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HTP-COMPLETE RINGS OF RATIONAL NUMBERS

RUSSELL MILLER

Abstract. For a ring R, Hilbert’s Tenth Problem HTP(R) is the set of polynomial equations over R,
in several variables, with solutions in R. We view HTP as an enumeration operator, mapping each set W
of prime numbers to HTP(Z[W –1]), which is naturally viewed as a set of polynomials in Z[X1, X2, ...]. It
is known that for almost all W, the jumpW ′ does not 1-reduce to HTP(RW ). In contrast, we show that
every Turing degree contains a set W for which such a 1-reduction does hold: these W are said to be HTP-
complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for
W ′ fromHTP(Z[W –1]) can succeed uniformly on a set of measure 1, and regarding the consequences for
the boundary sets of the HTP operator in case Z has an existential definition in Q.

§1. Introduction. For a ring R, Hilbert’s Tenth Problem HTP(R) is the set of
polynomial equations over R, in several variables, with solutions in R:

HTP(R) =
⋃
n∈N

{f ∈ R[X1, ... , Xn] : (∃x1, ... , xn ∈ R) f(x1, ... , xn) = 0}.

For countable rings R, one can ask effectiveness questions about HTP(R), which
is always computably enumerable relative to a presentation of R (that is, relative to
the atomic diagram of a ring isomorphic to R with � as its underlying set; cf. [11]).
That it may be properly computably enumerable was established for the fundamental
exampleR = Z by Matiyasevich in [10], completing work by Davis et al. in [1]: they
showed that the Halting Problem is 1-reducible toHTP(Z). This was the resolution
of Hilbert’s original Tenth Problem, in which Hilbert had demanded an algorithm
deciding membership inHTP(Z). (Simpler constructions exist of computable rings
R for which HTP(R) is undecidable; indeed one will be described at the end of
Section 4.) In contrast, the decidability of HTP(Q) remains an open question, and
is the subject of intense study.

The subrings of Q are in bijection with the subsets W of the set P of all prime
numbers, via the mapW �→ Z[W –1]. Thus these subrings form a topological space
homeomorphic to Cantor space 2P, on which one can therefore consider questions of
Lebesgue measure and Baire category. We then viewHTP as an operator, mapping
each W ⊆ P to the set HTP(Z[W –1]). Notice that, to decide HTP(Z[W –1]), one
need only decide membership in it for polynomials from Z[X1, X2, ...], and so we
normally viewHTP(Z[W –1]) as its own intersection with Z[X1, X2, ...]. This allows
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for a uniform Gödel coding of each HTP(Z[W –1]) as a subset of �. For simplicity
we often write RW for the ring Z[W –1], and HTP(RW ) for its HTP.

This article continues a program by the author of approaching HTP(Q) by
viewing the collection of all subrings of Q as a topological space in this way and
considering the “common” behavior of the setsHTP(R). Certain properties hold of
HTP(R) for every R in a “large” set of rings (corresponding to a subset of measure 1
within Cantor space, say, or to a comeager subset), while other properties occur less
frequently. In turn, that program fits within the broader framework of examining
HTP(R) for subringsR ⊆ Q in general, an endeavor that includes the notable work
of Poonen [14, 15] and many others. The results in Section 4 here may be seen as
fitting into the larger program, whereas the results in Sections 5 and 6 are mainly of
interest within the smaller program.

The jump W ′ of a set W ⊆ P is readily seen to give an upper bound for the
complexity of the set HTP(RW ), which is always c.e. relative to W. It is known
from work in [8] that for many subrings RW of Q, the complexity of HTP(RW ) is
strictly below that ofW ′; this will be generalized here in Theorem 5.2. In contrast,
in Section 4, we will show that sets W with HTP(RW ) ≡1 W

′ are ubiquitous, in
the sense that they exist within every Turing degree. Such sets will be said to be
HTP-complete. In Section 5 we will consider the weaker relationship of Turing-
reducibility between HTP(RW ) and W ′, whereas in Section 6 we will consider
consequences that would follow in case Z has an existential definition in Q—which
is an open question, and represents the strongest conjecture normally considered
about the difficulty of decidingHTP(Q). (If such an existential definition exists, then
HTP(Z) itself 1-reduces to HTP(Q), and therefore so does the Halting Problem.)
Before that, Sections 2 and 3 provide lemmas established earlier in [2, 8], which
will be of use in the subsequent sections. For basic information about computability
theory, [20] remains an excellent source, but [17] will be more helpful for the concept
of enumeration reducibility in Section 5.

§2. Background. The following lemma appears in [2], but it has been known ever
since the pioneering work of Robinson in [16], in which Robinson gave the first
definition of the set Z within the field Q. It will be important for us at several
junctures, as it enables us to “ignore” a given finite set of primes when dealing with
theHTP operator, and thus facilitates finite-injury constructions.

Proposition 2.1 (Robinson [16]). For every prime p, there is a polynomial
gp(Z,X1, X2, X3) such that for all rationals q, we have

q ∈ R(P–{p}) ⇐⇒ gp(q, �X ) ∈ HTP(Q).

Moreover, gp may be computed uniformly in p.

Corollary 2.2. For each finite subset A0 ⊆ P, a polynomial f(Z0, ... , Zn) has a
solution in R(P–A0) if and only if

(f( �Z))2 +
∑

p∈A0,j≤n
(gp(Zj,X1,j,p, X2,j,p, X3,j,p))2

has a solution in Q.
For a proof using the more recent results of [7], see Proposition 5.4 in [2].
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Our principal tool for proving Theorem 4.1 and its corollaries will be the equations
X 2 + qY 2 = 1. Here we review the relevant number-theoretic results, previously
applied to this purpose in [8] by Kramer and the author. The main point is that
for each odd prime q, there is an infinite decidable set V of primes such that RV
contains no nontrivial solutions toX 2 + qY 2 = 1, yet for every p /∈ V , the ringZ[ 1

p ]
does contain a nontrivial solution. (Here the trivial solutions are (±1, 0), which in
Section 4 will be ruled out as solutions, at the cost of turning (X 2 + qY 2 – 1) into
a messier polynomial.)

Definition 2.3. For a fixed odd prime q, a prime p is q-appropriate if p is odd
and p 
= q and

( –q
p

)
= 1 (that is, – q is a square modulo p).

The crux of Lemma 2.4 is that the q-appropriate primes are precisely the possible
factors of the denominator in a nontrivial solution to x2 + qy2 = 1, thus justifying
the term q-appropriate. This lemma comprises Lemmas 4.2 and 4.4 from [8], where
the proofs may be found.

Lemma 2.4. Fix an odd prime q, and let x and y be positive rational numbers with
x2 + qy2 = 1. Then every odd prime factor p of the least common denominator c of x
and y must be q-appropriate.

Conversely, suppose that p is q-appropriate. Then there is a primitive solution
(a, b, pk) to X 2 + qY 2 = Z2 with k ≥ 1. Hence there is a nontrivial solution to
X 2 + qY 2 = 1 in the ring Z[ 1

p ].
Finally, for q ≡ 3 mod 4, a prime p 
= q is q-appropriate if and only if p is a square

modulo q. When q ≡ 1 mod 4, a prime p 
= q is q-appropriate if and only if one of the
following holds :

• p ≡ 1 mod 4 and p is a square modulo q.
• p ≡ 3 mod 4 and p is not a square modulo q.

It follows that q-appropriateness of p is decidable uniformly in q.

