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The paper tries to extend some results of the classical Descriptive Set Theory to as many

countably based T0-spaces (cb0-spaces) as possible. Along with extending some central facts

about Borel, Luzin and Hausdorff hierarchies of sets we also consider the more general case

of k-partitions. In particular, we investigate the difference hierarchy of k-partitions and the

fine hierarchy closely related to the Wadge hierarchy.

1. Introduction

Classical Descriptive Set Theory (Kechris 1995) is an important field of mathematics

with numerous applications. It investigates descriptive complexity of sets, functions and

equivalence relations in Polish (i.e., separable complete metrizable) spaces.

Although Polish spaces are sufficient for many fields of classical mathematics, they

are certainly not sufficient for many fields of Theoretical Computer Science where non-

Hausdorff spaces (in particular, ω-continuous domains) and non-countably-based spaces

(in particular, Kleene–Kreisel continuous functionals) are of central importance. For this

reason, the task of extending classical Descriptive Set Theory (DST) to as many non-Polish

spaces as possible attracted attention of several researchers.

Some parts of DST for ω-continuous domains (which are typically non-Polish) were

developed in Selivanov (2004, 2005b, 2006, 2008a). In de Brecht (2013), a good deal

of DST was developed for the so called quasi-Polish spaces (see the next section for a

definition of this class of cb0-spaces) which include both the Polish spaces and the ω-

continuous domains. For some attempts to develop DST for non-countably based spaces

see e.g. Friedman et al. (2014), Jayne and Rogers (1982), Motto Ros and Semmes (2010),

Pauly (2012) and Pauly and de Brecht (2013).

In this paper, we try to develop DST for some classes of cb0-spaces beyond the class

of quasi-Polish spaces. As is usual in classical DST, we put emphasis on the ‘infinitary

version’ of hierarchy theory where people are concerned with transfinite (along with finite)

levels of hierarchies. The ‘finitary’ version concentrating on the finite levels of hierarchies

has a special flavor and is relevant to several fields of Logic and Computation Theory; it

was systematized in Selivanov (2006, 2008b, 2012).

We extend some well-known facts about classical hierarchies in Polish spaces to natural

classes of cb0-spaces. Namely, we show that some levels of hierarchies of cb0-spaces

introduced in Schröder and Selivanov (2015, 2014) provide natural examples of classes of

cb0-spaces with reasonable DST (in particular, the classical Suslin, Hausdorff–Kuratowski

https://doi.org/10.1017/S0960129516000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000177


V. Selivanov 1554

and non-collapse theorems for the Borel, Luzin and Hausdorff hierarchies are true for such

spaces). This portion of our results are technically easy and follow rather straightforwardly

from the classical DST and some notions and results in Motto Ros et al. (2015) and

Schröder and Selivanov (2015).

Along with the classical hierarchies of sets we are interested also in the difference and

fine hierarchies of k-partitions (Selivanov 2006, 2007a,b, 2008a,b, 2011) which seem to be

natural, non-trivial and useful generalizations of the corresponding hierarchies of sets.

Also, along with the classical Wadge reducibility (Van Wesep 1976; Wadge 1972, 1984)

we discuss its extension to k-partitions (Hertling 1993, 1996; Selivanov 2007b), and some

of its weaker versions introduced and studied in Andretta (2006), Andretta and Martin

(2003), Motto Ros (2009) and Motto Ros et al. (2015).

Already the extension of the Hausdorff difference hierarchy to k-partitions is a non-

trivial task. The general ‘right’ finitary version of this hierarchy was found only recently

in Selivanov (2012), although for some particular cases it was already in our previous

publications. The general ‘right’ infinitary version of this hierarchy is new here, although

the definition adequate for bases with the ω-reduction property was also found earlier

(Selivanov 2007a,b, 2008a). That the definition in this paper is right follows from the nice

properties of the difference hierarchy of k-partition (in particular, the natural version of

the Hausdorff–Kuratowski theorem).

The situation with the fine hierarchy (which aims to extend the Wadge hierarchy to the

case of sets and k-partitions in arbitrary spaces) is even more complicated. This task is not

obvious even for the case of sets because the Wadge hierarchy is developed so far only for

the Baire space (and some of its close relatives) in terms of m-reducibility by continuous

functions and with a heavy use of Martin determinacy theorem (Van Wesep 1976; Wadge

1972, 1984). As a result, there is no clear explicit description of levels of the hierarchy

in terms of set-theoretic operations which one could try to extend to other spaces (more

precisely, some rather indirect descriptions presented in Wadge (1984) strongly depend

on the ω-reduction property of the open sets which usually fails in non-zero-dimensional

spaces). Probably, that was the reason why some authors tried to obtain alternative

characterisations of levels of the Wadge hierarchy (Duparc 2001; Louveau 1983). In a

series of our papers (see e.g. Selivanov (2006, 2008b)) a characterization of levels of an

abstract version of Wadge hierarchy in the finitary case was achieved that was extended

in Selivanov (2012) to the case of k-partitions. Here we develop an infinitary version of

this approach and try to explain why the corresponding hierarchy is the ‘right’ extension

of the Wadge hierarchy to arbitrary spaces and to the k-partitions. Since the notation

and full proofs in this context are extremely involved, we concentrate here only on the

partitions of finite Borel rank and avoid the complete proofs of some complicated results,

giving only precise formulations and short proof hints with references to closely related

earlier proofs in the finitary context. Thus, this part of the paper is a kind of ‘extended

announcement’ of results on the infinitary version of the fine hierarchy of k-partitions; a

detailed treatment shall appear in subsequent publication(s).

After recalling some notions and known facts in the next section, we discuss some

basic properties of Borel and Luzin hierarchies in cb0-spaces in Section 3. In Sec-

tion 4 we establish some basic facts on the difference hierarchies of k-partitions in
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; cb0-spaces. The main result here is the Hausdorff–Kuratowski theorem for k-partitions in

quasi-Polish spaces. In Section 5 we extend the difference hierarchies of k-partitions to

the fine hierarchies of k-partitions. In particular, we extend the Hausdorff–Kuratowski

theorem to the fine hierarchy. We conclude in Section 6 with sketching a possible further

research on extending the classical Descriptive Set Theory.

2. Notation and preliminaries

In this section we recall some notation, notions and results used in the subsequent sections.

2.1. cb0-spaces and qcb0-spaces

Here we recall some topological notions and facts relevant to this paper.

We freely use the standard set-theoretic notation like dom(f), rng(f) and graph(f) for

the domain, range and graph of a function f, respectively, X × Y for the Cartesian

product, and P (X) for the set of all subsets of X. For A ⊆ X, A denotes the complement

X \ A of A in X. We identify the set of natural numbers with the first infinite ordinal ω.

The first uncountable ordinal is denoted by ω1. The notation f : X → Y means that f is

a total function from a set X to a set Y .

We assume the reader to be familiar with the basic notions of topology (Engelking

1989). The collection of all open subsets of a topological space X (i.e. the topology of X)

is denoted by O(X); for the underlying set of X we will write X in abuse of notation.

We will often abbreviate ‘topological space’ to ‘space.’ A space is zero-dimensional if it

has a basis of clopen sets. Recall that a basis for the topology on X is a set B of open

subsets of X such that for every x ∈ X and open U containing x there is B ∈ B satisfying

x ∈ B ⊆ U.

Let ω be the space of non-negative integers with the discrete topology. Of course, the

spaces ω ×ω = ω2 (cartesian product), and ω �ω (disjoint union) are homeomorphic to

ω, the first homeomorphism is realized by the Cantor pairing function 〈·, ·〉.
Let N = ωω be the set of all infinite sequences of natural numbers (i.e., of all functions

ξ : ω → ω). Let ω∗ be the set of finite sequences of elements of ω, including the empty

sequence. For σ ∈ ω∗ and ξ ∈ N , we write σ 
 ξ to denote that σ is an initial segment of

the sequence ξ. By σξ = σ · ξ we denote the concatenation of σ and ξ, and by σ · N the

set of all extensions of σ in N . For x ∈ N , we can write x = x(0)x(1) . . . where x(i) ∈ ω

for each i < ω. For x ∈ N and n < ω, let x<n = x(0) . . . x(n− 1) denote the initial segment

of x of length n. Notations in the style of regular expressions like 0ω , 0∗1 or 0m1n have

the obvious standard meaning.

By endowing N with the product of the discrete topologies on ω, we obtain the so-

called Baire space. The product topology coincides with the topology generated by the

collection of sets of the form σ · N for σ ∈ ω∗. The Baire space is of primary importance

for Descriptive Set Theory and Computable Analysis. The importance stems from the fact

that many countable objects are coded straightforwardly by elements of N , and it has

very specific topological properties. In particular, it is a perfect zero-dimensional space

and the spaces N 2, Nω , ω × N = N � N � · · · (endowed with the product topology)

are all homeomorphic to N . Let (x, y) �→ 〈x, y〉 be a homeomorphism between N 2 and
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N . The subspace C := 2ω of N formed by the infinite binary strings (endowed with the

relative topology inherited from N ) is known as the Cantor space.

The Sierpinski space S is the two-point set {⊥,
} where the set {
} is open but not

closed. The space Pω is formed by the set of subsets of ω equipped with the Scott

topology. A countable base of the Scott topology is formed by the sets {A ⊆ ω | F ⊆ A},
where F ranges over the finite subsets of ω. Note that Pω = O(ω). As is well known

(Gierz et al. 2003), Pω is universal for cb0-spaces:

Proposition 2.1 A topological space X embeds into Pω iff X is a cb0-space.

Remember that a space X is Polish if it is countably based and metrizable with a metric

d such that (X, d) is a complete metric space. Important examples of Polish spaces are ω,

N , C, the space of reals R and its Cartesian powers Rn (n < ω), the closed unit interval

[0, 1], the Hilbert cube [0, 1]ω and the Hilbert space Rω . Simple examples of non-Polish

spaces are S, Pω and the space Q of rationals.

A space X is quasi-Polish (de Brecht 2013) if it is countably based and quasi-metrizable

with a quasi-metric d such that (X, d) is a complete quasi-metric space. A quasi-metric on

X is a function from X × X to the nonnegative reals such that d(x, y) = d(y, x) = 0 iff

x = y, and d(x, y) � d(x, z) + d(z, y). Since for the quasi-metric spaces different notions

of completeness and of a Cauchy sequence are considered, the definition of quasi-Polish

spaces should be made more precise (see de Brecht 2013 for additional details). We skip

these details because we will in fact use some other characterizations of these spaces

recalled below. Note that the spaces S, Pω are quasi-Polish while the space Q is not.

A representation of a space X is a surjection of a subspace of the Baire space N onto

X. A basic notion of Computable Analysis is the notion of admissible representation.

A representation δ of X is admissible, if it is continuous and any continuous function

ν : Z → X from a subset Z ⊆ N to X is continuously reducible to δ, i.e. ν = δ ◦ g for

some continuous function g : Z → N . A topological space is admissibly representable, if

it has an admissible representation.

