorticity diffuses across them. A third physical finding from our analysis is that the
low Reynolds number turbulent channel flow considered here contains active coherent
structure boundaries that penetrate and span the bulk flow. Notably, active barriers
spanning across the entire channel height are present in some regions of the channel
cross-section but absent in others. This indicates possible large-scale coherent features
in this specific flow that deserve further investigation.

Finally, the objective momentum barrier theory described here should be able to
contribute to the understanding and identification of various turbulent flow structures that
have only been described so far in an observer- and threshold-dependent fashion under
a number of assumptions and approximations. Specifically, our future work will seek
to uncover experimentally identifiable material signatures of uniform momentum zones
(Adrian, Meinhart & Tomkins 2000; De Silva, Hutchins & Marusic 2016) and turbulent
superstructures (Marusic, Mathis & Hutchins 2010; Pandey, Scheel & Schumacher 2018)
based on the notion of diffusive momentum barriers developed in this paper.
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FIGURE 18. Decaying planar Navier–Stokes flow in a channel with no-slip walls at x2 = ± 1
4 .

Appendix A. A motivating example

A simple example underlying the challenges of defining barriers to momentum and
vorticity transport is a planar, unsteady Navier–Stokes vector field representing an
unsteady, decaying channel flow between two walls at x2 = ± 1

4 (see figure 18). The
corresponding velocity and scalar vorticity fields are

u(x, t) = e−4π2νt(a cos 2πx2, 0), ω(x, t) = 2πa e−4π2νt sin 2πx2. (A 1a,b)

Normalized by their instantaneous global maxima, the normalized linear momentum
ρu0 = (cos 2πx2, 0) and vorticity ω0 = sin 2πx2 are both constant in time. There is,
therefore, no structural reorganization in the topology of the momentum and vorticity
fields. Instead, for all times, horizontal lines act as level curves for both the horizontal
momentum and the vorticity, forming material barriers between higher and lower values
of these scalars. Indeed, the theory developed in this paper identifies all horizontal lines as
materiel barriers to the diffusive transport of both momentum and vorticity (see Example
1 of § 7.1).

Haller et al. (2019) obtain an ODE family describing the time t0 position of uniform
barriers to the diffusive (passive) transport of the scalar vorticity over a finite time interval
[t0, t1]. With the notation y0 = 2πx2, with the constants

A = a2

ν
sin 2y0

[
1
2

e−2νt1 + 1
2

e−2νt0 − e−ν(t1+t0)

]
, B = a(e−νt0 − e−νt1), (A 2a,b)

and with the vector field

q̄t1
t0(x0) = 1

2ν(t1 − t0)

(
A sin 2y0
B cos y0

)
, (A 3)

the ODE family describing the time t0 position of uniform constrained barriers is given by

x ′
0 = 1

2ν(t1 − t0)

⎧⎨
⎩
√

|q̄t1
t0(x0)|2 − T 2

0

|q̄t1
t0(x0)|2

(
A sin 2y0
B cos y0

)
+ T0

|q̄t1
t0(x0)|2

(
B cos y0

−A sin 2y0

)⎫⎬
⎭ , (A 4)

for some value of the transport density constant T0 ∈ R. For the choice

T0 = |q̄t1
t0(x0)|y0=0 = B

2ν(t1 − t0)
, (A 5)
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the ODE (A 4) becomes

x ′
0|y0=0 = B

2ν(t1 − t0)

(
B
0

)
‖ Ω q̄t1

t0(x0)|y0=0, (A 6)

showing that x02 = 0 is an invariant line for (A 4) for the parameter value T0 selected as
in (A 5). Consequently, the centreline of the channel at x02 = 0 is a uniform, constrained
barrier to vorticity diffusion along which the pointwise diffusive transport of vorticity is
equal to (A 4). Choosing the constant T0 = 0 in (A 4) gives

x ′
0 = 1

2νa(t1 − t0)|q̄t1
t0(x0)|

(
A sin 4πx02
B cos 2πx02

)
, (A 7)