Of course, a single prime p can be q-appropriate for many different q. Therefore,
adjoining 1

p to a ring may create solutions of the equations X 2 + qY 2 = 1 for many
values of q. The purpose of the following corollary (in concert with Proposition
2.1 above) is to allow us to create a solution to the equation of our choice without
disrupting the solvability of other such equations in the ring. Corollary 2.5 is a
modest extension of Corollary 4.3 in [8], where I was the set {0, 1, ... , e – 1}.

Corollary 2.5. Let 3 = q0 < q1 < ··· be the odd prime numbers. Then, for every
e ∈ � and every finite set I ⊆ � – {e}, there are infinitely many primes p that are
qe-appropriate but ( for all i ∈ I ) are not qi -appropriate.

Proof. Write I = {i0 < ··· < ij}. Our goal is to show that there is a residue n
modulo m = 4qi0 ··· qij · qe which is prime to m and satisfies all the criteria dictated
by the final part of Lemma 2.4, so that each prime p congruent to n modulo m will
satisfy the corollary. For m0 = 4qi0 , we choose n0 ≡ 1 mod 4 such that n0 is not a
square mod qi0 , noting that for each residue r mod qi0 , one of r, r + qi0 , r + 2qi0 , r +
3qi0 must be ≡ 1 mod 4. Settingmk+1 = mk · qik+1 inductively for k < j, we see that
the residue nk mod mk yields distinct residues nk, nk +mk, ... , nk +mk(qik+1 – 1)
mod mk+1, each congruent to a distinct residue mod qik+1 . So we may choose nk+1
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to be one of these residues which is not a square mod qik+1 . Once we have produced
nj (a residue modulomj), we do the same process with qe , except that now we choose
the new residue n mod m so that n is a nonzero square mod qe . With n ≡ 1 mod 4,
this means that each prime with residue n mod m will be qe-appropriate (as n is a
square mod qe), but will be qik -inappropriate for all k ≤ j (as n is not a square mod
qik ). Finally, n is nonzero modulo 4, modulo qe , and modulo each qik , hence is prime
to m. Therefore, Dirichlet’s theorem on arithmetic progressions (see [18, Chapter
6, Section 4]) shows that infinitely many primes are congruent to n mod m, so the
corollary holds. 


The equation X 2 + qY 2 = 1 may be seen as stating that an element x + y
√

– q
of the field Q(

√
– q) has norm 1 there. It has been pointed out that many other sets

of norm equations of totally complex extensions of degree 2 would admit similar
results to Lemma 2.4 and Corollary 2.5, and therefore could presumably be used to
give alternative constructions for Theorem 4.1.

§3. HTP-completeness. A computably enumerable set C is said to be 1-complete
if every c.e. set D is 1-reducible to C, written D ≤1 C . By definition this means that
for each D, there is a computable total injective function h : � → � such that

(∀x ∈ �) [x ∈ D ⇐⇒ h(x) ∈ C ].

The function h is called a 1-reduction. Of course, the Halting Problem ∅′ is
1-complete, and so 1-completeness of an arbitrary c.e. set C is equivalent to
the statement ∅′ ≤1 C . More generally, for any set A ⊆ � at all, the jump A′ is
1-complete among sets computably enumerable in A, in exactly the same sense.
Details appear in [20, Section III.2].

For a subset W ⊆ P of the set P of all prime numbers, we define the subring
RW = Z[W –1] in which the primes with multiplicative inverses are precisely those in
W. The HTP operator maps W toHTP(RW ), as detailed in [8], and this set is clearly
computably enumerable relative to W, since a W -oracle allows one to list out all
rational numbers inRW and search for solutions to polynomial equations. Therefore
we automatically have HTP(RW ) ≤1 W

′. In the caseW = ∅, so that RW = Z, the
Matiyasevich–Davis–Putnam–Robinson result shows that the reverse reduction also
holds: ∅′ ≤1 HTP(R∅). This means that ∅ is HTP-complete, according to our new
definition: its HTP is as complicated as possible.

Definition 3.1. A set W ⊆ P of prime numbers is said to be HTP-complete
if every set V that is W -computably enumerable satisfies V ≤1 HTP(RW ).
Equivalently, W is HTP-complete if and only if W ′ ≤1 HTP(RW ). This is also
equivalent to requiringW ′ ≡1 HTP(RW ), or, by Myhill’s Theorem, to demanding
thatW ′ and HTP(RW ) be computably isomorphic.

It is also natural to say that W is diophantine-complete if every V c.e. in W is
diophantine in the ring RW = Z[W –1]. However, the only sets W currently known
to have this property are the finite sets.

In contrast to ∅, it is unknown whether P is HTP-complete, since RP = Q.
However, there is a broad result from [8] (see [8, Corollary 3.3] and the preceding
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remarks there), building on theorems of Jockusch [4] and Kurtz [9]. It will appear
again in this article, generalized as Theorem 5.2, with a proof.

Theorem 3.2 (See [8]). The set of all HTP-complete subsets of P is meager within
the power set of P and has Lebesgue measure 0 there.

This implies that the MRDP result for Z (that is, forW = ∅) is an anomaly: most
subrings of Q do not have such strong HTP’s. Of course, ∅ is hardly a representative
element of the power set of P, so it is not surprising that it acts strangely. Likewise,
it would not be surprising if Q (that is, RP) did the same. Nevertheless, it raises the
question of just how many subsets of P are HTP-complete, and provides the initial
answer: “very few,” in terms of both Lebesgue measure and Baire category. In the
next section, we balance this by showing that HTP-complete sets, although meager,
are ubiquitous: they appear in every Turing degree, and therefore there must be
continuum-many of them.

§4. Building HTP-complete sets.

Theorem 4.1. Every Turing degree contains an HTP-complete set V. Indeed, there
is a uniform procedure which, given any set C, computes an HTP-complete setV ≡T C .

To be clear: our procedure works uniformly on C, but given two distinct Turing-
equivalent sets C, it will generally compute distinct sets V. Indeed, one can make the
uniform procedure one-to-one, so that this is always the case. It follows that there are
countably many HTP-complete sets Turing-equivalent to the given C. Thus every
Turing degree contains infinitely many HTP-complete sets.

Proof. The following procedure, using the oracle C, computes the required set V,
as we prove after giving the construction. The construction will begin with V0 = P

and will delete elements from V at various stages, so that V = ∩sVs is clearly ΠC1 .
Afterwards we will argue that in fact V ≤T C , and then that C ≤T V .

The requirement Re demands that

ge ∈ HTP(RV ) ⇐⇒ ΦCe (e)↓,

where ge is a polynomial we will define below. For now it is acceptable to let the
following polynomial stand in for ge , using the e-th odd prime qe :

fe(X,Y, ...) = (X 2 + qeY 2 – 1)2 +

(
Y

(
1 +

4∑
i=1

Z2
i

)
–

(
1 +

4∑
i=1

W 2
i

))2

,

whose solutions correspond to those pairs of rational numbers (x, y) with x2 +
qey

2 = 1 and y > 0. In fact, if ΦCe (e)↑, then this fe may have solutions in Q, but
will have no solutions in a particular semilocal subring of Q determined in advance
by the construction; whereas if ΦCe (e)↓, then it will have solutions in every semilocal
subring. This gives us a finite amount of wiggle room, enough for the following
finite-injury construction, and at the end we will replace fe by a ge appropriate to
the semilocal subring.