The notion of admissibility was introduced in Kreitz and Weihrauch (1985) for rep-

resentations of cb0-spaces (in a different but equivalent formulation) and was extensively

studied by many authors. In Schröder (2002, 2003), the notion was extended to non-

countably based spaces and a nice characterization of the admissibly represented spaces

was achieved. Namely, the admissibly represented sequential topological spaces coincide

with the qcb0-spaces, i.e., T0-spaces which are topological quotients of countably based

spaces.

In de Brecht (2013), the following important characterization of quasi-Polish spaces

was obtained: A cb0-space X is quasi-Polish if there is a total admissible representation

δ : N → X of X.

2.2. Hierarchies of sets

Here we briefly recall definitions and some properties of Borel and Luzin hierarchies in

arbitrary topological spaces.
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A pointclass in a space X is simply a collection Γ(X) of subsets of X. A family of

pointclasses (Selivanov 2013) is a family Γ = {Γ(X)} indexed by arbitrary topological

spaces X such that each Γ(X) is a pointclass on X and Γ is closed under continuous

preimages, i.e. f−1(A) ∈ Γ(X) for every A ∈ Γ(Y ) and every continuous function f : X →
Y . A basic example of a family of pointclasses is given by the family O = {O(X)} of the

topologies of all the spaces X.

We will use some operations on families of pointclasses. First, the usual set-theoretic

operations will be applied to the families of pointclasses pointwise: for example, the union⋃
i Γi of the families of pointclasses Γ0,Γ1, . . . is defined by (

⋃
i Γi)(X) =

⋃
i Γi(X).

Second, a large class of such operations is induced by the set-theoretic operations of

Kantorovich and Livenson (see e.g. Selivanov 2013 for the general definition). Among

them are the operation Γ �→ Γσ , where Γ(X)σ is the set of all countable unions of sets

in Γ(X), the operation Γ �→ Γδ , where Γ(X)δ is the set of all countable intersections

of sets in Γ(X), the operation Γ �→ Γc = Γ̌, where Γ(X)c is the set of all complements

of sets in Γ(X), the operation Γ �→ Γd, where Γ(X)d is the set of all differences of sets

in Γ(X), the operation Γ �→ Γ∃ defined by Γ∃(X) := {∃N (A) | A ∈ Γ(N × X)}, where

∃N (A) := {x ∈ X | ∃p ∈ N .(p, x) ∈ A} is the projection of A ⊆ N × X along the axis N ,

and finally the operation Γ �→ Γ∀ defined by Γ∀(X) := {∀N (A) | A ∈ Γ(N × X)}, where

∀N (A) := {x ∈ X | ∀p ∈ N .(p, x) ∈ A}.
The operations on families of pointclasses enable to provide short uniform descriptions

of the classical hierarchies in arbitrary spaces. For example, the Borel hierarchy is the

family of pointclasses {Σ0
α}α<ω1

defined by induction on α as follows: (de Brecht 2013;

Selivanov 2006):

Σ0
0 := {�}, Σ0

1 := O, Σ0
2 := (Σ0

1)dσ, and Σ0
α := (

⋃
β<α

Σ0
β)cσ

for α > 2. The sequence {Σ0
α(X)}α<ω1

is called the Borel hierarchy in X. We also let

Π0
β(X) := (Σ0

β(X))c and Δ0
α(X) := Σ0

α(X) ∩ Π0
α(X). The classes Σ0

α(X),Π0
α(X),Δ0

α(X) are

called the levels of the Borel hierarchy in X.

Borel hierarchy in Pω enables the following alternative characterization of quasi-Polish

spaces from de Brecht (2013):

Proposition 2.2 A space is quasi-Polish iff it is homeomorphic to a Π0
2-subset of Pω with

the induced topology.

We recall from Kechris (1995) and Selivanov (2013) an important structural property

of Σ-levels of the Borel hierarchy. Let Γ be a family of pointclasses. A pointclass Γ(X)

has the ω-reduction property if for each countable sequence A0, A1, . . . in Γ(X) there is a

countable sequence D0, D1, . . . in Γ(X) such that Di ⊆ Ai, Di ∩ Dj = � for all i �= j and⋃
i<ω Di =

⋃
i<ω Ai.

Proposition 2.3 For any space X and any 2 � α < ω1, Σ0
α(X) has the ω-reduction

properties. If X is zero-dimensional, the same holds for the class Σ0
1(X) of open sets.
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The hyperprojective hierarchy is the family of pointclasses {Σ1
α}α<ω1

defined by induction

on α as follows: Σ1
0 = Σ0

2, Σ1
α+1 = (Σ1

α)c∃, Σ1
λ = (Σ1

<λ)δ∃, where α, λ < ω1, λ is a limit ordinal,

and Σ1
<λ(X) :=

⋃
α<λ Σ1

α(X).

In this way, we obtain for any topological space X the sequence {Σ1
α(X)}α<ω1

, which we

call here the hyperprojective hierarchy in X. The pointclasses Σ1
α(X), Π1

α(X) := (Σ1
α(X))c and

Δ1
α(X) := Σ1

α(X) ∩ Π1
α(X) are called levels of the hyperprojective hierarchy in X. The finite

non-zero levels of the hyperprojective hierarchy coincide with the corresponding levels of

the Luzin’s projective hierarchy (de Brecht 2013; Schröder and Selivanov 2015). The class

of hyperprojective sets in X is defined as the union of all levels of the hyperprojective

hierarchy in X. For more information on the hyperprojective hierarchy, see Kechris

(1983, 1995) and Schröder and Selivanov (2014). Below we will also consider some other

hierarchies, in particular the Hausdorff difference hierarchy.

2.3. k-Partitions and hierarchies over well posets

Here we discuss a more general notion of a hierarchy (compared with the notion of

hierarchy of sets (Selivanov 2008b, 2012)) which applies, in particular, to the hierarchies

of k-partitions.

Let 2 � k < ω. By a k-partition of a space X we mean a function A : X → k =

{0, . . . , k−1} often identified with the sequence (A0, . . . , Ak−1) where Ai = A−1(i). Obviously,

2-partitions of X are identified with the subsets of X using the characteristic functions.

The set of all k-partitions of X is denoted kX . For Γ ⊆ P (X), let (Γ)k denote the set of

k-partitions A ∈ kX such that A0, . . . , Ak−1 ∈ Γ(X). In particular, (Σ<ω(X))k is the set of

k-partitions of finite Borel rank which will be considered in Section 5.2.

The Wadge reducibility on subsets of X is naturally extended to k-partitions: for

A,B ∈ kX , A �W B means that A = B ◦ f for some continuous function f on X. In this

way, we obtain the preorder (kX; �W ) which for k � 3 turns out much more complicated

than the structure of Wadge degrees, even for the simple case X = N (Hertling 1993,

1996; Selivanov 2006, 2011).

To find the ‘right’ extensions of the classical difference and Wadge hierarchies from

the case of sets to the case of k-partitions is a quite non-trivial task. A reason is that

levels of hierarchies of sets are always semi-well-ordered by inclusion (in particular, there

are no three levels which are pairwise incomparable by inclusion) while the structure

of hierarchies of k-partitions for k � 3 is usually more complicated than the structure

of the hierarchies of sets (in particular, for k � 3 the poset of levels of difference

hierarchies of k-partitions under inclusion usually has antichains with any finite number of

elements).

Here we recall from Selivanov (2012) a very general notion of a hierarchy that covers

all hierarchies we discuss in this paper.

Definition 2.4

1. For any poset P and any set A, by a P -hierarchy in A we mean a family {Hp}p∈P of

subsets of A such that p � q implies Hp ⊆ Hq .
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2. Levels (resp. constituents) of a P -hierarchy {Hp} are the sets Hp0
∩ · · · ∩ Hpn (resp.

the sets Cp0 ,...,pn = (Hp0
∩ · · · ∩ Hpn ) \

⋃
{Hq | q ∈ P\ ↑ {p0, . . . , pn}}) where n � 0 and

{p0, . . . , pn} is an antichain in P .

3. A P -hierarchy {Hp} is precise if p � q is equivalent to Hp ⊆ Hq .

Note that the classical hierarchies of sets are obtained from the above definition if

A = P (X) and P = 2̄ · η is the poset obtained by replacing any element of the ordinal

η by an antichain with two elements, and that the notion of preciseness extends the

non-collapse property of hierarchies. Note that levels of the classical hierarchies coincide

with levels in the sense of the definition above. The constituents of say, Borel hierarchy,

are Σ0
α \ Π0

α, Π0
α \ Σ0

α, Δ0
α+1 \ (Σ0

α ∪ Π0
α), and Δ0

λ \
⋃
α<λ Σ0

α, where λ is a limit countable

ordinal.

As it was already mentioned, for hierarchies of k-partitions (obtained when A = kX)

we cannot hope to deal only with semi-well-ordered posets P = 2̄ · η in the definition

above. Fortunately, a slight weakening of this property is sufficient for our purposes:

we can confine ourselves with the so called well posets (wpo) or, more generally well

preorders (wqo). Recall that a wqo is a preorder P that has neither infinite descending

chains nor infinite antichains. The theory of wqo (widely known as the wqo-theory) is

a well-developed field with several deep results and applications, see e.g. Kruskal (1972).

It is also of great interest to hierarchy theory. An important role in wqo-theory belongs

to the rather technical notion of a better preorder (bqo). Bqo’s form a subclass of wqo’s

with good closure properties.

Note that if P is a wpo then the structure ({Hp | p ∈ P }; ⊆) of levels of a P -

hierarchy under inclusion is also a wpo, hence some important features of the hierarchies

of sets hold also for the hierarchies of partitions. Moreover, for such hierarchies we

have some important properties of constituents, in particular the constituents form a

partition of the set
⋃

{Hp | p ∈ P } (see also Section 7 of Selivanov 2012 for additional

details).

Although well posets are very simple compared with arbitrary posets, they are still

much more complicated than semi-well-orders which essentially reduce to the ordinals.

Obviously, there are a lot of isomorphism types of well posets of a fixed rank. Below

we consider some examples of well posets especially designed for naming levels of the

difference and fine hierarchies of k-partitions.

2.4. Hierarchies of cb0-spaces and qcb0-spaces

Here we recall some classifications of qcb0-spaces induced by the classical hierarchies of

sets.

For any representation δ of a space X, let EQ(δ) := {〈p, q〉 ∈ N | p, q ∈ dom(δ)∧δ(p) =

δ(q)}. Let Γ be a family of pointclasses. A qcb0-space X is called Γ-representable, if X

has an admissible representation δ with EQ(δ) ∈ Γ(N ). The class of all Γ-representable

spaces is denoted QCB0(Γ). A cb0-space X is called a Γ-space, if X is homeomorphic to

a Γ-subspace of Pω. The class of all Γ-spaces is denoted CB0(Γ).

https://doi.org/10.1017/S0960129516000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000177


V. Selivanov 1560

These notions from Schröder and Selivanov (2015) enable to transfer hierarchies of sets

to the corresponding hierarchies of cb0- and qcb0-spaces. In particular, we arrive at the

following definition.