for which x02 = ±1/4 are invariant lines, and hence the channel walls at x02 = ±1/4
are perfect constrained barriers to diffusive transport. Therefore, the variational theory
of Haller et al. (2019) identifies the centreline of the channel at x2 = 0 and the upper and
lower walls as barriers to vorticity transport, but finds an infinite family of non-straight
barrier curves for the rest of the channel, given by general integral curves of the vector field
family (A 4) (see figure 1). Only in the limit of t1 → ∞ do the latter, curved variational
barriers align with horizontal lines, which is suboptimal, given that these horizontal
barriers prevail already in any finite-time observation of the vorticity field. The objective
of the present paper is to strengthen these results by considering vorticity transport as an
active, vectorial transport problem consistent with the 3-D Navier–Stokes equation, rather
than a passive scalar transport problem in the 2-D Navier–Stokes equation.

In contrast, Meyers & Meneveau (2013) define a momentum flux vector field F̄
ζ

m(x, t)
with respect to a unit reference direction vector ζ ∈ R

3 as

F̄
ζ

m = (ū · ζ )ū + u′ ⊗ u′ζ − 2νS̄ζ , (A 8)

where overbar refers to Reynolds-averaging, prime refers to the fluctuating part of the
velocity field, ⊗ denotes the dyadic product and S = 1

2 [∇u + (∇u)T] is the rate-of-strain
tensor. The flux vector F̄

ζ

m is obtained by Meyers & Meneveau (2013) after averaging the
unsteady terms out of the Navier–Stokes equations, projecting these averaged equations
into the ζ direction, identifying all terms that are divergences of some vector field in
these projected equations, and summing up all three vector fields identified in this fashion.
For the laminar velocity field (A 1a,b), we have ū ≡ u, S̄ ≡ S, u′ ≡ 0 and F̄

ζ

m ≡ F ζ
m.

Following the choice of Meyers & Meneveau (2013) for planar parallel shear flows, we
select ζ = (1, 0)T. Using the relation

S = a e−4π2νt

(
0 −π sin 2πx2

−π sin 2πx2 0

)
, (A 9)

we obtain from (A 8) the momentum flux vector

F ζ
m = a2e−8π2νt

(
cos2 2πx2

0

)
− 2νa e−4π2νt

(
0

−π sin 2πx2

)

= a e−4π2νt

(
a e−4π2νt cos2 2πx2

2νπ sin 2πx2

)
. (A 10)

The x2 = 0 line is an integral curve of F ζ
m, correctly conveying the fundamental role

of the centreline of the channel in blocking linear momentum transfer. All other integral
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curves of F ζ
m(x, t), however, curl either upwards or downwards, running eventually into the

two horizontal walls perpendicularly. These curves turn very slowly towards to channel
walls for small values of the viscosity. For easy illustration over a shorter horizontal
domain, we select the time t∗ = −(1/4π2ν) log[2νπ/a] so that F ζ

m becomes

F ζ
m(x, t∗) = 2νπa e−4π2νt∗

(
cos2 2πx2
sin 2πx2

)
, (A 11)

whose integral curves are shown in figure 1). These integral curves do not delineate
observable structures governing the rearrangement of momentum within this flow. In the
limit of t → ∞, they limit on vertical lines.

Appendix B. Reynolds transport theorem and the convective flux through the
boundary of a material volume

The Reynolds transport theorem for an arbitrary vector field f (x, t) and an arbitrary,
time-varying volume V(t) in a velocity field u(x, t) is of the form

d
dt

∫
V(t)

f dV =
∫

V(t)

∂f
∂t

dV +
∫
∂V(t)

f (u∂V(t) · n) dA. (B 1)

Here, u∂V(t) denotes the local velocity of the boundary surface ∂V(t) of V(t), therefore we
have u∂V(t) = u when V(t) is a material volume. The identity (B 1) merely gives a formal
partition of (d/dt)

∫
V(t) f dV into two terms, yet it is tempting to conclude that the second

term,
∫
∂V(t) f (u · n) dA, is the convective flux of f through the boundary ∂V(t) of V(t). We

will now illustrate on a specific example that this is generally not the case.
Consider the scalar version of B 1 for a passive scalar field c(x, t)

d
dt

∫
V(t)

c dV =
∫

V(t)

∂c
∂t

dV +
∫
∂V(t)

c(u · n) dA. (B 2)

Assume that u is incompressible and c is a passive scalar field that is a solution of the
advection–diffusion equation

Dc
Dt

= ∂tc + ∇c · u = κΔc, (B 3)

with diffusivity κ > 0. The surface integral in (B 2) gives a formal convective flux for the
passive scalar field c across ∂V(t) even though no convective scalar transport can occur
through the material surface ∂V(t).