At each stage s > 〈e, 0〉, Re may protect various qe-appropriate primes pe,t from
being removed from V. If it ever sees ΦCe (e) converge, it will begin protecting primes,
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and will protect them from then on, unless injured by a higher-priority requirement.
As long as ΦCe,s(e) diverges, its strategy is to remove from V all qe-appropriate primes
it can (but only finitely many at each stage).

We start by making a (uniformly computable) list of the primes which each Re
will be allowed to protect. Writing pe,–1 = e for convenience, we define, for each
e ≥ 0 and t ≥ 0:

pe,t = min{primes p > pe,t–1 : (∀i ≤ e + t) [p is qi -appropriate ⇐⇒ i = e]}.

Corollary 2.5 shows that this set is nonempty, and Lemma 2.4 shows that it is
decidable uniformly in e and t. Thus pe,0 is qi -inappropriate for all i < e, so that Re
will avoid any conflict with higher-priority requirements Ri which might need to
remove qi -appropriate primes from V. The next prime pe,1 has all these properties
and is also qe+1-inappropriate, so that if Re comes to protect this prime, it will not
injure Re+1 by doing so. As Re protects increasingly larger primes, it respects more
and more requirements of lower priority.

At the stage s + 1, we are givenVs , and we find the least prime of the formpe,t that
has not been considered at any previous stage. At this stage, we consider this prime,
fixing the e and t thus determined and writing s ′ for the (earlier) stage at which
pe,t–1 was considered (or s ′ = 0 if t = 0). We compute ΦCe,s(e). If this computation
converges, then Re continues to protect all primes it protected at stage s ′ (except
any that may have been removed from V by higher-priority requirements in the
interim), and also protects pe,t . If it diverges, then Re does not protect any primes at
this stage, and deletes from Vs+1 those (finitely many) primes p ∈ Vs satisfying:

• e < p < pe,t ;
• p is qe-appropriate; and
• (∀i < e) Ri is not protecting p at this stage.

Thus Re takes another step towards removing all qe-appropriate primes from V,
since it still appears that ΦCe (e) diverges. This completes the stage, and we set
V = ∩sVs .

We remark that in this construction, if a prime p is ever protected by a requirement
Re , then p = pe,t for some t and no requirement will ever remove p from V. Re will
not: its computation must have converged in order for it to have protected p in the first
place, and so it will continue to protect p. Moreover, its protection stops any lower-
priority Rj from removing p from V. Finally, higher-priority Ri ’s will not remove p
from V because to have been chosen as pe,t , p must have been qi -inappropriate for
each such i.

We now claim that V is C-computable. For a given prime p, only requirements Re
with e ≤ p are ever allowed to remove p from V. For each e ≤ p, we can compute
the least number te for which p < pe,te . If this Re ever removes p from V, it must
do so by the stage se at which pe,te is considered; the only reasons why it would not
have removed p from V by this stage are either that p is qe-inappropriate or that
ΦCe (e) converged before stage se , or that a higher-priority Ri is protecting p at that
stage. In each of these cases, Re will never remove p from V. So, by computing the
maximum such stage s = maxe≤p se and running the construction up to that stage
s (using a C-oracle), we can check whether p ∈ V or not. Thus V ≤T C .
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Next we claim that every Re is satisfied. Here it is necessary to define the specific
polynomial ge to be used. Let fe be as above, and let ge be derived from fe using
Proposition 2.1, so that, for every tuple (x, y, �z, �w) ∈ Q10,

ge(x, y, �z, �w) = 0 ⇐⇒ fe(x, y, �z, �w) = 0 & (x, y, �z, �w) ∈ Q10
e ,

where Qe is the semilocal subring of Q in which all primes are inverted except those
of the form pj,t with j + t ≤ e. We claim that the map e �→ ge will be a 1-reduction
from C ′ to HTP(RV ). Clearly this map is injective, since each fe used a different
coefficient qe . Moreover, it is computable, because the C-oracle is not invoked in
the definition of the primes pe,t , nor for defining ge . So it remains to see that e ∈ C ′

just if ge ∈ HTP(RV ).
Suppose first that e ∈ C ′, and fix the least stage s + 1 at which we consider a

prime of the form pe,t and for which ΦCe,s(e)↓. From this stage on, each prime pe,t′
with t′ ≥ t will be protected by Re , starting at the stage at which it is considered.
Since it was chosen to be qi -inappropriate for all i < e, and since no lower-priority
Rj can remove from V a prime protected by Re , each such pe,t′ lies in V and gives
a solution to fe in RV . As these primes pe,t′ are arbitrarily large, ge must lie in
HTP(RV ).

On the other hand, if e /∈ C ′, then Re acts to remove primes from V at each
stage s + 1 at which any prime pe,t is considered. Therefore, it ultimately removes
from V every qe-appropriate prime p > e except those which are protected by
higher-priority requirements Rj . However, each prime pj,t protected by Rj was
chosen to be qi -inappropriate for all i ≤ j + t except for i = j. In particular, pj,t is
qe-inappropriate whenever e ≤ j + t; and if e > j + t, then 1

pj,t
/∈ Qe . Therefore,

no qe-appropriate prime is inverted in the subring (RV ∩Qe), and so ge /∈
HTP(RV ).

This shows that C ′ ≤1 HTP(RV ), via the map e �→ ge . It follows that C ′ ≤1 V
′

and therefore C ≤T V by the Jump Theorem [20, Theorem III.2.3]. On the other
hand, with V ≤T C , we have V ′ ≤1 C

′, and of course HTP(RV ) ≤1 V
′, so V is

HTP-complete. 


Corollary 4.2. For every Turing degree d ≥T 0′, there is a subring of Q for which
Hilbert’s Tenth Problem has Turing degree d .

Proof. This follows from Theorem 4.1 along with the surjectivity of the jump
operator above 0′, which was first established by Friedberg in [3]. 


Many readers will recall [14, Theorem 1.3] of Poonen, described in detail in [19,
Chapter 12]. It gives disjoint infinite decidable sets T1 and T2 of primes, both of
asymptotic density 0, such that for every W ⊇ T1 disjoint from T2, RW admits a
diophantine model of arithmetic on the positive integers, making ∅′ ≤1 HTP(RW ).
Unfortunately, the setsW ⊆ P containing all of T1 (let alone disjoint from T2) form
a class that, while of cardinality 2� , is meager and has measure 0 in 2P. Thus this
theorem cannot be combined with the results in [12] or [13]. Its conclusion about
uncountability resembles Theorem 4.1, which showed that {W :W ′ ≤1 HTP(RW )}
has size continuum, despite being meager of measure 0. If the goal is to consider
HTP(Q), then ∅′ ≤1 HTP(RW ) seems just as relevant as W ′ ≤1 HTP(RW ), and
Poonen’s stronger result about diophantine interpretation, proven by an entirely
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different and deeper method than here, could be the key to a final answer.
(Cf. Theorems 41 and 53 of [12].)

We also remark briefly that using the foregoing method with C = ∅, one can
also prove that there is a decidable subring RW ⊆ Q for which HTP(RW ) ≡1 ∅′.
Of course, the Matiyasevich–Davis–Putnam–Robinson theorem already proved this
result for the far more challenging specific case R = Z. Still, the results here again
suggest how a computability-theoretic approach, using techniques such as finite-
injury constructions along with basic number theory, can sometimes yield new and
different proofs. One continues to hope that those techniques, combined with a
deeper use of number theory than in this article, might accomplish more than either
discipline can achieve on its own.