Definition 2.5 The sequence {CB0(Σ
0
α)}α<ω1

(resp. the sequence {QCB0(Σ
0
α)}α<ω1

) is called

the Borel hierarchy of cb0-spaces (resp. of qcb0-spaces). By levels of this hierarchy we

mean the classes CB0(Σ
0
α) as well as the classes CB0(Π

0
α) and CB0(Δ

0
α). In a similar way

one can define the hyperprojective hierarchies of cb0- and of qcb0-spaces.

The following fact from Schröder and Selivanov (2015, 2014) shows that the introduced

hierarchies agree on cb0-spaces:

Proposition 2.6 For any Γ ∈ {Π0
2,Σ

0
β,Π

0
β,Σ

1
α,Π

1
α | 1 � α < ω1, 3 � β < ω1}, we have

QCB0(Γ) ∩ CB0 = CB0(Γ), where CB0 is the class of all cb0-spaces.

Note that, by Proposition 2.2, CB0(Π
0
2) coincides with the class of quasi-Polish spaces.

3. Borel and Luzin hierarchies

In this section we extend some classical facts on the Borel and Luzin hierarchies in Polish

spaces on larger classes of cb0-spaces.

3.1. Some reducibilities and isomorphisms

Here we provide some information on versions of the Wadge reducibility and of the

notion of homeomorphism relevant to this paper.

Let Γ be a family of pointclasses and X,Y be topological spaces. By Γ(X,Y ) we denote

the class of functions f : X → Y such that f−1(A) ∈ Γ(X) whenever A ∈ Γ(Y ). A set

A ⊆ X is Γ-reducible to a set B ⊆ X (in symbols, A �Γ B) if A = f−1(B) for some

f ∈ Γ(X,X).

Note that the Σ0
1-functions coincide with the continuous functions and the Σ0

1-reduci-

bility coincides with the classical Wadge reducibility. Σ0
α-Functions and Σ0

α-reducibilities

were investigated in Andretta (2006); Andretta and Martin (2003); Motto Ros (2009).

We say that topological spaces X,Y are Γ-isomorphic if there is a bijection f between

X and Y such that f ∈ Γ(X,Y ) and f−1 ∈ Γ(Y ,X). It is a classical fact of Descriptive

Set Theory that every two uncountable Polish spaces X,Y are Δ1
1-isomorphic (see e.g.

Kechris 1995, Theorem 15.6). The next result from Motto Ros et al. (2015) extends this

fact to the context of uncountable quasi-Polish spaces and computes an upper bound for

the complexity of the Borel isomorphism.

Proposition 3.1 Let X,Y be two uncountable quasi-Polish spaces. Then X and Y are

Δ0
<ω-isomorphic. If the inductive dimensions dim(X), dim(Y ) of X,Y are distinct from ∞

then X and Y are Δ0
3-isomorphic.
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Let again Γ be a family of pointclasses. By a Γ-family of pointclasses we mean a family

{E(X)}X indexed by arbitrary spaces such that E(X) is a pointset in X, and f−1(A) ∈ E(X)

for all A ∈ E(Y ) and f ∈ Γ(X,Y ). Obviously, the Σ0
1-families of pointclasses are precisely

the ‘usual’ families of pointclasses.

Lemma 3.2 Let Γ be a family of pointclasses. Then Γ is a Γ-family of pointclasses, any

continuous function f : X → Y is in Γ(X,Y ), and any Γ-family of pointclasses is a family

of pointclasses.

Proof. The first assertion is obvious. For the second assertion, let f : X → Y be

continuous and A ∈ Γ(Y ). Since Γ is a family of pointclasses, f−1(A) ∈ Γ(X). Since A was

arbitrary, f ∈ Γ(X,Y ). The third assertion follows from the second one.

Lemma 3.3 Let α < β < ω1. Then any Σ0
α-function is a Σ0

β-function, and any Σ1
α-function

is a Σ1
β-function.

Proof hint. Proof is straightforward by induction on β, so we consider only the first

assertion for the case β = α + 1, as an example. Let A ∈ Σ0
β(Y ) and f ∈ Σ0

α(X,Y ). Then

A =
⋃
n(Y \ An) for some A0, A1, . . . ∈ Σ0

α(Y ). Then f−1(A) =
⋃
n(X \ f−1(An)) ∈ Σ0

β(X).

Since A was arbitrary, f is a Σ0
β-function.

Proposition 3.4

1. Let Γ ∈ {Σ0
α,Π

0
α,Σ

1
β,Π

1
β | ω � α < ω1, 1 � β < ω1} and X ∈ CB0(Γ). Then X is

Γ-isomorphic to a subspace S of N such that S ∈ Γ(N ).

2. Let Γ ∈ {Σ0
α,Π

0
α,Σ

1
β,Π

1
β | 3 � α < ω1, 1 � β < ω1} and X ∈ CB0(Γ), dim(X) �= ∞. Then

X is Γ-isomorphic to a subspace S of N such that S ∈ Γ(N ).

Proof. Both items are checked in the same way, so consider only the first one. Assume

without loss of generality that X ∈ Γ(Pω). By Proposition 3.1, the spaces Pω and N are

Δ0
<ω-isomorphic, hence also Σ0

ω-isomorphic. By Lemma 3.3 Pω and N are Γ-isomorphic,

let f : Pω → N be a Γ-isomorphism. Then f|X is a Γ-isomorphism between X and

S = f(X) ∈ Γ(N ).

3.2. Borel and Luzin hierarchies in cb0-spaces

Here we extend some well-known facts on the Borel and Luzin hierarchies in Polish and

quasi-Polish spaces.

As is well-known, any uncountable Polish (or quasi-Polish) space is of continuum

cardinality. The next fact extends this to many cb0-spaces:

Proposition 3.5 Any uncountable space X in CB0(Σ
1
1) is of continuum cardinality.

Proof. By Proposition 3.4, X is Σ1
1-isomorphic to a subspace S of N such that S ∈

Σ1
1(N ), so it suffices to show that S is of continuum cardinality. But this follows from a

well-known fact of classical DST (Theorem 29.1 in Kechris (1995)). �
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Remark 3.6 The last result cannot be improved within ZFC because, as is well known,

it is consistent with ZFC that there is a non-countable set S ∈ Π1
1(N ) of cardinality less

than continuum. It would be nice to have similar precise estimates of consistency with

ZFC for other results of this paper (we do not deal with this question in the sequel).

Next we establish an extension of the Suslin theorem which equates the Borel sets to

the Δ1
1-sets. This is a classical result of DST for the case of Polish spaces, and it was

extended to quasi-Polish spaces in de Brecht (2013).

For this we need the following version of a well-known easy fact:

Lemma 3.7 Let X ⊆ Y be topological spaces and 1 � α < ω1. Then Σ1
α(X) = {X ∩ A |

A ∈ Σ1
α(Y )}, Π1

α(X) = {X ∩ A | A ∈ Π1
α(Y )}, and similarly for the Borel hierarchy.

Proposition 3.8 The Suslin theorem holds for any space X in CB0(Δ
1
1), i.e. Δ1

1(X) =⋃
{Σ0

α(X) | α < ω1}.

Proof. It suffices to show the inclusion Δ1
1(X) ⊆

⋃
{Σ0

α(X) | α < ω1}. Assume without

loss of generality that X ∈ Δ1
1(Pω). Let A ∈ Δ1

1(X), then A is in both Σ1
1(X) and Π1

1(X).

By Lemma 3.7, A = X ∩ B = X ∩ C for some B ∈ Σ1
1(Pω) and C ∈ Π1

1(Pω). Then

A ∈ Δ1
1(Pω). By Suslin theorem for Pω, A ∈ Σ0

α(Pω) for some α < ω1. By Lemma 3.7,

A ∈ Σ0
α(X).

As is well known (Kechris 1995), the Borel and Luzin hierarchies do not collapse in

any Polish uncountable space X (for the Borel hierarchy, for instance, this means that

Σ0
α(X) �= Π0

α(X) for any α < ω1). In de Brecht (2013), this was extended to the quasi-

Polish spaces (which coincide with the spaces in CB0(Π
0
2)). We conclude this section with

a further extension of the non-collapse property. For this we need the following lemma:

Lemma 3.9 Let 1 � α < ω1, X,Y be Σ0
α-isomorphic topological spaces, and the Borel

hierarchy (resp. the hyperprojective hierarchy) in X does not collapse. Then the Borel

hierarchy (resp. the hyperprojective hierarchy) in Y does not collapse.

Proof. Both hierarchies are treated similarly, so consider only the Borel hierarchy.

Suppose for a contradiction that Σ0
β(Y ) = Π0

β(Y ) for some β < ω1. By the definition of

the Borel hierarchy, Σ0
γ(Y ) = Π0

γ (Y ) for all countable ordinals γ � β, in particular for

γ = sup{α, β}. By Lemma 3.3, Σ0
γ(X) = Π0

γ (X). A contradiction.

Proposition 3.10 The Borel and hyperprojective hierarchies do not collapse for any

uncountable space X in CB0(Δ
1
1).

Proof. By Proposition 3.4 and Lemma 3.9, we can without loss of generality assume

that X is a subspace of N such that X ∈ Δ1
1(N ). By Theorem 29.1 in Kechris (1995),

there is a subspace C ⊆ X homeomorphic to the Cantor space. Since the Borel and

hyperprojective hierarchies in C do not collapse, by Lemma 3.7 they also do not collapse

in X.

https://doi.org/10.1017/S0960129516000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000177


Towards a descriptive theory of cb0-spaces 1563

4. Difference hierarchies

In this section we extend some classical facts on the Hausdorff difference hierarchy (DH)

of sets, like the Hausdorff–Kuratowski theorem and the non-collapse property in Polish

spaces, to larger classes of cb0-spaces and to the case of k-partitions.

4.1. Difference hierarchies of sets

Here we recall definition and basic properties of the Hausdorff difference hierarchy of

sets, and extend some facts on the DH in Polish spaces to larger classes of cb0-spaces.

An ordinal α is even (resp. odd) if α = λ+ n where λ is either zero or a limit ordinal and

n < ω, and the number n is even (resp., odd). For an ordinal α, let r(α) = 0 if α is even

and r(α) = 1, otherwise. For any ordinal α, define the operation Dα sending sequences of

sets {Aβ}β<α to sets by

Dα({Aβ}β<α) =
⋃

{Aβ \
⋃
γ<β

Aγ | β < α, r(β) �= r(α)}.

For any ordinal α < ω1 and any pointclass L in X, let Dα(L) be the class of all sets

Dα({Aβ}β<α), where Aβ ∈ L for all β < α. By the difference hierarchy over L we mean the

sequence {Dα(L)}α<ω1
. Usually we assume that L is a base which by definition means that

L is closed under finite intersection and countable union (note that in finitary versions of

the DH we used the term ‘σ-base’ to denote such pointclasses but, since we are interested

here only in such pointclasses, we simplify the terminology). As usual, classes Dα(L), Ďα(L)

are called non-self-dual levels while Dα(L) ∩ Ďα(L) are called self-dual levels of the DH.