The (purely diffusive) flux of c out of V(t) can be computed directly as

d
dt

∫
V(t)

c dV =
∫

V(t0)

Dc
Dt

dV0 =
∫

V(t0)
κΔc dV0 = κ

∫
V(t)

∇ · (∇c) dV =
∫
∂V(t)

κ∇c · n dA,

(B 4)
showing that the vector describing the correct pointwise diffusive flux vector of the passive
scalar c(x, t) through the material surface ∂V(t) is the well-known flux vector, κ∇c rather
than the vector cu appearing in the surface integral term in (B 2). This is because the
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volume integral term
∫

V(t)(∂c/∂t) dV on the right-hand side of the transport theorem (B 2)
also contributes to the flux through ∂V(t). Indeed, using (B 3), we can rewrite this term as∫

V(t)

∂c
∂t

dV =
∫

V(t)
(κΔc − ∇c · u) dV =

∫
V(t)

∇ · (κ∇c − cu) dV

=
∫
∂V(t)

(κ∇c − cu) · n dA. (B 5)

Therefore,
∫

V(t)(∂c/∂t) dV yields a non-zero flux through the boundary and a part of this
flux cancels out the second integral in (B 2) that incorrectly suggests non-zero convective
flux for c.

More generally, the partition of (d/dt)
∫

V(t) f dV in (B 1) into two terms is somewhat
arbitrary from the point of view of transport through the boundary of a material volume.
Indeed, the volume integral on the right-hand-side of (B 1) will also contribute to the flux
of f through the boundary of V(t).

Appendix C. Proofs of Theorems 7.1 and 7.2

C.1. Proof of Theorem 7.1
For a Navier–Stokes velocity field u of the form (7.1a,b) and (7.4), we have

Δu(x, t) =
(

Δx̂û
Δx̂ω̂

)
. (C 1)

Therefore,

(F t
t0)

∗Δu(x0) = [∇x0 F
t
t0(x0)]−1

(
Δx̂û

Δx̂ω̂(x̂, t)

)

=

⎛
⎜⎝ ∇ x̂F̂

t0
t (x̂) 0∫ t0

t
∇ x̂ω̂(F̂

s

t (x̂), s) ds 1

⎞
⎟⎠
(

Δx̂û

Δx̂ω̂(x̂, t)

)

=

⎛
⎜⎝ ∇ x̂F̂

t0
t (x̂)Δx̂û∫ t0

t
∇ x̂ω̂(F̂

s

t (x̂), s) ds · Δx̂û + Δx̂ω̂(x̂, t)

⎞
⎟⎠ . (C 2)

With these expressions, the barrier equation (4.1) becomes

x̂ ′
0 = νρ(F̂

t

t0)
∗Δx̂û(x̂0),

x ′
03 = νρA(x̂0, t1, t0),

}
(C 3)

for an appropriate smooth function A(x̂0, t1, t0). Two-dimensional invariant manifolds
of this dynamical system are of the form {x̂0(s)}s∈R × R, i.e. topological products of
trajectories of the x̂0-component of the (7.15) with a line in the x03 direction. As trajectories

{x̂0(s)}s∈R are contained in the streamlines of the steady 2-D velocity field (F̂
t

t0)
∗Δx̂û(x̂0),
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Eulerian barriers to momentum transport are, structurally stable streamlines of the vector
field Δx̂û(x̂, t). By incompressibility, we have

Δx̂û =
(
∂2

x1x1
v1 + ∂2

x2x2
v1

∂2
x1x1
v2 + ∂2

x2x2
v2

)
=
(−∂2

x1x2
v2 + ∂2

x2x2
v1

∂2
x1x1
v2 − ∂2

x1x2
v1

)
=
(
∂x2ω̂

−∂x1ω̂

)
, (C 4)

and hence these streamlines are structurally stable level curves of the streamfunction
ω̂(x̂, t), as claimed.