Our method here does not appear to provide answers to any of the questions
raised in [2, Remarks 3.20 and 4.8] by Eisenträger et al.. Those questions generally
want the degree ofHTP(RW ) to be held down, so thatW ′ 
≤T HTP(RW ), whereas
the method of this section is appropriate for coding information into HTP(RW )
and thus making its Turing degree large.

§5. Enumeration operators. Theorem 3.2 was proven with no use of the HTP-
operator specifically. It used only the fact that HTP is an enumeration operator.
Recall that an enumeration of a subset A of � is a subset B of � that, when viewed
as a subset of �2, projects onto A via the projection �1:

A = �1(B) = {x ∈ � : (∃y) 〈x, y〉 ∈ B}.

This is equivalent to various other definitions (often using functions).

Definition 5.1. Let G : 2� → 2� be a function. G is said to be an enumeration
operator if there exists a Turing functional Γ such that, for every A ∈ 2� and every
enumeration C of A, ΓC is a total function from� into {0, 1} and is the characteristic
function of an enumeration of G(A). (It is also natural to refer to Γ itself as the
enumeration operator, but it confuses matters. We will say here that Γ represents G.)

We write B ≤e A, and say that B is enumeration-reducible to A, or e-reducible to
A, if there is an enumeration operator G with G(A) = B . This is equivalent to the
usual definition, e.g., in [17, Section 9.7].

It is immediate from the definition that if Γ represents an enumeration operator
and �1(C0) = �1(C1), then �1(ΓC0 ) = �1(ΓC1 ). We note that other definitions of
e-reducibility are standard in the literature, and are readily shown to be equivalent
to this one. The essence is that there exists a uniform procedure that accepts any
enumeration of A and uses it to compute an enumeration of G(A).

The jump operator J, mapping each A to A′, is the prototype of the functions
called pseudojump operators by Jocksuch and Shore in [5, 6], whose output can be
enumerated uniformly when we are given A itself (not just an enumeration) as the
oracle. However, the jump operator is not an enumeration operator. To see this,
notice that if it were, then ∅′′ = J (∅′) would also be computably enumerable, since
we could run the representation Γ on a computable enumeration of ∅′ to get a
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computable enumeration of J (∅′). For a better understanding of the failure of the
jump to be an enumeration operator, consider a functional Φe for which, for all x,

ΦAe (x) =
{

0, if 17 /∈ A;
↑, if 17 ∈ A.

Now if some functional Γ represented the jump (as an enumeration operator), then
with A = ∅ we would have Γ∅(e) = 1, as ∅ itself is an enumeration of ∅. But if u is
the use of this computation, then one readily can create an enumeration C of an
arbitrary B ⊆ � with C�u = 0u , and ΓC (e) would have to equal 1 for each such
C, by the Use Principle. Hence Γ either fails to be an enumeration operator, or else
fails to compute the jump, because many sets A (indeed a class of measure 1

2 ) have
e /∈ A′.

The next result generalizes Theorem 3.2, and we now give a proof, by exactly the
same means as in [8, Corollary 3.3].

Theorem 5.2. For every enumeration operator E, the collection {A ∈ 2� : A′ ≤1

E(A)} is meager and has measure 0.

Proof. With E fixed, we show that A′ 
≤1 E(A) for every set A such that, for
some set B <T A, A is B-computably enumerable. Indeed, E(A) must then also
be B-c.e., so E(A) ≤1 B

′. However, with A 
≤T B , we have A′ 
≤1 B
′, by the Jump

Theorem (see, e.g., [20, Theorem III.2.3]). It would now contradict the transitivity
of 1-reducibility to have A′ ≤1 E(A).

By results of Jockusch and his student (at the time) Kurtz in [4, 9], the class of
relatively c.e. sets, i.e., those A for which a B exists as described above, is a comeager
class of measure 1. The theorem follows. 


On the other hand, it is quite possible for {A ∈ 2� : A′ ≤T E(A)} to be comeager
and to have measure 1. Indeed, the enumeration operator mapping A to (∅′ ⊕ A) has
this property: it is well-known that the class GL1 of generalized-low sets, i.e., those
satisfying A′ ≤T ∅′ ⊕ A, is comeager and has full measure. Here we focus on the
possibility of computing A′ uniformly (via a single Turing functional) from E(A).

Theorem 5.3. For every Turing functional Ψ and every enumeration operator E,
�({A ∈ 2� : �A′ = ΨE(A)}) < 1.

Corollary 5.4. For every Turing operator Φ, there exists a set S of positive
measure such that, for allW ∈ S,

ΦHTP(RW ) 
= �W ′ .

Proof of Theorem 5.3. We fix an index e for a Turing functional defined as
follows:

ΦAe (x) =
{

0, if (∃m > 1) {m + 1, m + 2, ... , 2m} ∩ A = ∅;
↑, otherwise.

Thus the measure of the set of those A with e ∈ A′ is at most 1
2 (in fact, somewhat

less than 1
2 because of overlaps) and certainly positive. Suppose that, on a set

of measure 1, ΨE(A) = A′ (that is, ΨE(A) computes the characteristic function of
A′). Then �({A : ΨE(A)(e)↓= 0}) > 0. By the countable additivity of Lebesgue
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measure, there must exist a specific � ∈ 2<� such that Ψ�(e)↓= 0 and such that
�({A : � � E(A)}) > 0. Indeed, since the relation �–1(1) ⊆ E(A) is always created
by a finite subset of A, there must then exist a finite set S0 such that � � E(S0)
and �({A : S0 ⊆ A & � � E(A)}) > 0, since there are only countably many finite
subsets S of �. (To avoid confusion, in this proof we write � � E(A) to mean that
� is an initial segment of E(A) ∈ 2� , and S ⊆ A to mean simply that S is a subset
of A, not necessarily an initial segment.)

We fix such a � and such an S0, and choose an integerm > max(S0) (withm > 1
as well). Let W = {A : S0 ⊆ A & � � E(A)}, which is thus guaranteed to have
positive measure. Now consider the class

V = {B ∈ 2� : (∃A ∈ W) B = A – {m + 1, m + 2, ... , 2m}}.
For every such B, m witnesses that e ∈ B ′, according to our definition of Φe .
(In contrast, only measure- 0-many A ∈ W lie in V , since e /∈ A′.) Moreover,
since m > max(S0), all B ∈ V have S0 ⊆ B and thus have E(S0) ⊆ E(B), since
enumeration operators are clearly monotone under ⊆. On the other hand, each
B ∈ V has a correspondingA ∈ W for whichB ⊆ A, so thatE(B) ⊆ E(A). Together
these yield � � E(B), since E(S0) and E(A) agree up to |�|. But now, for every
B ∈ V , we have ΨE(B)(e)↓= Ψ�(e) = 0, even though e ∈ B ′.

It remains to show that V has positive measure. Suppose {U�i : i ∈ �} is a cover
of V by basic open subsets U�i = {C : �i � C} of Cantor space, and suppose that
this cover has total Lebesgue measure r. By the definition of V , we may assume
that �i(n) = 0 for all n ∈ {m + 1, ... , 2m} and all i with n < |�i |. Now, for each of
the (2m – 1)-many binary strings � of length m (excluding the zero string 0m), let
Ti,� = U�i,� , where

�i,�(n) =
{
�(n – (m + 1)), if m + 1 ≤ n ≤ 2m & n < |�i |;

�i(n), otherwise.