Over bases, the difference hierarchy really looks as a hierarchy, i.e., any level and its dual

are contained in all higher levels. The most interesting cases for Descriptive Set Theory

are difference hierarchies over non-zero levels of the Borel hierarchy, whose Σ-levels are

Σ−1,θ
α (X) = Dα(Σ

0
θ(X)), for any space X and for all α, θ < ω, θ > 0. For θ = 1, we simplify

Σ−1,θ
α to Σ−1

α .

A classical result of DST is the following Hausdorff–Kuratowski theorem:

Theorem 4.1 Let X be a Polish space. For any non-zero ordinal θ < ω1,
⋃

{Σ−1,θ
α (X) | α <

ω1} = Δ0
θ+1(X).

In de Brecht (2013), this result was extended to the quasi-Polish spaces. This extension

is an easy corollary of the following nice result (Theorem 68 in de Brecht (2013) based on

Lemma 17 in Saint Raymond (2007)):

Theorem 4.2 Let X be a cb0-space, δ : D → X an admissible representation of X (D ⊆ N ),

A ⊆ X X, α, θ < ω1 and θ � 1. Then A ∈ Dα(Σ
0
θ(X)) iff δ−1(A) ∈ Dα(Σ

0
θ(D)).

One of the aims of this section is to extend these results from sets to k-partitions.

This needs some information on k-forests and h-preorders which are recalled in the next

subsection.
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In this subsection we establish a partial extension of the Hausdorff–Kuratowski theorem

for quasi-Polish spaces (which coincide with the spaces in CB0(Π
0
2)) to a larger class of

cb0-spaces:

Proposition 4.3 For any space X in CB0(Δ
1
1) there is a non-zero ordinal β < ω1 such

that the Hausdorff–Kuratowski theorem holds in X for each countable ordinal θ � β, i.e.⋃
{Σ−1,θ

α (X) | α < ω1} = Δ0
θ+1(X).

Proof. Assume without loss of generality that X ∈ Δ1
1(Pω). By Suslin theorem for Pω,

X ∈ Σ0
β(Pω) for some β < ω1. It remains to show that Δ0

θ+1(X) ⊆
⋃

{Σ−1,θ
α (X) | α < ω1}

for all θ � β. Let A ∈ Δ0
θ+1(X), then A is in both Σ0

θ+1(X) and Π0
θ+1(X). By Lemma 3.7,

A = X ∩B = X ∩C for some B ∈ Σ0
θ+1(Pω) and C ∈ Π0

θ+1(Pω). Then A ∈ Δ0
θ+1(Pω). By

the Hausdorff–Kuratowski theorem for Pω, A ∈ Σ−1,θ
α (Pω) for some α < ω1. Since θ � β

and X ∈ Σ0
β(Pω), A ∈ Σ−1,θ

α (X).

The problem of non-collapse of the DHs is more subtle (compared with the problem of

non-collapse of the Borel and Luzin hierarchies) but it is again possible to prove at least

a partial result about this property. First we formulate an analogue of Lemma 3.9 which

is proved essentially by the same argument:

Lemma 4.4 Let 1 � α < ω1, X,Y be Σ0
α-isomorphic topological spaces, α � θ < ω1, and

the DH {Σ−1,θ
β (X)}β<ω1

does not collapse. Then the DH {Σ−1,θ
β (Y )}β<ω1

does not collapse.

Once we have this lemma and note that Lemma 3.7 holds also for the DHs, we easily

deduce the following:

Proposition 4.5 For any uncountable space X in CB0(Δ
1
1) there is a non-zero ordinal

α < ω1 such that the DH {Σ−1,θ
β (X)}β<ω1

does not collapse for each countable ordinal

θ � α.

4.2. h-Preorder

Here we discuss some posets which serve as notation systems for levels of the DHs of

k-partitions. All notions and facts of this subsection are contained (at least, implicitly) in

Selivanov (2007a,b).

Posets considered here are assumed to be (at most) countable and without infinite

chains. The absence of infinite chains in a poset (P ; �) is of course equivalent to well-

foundedness of both (P ; �) and (P ; �). By a forest we mean a poset without infinite

chains in which every upper cone {y | x � y} is a chain. A tree is a forest having a biggest

element (called the root of the tree).

Let (T ; �) be a tree without infinite chains; in particular, it is well founded. As for each

well-founded partial order, there is a canonical rank function rkT from T to ordinals. The

rank rk(T ) of (T ; �) is by definition the ordinal rkT (r), where r is the root of (T ; �). It

is well known that the rank of any countable tree without infinite chains is a countable

ordinal, and any countable ordinal is the rank of such a tree.
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A k-poset is a triple (P ; �, c) consisting of a poset (P ; �) and a labelling c : P → k.

Rank of a k-poset (T ; �, c) is by definition the rank of (T ; �). A morphism f : (P ; �
, c) → (P ′; �′, c′) between k-posets is a monotone function f : (P ; �) → (P ′; �′) respecting

the labellings, i.e. satisfying c = c′ ◦ f. Let F̃k and T̃k denote the classes of all countable

k-forests and countable k-trees without infinite chains, respectively. Note that we use tilde

in our notation in order to distinguish the introduced objects from their finitary versions

extensively studied in Selivanov (2006, 2008b, 2012).

The h-preorder �h on P̃k is defined as follows: (P ,�, c) �h (P ′,�′, c′), if there is a

morphism from (P ,�, c) to (P ′,�′, c′). Let F̃k, T̃k be the quotient posets of F̃k and T̃k
under h-equivalence, respectively. Let F̃ ′

k be obtained from F̃k by adjoining a new smallest

element ⊥ (corresponding to the empty forest).

Let P � Q be the disjoint union of k-posets P ,Q and
⊔
i Pi = P0 � P1 � · · · the

disjoint union of an infinite sequence P0, P1, . . . of k-posets. For a k-forest F and i <

k, let pi(F) be the k-tree obtained from F by adjoining a new biggest element and

assigning the label i to this element. It is clear that the introduced operations respect

h-equivalence and that any countable k-forest is h-equivalent to a countable term of

signature {�, p0, . . . , pk−1, 0, . . . , k − 1} without free variables (the constant symbol i in the

signature is interpreted as the singleton tree carrying the label i).

Proposition 4.6

1. For any k � 2, the structures (F̃k; �) and (T̃k; �) are well preorders of rank ω1.

2. The posets F̃2 and T̃2 have width 2 (i.e., they have no antichains with more than 2

elements).

3. The poset F̃ ′
k is a distributive lattice where any countable set of elements have a

supremum.

4. The set σji(F̃ ′
k) of σ-join-irreducible elements of the lattice F̃ ′

k (i.e., the elements x such

that x �
⊔

{yn | n < ω} implies that y � yn for some n) coincides with T̃k .
5. The set ji(F̃ ′

k) of join-irreducible elements of the lattice F̃ ′
k coincides with T̃k ∪S where

S is the set of supremums of infinite increasing sequences of elements in T̃k .
6. Any element of F̃ ′

k is the infimum of finitely many elements of T̃k .

For a result in the next subsection we need the following canonical representatives for

the structures F̃2 and T̃2. Define by induction the sequence {Tα}α<ω1
as follows: T0 = 0,

Tα+1 = p0(Tα) where Tα is obtained from Tα by changing any label l < 2 by the label

1 − l, and Tλ = p0(Tα0
�Tα1

� · · · ) for a limit ordinal λ where α0 < α1 < · · · is a sequence

of odd ordinals satisfying sup{αn | n < ω} = λ. The next assertion follows from the proof

of the corresponding result in Selivanov (2007a,b).

Proposition 4.7

1. For all α < β < ω1, Tα � Tα <h Tβ and Tα, T α are �h-incomparable.

2. Any element of T̃2 (resp. of F̃2) is h-equivalent to precisely one of Tα, T α, (resp. to

precisely one of Tα, T α, Tα � Tα,
⊔
α<λ Tα where λ is a limit countable ordinal).

3. Tα � Tα ≡h Tα+1 � Tα+1 and
⊔
α<λ Tα ≡h Tλ � Tλ for each limit countable ordinal λ,

where � is the binary operation of k-forests inducing the infimum operation in F̃ ′
k .
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4.3. Difference hierarchies of k-partitions

Here we extend the difference hierarchy of sets to that of k-partitions. Note that similar

hierarchies were considered e.g. in Selivanov (2007a,b) but in fact the definition here

is slightly different which results in equivalence of the corresponding DHs only over

the bases with ω-reduction properties. In general, the definition here is better than the

previous one because it yields, for example, Theorem 4.14 for θ = 1 which is not always

the case for the previous definition.

Let L be a base in X. Recall that a k-partition of X is a function A : X → k often

written as a tuple (A0, . . . , Ak−1) where Ai = {x ∈ X | A(x) = i}. By a partial k-partition

of X we mean a function A : Y → k for some Y ∈ L. Let P ∈ F̃k . We say that a

partial k-partition A is defined by a P -family {Bp}p∈P of L-sets if Ai =
⋃
p∈Pi B̃p for each

i < k where B̃p = Bp \
⋃
q<p Bq and Pi = c−1(i); note that in this case A ∈ kY where

Y =
⋃
p∈P Bp ∈ L.

We denote by LY (P ) the set of partitions A : Y → k defined by some P -family {Bp}p∈P
of L-sets. In case Y = X we omit the superscript X and call the classes L(P ), for P ∈ F̃k ,

levels of the DH of k-partitions over L. We formulate some basic properties of the levels.

We omit the proofs because they are quite similar to the corresponding proofs for the

finitary version of the DH in Selivanov (2012).

Proposition 4.8

1. If A ∈ LY (P ) then A|Z ∈ LZ (P ) for each Z ⊆ Y , Z ∈ L.

2. Any A ∈ LY (P ) is defined by a monotone P -family {Cp} (monotonicity means that

Cq ⊆ Cp for q � p).

3. Let f be a function on X such that f−1(A) ∈ L for each A ∈ L. Then A ∈ LY (P )

implies f−1(A) = (f−1(A0), . . . , f
−1(Ak−1)) ∈ Lf−1(Y )(P ).

4. If P �h Q then LY (P ) ⊆ LY (Q).

5. For all F,G ∈ F̃k , L(F) ∩ L(G) = L(F � G).

Proposition 4.8(5) and Proposition 4.6(6) show that any level L(F) is a finite intersection

of levels L(T ), T ∈ T̃k . This remark, together with the results below, suggest that the

levels L(T ), T ∈ T̃k , are analogs for the DH of k-partitions of the non-self-dual levels

Dα(L), Ďα(L) of the DH of sets. Therefore, the precise analog of the DH of sets is the

family {L(T )}
T∈T̃k rather than the family {L(F)}

F∈F̃k
.