Using formula (C 4) and the canonical symplectic matrix J = ( 0 1
−1 0 ), we also find that

Δx̂û(F̂
t

t0(x0), t) = J∇ω(F̂ t

t0(x0), t) = J [∇0F̂
t

t0(x0)]−T∇0ω̂(F̂
t

t0(x0), t), (C 5)

where ∇0ω̂(F̂
t

t0(x0), t) denotes the derivative of the Lagrangian vorticity ω(F̂
t

t0(x0), t)
with respect to the initial condition x0. This last equation implies

(F̂
t

t0)
∗Δx̂û(x0) = [∇0F̂

t

t0(x0)]−1Δx̂û(F̂
t

t0(x0), t)

= [∇0F̂
t

t0(x0)]−1J [∇0F̂
t

t0(x0)]−T∇0ω̂(F̂
t

t0(x0), t)

= det[∇0F̂
t

t0(x0)]−1J∇0ω̂(F̂
t

t0(x0), t) = J∇0ω̂(F̂
t

t0(x0), t), (C 6)

given that det[∇0F̂
t

t0(x0)]−1 ≡ 1 holds due to incompressibility. Here, we have also used
the fact here for any constants a, b, c, d ∈ R satisfying ad − bc = 1, we have(

a b
c d

)(
0 1

−1 0

)(
a c
b d

)
=
(

0 ad − bc
bc − ad 0

)
. (C 7)

Consequently, we have

(F̂
t

t0)
∗Δx̂û(x̂0) = J∇0ω̂(F̂

t

t0(x̂0), t), (C 8)

and hence the averaged Lagrangian vorticity ω̂(F̂
t

t0(x0), t) acts as an autonomous
Hamiltonian (or steady streamfunction) for the x̂0-component of (C 3), as claimed in
formula (7.6). Consequently, initial positions of material barriers to momentum transport

are level curves of the time-averaged Lagrangian vorticity ω(F̂
t

t0(x0), t), as claimed.
Furthermore, the instantaneous limit of (7.6) is (7.7) and, accordingly, Eulerian barriers
to momentum transport are level curves of the Hamiltonian ω̂(x, t)

C.2. Poof of Theorem 7.2
For u defined in (7.1a,b) and (7.4), the full vorticity of the 3-D flow is given by

ω(x, t) = (∂x2ω̂(x̂, t),−∂x1ω̂(x̂, t), ω̂(x̂, t)), (C 9)

implying

Δω =

⎛
⎜⎝
∂x2Δx̂ω̂

−∂x1Δx̂ω̂

Δx̂ω̂

⎞
⎟⎠ . (C 10)

In all x3 = const. planes, therefore, the vector field Δω admits the same reduced
Hamiltonian dynamics, with the Hamiltonian H = Δx̂ω̂ = (1/ν)(D/Dt)ω̂ acting as the
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streamfunction in that plane. With the notation J = ( 0 1
−1 0 ), we use the calculations in

(C 2) to obtain

(F t
t0)

∗Δω(x0) =

⎛
⎜⎜⎝

∇ x̂F̂
t0
t (x̂)J∇ x̂

1
ν

D
Dt
ω̂(F̂

t

t0(x̂0), t)∫ t0

t
∇ x̂ω̂(F̂

s

t (x̂), s) ds · J∇ x̂
1
ν

D
Dt
ω̂(F̂

t

t0(x̂0), t)+ 1
ν

D
Dt
ω̂(F̂

t

t0(x̂0), t)

⎞
⎟⎟⎠ .