That is, �i,� is the same as �i , except that the portion from (m + 1) up to 2m, which
was all zeroes in �i , is replaced by the (nonzero) string �. Thus �(U�i ) = �(Ti,�) for
all i and �. Since the sets U�i form a cover of V , the definition of V shows that the
sets Ti,� form an cover of W by basic open sets in Cantor space, so that their total
measure is ≥ �(W) > 0. Also, for any two distinct � (and the same i), the strings
�i,� are distinct; whereas for distinct i and the same �, the overlap between strings
�i,� is equal in measure to the overlap between the corresponding �i . It follows that

�(W) ≤ �

⎛
⎝⋃
i∈�

⋃
nonzero �∈2m

Ti,�

⎞
⎠ = (2m – 1) · �

(⋃
i

U�i

)
.

Therefore, this open cover {U�i } of V has Lebesgue measure at least �(W)
2m–1 , and this

positive lower bound is independent of the choice of cover of V . So �(V) is positive
as well, and we saw above that ΨE(B)(e)↓
= B ′(e) for all B ∈ V . 


It remains possible, therefore, thatW ′ ≤T HTP(RW ) might hold for measure- 1-
many sets W, but if so, it requires infinitely many Turing functionals to establish this
fact. Similarly, the reduction A′ ≤T ∅′ ⊕ A can be established on a set of measure
(1 – 	) by a single functional Φ (for arbitrarily small ε > 0), but countably many
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functionals are required to show that it holds on a set of measure 1. (In that case,
the countably many functionals can be produced uniformly in the rational number
ε > 0.)

§6. Existential definability of Z. Existential definability of a subset S of Q (in
the usual model-theoretic notion, i.e., defining a unary relation on the field Q

whose elements are precisely the elements of S) is equivalent to S being diophantine
in the ring Q. This means that, for some n, S is defined by a single polynomial
f ∈ Q[X,Y1, ... , Yn] as follows:

(∀r ∈ Q) [r ∈ S ⇐⇒ (∃�y ∈ Qn) f(r, �y) = 0].

All more complicated existential definitions can be boiled down to definitions of
this form.

It is unknown whether the set Z is existentially definable in the field Q. Robinson
gave the first definition of Z in Q, in [16]. That definition was Π4. Significant
subsequent work has reduced the complexity of such definitions: Poonen [15] gave
a Π2 definition, and then Koenigsmann [7] gave a Π1 (that is, purely universal)
definition. Thus we seem to be getting closer to an existential definition. However,
there are number-theoretic conjectures, notably by Mazur, that would imply the
existential undefinability of Z in Q.

An existential definition of Z in Q would implyHTP(Z) ≤1 HTP(Q), and hence
∅′ ≤1 HTP(Q), so it is highly relevant to this article. However, our purpose in this
section is to investigate other possible consequences of ∃-definability of Z in Q. The
main point is that, if any of these consequences should be shown not to hold, it
would follow that Z is not diophantine in Q.

From an existential definition of Z within the field Q, we would immediately get
a stronger result.

Lemma 6.1. If Z has an existential definition in Q, then indeed there is a polynomial
h ∈ Z[X,Y1, ... , Yk] such that, for all x ∈ Q,

x ∈ Z ⇐⇒ (∃�y ∈ Qk) h(x, �y) = 0 ⇐⇒ (∃�y ∈ Zk) h(x, �y) = 0.

Thus the formula (∃Y1 ··· ∃Yk)h(X, �Y ) = 0 would define Z not only in Q, but also in
every subring of Q. Likewise, every c.e. set would have an existential definition that
holds in every subring of Q.

Proof. Assume that the formula (∃Z1, ... , Zj) g(X, �Z) = 0 defines Z in Q, with
g of total degree d. Define h(X, �Y, �T ) to be the polynomial

g

(
X,

Y1

1 + T 2
1 + ··· + T 2

4

, ... ,
Yj

1 + T 2
1 + ··· + T 2

4

)
· (1 + T 2

1 + ··· + T 2
4 )d .

Now if x ∈ Z, then there is �z ∈ Qj with g(x, �z) = 0. Taking a positive common
denominator v ∈ Z>0 of the rationals zi , use the Four Squares Theorem to write
v – 1 = t21 + t22 + t23 + t24 with all ti ∈ Z and let yi = vzi . Then

(�y, �t ) is a solution to
h(x, �Y, �T ) = 0 in Z, hence in every subring of Q.

Conversely, for any
(
x, �y, �t ) in a subring of Q with h

(
x, �y, �t ) = 0, setting

zi = yi
1+t21 +t22 +t23 +t24

gives g(x, �z) = 0 with all zi ∈ Q, so x ∈ Z. 
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6.1. Preservation of m-reductions. It was seen in [8] that the HTP operator can
fail to preserve Turing reductions, and indeed that it can sometimes reverse them: it
is possible to have V <T W , yet HTP(RW ) <T HTP(RV ), with strictness in both
relations. (This result is [8, Corollary 5.3].) Whether the same operator must respect
the stronger notion of m-reducibility remains an open question. Here we connect that
question to the existential definability of Z in Q, first giving the relevant definitions.

Definition 6.2. For subsets A,B ⊆ �, a computable total function F : � → �
is an m-reduction from A to B if it satisfies

(∀x ∈ �) [x ∈ A ⇐⇒ F (x) ∈ B].

A 1-reduction is just an m-reduction which is also one-to-one (as opposed to many-
to-one, whence the terminology). We write A ≤1 B and A ≤m B to denote the
existence of 1-reductions and m-reductions, respectively. Clearly these are both
partial preorders on the power set of �.

The reader may wonder why the distinction is made between m- and 1-reducibility.
There do exist sets A and B with A ≤m B but A 
≤1 B , and they can be chosen to be
infinite and coinfinite (thus avoiding the simple situation where 1 ≤ |B | < |A| <∞).
Nevertheless, in computability theory, 1-reducibility is regarded as nearly equivalent
to m-reducibility. Our first lemma suggests that this seems to hold here as well.

Lemma 6.3. For sets A ⊆ � andW ⊆ P, we have A ≤m HTP(RW ) if and only if
A ≤1 HTP(RW ).

Proof. For the nontrivial direction, let G be an m-reduction. Then each value
G(n) is a polynomial in Z[X1, X2, ...], say, and we simply define:

F (n) = (G(n))2 + (X0)2n.

The polynomial F (n) (from Z[X0, X1, ...]) has a solution in RW just if G(n) does,
and the exponent 2n makes F injective. 


Corollary 6.4. If the HTP operator respects m-reductions, then it respects
1-reductions.

Nevertheless, there is an important reason to distinguish between 1- and
m-reducibility, as seen in the following theorem.

Theorem 6.5. Each of the following implies the next.

1. Z is existentially definable in the field Q.
2. The HTP operator respects m-reducibility (i.e., ifV ≤m W , thenHTP(RV ) ≤m
HTP(RW )).

3. ∅′ ≤1 HTP(Q).

In contrast, we do not know whether (3) follows from the assumption that HTP
preserves 1-reductions.

Proof. We first show that (2) implies (3). Consider V = {3} andW = P – {3}.
Clearly V ≤m W : just let F (3) = 5 and F (p) = 3 for all p 
= 3. (This would work
for any nonempty finite V and any proper cofinite W, of course.) By (2), we
get HTP(Z[ 1

3 ]) ≤m HTP(RP–{3}). But Robinson showed that ∅′ ≤1 HTP(Z[ 1
3 ])
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(and likewise for all finitely generated subrings of Q), whereas HTP(RP–{3}) ≤1

HTP(Q) by Corollary 2.2, proving (3).
Next we assume (1) and prove (2). With an m-reduction from V to W, we can

readily compute an m-reduction fromRV toRW : that is, a computable, total function
G with

(∀q ∈ Q) [q ∈ RV ⇐⇒ G(q) ∈ RW ].