The meaning of the last paragraph might be not clear because it is not even obvious

that the DH of k-partitions really extends the DH of sets; we have at least to show that

the DH of 2-partitions essentially coincides with the DH of sets. We do this in the next

proposition where we employ the 2-trees Tα from Section 4.2.

Proposition 4.9 Let L be a base in X. Then L(Tα) = Dα(L) for each α < ω1.

Proof. Let A ∈ L(Tα) be defined by a family {Bp}p∈Tα where Bp ∈ L. Define the

sequence {Aβ}β<α as follows: if r(β) = r(α) then Aβ =
⋃

{Bp | rk(p) � β ∧ c(p) = 0},
otherwise Aβ =

⋃
{Bp | rk(p) � β ∧ c(p) = 1}. Then Aβ ∈ L and A =

⋃
{Ãβ | r(β) �= r(α)}

where Ãβ = Aβ \
⋃
γ<β Aγ , hence A ∈ Dα(L).
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Conversely, let A ∈ Dα(L), then A =
⋃

{Ãβ | r(β) �= r(α)} for some sequence {Aβ}β<α of

L-sets. Define the family {Bp}p∈Tα of L-sets as follows: if p is the root of Tα then Bp = X,

otherwise Bp = Ark(p) where rk : Tα → α+ 1 is the rank function. Since rk is a surjection

for each α, B̃p = Ãrk(p).

Note that B̃p, B̃q are disjoint whenever c(p) �= c(q) because Ãβ, Ãγ are disjoint for distinct

β, γ < α. If p is the root of Tα then B̃p = X \
⋃
β<α Ãβ ⊆ A. If p is not the root then, by the

definition of Tα, r(rk(p)) = r(α) iff c(p) = 0. Then for each x ∈
⋃
β<α Ãβ we have: x ∈ A

iff r(β) �= r(α) (where β is the unique ordinal with x ∈ Ãβ) iff c(p) = 1. Thus, A ∈ L(Tα) is

defined by {Bp}p∈Tα and therefore A ∈ L(Tα).

For F ∈ F̃k , by a reduced F-family of L-sets we mean a monotone F-family {Bp}p∈F
of L-sets such that Bp ∩ Bq = � for all incomparable p, q ∈ F . Let LYr (F) be the set of

partial k-partitions defined by reduced F-families {Bp}p∈F of L-sets such that
⋃
p Bp = Y .

The next result is an infinitary version of Proposition 7.15 (Selivanov 2012) and is proved

by essentially the same argument.

Proposition 4.10 Let L have the ω-reduction property, Y ∈ L and F ∈ Fk . Then LY (F) =

LYr (F), in particular L(F) = Lr(F).

In Selivanov (2013), principal total representations (TR) of pointclasses were introduced

and studied. The results in Selivanov (2013) naturally extend to k-partitions. By a family of

k-partition classes we mean a family Γ = {Γ(X)} indexed by arbitrary topological spaces

X such that Γ(X) ⊆ kX and A ◦ f ∈ Γ(X) for any continuous function f : X → Y and

any k-partition A : Y → k from Γ(Y ).

We note that, by Proposition 4.8(3), the levels of the DHs over any Σ-level of the Borel

or Luzin hierarchy are families of k-partition classes. Let Σ0
θ(X, F) be the F-level (F ∈ F̃k)

of the DH of k-partitions over Σ0
θ(X). The next fact is obvious:

Proposition 4.11 Let θ be a non-zero countable ordinal and F ∈ F̃k . Then

Σ0
θ(F) = {Σ0

θ(X, F)}X is a family of k-partition classes.

Let {Γ(X)} be a family of k-partition classes. A function ν : N → Γ(X) is a Γ-TR

if the k-partition λa, x.ν(a)(x) is in Γ(N × X). Such ν is a principal Γ-TR if any Γ-TR

μ : N → Γ(X) is continuously reducible to ν.

According to Theorem 5.2 in Selivanov (2013), the non-self-dual levels Γ-TR of the

classical hierarchies in cb0-spaces have Γ(X)-TRs. This result extends to the ‘non-self-

dual’ levels of the DHs of k-partitions but only under the additional assumption that the

corresponding bases have the ω-reduction property:

Proposition 4.12 Let X be a cb0-space, θ � 2 a countable ordinal and T ∈ T̃k . Then

Σ0
θ(X,T ) has a principal Σ0

θ(T )-TR. If X is in addition zero-dimensional then Σ0
1(X,T )

has a principal Σ0
1(T )-TR.

Proof hint. Modulo Theorem 5.2 in Selivanov (2013), the proof is straightforward, so

we give only informal proof hints. Note that, by Proposition 2.3, the assumptions on θ

guarantee that the class Σ0
θ(X) has the ω-reduction property, so by Proposition 4.10 the
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elements of Σ0
θ(X,T ) are precisely those defined by the monotone reduced T -families

{Bp} of Σ0
θ(X)-sets with Bp = X where p is the root of T . The principal Σ0

θ-TR of Σ0
θ(X)

induces a natural representation of all T -families {Cp} of Σ0
θ(X)-sets with Cp = X. The

problem is that such a family typically does not define any k-partition, hence we do not in

general have an induced TR of Σ0
θ(X,T ). But the ω-reduction property gives a uniform

procedure of transforming {Cp} to a monotone reduced T -family {Bp} of Σ0
θ(X)-sets with

Bp = X, such that {Bp} = {Cp} whenever {Cp} already has this property. Since any such

{Bp} defines an element of Σ0
θ(X,T ), this induces a TR of Σ0

θ(X,T ). It is straightforward

to check that this TR has the desired properties.

We conclude this section with extending the Hausdorff–Kuratowski theorem to k-

partitions. First we extend Theorem 4.2 to k-partitions:

Theorem 4.13 Let X be a cb0-space, δ : D → X an admissible representation of X

(D ⊆ N ), A : X → k a k-partition of X, θ � 1 a countable ordinal and F ∈ F̃k . Then

A ∈ Σ0
θ(X, F) iff A ◦ δ ∈ Σ0

θ(D, F).

Proof. is similar to the proof of Theorem 68 in de Brecht (2013). Let first A ∈ Σ0
θ(X,T ),

then A is defined by an F-family {Bp} of Σ0
θ(X)-sets. Then A◦δ is defined by the F-family

{δ−1(Bp)} of Σ0
θ(D)-sets, hence A ◦ δ ∈ Σ0

θ(D,T ).

Conversely, let A◦δ ∈ Σ0
θ(D,T ), then A◦δ is defined by an F-family {Cp} of Σ0

θ(D)-sets,

so δ−1(Ai) =
⋃

{C̃p | c(p) = i} for each i < k. By the proof of Theorem 68 in de Brecht

(2013), we can without loss of generality assume that δ has Polish fibers, i.e., δ−1(x) is

Polish for each x ∈ X. For any p ∈ F , let Bp consist of the elements x ∈ X such that the

set Cp ∩ δ−1(x) is non-meager in δ−1(x). By the proof of Theorem 68 in de Brecht (2013),

Bp ∈ Σ0
θ(X), hence it suffices to show that A is defined by the F-family {Bp}.

First we check that B̃p ⊆ δ(C̃p). Let x ∈ B̃p, so Cp ∩ δ−1(x) is non-meager in δ−1(x) and

Cq ∩ δ−1(x) is meager in δ−1(x) for each q < p, hence also (
⋃
q<p Cq) ∩ δ−1(x) is meager

in δ−1(x). Since

Cp ∩ δ−1(x) = (C̃p ∩ δ−1(x)) ∪ (
⋃
q<p

Cq) ∩ δ−1(x),

C̃p ∩ δ−1(x) is non-meager in δ−1(x), in particular C̃p ∩ δ−1(x) is non-empty. Let a ∈
C̃p ∩ δ−1(x), then x = δ(a) ∈ δ(C̃p), as desired.

We have to show that Ai =
⋃

{B̃p | c(p) = i} for each i < k. Let first x ∈ B̃p, c(p) = i.

Then x = δ(a) for some a ∈ C̃p ⊆ δ−1(Ai). Thus, x ∈ Ai.

Conversely, let x ∈ Ai. Choose a ∈ D with x = δ(a). Then a ∈ δ−1(Ai), so a ∈ C̃p for

some p ∈ F , c(p) = i. Note that x ∈ Bq for some q ∈ F (otherwise, Cq ∩ δ−1(x) is meager

in δ−1(x) for each q ∈ F , hence also δ−1(x) is meager, a contradiction). Then x ∈ B̃q
for some q ∈ F , hence x = δ(b) for some b ∈ C̃q . Let j = c(q), then a ∈ δ−1(Ai) and

b ∈ δ−1(Aj), then x ∈ Ai ∩ Aj , so i = j and c(q) = i.

As an immediate corollary, we obtain the Hausdorff–Kuratowski theorem for k-

partitions in quasi-Polish spaces.
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Theorem 4.14 Let X be a quasi-Polish space and θ � 1 a countable ordinal.

Then
⋃

{Σ0
θ(X, F) | F ∈ F̃k} = (Δ0

θ+1(X))k .

Proof. For θ � 2, the assertion follows from Theorem 5.1 in Selivanov (2008a) and

Theorem 4.2 but for θ = 1 the result is new. Let A ∈ (Δ0
2(X))k , we have to show that

A ∈
⋃

{Σ0
1(X,T ) | F ∈ F̃k}. Let δ be an admissible total representation of X. Then

A◦δ ∈ (Δ0
2(N ))k . Since Σ0

1(N ) has the ω-reduction property, A◦δ ∈
⋃

{Σ0
α(N , F) | F ∈ F̃k}

by Theorem 5.1 in Selivanov (2008a). By Theorem 4.13, A ∈
⋃

{Σ0
1(X,T ) | F ∈ F̃k}.

Remarks 4.15

1. Using the argument of Proposition 4.3, it is straightforward to extend the last result to

spaces X in CB0(Δ
1
1).

2. The collection {Σ0
θ(X,T ) | 1 � θ < ω1, T ∈ T̃k} consists of all ‘non-self-dual’ levels

of the DH of k-partitions over any non-zero level of the Borel hierarchy, so it must

contain also analogs of non-self-dual levels of the Borel hierarchy of k-partitions. As

noticed in Proposition 8.21 of Selivanov (2012) (for the finitary case), these are precisely

the levels Σ0
θ(X,T0), . . . ,Σ

0
θ(X,Tk−1) where Ti is defined by Ti := i∗ (0� · · · � (k−1)) for

any i < k. Note that for any distinct i, j < k we have Σ0
θ(X,Ti)∩Σ0

θ(X,Tj) = (Δ0
θ+1(X))k .

3. That the DH of k-partitions over Σ0
1 in the Baire space is the right extension of the

DH of sets over Σ0
1 is confirmed by the result in Selivanov (2007b) that the constituents

of this hierarchy of k-partitions coincide with the Wadge degrees of Δ0
2-measurable

k-partitions. Using extensions of the jump operations in Motto Ros (2009) it can be

shown that this result extends to any non-zero countable ordinal θ in the following

sense: the constituents of the DH of k-partitions over Σ0
θ in the Baire space coincide

with the Δ0
θ-degrees of Δ0

θ+1-measurable k-partitions (cf. Selivanov (2011) and remarks

in Section 5.3 below).