(C 11)

As a consequence, the first two components of the vorticity barrier equation (6.17) are

x̃ ′
0 = ν∇ x̂F̂

t0
t (x̂)J∇ x̂

D
Dt
ω̂(F̂

t

t0(x̂0), t)

= ν∇ x̂F̂
t0
t (x̂)J [∇ x̂F̂

t0
t (x̂)]T∇ x̂0

Dω̂
Dt
(F̂

t

t0(x̂0), t). (C 12)

Using formula (C 7) again, we obtain from (C 12) that 2-D Lagrangian vorticity-diffusion
barriers must satisfy

x̂ ′
0 = νJ∇ x̂0 H

t1
t0 (x̂0), Ht1

t0 (x̂0) = δω̂(x̂0, t0, t1)

t1 − t0
, (C 13a,b)

as claimed in formula (7.9), with Ht1
t0 (x̂0) playing the role of a Hamiltonian for the 2-D

x̂0-component of the full material barrier equation, which is therefore of the general form

x̂ ′
0 = νJ∇ x̂0 H

t1
t0 (x̂0),

x ′
03 = νB(x̂0, t1, t0),

}
(C 14)

for an appropriate scalar-valued function Gt1
t0(x̂0). As trajectories {x̂0(s)}s∈R are contained

in the level curves of the Hamiltonian Ht1
t0 (x̂0), we obtain the statement of Theorem 7.2,

using the definition of Ht1
t0 from (C 13a,b).

Appendix D. Proof of Theorem 7.5

To identify barrier equations for directionally steady Beltrami flows, note that the flow
map for the particle motion ODE

ẋ = α(t)u0(x), α(t) = e−νk2(t−t0), (D 1a,b)

of any such flow can be computed from the flow map Gτ
t0(x0) of the autonomous ODE

ẋ = u0(x) as

F t
t0(x0) = Gτ(t)

t0 (x0) = G
∫ t

t0
α(s) ds

t0 (x0), (D 2)

as one verifies by direct substitution of this F t
t0(x0) into (D 1). Since ẋ = u0(x) is an

autonomous ODE, u0(F t
t0(x0)) = u0(Gτ

t0(x0)) is a solution of its equation of variations,
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i.e.
u0(Gτ

t0(x0)) = ∇Gτ
t0(x0)u0(x0). (D 3)

This implies

u0(G
∫ t

t0
α(s) ds

t0 (x0)) = ∇G
∫ t

t0
α(s) ds

t0 (x0)u0(x0), (D 4)

or, equivalently, by (D 2),

u0(F t
t0(x0)) = ∇F t

t0(x0)u0(x0). (D 5)

Multiplying both sides of this equation by α(t) leads to the identity.

[∇F t
t0(x0)]−1(α(t)u0(F t

t0(x0))) = α(t)u0(x0). (D 6)

As a consequence of the relation (D 6), for a directionally steady, strong Beltrami flow,
the linear momentum barrier equation (6.5) takes the specific form

x ′
0 = bt1

t0 = νρ(F t
t0)

∗Δu = −νρ(F t
t0)

∗αk2u0

= − νρ

t1 − t0

∫ t1

t0

k2[∇F t
t0(x0)]−1(α(t)u0(F t

t0(x0))) dt

= −
νρ

∫ t1

t0

k2α(t) dt

t1 − t0
u0(x0). (D 7)

After rescaling the independent variable s in this ODE as s → s((t0 − t1)/νρ
∫ t1

t0
k2α(t) dt),

we obtain the Lagrangian and Eulerian momentum barrier equations

x ′
0 = u0(x0),

x ′ = u0(x).

}
(D 8)

Note that all invariant manifolds of this barrier equation coincide with invariant manifolds
of the particle motion (D 1) of the directionally steady Beltrami flow defined by (D 1),
which proves the statement of Theorem 7.5 for linear momentum barriers.

With the relation (D 6), the vorticity barrier equation (6.17) for directionally steady
Beltrami flows takes the specific form

x ′
0 = bt1

t0 = ν (F t
t0)

∗Δω = −ν (F t
t0)

∗∇ × (∇ × ω) = −ν(F t
t0)

∗α(t)k3u0,

= − ν

t1 − t0

∫ t1

t0

k3[∇0F t
t0(x0)]−1(α(t)u0(F t

t0(x0))) dt

= −
ν

∫ t1

t0

k3α(t) dt

t1 − t0
u0(x0). (D 9)

Again, an appropriate rescaling of time shows that all invariant manifolds of this barrier
equation coincide with invariant manifolds of the particle motion (D 1) of the directionally
steady Beltrami velocity field u(x, t), which proves the statement of Theorem 7.5 for
vorticity barriers.
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