∃-definability of Z implies that every c.e. set, and in particular the graph of G, is
diophantine inQ, so by Lemma 6.1 we have a polynomial g such that, for all q, r ∈ Q:

G(q) = r ⇐⇒ g(q, r, Z1, ... , Zm) ∈ HTP(Z),

⇐⇒ g(q, r, Z1, ... , Zm) ∈ HTP(Q).

Thus the following holds for every f ∈ Z[X0, ... , Xk–1]:

f ∈ HTP(RV ) ⇐⇒ (∃�q ∈ (RV )k) f(�q) = 0

⇐⇒ (∃�q ∈ Qk)(∃�r ∈ (RW )k) [f(�q) = 0 & (∀i < k) G(qi) = ri ]

⇐⇒ (∃�q ∈ Qk)(∃�r ∈ (RW )k)

[f(�q) = 0 & (∀i < k) g(qi , ri , Zi1, ... , Zim) ∈ HTP(RW )]

⇐⇒ (∃�s, d, �r, z01, ... , zkm ∈ RW )
[
f

(s1
d
, ... ,

sk
d

)
= 0 &

& (∀i < k) g
(si
d
, ri , zi1, ... , zim

)
= 0 & d 
= 0

]
.

Since the equations (and the inequation) in the second-to-last line can all be collected
into a single polynomial equation with the d’s cleared from the denominators, we
have computed (from f ) a single polynomial which lies in HTP(RW ) just if f itself
lies inHTP(RV ). 


6.2. Boundary sets of polynomials. The key to our use of the polynomialsfe built
using (X 2 + qeY 2 – 1) in Theorem 4.1, and also in the results in [8], was that, once
we built fe and thus ruled out the trivial solutions, they have nonempty boundary
sets, according to the following definition.

Definition 6.6. For a polynomial f ∈ Z[X1, X2, ...], write:

• A(F ) = {W ∈ 2P : f ∈ HTP(RW )};
• C(F ) = {W ∈ 2P : (∃ finite S0 ⊆W ) f /∈ HTP(RP–S0)}; and
• B(F ) = 2P – A(f) – C(f), the boundary set of f.

With � as the Lebesgue measure on 2P, we also write α(f) = �(A(f)), �(f) =
�(B(f)), and 
(f) = �(C(f)).

The Cantor space 2P is equipped with the usual topology. Here A(f) is always an
open set, since each solution to f requires only that a certain finite set of primes be
inverted in RW . C(f) is the interior of the complement of A(f), the set of subrings
where the non-invertibility of some finite set of primes rules out the possibility of
a solution to f. Therefore, B(f) is indeed the topological boundary of A(f), and
contains those W such that f has no solution in RW , but such that, for every n,
it is possible to extendW�n to some set V with f ∈ HTP(RV ). (In the phrase of
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Shlapentokh, f “never loses hope” of having a solution inRW .) OftenB(f) is empty,
but the polynomials fe have nonempty boundary sets: indeed B(fe) contains every
subset of the set of qe-inappropriate primes, which Lemma 2.4 showed to be an
infinite set. This is what allowed our coding to work, in Theorem 4.1: no matter how
many primes we removed from V, there was always some prime not yet removed
which, if it stayed in V, would cause fe to lie inHTP(RW ). So, no matter how long
ΦCe (e) might take to converge, we could always code its convergence intoHTP(RW )
when and if we saw the computation halt.

On the other hand, the definitions of α, � , and 
 suggested that we care about the
measures of these sets, and here the fe polynomials are not so impressive. Indeed,
α(fe) is always 1, for every e, because the set of qe-appropriate primes is infinite and
the inversion of any single element of that set will yield a solution to fe . It remains
an open question whether any polynomial f at all can have �(f) > 0. In this section
we discuss the possible consequences of an answer to this question.

The overall boundary set B is defined by:

B =
⋃

f∈Z[X1,X2,...]

B(f).

Each B(f) is nowhere dense in 2P, in the sense of Baire category, and therefore
B itself is meager. This shows that there must exist subrings of Q which lie in no
boundary set B(f). These are called HTP-generic subrings, and are studied in [12,
13]. As noted above, although the complement B is comeager and thus large in
the sense of Baire category, it is unknown whether its measure is 0 or 1, and even
values between 0 and 1 have not been ruled out. We remark that, for an individual
polynomial f, we always have �(f) < 1, because the only way to have α(f) = 0 is
for the open set A(f) to be empty, in which case C(f) = 2P and B(f) = ∅.

6.3. Noncomputable �(f). The next theorem will be superseded by Theorem 6.9,
but its proof is useful as an introduction to the proof of the latter theorem, and so
we present it in full here.

Theorem 6.7. If the boundary set B has measure < 1, then there is no existential
definition of Z within the field Q.

Proof. We prove the contrapositive, by assuming thatZ does have an ∃-definition
in Q and showing, for an arbitrary positive real number r < 1 which is approximable
from below, that there exists a polynomial f ∈ Z[ �X ] with α(f) = r and 
(f) = 0.
(“Approximable from below” means that the left Dedekind cut of r is c.e.) This will
establish that the measure �(f) = 1 – r, proving the theorem, since B(f) ⊆ B.

So fix such a number r, and let q0, q1, ... be a computable, strictly increasing
sequence of positive rational numbers with lims qs = r. Let n0 be the least integer
with 2–n0 ≤ q0, which is to say, 1 – 2–n0 ≥ 1 – q0. Now define by recursion

nk+1 = min{n ∈ N : (1 – 2–n) · (1 – 2–nk ) ··· (1 – 2–n0 ) ≥ 1 – qk+1}.

With qk+1 > qk , such an nk+1 always exists (and must be positive, since qk+1 < 1),
and the sequence 〈ni〉i∈N is computable. Moreover, by the minimality of each nk ,∏
k≥0(1 – 2–nk ) = 1 – limk qk = 1 – r.
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Next, let x0 = p0 · p1 ··· , pn0–1 be the product of the first n0 prime numbers. Then
set xk+1 = pn0+···+nk ···pn0+···+nk+1–1 to be the product of the next nk+1 primes,
for each k in turn. The set D = {xk : k ∈ N} is computably enumerable (indeed
computable), hence diophantine. Since we are assuming that Z is ∃-definable in Q,
there exists a polynomial g ∈ Z[X,Y1, ... , Ym] such that

D = {x ∈ Z : g(x,Y1, ... , Ym) ∈ HTP(Z)}
= {x ∈ Q : g(x,Y1, ... , Ym) ∈ HTP(Q)}.

(This simply requires that we start with a polynomial which defines the set D =
{xk : k ∈ N} within Z, and then apply Lemma 6.1 to transfer the definition of
{xk : k ∈ N} to Q.) The f(X, �Y,T ) we desire is simply the sum

(g(X,Y1, ... , Ym))2 + (XT – 1)2.

We claim that this f satisfies α(f) = r and 
(f) = 0.
Notice first that every solution (x, �y, t) to f in Q must have g = 0, hence has

x ∈ Z and all yi ∈ Z. But then x = xk for some k, by our choice of g, and t = 1
xk

.
In order for this solution to lie in a subring R of Q, therefore, that subring R must
contain multiplicative inverses of all the prime factors pn0+···+nk–1 , ... , pn0+···+nk–1 of
this xk . (Notice that this list contains exactly nk primes.)