5. Fine hierarchies

In this section we extend the DH of k-partitions to the FH of k-partitions. Many results

and proofs here extend the ones for the DH from the previous section or the corresponding

results on the finitary version of the FH from Selivanov (2012), so we concentrate only

on the new moments and try to be concise whenever the material is a straightforward

extension of the previous one. We will see that the FH of k-partitions is in a sense an

‘iterated version’ of the DH of k-partitions which is far from obvious for the particular

case of the Wadge hierarchy, under the classical definition.

As we explain below, the FH of sets in the Baire space does coincide with the Wadge

hierarchy. To our knowledge, the extension of this hierarchy to non-zero-dimensional

spaces is new here (so far such an extension was known only for the finitatry version of

the FH (Selivanov 2008b, 2012)). Interestingly, in our approach here the definition of the

FH of sets is in fact not simpler than for the k-partitions for arbitrary k � 2.

Since even the definition of the FH is technically very involved, we concentrate here on

a slightly easier case of sets and k-partitions of finite Borel rank and provide only proof
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hints for some long proofs, appealing to the analogy with the finitary version in Selivanov

(2012).

5.1. More on the h-preorders

Here we extend some notions and facts from Subsection 4.2 about the h-preorders, in

order to describe notation systems for levels of the FHs of k-partitions. We omit the

proofs which are easy variations of their finitary versions in Selivanov (2012).

Let (Q; �) be a poset. A Q-poset is a triple (P ,�, c) consisting of a countable nonempty

poset (P ; �), P ⊆ ω without infinite chains, and a labeling c : P → Q. By default, we

denote the labeling in a Q-poset by c. A morphism f : (P ,�, c) → (P ′,�′, c′) of Q-posets is

a monotone function f : (P ; �) → (P ′; �′) satisfying ∀x ∈ P (c(x) � c′(f(x))). Let P̃Q, F̃Q

and T̃Q denote the sets of all countable Q-posets, Q-forests and Q-trees, respectively.

The h-preorder �h on P̃Q is defined as follows: P �h P
′, if there is a morphism from P

to P ′. The quotient-posets of P̃Q, F̃Q, T̃Q are denoted P̃Q, F̃Q, T̃Q, respectively. Note that

for the particular case Q = k̄ of the antichain with k elements we obtain the preorders P̃k ,
F̃k , T̃k from the previous section.

Next we formulate some lattice-theoretic properties of the h-preorders. By a partial

lower semilattice we mean a poset in which any two elements that have a lower bound

have a (unique) greatest lower bound. For any poset Q, let Q′ be the poset obtained from

Q by adjoining the new element ⊥ which is smaller than all elements in Q. Define the

function s : Q → P̃Q as follows: s(q) is the singleton tree labeled by q ∈ Q. If Q is an

upper σ-semilattice (i.e., any countable subset of Q has a supremum), define the function

l : P̃Q → Q by l(P ) =
⋃

{c(p) | p ∈ P } where ∪ is the supremum operation in Q. For

Q-posets P and R (resp. P0, P1, . . .), let P �R (resp.
⊔
i Pi) denote their disjoint union (resp.

countable disjoint union), so that P � R,
⊔
i Pi ∈ P̃Q.

For posets P and Q we write P ⊆ Q (resp. P 
 Q) if P is a substructure of Q (resp. P

is an initial segment of Q). The next assertion is essentially contained in Selivanov (2012).

Proposition 5.1

1. If Q is a partial lower semilattice then Q′ is a lower semilattice.

2. (P̃Q; �h,�) is a distributive upper σ-semilattice that contains (F̃Q; �h,�) as a dis-

tributive upper σ-subsemilattice.

3. If Q is a partial lower semilattice then (P̃ ′
Q; �h) and (F̃ ′

Q; �h) are distributive lattices.

4. If Q is σ-directed (i.e. any countable set of elements has an upper bound) then s(Q) is

a cofinal subset of P̃Q (i.e. any x ∈ P̃Q is below s(q) for some q ∈ Q).

5. The mapping s is an isomorphic embedding of Q into P̃Q.

6. If Q is a partial lower semilattice then s preserves the greatest lower bound operations

in Q and P̃Q (and similarly for F̃Q).

7. If Q is an upper σ-semilattice then l : P̃Q → Q is a homomorphism of upper σ-

semilattices and q = l(s(q)) for each q ∈ Q.

8. If Q is a bqo then (F̃Q; �h), (T̃Q; �h) are bqo’s.

9. For arbitrary posets P and Q, P ⊆ Q implies F̃P ⊆ F̃Q, and P 
 Q implies F̃P 
 F̃Q.
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Now we can iterate the construction Q �→ F̃Q starting with the antichain k of k

elements {0, . . . , k − 1}. Define the sequence {F̃k(n)}n<ω of preorders by induction on n as

follows: F̃k(0) = k and F̃k(n + 1) = F̃F̃k(n)
. Identifying the elements i < k of k with the

corresponding minimal elements s(i) of F̃k(1), we may think that F̃k(0) 
 F̃k(1). By items

(8,9) of Proposition 5.1, F̃k(n) 
 F̃k(n + 1) for each n < ω, and F̃k(ω) =
⋃
n<ω F̃k(n) is a

wqo. For any n � ω, let F̃k(n) be the quotient-poset of F̃k(n).

Of course, similar constructions can be done with T̃ in place of F̃ . The preorders F̃k(ω),

T̃k(ω) and the set T̃ �
k (ω) of countable joins of elements in T̃k(ω), play an important role

in the study of the FH of k-partitions because they provide convenient naming systems

for the levels of this hierarchy (similar to the previous section where F̃k and T̃k were used

to name the levels of the DH of k-partitions). Note that F̃k(1) = F̃k and T̃k(1) = T̃k .
By Proposition 5.1, for any n < ω there is an embedding s = sn of F̃k(n) into F̃k(n+ 1),

and sn+1 coincides with sn on F̃k(n). This induces the embedding s =
⋃
n<ω sn of Fk(ω)

into itself such that s coincides with sn on F̃k(n) for each n < ω. Similarly, for any n < ω

we have the function l from F̃k(n+ 2) onto F̃k(n+ 1) which induces the function (denoted

also by l) from F̃k(ω) onto F̃k(ω).

Define the binary operation ∗ on P̃k(ω) as follows: F ∗ G is the labeled poset obtained

from G by adjoining a new largest (root) element and assigning the label F to that element.

It is easy to see that the operation ∗ respects the h-equivalence relation and hence induces

the binary operation on P̃k(ω) also denoted by ∗. Note that for F = s(i) = i < k we have

F ∗ G = pi(G) and that F̃k(ω) is closed under ∗.

We formulate some properties of the introduced objects illustrating a rich algebraic

structure of F̃k(ω). They are again almost the same as their corresponding finitary versions

in Selivanov (2012).

Proposition 5.2

1. For any n with 1 � n � ω, F̃ ′
k(n) is a well distributive lattice which is an upper

σ-semilattice for n < ω.

2. Any element of F̃ ′
k(ω) is the value of a variable-free term (countable joins are allowed)

of signature {�, ∗,⊥, 0, . . . , k − 1}.
3. For any 0 < n � ω, T̃k(n) generates F̃ ′

k(n) under �.

4. The set of σ-join-irreducible elements of T̃�
k (ω) coincides with T̃k(ω).

5. The set of join-irreducible elements T

k (ω) by of T̃


k (ω). coincides with T̃k(ω) ∪ S ,

where S is the set of supremums of infinite increasing sequences in T̃k(ω).

Next we provide a characterization of P̃k(ω) (and the related substructures) which

is sometimes more convenient when dealing with the FH in the next subsection. For

P ,Q ∈ P̃k(n), an explicit morphism ϕ : P → Q is a sequence (ϕ0, . . . , ϕn−1) where ϕ0 is a

morphism from P to Q, ϕ1 = {ϕ1,p0
}p0∈P is a family of morphisms from c(p0) to c(ϕ0(p0)),

ϕ2 = {ϕ2,p0 ,p1
}p0∈P ,p1∈c(p0) is a family of morphisms from c(p1) to c(ϕ1,p0

(p1)) and so on (this

notion makes use of the convention that i = s(i) for each i < k). Note that P �h Q iff there

is an explicit morphism from P to Q, and that for n = 1 the explicit morphisms essentially

coincide with the morphisms. In the next assertion we treat P̃k(ω) as the category whose

morphisms are the explicit morphisms.
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For each positive n < ω, a k-labelled n-preorder (Selivanov 2008b) is a countable

structure (S; d,�0, . . . ,�n−1) where d : S → k is a k-partition of S and �0, . . . ,�n−1 are

preorders on S such that �n−1 is a partial order, x �i+1 y implies x ≡i y, the quotient-poset

of (S; �0) has no infinite chains, for each x ∈ S the quotient-poset of ([x]0; �1) has no

infinite chains for each y ∈ [x]0 the quotient-poset of ([y]1; �2) has no infinite chains, and

so on. Let Sn(k) be the category of k-labelled n-posets as objects where the morphisms

are functions that preserve the labellings and are monotone w.r.t. all the preorders.

Proposition 5.3 For any positive n < ω, the categories P̃k(n) and Sn(k) are equivalent.

Proof hint. The equivalence is witnessed (cf. Proposition 8.8 of Selivanov (2012)) by

the functors defined as follows. Relate to any object (P ; �, c) of P̃k(n) the object P ◦ =

(X; �0, . . . ,�n−1, d) of Sn(k) where X is formed by the elements p = (p0, . . . , pn−1) such

that p0 ∈ P , p1 ∈ c(p0), . . ., the preorders between such p and r = (r0, . . . , rn−1) are defined

by p �0 r iff p0 � r0, p �1 r iff p0 = r0 and p1 � r1 and so on, and the labeling d : X → k

is defined by d(p) = c(pn−1). Relate to any explicit morphism ϕ = (ϕ0, . . . , ϕn−1) : P → Q

of P̃k(n) the morphism ϕ◦ : P ◦ → Q◦ by ϕ◦(p0, p1, . . .) = (ϕ0(p0), ϕ1,p0
(p1), . . .).

Conversely, relate to any object X of Sn(k) as above the object X+ = (P ; �, c) of P̃k(n)
where (P ; �) is the quotient-poset of (X; �0) and c([x]0) = ([x]0; �1, . . . ,�n−1, d|[x0])

+; we

can suppose by induction that c([x]0) is an object of P̃k(n − 1) if n > 1. Relate to any

morphism ψ : X → Y of Sn(k) the explicit morphism ψ+ = (ϕ0, . . . , ϕn−1) : X+ → Y +

where ϕ0([x]0) = [ψ(x)]0, ϕ1,[x]0 ([z]1) = [ψ(z)]1 for each z ∈ [x]0 and so on.