Conversely, suppose that a subring R does contain all these primes (for some
k). Then it contains t = 1

xk
, and since xk ∈ N, there exist integers y1, ... , ym which,

along with xk and t, form a solution to f in R.
Therefore, the subrings in which f has a solution are exactly those in which, for

some k, all of the nk prime factors of xk have inverses. For a single k, the measure of
the set of such subrings is 2–nk . Since all distinct xk have completely distinct prime
factors, the set of subrings containing no solution to f therefore has measure∏

k

(1 – 2–nk ) = 1 – r,

and so the set A(f) of subrings with solutions to f has measure precisely equal to
r. That is, α(f) = r.

Finally, it is clear that every semilocal subring R of Q contains a solution of f.
Indeed, for some k, R must contain inverses of all primes≥ pn0+···+nk , so our analysis
above yields a solution in R. It follows that C(f) = ∅, so �(f) = 1 – α(f) – 
(f) =
1 – r. 


The proof of Theorem 6.7 actually showed more. Assuming an ∃-definition of
Z in Q, we constructed a polynomial f with α(f) = r and �(f) = 1 – r, under
the condition that r ∈ (0, 1) be approximable from below. In particular, this shows
that both α(f) and �(f) can be noncomputable, since a real number r can be
approximable from below without being approximable from above.

Corollary 6.8. If Z has an existential definition in Q, then for every real number
r ∈ (0, 1) which is approximable from below, then there is a polynomialf ∈ Z[ �X ] with
α(f) = r and �(f) = 1 – r.

Finally, we remark that in the proof of Theorem 6.7, it is possible to put an upper
bound on the degrees of the polynomials f produced. First of all, the polynomials h
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and j (and (XT – 1)) are all fixed independently of r, and hence so is the total degree
d of h. Only g depends on r: g was chosen to define (in Z) the set D of products xk of
primes, and the number of prime factors of each xk depends on r. However, by fixing
a single polynomial G ∈ Z[E,X,Y1, ... , Yk] which defines the Halting Problem in
Z, we may then take our g (for a given r) to be of the form G(e, X, �Y ) for some
natural number e. (In fact, the choice of e can be made effectively, once we know an
index for the computable sequence 〈qk〉k∈N of rationals approaching r from below.)
Therefore, regardless of the value of r, the total degree of g need never be more than
that of the fixed polynomial G, and this in turn puts a bound on the total degree of
the f we eventually produced.

6.4. Reals of greater complexity. Having seen in Section 6.3 how to use arbitrary
c.e. sets, along with the assumption of ∃-definability of Z in Q, to build polynomials
f with �(f) noncomputable, we now enhance our construction of the c.e. set,
so as to make �(f) have even higher complexity. From its definition, �(f) = 1 –
α(f) – 
(f), and α(f) must always be approximable from below, while �(f) must
be HTP(Q)-approximable from below, hence ∅′-approximable from below. We will
emulate Theorem 6.7, assuming ∃-definability of Z in Q and building a c.e. set of
products of primes so as to show that these are the best possible bounds on the
complexity of these real numbers.

Theorem 6.9. Assume that Z has an ∃-definition in Q. Then, given any two positive
real numbers u and v with u + v < 1, such that u is computably approximable from
below and v is ∅′-computably approximable from below, there exists a polynomial f
with α(f) = u and 
(f) = v, hence with �(f) = 1 – u – v.

Proof. We repeat the technique of Theorem 6.7, by enumerating the product
Πp∈I p of a finite set I of primes into a c.e. set D when we want the subring Z[I ]
to contain a solution to our polynomial f. This f will be defined as g2 + (XT – 1)2

exactly as in that theorem, using a polynomial g(X, �Y ) that defines D in Q (which
exists by the hypothesis of ∃-definability of Z in Q). However, the enumeration of D
is now more intricate: distinct elements of D need no longer be relatively prime.

The enumeration of D yields an enumeration of a c.e. set of nodes � ∈ 2<P: those
� such that the products of the primes in �–1(1) lies in D. (Notice that a single
element of D may produce several such �. For example, if 35 ∈ D, then the strings
0011, 1011, 0111, and 1111 all are enumerated.) By the construction, then, these �
will be precisely the nodes naming the open set A(f), which will contain all subrings
of Q extending any such �. At a stage s in our construction, those � such that this
product is divisible by some x ∈ Ds (that is, by some x already enumerated into D)
will be said to be colored green at this stage. (We think of them as having a “green
light”: a solution to f in the relevant subring is already known.) At stage s, the nodes
colored red will be those nodes � such that no � ⊇ � is green. Thus a node may cease
to be red at a particular stage, when it or a successor turns green; if this happens, it
will never again be red, although this node itself might also never turn green.

By assumption there exists a computable, strictly increasing sequence 〈us〉s∈� of
positive rational numbers with u = lims us . Additionally, there exists a computable
total “chip” function c : � → (0, 1) ∩Q such that

{q ∈ Q : 0 < q < v} = {q ∈ Q ∩ (0, 1) : c–1((0, q]) is finite},
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so that the strict left Dedekind cut defined by v is precisely the set of rational numbers
receiving only finitely many “chips” from c. ([20, Theorem IV.3.2] gives the essence of
the construction of c.) Notice also that with v < 1 – u, there will be infinitely many
s with c(s) < 1 – u < 1 – us . Indeed, by fixing a rational number q0 ∈ (v, 1 – u) and
ignoring all stages s with c(s) > q0, we may assume that c(s) < 1 – us for every
stage s.

At stage 0, D0 is empty. At stage s + 1, only finitely many nodes can be minimal
(under ⊆) with the property of having been green at stage s, since (by induction)
Ds was finite. We fix the least level ls such that every minimal green node at stage s
lies at a level ≤ ls ; thus, at each level ≥ ls , every node must be either red or green at
stage s. (Below that level, a node may be neither color at stage s.) We can list out the
(finitely many) nodes that are minimal with the property of having been red at stage
s: let these be �0,s , ... , �js ,s , ordered by length so that |�i,s | ≤ |�i+1,s | and so that, if
these lengths are equal, then �i,s ≺ �i+1,s in the lexicographic order ≺ on nodes. We
regard �0,s , ... , �js ,s as a priority ordering of the minimal red nodes.

Recall that some rational c(s + 1) ∈ (0, 1) received a chip at this stage. Find the
greatest ks ≤ js such that

ks∑
i=0

2–|�i,s | < c(s + 1),

and for each of �0,s , ... , �ks ,s , declare all of its successors at level ls to be prioritized.
(This means that they will all still be red at the end of this stage, and therefore so
will �0,s , ... , �ks ,s .) Let �0,s , ... , �ms ,s be the finitely many nodes of length l that were
red at stage s but are not prioritized.

Our intention is to introduce a green node above each of these non-prioritized
nodes �i,s , so that they will no longer be red. Therefore, for each �i,s in turn, we
enumerate into Ds+1 the product xi,s of a set of prime numbers such that:

• whenever �i,s (p) = 1, then p divides xi,s ;
• whenever �i,s (p) = 0, then p does not divide xi,s ; and
• xi,s has certain other prime factors /∈ dom(�), as defined below (after Lemma

6.10).

The point of the first two rules is that now �i,s extends to some node that is colored
green at stage s + 1 (since xi,s ∈ Ds+1). However, we must ensure that no prioritized
node �k,s extends to a node that becomes green when xi,s enters D. To understand
why this is not immediate, recall that if the number 35 enters D, so as to make the
node 0011 turn green, then the nodes 1011, 0111, and 1111 will all also turn green,
since they correspond to rings containing 1

35 . However, Lemma 6.10 shows that
these now-accidentally-green nodes cannot have been prioritized.

Lemma 6.10. For each i ≤ ms and each k ≤ ks , some prime q has �k,s(q) = 0 but
�i,s(q) = 1, so that 1

xi,s
/∈ Z[P – �–1

k,s(0)].

Proof. Let� ⊆ �i,s be minimal such that� is red at stage s (so, by our definition of
�i,s above, � = �j,s for some j > ks). We must have either |�k,s | < |�|, or �k,s ≺ �.
Now if �k,s ≺ �, then the least prime q at which they differ has �k,s(q) = 0 and
�(q) = 1, forcing �i,s(q) = 1 since �i,s restricts to �. But if |�k,s | < |�|, then �� |�k,s |
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cannot be red as well, by the minimality of �, and so some q ∈ �–1
k,s(0) must have

�(q) = 1, for otherwise �� |�k,s | would have been red (as any green successor of
�� |�k,s | would have given rise to a green successor of �k,s). 


By induction, we know that the measure as of the set of all paths in 2P that
include a green node at stage s lies in (us – 1

2s , us), and we wish to make as+1 ∈
(us+1 – 1

2s+1 , us+1) as well. (Recall that us < us+1.) Now as is precisely the measure
of the set of nodes at level ls that are green at stage s. Meanwhile, the prioritized
nodes at level ls have total measure< c(s + 1), by our choice of ks above, and these
should stay red at stage s + 1. We arranged beforehand that us+1 < 1 – c(s + 1),
so that these requirements do not conflict. The remaining nodes at level ls are
precisely �0,s , ... , �ms ,s . Above we stated that each of these will contribute some
xi,s to Ds+1. By taking xi,s to have many prime factors /∈ dom(�i,s), we can make
each xi,s contribute arbitrarily little measure to as+1, so it is not difficult to ensure
that as+1 < us+1. To make as+1 > us+1 – 1

2s+1 , we add a larger amount of measure as
needed, possibly enumerating several different numbers (but only finitely many) into
Ds+1 instead of just a single xi,s . For example, if �i,s = 0011 (with ls = 4), then 5 and
7 must divide each xi,s and 2 and 3 must not; by enumerating both 5 · 7 · 11 · 13 and
5 · 7 · 11 · 17 · 19 into Ds+1, we can make the two extensions 0011ˆ11 and 0011ˆ1011
turn green. (This would also make six other nodes, such as 1011ˆ11, turn green, if
they were not green already.) These first two nodes together have measure 5

16 · 1
2ls

,
which is five-sixteenths of the total measure available above 0011. How much else is
added depends on whether 1011, 0111, and 1111 were already green or not, but it is
clear that we can compute this, and that we could make any dyadic fraction of the
total measure above the nodes �i,s turn green. So it is easy to make as+1 sit in the
desired interval (us+1 – 1

2s+1 , us+1), effectively, and this completes the construction.
With as ∈ (us – 1

2s , us) for every s, it is clear that the resulting polynomial f
has �(A(f)) = lims us = u as desired. We also claim that �(C(f)) = v, which will
complete the proof. In particular, whenever q < v, we can produce a subset of C(f)
of measure ≥ q; whereas when v < q, we will show that �(C(f)) < q as well.

First suppose q < v, and fix any rational q′ ∈ (q, v). Then there is some stage s0
such that, for all s ≥ s0, we have c(s) > q′. Then at stage s0, among the minimal red
nodes �0,s0 , ... , �ks0 ,s0 , the first k (in this order) will in fact be this highest-priority
minimal red nodes remaining at the end of the construction, where k is maximal so
that

k∑
i=0

2–|�i,s0 | < q′.

Now �k+1,s0 may or may not remain red forever after. If it does, then we have a set of
red nodes of total measure ≥ q′ > q, as required; so assume that eventually a stage
s1 > s0 is reached at which some node above this �k+1,s0 is colored green. Then at
stage s1 + 1, �0,s1+1, ... , �k,s1+1 will be the same as at stage s0, but �k+1,s1+1 will be
different: either it will have greater length than �k+1,s0 , or it will be � �k+1,s0 . If it has
the same length, then the same argument applies to this new �k+1,s1+1. Since there
are only finitely many nodes at each level, we either reach a node at this level that
stays red forever after, in which case again we have a set of red nodes of sufficiently
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large measure; or else �k+1,s will eventually have greater length than �k+1,s0 . This
argument then continues until we reach a stage s at which

2–|�k+1,s | < q′ –
k∑
i=0

2–|�i,s0 |,

at which point this new �k+1,s will remain red forever. The measure of the red set will
become arbitrarily close to q′ via this process, and hence must eventually be > q.
(With q′ < v, it will eventually become > q′ as well, but this is irrelevant.) To see
why it must become arbitrarily close to q′, notice that with 1 – us > c(s) > q′ at all
subsequent stages, there will always be a supply of red nodes of measure > q′, and
the remainder of this measure will be partitioned into smaller and smaller chunks
as the length of the next minimal red node keeps increasing, so that the measure
of the permanently minimal-red nodes cannot stay below q′ by any positive margin
forever.

It remains to show that when v < q, we have �(C(f)) < q as well. Again it is
useful to fix some q′ between q and v, now with v < q′ < q. Now there are infinitely
many stages s with c(s) < q′. If the measure of C(f) were > q′, then eventually
there would be a finite set of minimal red nodes, of total measure > q′, all of which
stayed red (and hence minimal) forever after. But at some subsequent stage s we
would have c(s) < q′, and at that stage the lowest-priority node in this finite set
would acquire a green node above it, so would not in fact have been permanently
red. With this contradiction, the proof is complete. 


The remarks at the conclusion of Theorem 6.7 can be applied and expanded
here. The first claim in this corollary follows from Theorem 6.7; the second from
Theorem 6.9.

Corollary 6.11. If the solution class A(f) of every polynomial f ∈ Z[ �X ] has
computable measure, then there is no existential definition of Z in Q. Likewise, if the
boundary class B(f) of every polynomial f ∈ Z[ �X ] has ∅′-computable measure, then
there is no existential definition of Z in Q.

The following, while only a partial converse, serves to emphasize the importance
of the measures of boundary sets.

Corollary 6.12. If there exists a polynomial f for which the measure �(f) ofB(f)
is not ∅′-computable—or simply fails to be approximable from above—then HTP(Q)
is undecidable.

Proof. If HTP(Q) is decidable, then the measures of both A(f) and C(f) are
approximable from below, and therefore �(f) = 1 – α(f) – 
(f) is approximable
from above. 


Corollary 6.13. Suppose that, for every polynomial f ∈ Z[X0, X1, ...], the set
C(f) is an effective union of basic open sets in 2P. (That is, suppose the red nodes in 2P

for f always form a computably enumerable set.) Then there is no existential definition
of Z in Q.

In particular, this corollary applies if, for each single f, the set of minimal red nodes
for f is a finite set. The corollary would not require any method of determining the
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finite set uniformly from the polynomial. As of this writing, it is unknown whether
there exists an f for which the set of minimal red nodes is infinite (let alone not
computably enumerable).

Proof. An effective union of basic open sets has as its measure a real number
approximable from below, and here this measure is 
(f). Since α(f) is always
approximable from below, �(f) = 1 – α(f) – 
(f) would always be approximable
from above, hence ∅′-computable, and we would then apply Theorem 6.9. 
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