Note that the notion of an explicit morphism does not in fact depend on the number

n because the explicit morphism ϕ : P → Q of P ,Q ∈ P̃k(n) is uniquely extended to

an explicit morphism of P ,Q considered as objects of P̃k(n + 1). Thus, we can consider

the category P̃k(ω) with the explicit morphism. Similarly, we can consider the category

Sω(k) =
⋃
n Sn(k) because Sn(k) may be considered as a subcategory of Sn+1(k) (just add

the equality relation as �n). In this way, we obtain the equivalence of categories P̃k(ω)

and Sω(k).

The full subcategories F̃k(ω) and T̃k(ω) of P̃k(ω) are then equivalent to suitable full

subcategories Uω(k) and Vω(k) of Sω(k) (e.g., the objects of Uω(k) are (X; �0,�1, . . . , d)

where (X; �0) is a forest, ([x]0; �1) is a forest for each x ∈ X, and so on).

We conclude this subsection with extending Proposition 4.7 to the structure T̃ �
2 (ω). For

this we need the ordinal ξ = sup{ω1, ω
ω1

1 , ω
(ω

ω1
1 )

1 , . . .}. According to the Cantor normal form,

any non-zero ordinal α < ξ is uniquely representable in the form α = ω
γ0
1 ·α0 + · · ·+ωγl

1 ·αl
for some l < ω, α > γ0 > · · · > γl and non-zero ordinals α0, . . . , αl < ω1). For F ∈ F̃2(ω),

let F̄ ∈ F̃2(ω) be obtained from F by interchanging {0, 1} in all the labels.

Definition 5.4 We define the sequence {Tα}α<ξ of trees in T̃2(ω) by induction on α as

follows:

1. For α < ω1, use the definition from the end of Subsection 4.2.

2. For any non-zero ordinal γ < ξ, Tωγ1 = s(Tγ).
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3. For any limit uncountable ordinal λ < ξ of countable cofinality, Tλ = 0 ∗ (
⊔
n Tαn )

where α0 < α1 < · · · and λ = sup{α0, α1, . . .}.
4. For any ordinal β � ω1, Tβ+1 = 0 ∗ (Tβ � T̄β).
5. For all δ, γ such that 1 � δ < ω1 and 1 � γ < ξ, Tωγ1(δ+1) = Tγ ∗ T̄ωγ1δ .
6. For all β, γ such that 1 � γ < ξ and β = ω

γ1
1 · β1 for some β1 > 0 and γ1 > γ,

Tβ+ω
γ
1
= Tγ ∗ (Tβ � T̄β).

7. For all δ, β, γ such that 1 � δ < ω1, 1 � γ < ξ and β = ωγ1 · β1 for some β1 > 0 and

γ1 > γ, Tβ+ω
γ
1(δ+1) = Tγ ∗ T̄β+ω

γ
1δ

.

The next assertion is the extension of Proposition 4.7. We omit the proof which is very

similar to that of Proposition 8.29 in Selivanov (2012) being a finitary version of this

assertion.

Proposition 5.5

1. For all α < β < ξ, Tα is correctly defined up to ≡h (in particular, it does not depend

on the choice of the ordinals αn in Definition 5.4(3)), Tα and T̄α are �h-incomparable

elements of T̃2(ω) that satisfy Tα � T̄α <h Tβ .

2. Any T ∈ T̃2(ω) is h-equivalent to precisely one of Tα, T̄α for some α < ξ.

3. Any T ∈ T̃ �
2 (ω) is h-equivalent to precisely one of Tα, T α, Tα � Tα,

⊔
n Tαn where

{αn} is an increasing sequence of ordinals converging to a limit ordinal (of countable

cofinality).

4. For any α < ω1, Tα � Tα ≡h Tα+1 � Tα+1, where � is a binary operation of k-forests

inducing the infimum operation in F̃ ′
k(ω).

5. For any limit countable ordinal λ of countable cofinality and any increasing sequence

of ordinals converging to λ,
⊔
n Tαn ≡h Tλ � Tλ.

6. The ranks of T̃2(ω) and of T̃�
2 (ω) coincide with ξ.

5.2. Fine hierarchies of k-partitions

Here we define the FH of k-partitions and formulate its basic properties. The proofs are

almost the same as those for the finitary case in Selivanov (2012).

Let X be a space. By an ω-base (cf. Selivanov (2008b, 2012)) in X we mean a sequence

L = {Ln}n<ω of bases such that Ln ∪ Ľn ⊆ Ln+1 for each n < ω. The main example of an

ω-base is of course {Σ0
n+1}n<ω but also other examples are interesting, in particular the

m-shifts {Σ0
m+n}n<ω for any fixed 1 � m < ω.

Let P ∈ F̃k(n) for some positive n < ω. By a P -family over L we mean a family

{Bp0
, Bp0 ,p1

, . . . , Bp0 ,...,pn−1
} where p = (p0, . . . , pn−1) ∈ P ◦ (see the end of Section 5.1), Bp0

∈
L0, Bp0 ,p1

∈ L1, . . . , Bp0 ...,pn−1
∈ Ln−1, and the sets

B̃p0
= Bp0

\
⋃

{Br | r �0 p}, B̃p0 ,p1
= Bp0 ,p1

\
⋃

{Br | r �1 p}, . . .

satisfy

B̃p0
=

⋃
{Bp0 ,p1

| p1 ∈ c(p0)}, B̃p0 ,p1
=

⋃
{Bp0 ,p1 ,p2

| p1 ∈ c(p0), p2 ∈ c(p1)}, . . . .

https://doi.org/10.1017/S0960129516000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000177


V. Selivanov 1574

To simplify notation, we often denote families just by {Bp}. Note that d(p) = c(pn−1) is

always in F̃k(0) = {0, . . . , k − 1},

B̃p0
=

⋃
{B̃p0 ,p1

| p1 ∈ c(p0)}, B̃p0 ,p1
=

⋃
{B̃p0 ,p1 ,p2

| p1 ∈ c(p0), p2 ∈ c(p1)}, . . .

and that for n = 1 the P -families over L essentially coincide with the P -families of L0-sets

in Section 4.3. Obviously,
⋃
p0
Bp0

=
⋃
p∈P ◦ B̃p. We call a P -family {Bp} over L consistent

if d(p) = d(q) whenever the components B̃p and B̃q have a nonempty intersection. Any

such consistent P -family determines the k-partition A :
⋃
p0
Bp0

→ k where A(x) = d(p)

for some (equivalently, for any) p ∈ P ◦ with x ∈ B̃p; we also say in this case that A is

defined by {Bp}. Note that this k-partition is determined by the defining P -family and it

does not depend on the number n with P ∈ F̃k(n).

Let LY (P ) be the set of k-partitions A : Y → k defined by some P -family over L. In

case Y = X we omit the superscript X and call (temporarily) the family {L(P )}
P∈F̃k(ω)

the FH of k-partitions over L.

For F ∈ F̃k(ω), by a reduced F-family over L we mean a monotone F-family {Bp} over

L such that Bp0
∩ Bq0

= � for all incomparable p0, q0 ∈ F , Bp0 ,p1
∩ Bp0 ,q1

= � for all

incomparable p1, q1 ∈ c(p0) and so on. Let LYr (F) be the set of partial k-partitions defined

by the reduced F-families {Bp} over L such that
⋃
p0
Bp0

= Y .

The next assertion is a a straightforward extension of Proposition 4.8 proved similarly

to its finitary version in Selivanov (2012).

Proposition 5.6

1. If A ∈ LY (P ) then A|Z ∈ LZ (P ) for each Z ⊆ Y , Z ∈ L0.

2. Any A ∈ LY (P ) is defined by a monotone P -family {Cp} (monotonicity means that

Cq0
⊆ Cp0

for q0 � p0, Cp0 ,q1
⊆ Cp0 ,p1

for q1 � p1 and so on).

3. Let f : X1 → X be a morphism of ω-spaces and A ∈ LY (P ) in X. Then f−1(A) ∈
Lf−1(Y )(P ).

4. If P �h Q then LY (P ) ⊆ LY (Q).

5. The collection {L(P ) | P ∈ F̃k(ω)} is well partially ordered by inclusion.

6. For all F,G ∈ F̃ ′
k(ω), L(F) ∩ L(G) = L(F � G).

7. Any level L(F), F ∈ F̃k(ω), of the FH is the intersection of finitely many ‘non-self-dual’

levels L(T ), T ∈ T̃k(ω).

8. Let Ln have the ω-reduction property for each n < ω, Y ∈ L0 and F ∈ F̃k(ω). Then

LY (F) = LYr (F), in particular, L(F) = Lr(F).

9. Any constituent of the hierarchy {L(x)}
x∈F̃k(ω)

is a constituent of the hierarchy

{L(x)}
x∈T̃k(ω)

.

Item (9) shows that we can simplify the hierarchy {L(F)}
F∈F̃k(ω) to the hierarchy

{L(T )}
T∈T̃k(ω). Similar to the DH of k-partitions, levels L(T ), T ∈ T̃k(ω), generalize the

non-self-dual levels Σ,Π of the hierarchies of sets while finite intersections of these levels

correspond to the self-dual levels of hierarchies of sets. This is illustrated by the following

extension of Propositions 4.11, 4.12 and Theorem 4.13.
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Proposition 5.7

1. Let L = {Σ0
n+1}n<ω and F ∈ F̃k(ω). Then {L(X, F)}X is a family of k-partition classes.

2. Let X be a cb0-space, L = {Σ0
n+2(X)}n<ω , and T ∈ T̃k(ω). Then L(X,T ) has a principal

L(T )-TR. If X is in addition zero-dimensional and M = {Σ0
n+1(X)}n<ω then M(X,T )

has a principal M(T )-TR.

The next result is an infinitary version of Proposition 8.19 in Selivanov (2012). It

extends the Hausdorff–Kuratowski theorem to all levels of the FH. We call the ω-

base L is interpolable if, for each n � 1, Ln has the ω-reduction property and the

Hausdorff–Kuratowski theorem holds for any non-zero level of L. In particular, the base

L = {Σ0
n+1(X)}n<ω is interpolable in any quasi-Polish space X.

Theorem 5.8 Let L be an interpolable base in X, n < ω, and T0, . . . , Tn ∈ T̃k(ω). Then

L(T0) ∩ · · · ∩ L(Tn) =
⋃

{L(S) | S ∈ T �
k (ω), S � T0 � · · · � Tn}.

The last theorem informally means that the FH of k-partitions is the finest possible

in the sense that it cannot be further refined in ‘non-self-dual’ levels because any such

level is exhausted by the lower levels. The Hausdorff–Kuratowski theorem for k-partitions

(Theorem 4.14 for finite θ) is a very particular case of the last theorem because for any

positive integer n we have (using Remark 4.15) (Δ0
n+1(X))k = L(sn(0 � · · · � (k − 1))),

Σ0
n(T ) = L(sn−1(T )), and {L(sn−1(T )) | T ∈ T̃k} is cofinal in {L(S) | S ∈ T �

k (ω), S �
sn(0 � · · · � (k − 1))}.

The next result extends (with essentially the same proof) Theorem 4.13 to the FH of

k-partitions.

Theorem 5.9 Let X be a cb0-space, δ : D → X an admissible representation of X (D ⊆ N ),

A : X → k a k-partition of X, L = {Σ0
n+1}n<ω , and T ∈ T̃k(ω). Then A ∈ L(X,T ) iff

A ◦ δ ∈ L(D,T ).

Corollary 5.10 Let X be a quasi-Polish space, δ : N → X an admissible TR of X,

A : X → k a k-partition of X, L = {Σ0
n+1}n<ω , and T ∈ T̃k(ω). Then A ∈ L(X,T ) iff

A ◦ δ ∈ L(N , T ).

For the DH of k-partitions, it was easy to demonstrate that it really extends the DH

of sets (which coincides with the DH of 2-partitions by Proposition 4.9). For the FH of

2-partitions the same task is more complicated. The reason is that this hierarchy should

generalize the Wadge hierarchy which was so far defined and relatively well understood

only for the Baire space (and some other closely related spaces). Moreover, the most

popular definition of this hierarchy is in terms of the Wadge reducibility rather than in

set-theoretic terms (in fact, there are also set-theoretic definitions (Louveau 1983; Wadge

1984) but they are very indirect and hard to deal with). Nevertheless, we claim that the

FH of 2-partitions in the Baire space coincides with the Wadge hierarchy. We discuss this

(rather informally) in the next subsection.
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5.3. FH of k-partitions and Wadge-like reducibilities

Here we discuss the relation of the FH of k-partitions to Wadge-like reducibilities. Let

us first briefly recall some relevant facts about the Wadge reducibility in the Baire space.

In Wadge (1972, 1984) Wadge (with a heavy use of the Martin determinacy theorem)

proved that the structure (Δ1
1(N ); �W ) is semi-well-ordered (i.e., it is well-founded and for

all A,B ∈ Δ1
1(N ) we have A �W B or B �W A. He has also computed the rank ν of this

structure which is a rather large ordinal.

In Steel (1980); Van Wesep (1976), the following deep relation of the Wadge reducibility

to the separation property was established: For any Borel set A which is non-self-dual

(i.e., A ��W A) exactly one of the principal ideals {X | X �W A}, {X | X �W A} has the

separation property.

The mentioned results give rise to the Wadge hierarchy in the Baire space which is, by

definition, the sequence {Σα}α<ν of all non-self-dual principal ideals of (Δ1
1(N ); �W ) that

do not have the separation property and satisfy for all α < β < ν the strict inclusion

Σα ⊂ Δβ . As usual, we set Πα = {A | A ∈ Σα} and Δα = Σα∩Πα. Note that the constituents

of the Wadge hierarchy are precisely the equivalence classes induced by �W on Borel

subsets of the Baire space (i.e., the Wadge degrees).

As shown in Wadge (1984), Σα = Σ−1
α (N ) for each α < ω1, i.e. the DH over open

sets is an initial segment of the Wadge hierarchy. In order to see how much finer is

the Wadge hierarchy compared with the Borel hierarchy, we mention the equalities from

Wadge (1984) relating both hierarchies: Σ1 = Σ0
1(N ), Σω1

= Σ0
2(N ), Σωω1

1
= Σ0

3 and so

on. Thus, the sets of finite Borel rank coincide with the sets of Wadge rank less than

ξ = sup{ω1, ω
ω1

1 , ω
(ω

ω1
1 )

1 , . . .}. Note that ξ is the smallest solution of the ordinal equation

ω�
1 = �. Hence, we warn the reader not to mistake Σα with Σ0

α. To give an impression

about the Wadge ordinal we note that the rank of the preorder (Δ0
ω; �W ) is the ω1-st

solution of the ordinal equation ω�
1 = � Wadge (1984).

The structure of Wadge degrees is known to have the following properties: at the

bottom (i.e., zero) level and at the limit levels of uncountable cofinality we have non-self-

dual pairs of degrees; at the limit levels of countable cofinality we have self-dual degrees;

at successor levels the self-dual degrees and non-self-dual pairs alternate. Remembering

Proposition 5.5 we immediately see that the structure of Wadge degrees of finite Borel

rank is isomorphic to the structure T̃�
2 (ω)! This observation makes more plausible our

claim that the FH of k-partitions extends the Wadge hierarchy.

To explain this more precisely, we note that it is possible to relate to any F ∈ T̃ �
k (ω)

a k-partition AF of the Baire space in such a way that AF is Wadge complete in L(F)

where L = {Σ0
n+1(N )}n<ω . Since the proof of this result is too technical for this paper, we

postpone it to a subsequent publication and only note that very relevant particular cases

are considered in Selivanov (2007a,b, 2011) (in fact, from these papers only the proof for

the initial segment T̃ �
k (2) is easily extracted, while for the general result one has to employ

(suitable extensions of) some jump operators from Andretta (2006); Motto Ros (2009)

in order to relate AF to arbitrary F ∈ T̃ �
k (ω). In this way one obtains the following result

showing, in particular, that the FH of sets really extends the Wadge hierarchy of sets of

finite Borel rank:
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Theorem 5.11 For any F ∈ T̃ �
k (ω), AF is Wadge complete in L(N , F) where

L = {Σ0
n+1(N )}n<ω and, moreover, F �h G iff L(N , F) ⊆ L(N , G). In fact, F �→ AF induces

an isomorphism between T̃�
k (ω) and the structure of Wadge degrees of k-partitions of the

Baire space of finite Borel rank.

Our definition of the FH of k-partitions is thus a natural extension of the Wadge

hierarchy to arbitrary spaces. Interestingly, for the important particular case of quasi-

Polish spaces this hierarchy is naturally induced by the Wadge hierarchy of k-partitions of

the Baire space via admissible representations. This follows immediately from Corollary

5.10 and maybe considered as an alternative definition of the FH of k-partitions: Let X

be a quasi-Polish space, L = {Σ0
n+1(N )}n<ω , M = {Σ0

n+1(X)}n<ω , and T ∈ T̃k(ω). Then

A ∈ M(X,T ) iff A ◦ δ ∈ L(N , T ) where δ is some (equivalently, any) admissible TR of X.

As is well known, the structure of Wadge degrees in many natural non-zero-dimensional

cb0-spaces is very complicated (see e.g. Motto Ros et al. 2015 and references therein) so

it seems hopeless to understand these structures completely. Nevertheless, if we slightly

weaken the notion of Wadge reducibility by extending the class of reducing functions (this

is similar to the relativization process in Computability Theory) we obtain natural versions

of Wadge reducibility which behave similar to the classical one in many natural spaces.

This also applies to reducibilities of k-partition. We illustrate this with the following

assertion:

Proposition 5.12 Let X be a quasi-Polish space such that dim(X) �= ∞. Then the structure

of Σ0
3-degrees of k-partitions of X of finite Borel rank is isomorphic to T̃ �

k (ω).

Proof hint. By Proposition 3.1, there is a Σ0
3-isomorphism f between X and N . Clearly,

f induces an isomorphism of the quotient-structures of (kX; �Σ0
3
) and (kN ; �Σ0

3
) which

preserves the initial segments of k-partitions of finite Borel rank. Therefore, it suffices to

prove the assertion for X = N . But this is just the Σ0
3-relativization of Theorem 5.11.

Note that similar relativizations are employed in Motto Ros (2009) and, in the context

of Computability Theory, in Selivanov (1983).

6. Conclusion

The results of this paper suggest that DST in cb0-spaces (or at least in some rich classes

of cb0-spaces like CB0(Δ
1
1)) resembles in many respects the classical DST in Polish spaces.

Also, the methods of classical DST seem also to work well in this context, although a

more systematic treatment of DST in cb0-spaces is desirable. In particular, the classical

theory of equivalence relations and descriptive theory of functions on cb0-spaces (more

complicated than the k-partitions considered here) seem to be interesting.

Of course, many details about the FH of k-partitions in cb0-spaces should be elaborated

much more carefully than in this paper (here we have only given precise definitions and

formulations and very short proof hints). In fact, even the structure of Wadge degrees of

Borel k-partitions of the Baire space should be described much more carefully; we plan

to do this in subsequent publications (of course one cannot expect to fulfil this task in a

short single paper because even the much easier case of sets is technically very involved
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(Van Wesep 1976; Wadge 1984), and the game-theoretic technique does not apply to

non-zero-dimensional spaces and to the case of k-partitions in the Baire space (at least,

in a straightforward way)). The results of this paper suggest that the FH of k-partitions

in arbitrary quasi-Polish spaces, and even in more general cb0-spaces, is nevertheless

tractable.

A special challenge is the systematic development of DST in non-countably based

spaces, in particular, in reasonable rich enough classes of qcb0-spaces. This task could

require new methods compared with the case of cb0-spaces.

Another interesting direction is the development of effective DST in effective (in some

reasonable sense) spaces. As is well known from Computability Theory, this task is highly

non-trivial even for ‘simple’ spaces like the Baire space. For topologically more complicated

spaces this direction is still widely open, although it seems of principal importance, in

particular for Computable Analysis.
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Schröder, M. and Selivanov, V. (2015). Hyperprojective hierarchy of qcb0-spaces. Computability 4

(1) 1–17.

Selivanov, V.L. (1983). Hierarchies of hyperarithmetical sets and functions. Algebra and Logic 22

(6) 473–491.

Selivanov, V.L. (2004). Difference hierarchy in ϕ-spaces. Algebra and Logic 43 (4) 238–248.

Selivanov, V.L. (2005a). Variations on the Wadge reducibility. Siberian Advances in Mathematics 15

(3) 44–80.

Selivanov, V.L. (2005b). Hierarchies in ϕ-spaces and applications. Mathematical Logic Quarterly 51

(1) 45–61.

Selivanov, V.L. (2006). Towards a descriptive set theory for domain-like structures. Theoretical

Computer Science 365 (2) 258–282.

Selivanov, V.L. (2007a). The quotient algebra of labeled forests modulo h-equivalence. Algebra and

Logic 46 (2) 120–133.

Selivanov, V.L. (2007b). Hierarchies of Δ0
2-measurable k-partitions. Mathematical Logic Quarterly 53

(4-5) 446–461.

Selivanov, V.L. (2008a). On the difference hierarchy in countably based T0-spaces. Electronic Notes

in Theoretical Computer Science 221 257–269.

Selivanov, V.L. (2008b). Fine hierarchies and m-reducibilities in theoretical computer science.

Theoretical Computer Science 405 (1-2) 116–163.

Selivanov, V.L. (2010). On the Wadge reducibility of k-partitions. Journal of Logic and Algebraic

Programming 79 (1) 92–102.

Selivanov, V.L. (2011). A fine hierarchy of ω-regular k-partitions. In: Löwe, B. et al. (eds.) CiE 2011.
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